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Abstract 

Tool wear monitoring is important in machining industries for controlling the quality of machined parts that helps to 
improve the productivity. To date, many monitoring system methods are developed by utilizing various signals, and 
cutting force is one of the signals in machining process that has been widely used for tool wear monitoring. This 
paper presents the application of I-kaz based method to analyze the cutting force signal for monitoring the status of 
tool wear in turning process. Experiments were carried out by turning hardened carbon steel, and cutting force 
signals were measured by two channels of strain gauges that were mounted on the surface of tool holder. In this 
study, I-kaz 2D is one of the derivatives of I-kazTM method that has been utlized to integrate two components of 
cutting force signals. It differs from the I-kaz method, whereby the signal does not need to be decomposed to 
three different frequency ranges. The analysis of results using I-kaz 2D and I-kazTM methods, revealed that both  
methods can be used to determine tool wear progression during turning process and feed force is very significant 
due to flank wear. 
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Nomenclature 

K kurtosis 
N number of data 
s standard deviation 
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xi data for i-sample 
VB flank wear width (mm) 
Z2

 I-kaz coefficient in two integrated channels of signal  
ZFc

 I-kaz coefficient in main cutting force  
ZFf

 I-kaz coefficient in feed force 
σL variance of data of low frequency 
σH variance of data of high frequency 
σV variance of data of very high frequency 

1. Introduction 

Tool wear is gradual failure of cutting tools due to regular operation, and it is inevitable. When the machining 
process continues with a worn tool, the worn tool can deteriorate the quality of machined part, increase the 
production time and cost, and even cause machine breakdown if the cutting tool suddenly brakes. To avoid 
catastrophic tool failure, the progression of cutting tool wear from the beginning of the cutting process should be 
monitored. Progression of tool wear during the cutting process causes the cutting forces to increase. Therefore, 
cutting force is very suitable to be used as a reference for indirect measurement and monitoring of tool wear. Among 
the indirect online tool wear monitoring methods, cutting force is one of the most commonly used variable as a tool 
wear indicator [1]. 

Previously, numerous methods for the interpretation of cutting force signals have been described by various 
researchers. Jemielniak et al. [2] used the average and standard deviations values of cutting forces to diagnose the 
tool wear. They reported that there is a conspicuous relation between tool wear and standard deviation of feed force. 
Dimla and Lister [1] analyzed static and dynamic cutting force in time and frequency domains. They concluded that 
the static force was the most sensitive indicator to cutting condition changes such as depth of cut and feed rate. 
While in the frequency domains, the amplitude of the signal is found to increase monotonically with tool wear and 
falls sharply prior to the point of entry into the tertiary wear zone. Das et al. [3] used cutting force average and 
analyzed using force ratio for tool wear estimation. They reported that the increasing of force ratio (Fy/Fx) with the 
progress of tool wear is evident. Chungchoo and Saini [4] applied skewness and kurtosis of force distribution in 

xed frequency band. It is reported that the frequency distribution pattern of force signals is in uenced by cutting 
conditions and tool wear. However, the cutting forces signals have characteristics that can be extracted in both time 
and frequency domain. 

This paper presents the application of the I-kazTM and I-kaz 2D methods to interpret the cutting force signal for 
detection the tool wear progression in turning process. The focus is on the assessment of these methods via 
relationship between coefficient values of I-kazTM method and tool wear progression then compared the 
performance results. The I-kaz coefficient including the I-kaz coefficient of main cutting force (ZFc ), feed force 
(ZFf ), and I-kaz 2D coefficient (Z2 ). However, the I-kazTM method has been used in various study such as to 
analyze strain signal for fatigue life evaluation [5], to analyze sound signals for sliding wear monitoring of 
commercial bearing [6], to analyze ultrasound signals for tool life monitoring [7], and also for tool wear monitoring 
by analyzing the cutting force signals in three channels using I-kaz 3D[8], and two channels using I-kaz 2D [9, 10]. 
The advantage of I-kazTM method is the characteristic of signals can be obtained in time and frequency domain and 
its sensitive to amplitude and frequency changes [11].  

