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A theorem from commutative algebra due to Köthe and Cohen-
Kaplansky states that, “a commutative ring R has the property
that every R-module is a direct sum of cyclic modules if and only
if R is an Artinian principal ideal ring”. Therefore, an interesting
natural question of this sort is “whether the same is true if one
only assumes that every ideal is a direct sum of cyclic modules?”
The goal of this paper is to answer this question in the case R is
a finite direct product of commutative Noetherian local rings. The
structure of such rings is completely described. In particular, this
yields characterizations of all commutative Artinian rings with this
property.
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1. Introduction

It was shown by Köthe [11] that an Artinian commutative ring R has the property that every
module is a direct sum of cyclic modules if and only if R is a principal ideal ring. Later Cohen and
Kaplansky [4] obtained the following result: “a commutative ring R has the property that every module is
a direct sum of cyclic modules if and only if R is an Artinian principal ideal ring”. (Recently, a generalization
of Köthe’s result and an analogue of the Cohen–Kaplansky theorem have been given by Behboodi
et al. [2] for the noncommutative setting.) More generally, Griffith showed in [7, Theorem 4.3] that if
R is a commutative ring and every R-module is a direct sum of finitely generated modules, then R is
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an Artinian principal ideal ring. Griffith asks in [7] whether the same is true if one only assumes that
every module is a direct sum of countably generated modules. This question is answered by Warfield
in [16, Theorem 2 and Theorem 3]. In fact, Warfield showed that if R is a commutative ring such that
every R-module is a direct sum of indecomposable modules, then R is an Artinian principal ideal ring
(so that every module is a direct sum of cyclic modules). Also, he showed that if R is a commutative
ring and there is a cardinal number n such that every R-module is a summand of a direct sum of
modules with n generators, then R is an Artinian principal ideal ring. Therefore, an interesting natural
question of this sort is: “What is the class of commutative rings R for which every ideal is a direct
sum of cyclic modules?” The goal of this paper is to answer this question in the case R is a finite
direct product of commutative Noetherian local rings.

Throughout this paper, all rings are commutative with identity and all modules are unital. For
a ring R we denote by Spec(R) and Max(R) the set of prime ideals and the set of maximal ideals
of R , respectively. Also, Nil(R) is the set of all nilpotent elements of R . We denote the classical Krull
dimension of R by dim(R). Let X be either an element or a subset of R . The annihilator of X is the
ideal Ann(X) = {a ∈ R | aX = 0}. A ring R is local in case R has a unique maximal ideal. In this paper
(R, M) will be a local ring with maximal ideal M. An R-module N is called simple if N �= (0) and it
has no submodules except (0) and N . Also, a Köthe ring is a ring such that each R-module is a direct
sum of cyclic modules.

It is shown that if every ideal of a Noetherian ring R is a direct sum of cyclic R-modules, then
dim(R) � 1 (see Corollary 2.7). Also, if a local ring (R, M) has the property that every ideal of R is
a direct sum of cyclic R-modules, then M = ⊕

λ∈Λ R wλ where Λ is an index set, wλ ∈ R for each
λ ∈ Λ, and at most 2 of R wλ ’s (λ ∈ Λ) are not simple (see Corollary 2.3). It is also shown that if a
Noetherian local ring R has the property that every ideal of R is a direct sum of cyclic R-modules,
then |Spec(R)| � 3 (see Theorem 2.5). Moreover, in Theorem 2.11, we show that for a Noetherian local
ring (R, M) the following statements are equivalent:

(1) Every ideal of R is a direct sum of cyclic R-modules.
(2) M = R w1 ⊕ · · · ⊕ R wn where n � 1 and at most 2 of R w1, . . . , R wn are not simple.
(3) There exists n � 1 such that every ideal of R is a direct sum of at most n cyclic R-modules.
(4) Every ideal of R is a summand of a direct sum of cyclic R-modules.
As a consequence, we obtain: if R = R1 × · · · × Rk , where each Ri (1 � i � k) is a Noetherian local

ring, then every ideal of R is a direct sum of cyclic R-modules if and only if each Ri satisfies the
above equivalent conditions, so this yields characterizations of all commutative Artinian rings whose
ideals are direct sum of cyclics (see Theorem 2.13).

We note that two theorems from commutative algebra due to I.M. Isaacs and I.S. Cohen state that,
to check whether every ideal in a ring is cyclic (resp. finitely generated), it suffices to test only the
prime ideals (see [10, p. 8, Exercise 10] and [3, Theorem 2]). So this raises the natural question:
“If every prime ideal of R is a direct sum of cyclics, can we conclude that all ideals are direct sum
of cyclics?” This is not true in general. In fact, for each integer n � 3, we provide an example of an
Artinian local ring (R, M) such that M is a direct sum of n cyclic R-modules, but there exists a two
generated ideal of R which is not a direct sum of cyclic R-modules (see Example 3.1). There exist
non-Noetherian local rings R with dim(R) = 0 such that every ideal of R is a direct sum of cyclic
R-modules (see Example 3.2). There exist Artinian local rings R such that every ideal of R is a direct
sum of at most 2 cyclic R-modules, but R is not a principal ideal ring (so R is not a Köthe ring) (see
Example 3.3). Also, there exist Noetherian local rings R with dim(R) = 1 such that every ideal of R
is a direct sum of at most 2 cyclic R-modules, but R is not a principal ideal ring (see Example 3.6).
Also, Example 3.8 shows that for a ring R the property that “every ideal is a direct sum of cyclics” is
not a local property (see also, Remark 2.6). Finally, Example 3.9 shows that for a ring R the property
that “every ideal is a direct sum of at most 2 cyclics” is not equivalent to the property that “every
ideal is generated by at most two elements” (see Matlis’ paper [13] for the two-generator problem for
ideals).

2. Main results

First, by using Nakayama’s lemma, we obtain the following lemma.
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Lemma 2.1. Let (R, M) be a local ring and Rx be a nonzero summand of M. Then Rx is a simple R-module if
and only if x2 = 0.

The following proposition is crucial in our investigation.

Proposition 2.2. Let (R, M) be a local ring and M = Rx ⊕ R y ⊕ Rz ⊕ K where K is an ideal of R, 0 �= x, y,
z ∈ R and Rx, R y, Rz are not simple R-modules. Then the ideal J := R(x + y) + R(x + z) is not a direct sum
of cyclic R-modules.

Proof. Let L = Rx ⊕ R y ⊕ Rz. Since Rx, R y, Rz are not simple, by Lemma 2.1, x2, y2, z2 are nonzero.
We note that L2 = Rx2 ⊕ R y2 ⊕ Rz2 ⊆ J ⊆ L, since x2 = x(x + y), y2 = y(x + y) and z2 = z(x + z).
We claim that y ∈ L \ J , for if not, then there exist r, s ∈ R such that y = r(x + y) + s(x + z) =
(r + s)x + ry + sz. Thus (r + s)x = (1 − r)y = sz = 0, and since both x and z are nonzero, r + s, s ∈ M.
Thus r ∈ M and so 1 − r is unit, and hence y = 0, a contradiction. Also, x + z ∈ J \ L2, for if not, then
there exist r1, r2, r3 ∈ R such that x+ z = r1x2 +r2 y2 +r3z2 and this implies that x = 0, a contradiction.
Therefore, L2 � J � L.

Suppose, contrary to our claim, that J is a direct sum of cyclic R-modules. Thus J = ⊕m
i=1 R fi

where 0 �= f i = ri1x + ri2 y + ri3z and ri1, ri2, ri3 ∈ R for each 1 � i � m.
Since x + y, x + z ∈ J , there exist si, ti ∈ R for 1 � i � m such that

x + y =
m∑

i=1

si f i =
(

m∑
i=1

siri1

)
x +

(
m∑

i=1

siri2

)
y +

(
m∑

i=1

siri3

)
z,

x + z =
m∑

i=1

ti f i =
(

m∑
i=1

tiri1

)
x +

(
m∑

i=1

tiri2

)
y +

(
m∑

i=1

tiri3

)
z.

It follows that,

(
1 −

m∑
i=1

siri1

)
x =

(
1 −

m∑
i=1

siri2

)
y =

(
m∑

i=1

siri3

)
z = 0,

(
1 −

m∑
i=1

tiri1

)
x =

(
m∑

i=1

tiri2

)
y =

(
1 −

m∑
i=1

tiri3

)
z = 0.

Since x, y and z all are nonzero, we conclude that

1 −
m∑

i=1

siri1,1 −
m∑

i=1

siri2,1 −
m∑

i=1

tiri3 ∈ M.

Therefore, “there exist 1 � i, j,k � m such that ri1, r j2, rk3 /∈ M” (∗), for if not, then at least one of the
above elements is unit in R , a contradiction.