2. I-kazTM Method 

The main idea of the I-kazTM method is to decompose a dynamic signal into three frequency ranges including a 
low-frequency (LF) range of 0 – 0.25fmax, a high-frequency (HF) range of 0.25fmax – 0.5fmax and a very high-
frequency (VF) range of 0.5fmax. In order to measure the scattering of the data distribution, the variance σ2 for each 
frequency band is calculated, as shown in Eq. (1). The variance determines the average magnitude deviation of 
instantaneous points with respect to the mean value. 



463 Muhammad Rizal et al.  /  Procedia Engineering   68  ( 2013 )  461 – 468 

 

( ) ( ) ( )2 2 2

2 2 21 1 1= = =

− μ − μ − μ
σ = σ = σ =

                                 

(1) 

where σL
2, σH

2, σV
2 and xi

L, xi
H, xi

V are the variances and data for the i-sample of time in the LF, HF and VF range, 
respectively. Whereas μL, μH and μV are the means of each frequency bands, and N is the number of data points. 
Since the I-kazTM method was developed based on the concept of data scattering about the data centroid and 
classified the display according to inferential statistics, the I-kaz coefficient can be symbolized by Z  and written in 
terms of the variance, σ2, as shown in Eq. (2) and Eq. (3).  

( ) ( ) ( )2 2 2
2 2 2∞ = σ + σ + σ

                                                                    

(2) 

( ) ( ) ( )2 2 2

1 1 1
2 2 2

= = =∞
− μ − μ − μ

= + +

                                          

(3) 

Eq. (3) can be simplified in terms of the kurtosis and standard deviation. The kurtosis, K, is the signal’s 4th 
statistical moment, which is the global signal statistic and is highly sensitive to the spikiness of the data. The 
Gaussian distribution of the kurtosis value is approximately 3.0. A higher kurtosis value indicates the presence of 
more extreme values than should be normally found in a Gaussian distribution. The kurtosis can be defined as:  

( )4

4
1

1

=

= − μ

                                                                          

(4) 

where N is the number of data, s is the standard deviation. Therefore, Eq. (2) can be written in terms of the kurtosis, 
K, and the standard deviation, s, as:  

4 4 41∞ = + +

                                                                    

(5) 

where KL, KH, and KV are the kurtosis of the signal in the LF, HF and VF ranges, and sL, sH, sV are the standard 
deviations of signal in the LF, HF and VF ranges, respectively. 

I-kaz 2D emerged from I-kazTM method, which analyzed signals from two channels or two sensors. It differs 
from the I-kazTM method, whereby the signal does not need to be decomposed to three different frequency ranges. 
But, each signal is computed directly by using kurtosis and standard deviation. Therefore, the I-kaz 2D coefficient 
can be symbolized by Z2  and written as following: 

4 4
2

1∞ = +

                                                                       

(6) 

where N is the number of data points, KI and KII are the kurtosis of signal in channel I and channel II, and sI and sII  
are the standard deviation of signal in channel I and channel II respectively. 
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3. Experimental Procedures 

The machining tests were performed on a CNC Colchester Master Tornado T4 lathe machine under dry cutting 
conditions. An orthogonal insert was used in the experiments for machining of a hardened JIS S45C carbon steel 
bar. The dimensions of the material were 200 mm in length and 85 mm in diameter. The tool insert used was a 
coated carbide insert (Toolmex CNMG120404-MB) with NC30P grade 5. The tool had a rhombic 80º shape, 4.76 
mm thickness and a 0.4 mm nose radius. The complete illustration of experimental set up is shown in Fig. 1. 