Without loss of generality, we need only to consider the following three cases:
Case 1: r11, r12, r13 /∈ M. Suppose that m � 2. Since f2 f1 = 0 and x2, y2, z2 �= 0, we conclude that

r21, r22, r23 ∈ M. Note that M = Rx ⊕ R y ⊕ Rz ⊕ K implies that f2 = r′
21x2 + r′

22 y2 + r′
23z2 where

r′
21, r′

22, r′
23 ∈ R . Thus f2 = (r′

21r−1
11 x + r′

22r−1
12 y + r′

23r−1
13 z) f1, a contradiction. Therefore, m = 1 and so

J = R f1. Since x + y ∈ J , there exists s ∈ R such that x + y = sf1 = sr11x + sr12 y + sr13z. It follows
that (1 − sr11)x = (1 − sr12)y = sr13z = 0. Thus 1 − sr11,1 − sr12, sr13 ∈ M, since x, y, z �= 0. On the
other hand, sr13 ∈ M implies that s ∈ M, and so 1 − sr12 is unit and hence y = 0, a contradiction.

Case 2: r11, r12 ∈ M and r13 /∈ M. Thus f1 = r′
11x2 + r′

12 y2 + r13z for some r′
11, r′

12 ∈ R . Since
x2, y2 ∈ J , so z ∈ J . Therefore, x + y, x + z ∈ J implies that x, y ∈ J and so J = L, a contradiction.
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Case 3: r11 ∈ M and r12, r13 /∈ M. Then there exists an f i = ri1x+ri2 y+ri3z such that ri1 /∈ M (see
the above fact (∗)). Since f i f1 = 0, then ri2, ri3 ∈ M. Similarly to Case 2, we obtain a contradiction.

Thus the ideal J = R(x + y) + R(x + z) is not a direct sum of cyclic R-modules. �
The following is now immediate.

Corollary 2.3. Let (R, M) be a local ring. If every ideal of R is a direct sum of cyclic R-modules, then M =⊕
λ∈Λ R wλ where Λ is an index set, wλ ∈ R for each λ ∈ Λ, and at most 2 of R wλ ’s (λ ∈ Λ) are not simple.

As a consequence of Corollary 2.3, we obtain the following interesting theorem. First, we need the
following lemma.

Lemma 2.4. (See Kaplansky [9, Theorem 12.3].) A commutative Noetherian ring R is a principal ideal ring if
and only if every maximal ideal of R is principal.

Theorem 2.5. Let (R, M) be a Noetherian local ring. If every ideal of R is a direct sum of cyclic R-modules,
then dim(R) � 1 and |Spec(R)| � 3.

Proof. By Corollary 2.3, M = ⊕n
i=1 R wi where n ∈ N, wi ∈ R (1 � i � n) and at most 2 of R w1, . . . ,

R wn are not simple. If M2 = (0), then dim(R) = 0 and Spec(R) = {M}. Let M2 �= (0) and M be
cyclic. Then by Lemma 2.4, R is a principal ideal ring and so dim(R) � 1. If dim(R) = 0, then R
is Artinian and so Spec(R) = {M}. Suppose that dim(R) = 1. Let M = Rx where x ∈ R and P ∈
Spec(R) \ {M}. Since P � M = Rx, so P = P x and so by Nakayama’s lemma P = (0). Thus R is a
principal ideal domain and Spec(R) = {(0), M}.

Now, we can assume that M2 �= (0) and M is not cyclic. Thus M = Rx ⊕ R y ⊕ (
⊕n

i=3 R wi) where
x, y �= 0 and for each i, R wi is simple (i.e., w2

i = 0 by Lemma 2.1). Suppose that P ∈ Spec(R) \ {M}.
If x, y ∈ Nil(R), then M is the only prime ideal of R (since w2

i = 0 for each 3 � i � n). Hence
dim(R) = 0 and Spec(R) = {M}. Suppose that x, y /∈ Nil(R). Since xy = 0, x ∈ P or y ∈ P . If x ∈ P , then
P = Rx⊕ (P ∩ R y)⊕ (

⊕n
i=3 R wi). Also, R y ∩ P = P y, since y /∈ P . Thus P = Rx⊕ P y ⊕ (

⊕n
i=3 R wi) and

hence P y = P y2 = R y P y, so by Nakayama’s lemma P y = 0. Thus P = Rx⊕ (
⊕n

i=3 R wi). If y ∈ P , then
we conclude similarly that P = R y ⊕ (

⊕n
i=3 R wi). On the other hand, since x, y /∈ Nil(R), there exist

P1, P2 ∈ Spec(R) \ {M} such that x ∈ P1, y /∈ P1 and x /∈ P2, y ∈ P2. Therefore, Spec(R) = {M, Rx ⊕
(
⊕n

i=3 R wi), R y ⊕ (
⊕n

i=3 R wi)} and dim(R) = 1. Finally, without loss of generality, we can assume
that x ∈ Nil(R) and y /∈ Nil(R). Since w2

i = 0 for each 3 � i � n, Rx ⊕ (
⊕n

i=3 R wi) ⊆ P . Thus P =
Rx ⊕ (P ∩ R y) ⊕ (

⊕n
i=3 R wi). Similarly as in the previous case we obtain P = Rx ⊕ (

⊕n
i=3 R wi).

Therefore, Spec(R) = {M, Rx ⊕ (
⊕n

i=3 R wi)} and dim(R) = 1. �
Remark 2.6. One can easily see that, if R is a ring all of whose ideals are direct sums of cyclic
modules, then for each P ∈ Spec(R) the localization R P has this property. But the converse is not true
in general (see Example 3.8).

The following corollary shows that the first part of Theorem 2.5 is still true if we drop the as-
sumption “R is local”.

Corollary 2.7. Let R be a Noetherian ring. If every ideal of R is a direct sum of cyclic R-modules, then
dim(R) � 1.

Proof. Assume that R is Noetherian and every ideal of R is a direct sum of cyclic R-modules.
Suppose, contrary to our claim, that dim(R) � 2. Then there exists a chain P ′′ � P ′ � P of prime
ideals of R . By Remark 2.6, every ideal of R P is a direct sum of cyclic R P -modules. Thus by The-
orem 2.5, dim(R P ) � 1. But, P ′′

P � P ′
P � P P is a chain of prime ideals of R P , a contradiction. Thus

dim(R) � 1. �
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Remark 2.8. A local Artinian principal ideal ring is called a special principal ring and has an extremely
simple ideal structure: there are only finitely many ideals, each of which is a power of the maximal
ideal. A principal ideal ring R can be written as a direct product

∏n
i=1 Ri , where each Ri is either a

principal ideal domain or a special principal ring (see [17, p. 245, Theorem 33]). �
The following theorem is an analogue of Kaplansky’s theorem (see Lemma 2.4).

Theorem 2.9. For a Noetherian local ring (R, M) the following statements are equivalent:

(1) M is a direct sum of at most two nonzero cyclic R-modules.
(2) Every ideal of R is a direct sum of at most two nonzero cyclic R-modules.

Proof. (1) ⇒ (2). If M is cyclic, then by Kaplansky’s theorem (see Lemma 2.4), R is a principal ideal
ring. Thus we assume that M = Rx ⊕ R y where x, y ∈ R \ {0}. Therefore, the only maximal ideal
of R/Ann(x) (resp. R/Ann(y)) is cyclic. By Kaplansky’s theorem, both R/Ann(x) and R/Ann(y) are
principal ideal rings. Now we assume that I is an ideal of R . If I ⊆ Rx or I ⊆ R y, then I is cyclic. Thus
without loss of generality we can assume that, I � Rx, I � R y and (0) � I � M. Now we proceed by
cases.

Case 1: x ∈ Nil(R) or y ∈ Nil(R). Without loss of generality, we can assume that x ∈ Nil(R). Thus
there exists k ∈ N such that xk = 0 and xk−1 �= 0. Since M = Ann(Rxi/Rxi+1) for each i (1 � i � k−1),
the chain (0) � Rxk−1 � · · · � Rx2 � Rx is a composition series for Rx. Thus R/Ann(x) is an Artinian
local ring and so by Remark 2.8, it is a special principal ring. Now the R-module isomorphism Rx ∼=
R/Ann(x) implies that (0), Rx, Rx2, . . . , Rxk−1 are all submodules of Rx.

Subcase 1: I ∩ Rx = (0). Thus I ∼= (I ⊕ Rx)/Rx ⊆ R/Rx. Also the only maximal ideal of the ring
R/Rx is cyclic and so by Kaplansky’s theorem, it is a principal ideal ring. It follows that I is a cyclic
R-module.

Subcase 2: I ∩ Rx �= (0). Since R/Ann(x) is a special principal ring, so I ∩ Rx = Rxt for some 1 �
t � k − 1. If t = 1, then I = (I ∩ R y) ⊕ Rx. Since I � Rx, (0) �= I ∩ R y ⊆ R y and since R/Ann(y) is a
principal ideal ring, we conclude that I ∩ R y is cyclic and so I is a direct sum of two nonzero cyclic
R-modules. Now assume that 1 < t � k − 1. Then every element of I is of the form ay + bxt−1 for
some a,b ∈ R (if ay + bxl ∈ I where l < t − 1 and b /∈ M, then xt−1 ∈ I ∩ Rx, a contradiction). Set

J = {
ay

∣∣ ay + bxt−1 ∈ I, for some b ∈ R
}
.

Then J is an ideal of R and J ⊆ R y. Thus J = Ra0 y for some a0 ∈ R and there exists b0 ∈ R such
that a0 y + b0xt−1 ∈ I . Let z0 = a0 y + b0xt−1. If b0 ∈ M, then z0 = a0 y + b′

0xt for some b′
0 ∈ R . Since

Rxt ⊆ I , so a0 y ∈ I and so J ⊕ Rxt ⊆ I . Now let ay + bxt−1 ∈ I . Since ay ∈ J , bxt−1 ∈ I and so b ∈ M.
Thus there exist a′,b′ ∈ R such that ay + bxt−1 = a′a0 y + b′xt and hence I = J ⊕ Rxt (that is direct
sum of two nonzero cyclic R-modules). Now let b0 /∈ M. We claim that I = Rz0. Clearly Rz0 ⊆ I . On
the other hand if z = ay + bxt−1 ∈ I , then ay = a′a0 y for some a′ ∈ R and so z = a′a0 y + bxt−1. Thus

z − a′z0 = a′a0 y + bxt−1 − a′(a0 y + b0xt−1) = (
b − a′b0

)
xt−1 ∈ I ∩ Rx = Rxt,

and hence,

z − a′z0 = rxt = rb−1
0 x

(
a0 y + b0xt−1) = rb−1

0 xz0 ∈ Rz0

for some r ∈ R . It follows that z ∈ Rz0. Therefore, I = Rz0.
Case 2: x, y /∈ Nil(R). We claim that every element of I is of the form rxn + sym where n,m ∈ N

and r, s ∈ (R \ M) ∪ {0}. Let z ∈ I . Then z = r1x + s1 y where r1, s1 ∈ R . If r1x �= 0, then r1x = rxn for
some n ∈ N and r /∈ M, for if not, we have, r1x = ri xi for each i ∈ N where ri = ri+1x + si+1 y ∈ M.
Thus r1x ∈ ⋂∞

i=1 Rxi , a contradiction (since by Krull’s intersection theorem
⋂∞

i=1 Rxi = (0)). If s1 y �= 0,
we conclude similarly that s1 y = sym where s /∈ M. Thus z = rxn + sym where r, s ∈ (R \ M) ∪ {0}.
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Since I � Rx and I � R y, there exists an element axn1 + bym1 ∈ I such that n1,m1 ∈ N and
a,b /∈ M. Let k, l be the smallest natural numbers such that xk, yl ∈ I . If I = Rxk ⊕ R yl , the proof is
complete. If not, there exists an element w = cxt1 + dyt2 ∈ I \ (Rxk ⊕ R yl) where c, d ∈ (R \ M) ∪ {0}.
It is easy to check that t1 = k − 1, t2 = l − 1 and c, d �= 0. We show that I = R w . Clearly Rxk ⊕ R yl �
R w ⊆ I . Let u ∈ I . Then u = rxk1 + syl1 where r, s ∈ (R \ M)∪ {0}. If u ∈ Rxk ⊕ R yl , then u ∈ R w . Thus
we can assume that u ∈ I \ (Rxk ⊕ R yl). We conclude similarly that k1 = k −1 and l1 = l −1. Therefore,

u − rc−1 w = (
rxk−1 + syl−1) − rc−1(cxk−1 + dyl−1) = (

s − rc−1d
)

yl−1 ∈ I.

We must have s − rc−1d ∈ M and so s = rc−1d + u1x + u2 y where u1, u2 ∈ R . Therefore,

u = rxk−1 + (
rc−1d + u1x + u2 y

)
yl−1 = rc−1(cxk−1 + dyl−1) + u2 yl = (

rc−1 + u2d−1 y
)

w ∈ R w.

Thus I = R w . Therefore, in any case every ideal of R is a direct sum of at most two cyclic R-modules.
(2) ⇒ (1) is clear. �

Lemma 2.10. (See Warfield [15, Proposition 3].) Let R be a local ring and N an R-module. If N = ⊕
λ∈Λ R/Iλ

where each Iλ is an ideal of R, then every summand of N is also a direct sum of cyclic R-modules, each isomor-
phic to one of the R/Iλ .

The following main theorem is an answer to the question: “What is the class of Noetherian local
rings R for which every ideal is a direct sum of cyclic modules?” Also, this theorem is an analogue of
Kaplansky’s theorem.

Theorem 2.11. Let (R, M) be a Noetherian local ring. Then the following statements are equivalent:

(1) Every ideal of R is a direct sum of cyclic R-modules.
(2) M = R w1 ⊕ · · · ⊕ R wn where n � 1 and at most 2 of R w1, . . . , R wn are not simple.
(3) There exists n � 1 such that every ideal of R is a direct sum of at most n cyclic R-modules.
(4) Every ideal of R is a summand of a direct sum of cyclic R-modules.

Proof. (1) ⇒ (2) is by Corollary 2.3.
(2) ⇒ (3). The proof is by induction on n. If n = 1 or 2, then by Theorem 2.9, every ideal of R is a

direct sum of at most n cyclic R-modules. Thus we can assume that M = Rx ⊕ R y ⊕ R w3 ⊕· · ·⊕ R wn

where n � 3, x, y ∈ R and R w3, . . . , R wn are simple R-modules. Suppose that I is an ideal of R . We
need to consider the following two cases.

Case 1: R wn � I (i.e., R wn ∩ I = (0)). Set R ′ = R/R wn . Obviously, R ′ is a Noetherian local ring with
maximal ideal M′ = M/R wn . If n = 3, then M′ = R ′(x + R wn) ⊕ R ′(y + R wn), and if n > 3, then
M′ = R ′(x + R wn) ⊕ R ′(y + R wn) ⊕ (

⊕n−1
i=3 R ′(wi + R wn)). Since R wn ∩ I = (0), R wn ⊆ Ann(I) and

so I ∼= (I ⊕ R wn)/R wn as R ′-modules. By the induction assumption, (I ⊕ R wn)/R wn is a direct sum
of at most n − 1 cyclic R ′-modules. From this we deduce that I is also a direct sum of at most n − 1
cyclic R-modules.

Case 2: R wn ⊆ I . Then I = (I ∩ X) ⊕ R wn , where X = Rx ⊕ R y ⊕ R w1 ⊕ · · · ⊕ R wn−1 . Then R wn �
(I ∩ X), so we apply Case 1 to I ∩ X . Therefore, I ∩ X is a direct sum of at most n−1 cyclic R-modules,
i.e., I is a direct sum of at most n cyclic R-modules.

(3) ⇒ (4) is clear.
(4) ⇒ (1) is by Lemma 2.10. �

Remark 2.12. Let R = R1 × · · · × Rk where k ∈ N and each Ri is a nonzero ring. One can easily see
that, the ring R has the property that its ideals are direct sum of cyclic R-modules if and only if for
each i the ring Ri has this property.
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We are thus led to the following strengthening of Theorem 2.11. In particular, this theorem yields
characterizations of all commutative Artinian rings whose ideals are direct sum of cyclic modules.

Theorem 2.13. Let R = R1 × · · · × Rk where k ∈ N and each Ri is a Noetherian local ring with maximal ideal
Mi (1 � i � k). Then the following statements are equivalent:

(1) Every ideal of R is a direct sum of cyclic R-modules.
(2) For each i, Mi = Ri w1i ⊕ · · · ⊕ Ri wni where ni � 1 and at most 2 of Ri w1i , . . . , Ri wni are not simple.
(3) There exists n � 1 such that every ideal of R is a direct sum of at most n cyclic R-modules.
(4) Every ideal of R is a summand of a direct sum of cyclic R-modules.

Proof. The proof is straightforward by Theorem 2.11 and Remark 2.12. �
We conclude this section with the following proposition that is an analogue of “Invariant Basis

Number (IBN)” of free modules over commutative rings. First, we need the following lemma.

Lemma 2.14. (See [12, Lemma 1.1].) Let R be a ring and M be an R-module. If {ei | i ∈ I} is a minimal gener-
ating set of M where the cardinality I is infinite, then M cannot be generated by fewer than |I| elements.

Proposition 2.15. Let R be a ring. Then the following statements are equivalent:

(1) R is a local ring.
(2) If

⊕n
i=1 Rxi ∼= ⊕m

j=1 R y j where n, m ∈ N and Rxi , R y j are nonzero cyclic R-modules, then n = m.
(3) If

⊕
i∈I Rxi ∼= ⊕

j∈ J R y j where I , J are index sets and Rxi , R y j are nonzero cyclic R-modules, then
|I| = | J |.

Proof. (1) ⇒ (3). Suppose that R is a local ring with maximal ideal M and
⊕

i∈I Rxi ∼= ⊕
j∈ J R y j

where I , J are index sets and Rxi , R y j are nonzero cyclic R-modules. If I or J are infinite, then by
Lemma 2.14, |I| = | J |. Thus we can assume that I = {1, . . . ,n} and J = {1, . . . ,m}, where n, m ∈ N. Set
N = ⊕n

i=1 Rxi . Then

N/MN ∼= (Rx1/Mx1) ⊕ (Rx2/Mx2) ⊕ · · · ⊕ (Rxn/Mxn).

Also, Rxi �= Mxi for each 1 � i � n, for if not, by Nakayama’s lemma and since R is a local ring, we ob-
tain xi = 0, a contradiction. Thus Rxi/Mxi ∼= R/M for each 1 � i � n and so v.dimR/M(N/MN) = n.
Now since N ∼= ⊕m

j=1 R y j , by a similar argument, we obtain v.dimR/M(N/MN) = m and so m = n.
(3) ⇒ (2) is clear.
(2) ⇒ (1). Let M1 and M2 be two maximal ideals of R and M1 �= M2. Thus by the Chinese

Remainder Theorem, R/(M1 ∩ M2) ∼= R/M1 ⊕ R/M2, a contradiction. �
3. Examples

In this section some relevant examples and counterexamples are indicated. We begin with the
following example that shows that there exist rings R such that every prime ideal of R is a direct
sum of cyclic R-modules, but some of the ideals of R are not direct sum of cyclics. Furthermore, the
following example shows that for each integer n � 3, there exists an Artinian local ring (R, M) such
that M is a direct sum of n cyclic R-modules, but there exists a two generated ideal of R such that
it is not a direct sum of cyclic R-modules.

Example 3.1. Let F be a field, n � 3 and let R be the F -algebra with generators x1, x2, . . . , xn subject
to the relations

x3
1 = x3

2 = x3
3 = x2

k = 0, 4 � k � n and xi x j = 0 for 1 � i �= j � n
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(i.e., R ∼= F [X1, X2, . . . , Xn]/〈{X3
1, X3

2, X3
3, X2

k , Xi X j | 4 � k � n, 1 � i �= j � n}〉). Then R is an Artinian
local ring with maximal ideal M = Rx1 ⊕ Rx2 ⊕ · · · ⊕ Rxn . Thus the only prime ideal of R is a direct
sum of n cyclic R-modules. But by Proposition 2.2, the ideal J = R(x1 + x2)+ R(x1 + x3) is not a direct
sum of cyclic R-modules.

The following example shows that there exist non-Noetherian local rings R with dim(R) = 0 such
that every ideal of R is a direct sum of cyclic R-modules.

Example 3.2. Let F be a field and R be the F -algebra with generators {xi | i ∈ N} subject to the rela-
tions xi x j = 0 for i, j ∈ N (i.e., R ∼= F [{Xi | i ∈ N}]/〈{Xi X j | i, j ∈ N}〉). The ring R is a non-Noetherian
local ring with the maximal ideal M = ⊕

i∈N
Rxi . Since M2 = (0), every proper ideal of R is an

R/M-module and so every ideal of R is a direct sum of cyclic R-modules. Clearly, dim(R) = 0 and
Spec(R) = {M}.

We recall that by Köthe [11] and Cohen and Kaplansky [4], a commutative ring R has the property
that every module is a direct sum of cyclic modules if and only if R is an Artinian principal ideal ring.
Next, we give an example of an Artinian local ring R such that every ideal of R is a direct sum of at
most 2 cyclic R-modules, but R is not a principal ideal ring (so R is not a Köthe ring).

Example 3.3. Let F be a field, n � 2 and R be the F -algebra with generators x, y subject to the
relations xn = yn = xy = 0 (i.e., R ∼= F [X, Y ]/〈Xn, Y n, XY 〉). The ring R is a Noetherian local ring with
maximal ideal M = Rx ⊕ R y. Since Mn = (0), dim(R) = 0 and so R is an Artinian local ring. Also, by
Theorem 2.9, every ideal of R is a direct sum of at most 2 cyclic R-modules. Now, by Proposition 2.15,
M is not cyclic, i.e., R is not a principal ideal ring, so it is not a Köthe ring.

Also, we will show below that there exist Noetherian local rings R with dim(R) = 1 such that
every ideal of R is a direct sum of at most 2 cyclic R-modules, but R is not a principal ideal ring.
First, we need the following two lemmas.

Lemma 3.4. (See Hungerford [8, Corollary 12].) Let R be a principal ideal ring. Then R is a direct sum of
principal ideal domains if and only if it has no nonzero nilpotent elements.

A ring R is said to be indecomposable if R cannot be decomposed into a direct product of two
nonzero rings. Clearly, a ring R is indecomposable if and only if it has no nontrivial idempotents.

Lemma 3.5. (See Tuganbaev [14, Lemma 16.6].) Let R be a ring. If ē is an idempotent element in R/Nil(R),
then there exists an idempotent pre-image for ē.

Example 3.6. Let F be a field and R be the F -algebra with generators x, y subject to the relations
y2 = xy = 0 (i.e., R ∼= F [X, Y ]/〈XY , Y 2〉). The ring R is an indecomposable Noetherian ring and M =
Rx ⊕ R y is a maximal ideal of R . Since R y ⊆ Nil(R) and R/R y ∼= F [x], we conclude that R/Nil(R)

is a principal ideal ring. Therefore, dim(R) = dim(R/Nil(R)) � 1. Also, by Lemma 3.5, R/Nil(R) is an
indecomposable ring and hence by Lemma 3.4, R/Nil(R) is a principal ideal domain. Thus Nil(R) is
a prime ideal of R and since M = Rx ⊕ R y is a maximal ideal and x is not nilpotent, we conclude
that dim(R) = 1. Let R ′ = R M be the localization of R at M. Then R ′ is a Noetherian local ring with
the maximal ideal MM = R ′ x̄ ⊕ R ′ ȳ where x̄ = x

1 and ȳ = y
1 . Thus by Theorem 2.9 or Theorem 2.11,

every ideal of R ′ is a direct sum of at most 2 cyclic R ′-modules. We note that every element of R \ M
can be written as a + rx + sy, where a is a unit in R and r, s ∈ R . So (a + rx + sy)y = ay is nonzero,
and (a + rx + sy)x = ax + rx2 is nonzero (since otherwise x ∈ M2, which would force M2 = (0) by
Nakayama’s lemma, contrary to assumption). It follows that both R ′ x̄ and R ′ ȳ are nonzero. Thus by
Proposition 2.15, the maximal ideal MM of R ′ is not cyclic, i.e., R ′ is not a principal ideal ring.
Finally, it is easy to see Spec(R ′) = {MM, R ′ ȳ} and dim(R ′) = 1.
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Also, we will show below that the converse of Remark 2.6, is not true in general. First, we need
the following proposition.

Proposition 3.7. Let R be a Von-Neumann regular ring (i.e., every finitely generated ideal of R is generated by
an idempotent). Then every ideal of R is a direct sum of cyclic R-modules if and only if R is a hereditary ring
(i.e., every ideal of R is projective R-module).

Proof. (⇒) is clear.
(⇐) By [6, Proposition 2.6], is clear. �
The following example shows that for a ring R the property that “every ideal is a direct sum of

cyclics” is not a local property.

Example 3.8. Let X be an uncountable set. Then R := P (X), the power set of X , is a ring under
the multiplication A · B = A ∩ B and addition A + B = (A ∪ B) \ (A ∩ B) as symmetric difference
for A, B ⊆ X ; 0 = ∅ and 1 = X . Clearly, R is a Boolean ring, but R is not a hereditary ring (see
[5, Example 13.4.3]). For each maximal ideal M of R , R M is a field (see [1, p. 44, Exercise 10(ii)] or
[6, Theorem 1.16]). Thus for each maximal ideal M of R , every ideal of R M is a direct sum of cyclic
R M -modules, but by Proposition 3.7, there exists an ideal of R such that it is not a direct sum of
cyclic R-modules.

Finally, the following example shows that there exist Artinian (finite) local rings (R, M) such that
every ideal of R is generated by at most 2 elements, but M is not a direct sum of cyclic R-modules.
Therefore, for a ring R the property that “every ideal is a direct sum of at most 2 cyclics” is not
equivalent to the property that “every ideal is generated by at most two elements”.

Example 3.9. Let R be the Z2-algebra with generators x, y subject to the relations x2 = y2 = 0 (i.e.,
R ∼= Z2[X, Y ]/〈X2, Y 2〉). Then R is a finite local ring with maximal ideal M = 〈x, y〉 = {0, x, y, x + y,

xy, x+xy, y +xy, x+ y +xy}. It is easy to see that every ideal of R is generated by at most 2 elements,
but M is not a direct sum of cyclic R-modules.
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