 
 
 
 
 
 

 
 
 
 
 

Fig. 1. Illustration of experimental setup 

The experiment conducted in this study was deployed by using low cost sensors which consist of two strain 
gauges as shown in Fig. 1. The data acquisition system consists of a signal conditioner (OM2-163 and OM2-8608-
230AC), a data acquisition device (DT9836) and MATLAB software. A simple tool holder (PDJNR2020-43) that 
has a sectional shape of 20 x 20 mm was used for mounting the strain gauges on the top and the left side of the tool 
holder to measure the cutting forces due to the deflection in both the tangential direction, Fc (main cutting force) and 
feed direction, Ff (feed force). The distance of strain gauge to the tip of tool insert was fixed at 45 mm. The sensor 
configuration used a quarter-bridge strain gauge set in the signal conditioning device. The cutting force signals were 
collected at sampling rate of 1 kHz, and then analyzed by the computer using signal analysis based on the I-kazTM 
and I-kaz 2D methods. 

The experiment test in this study was conducted cutting speed equal to 200 m/min, feed rate equal to 0.20 
mm/rev, and depth of cut equal to 1.2 mm. This cutting condition was selected based on the real turning operation of 
hardened carbon steel carried out in one of the local automotive industries. During the turning operation, the insert 
was periodically removed from the tool holder, and the flank wear on the flank face was measured using a Mitutoyo 
toolmaker’s microscope. The measured parameter to represent the progress of wear was the average flank wear land, 
VB. The flank wear data were recorded since the first cutting pass until the flank wear reached 0.3 mm. It is a 
standard recommended value in defining a tool life end-point criterion based on ISO 3685-1993.  

4. Results and Discussion 

The measured force signals from initial first cutting until end of cutting are recorded. In Fig. 2 shows the three 
steps of cutting force generated during turning using two channels of strain gauge. It was observed that the changes 
of tool wear followed by changes of the cutting force signal. From the signals display, the main cutting force (Fc) is 
greater than the feed force (Ff) during the turning process. But, the feed force rapidly increases than cutting force as 
flank wear increases. This is possibly due to the rubbing friction on the flank surface that contributes to more feed 
force. The present findings are similar with previous researcher’s findings [3].  
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(a)                      (b)                                                  (c) 

Fig. 2. The cutting forces during turning process:  
(a) at flank wear = 0.102 mm, (b) at flank wear = 0.185 mm, and (c) at end of cutting, flank wear = 0.306 mm. 

 
 

According to Fig. 2, when flank wear about 0.102 mm, the average cutting force is 310 N. After cutting about 17 
minutes or flank wear = 0.306 mm, the average cutting force increases to 357 N or 13.16%. Meanwhile, the average 
feed force at the initial first cutting is only 158 N, and at the end of cutting it increases to about 285 N or 44.56%.  

The results of the I-kaz based analysis of the force signals along the cutting process, i.e. sharp tool or flank wear 
is 0.102 mm, intermediate sharp (flank wear = 0.185 mm), and worn tool or the end cutting (flank wear = 0.306 
mm) in turning process are shown in Fig. 3. The raw signals from machining are directly calculated using the Eq. (5) 
and Eq. (6). Fig. 3(a), 3(b), 3(c) show the plots of I-kaz 2D in two dimensional graphical representations of 
amplitude scattering for main cutting force and feed force signals. It can be observed that the changes of data 
scattering are very significant due to progression of flank wear. Fig. 3(d), 3(e), 3(f), and 3(g), 3(h), 3(i)  show the 
results of the I-kaz analysis plots for each channel i.e. main cutting force and feed force signals. Prior to plotting in 
three axis representations, the signals are decomposed into three frequency ranges. The results visually show that the 
space of scattering in both main cutting force and feed force are increased due to progression of flank wear. But, the 
feed force increases prominently and more apparent than the main cutting force. The effect of progression of flank 
wear can also seen by changes of I-kaz coefficient as shown in Fig. 4.  
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Fig. 3. I-kaz display of graphical representations for cutting force during turning process from the sharp tool (VB = 0.102 mm), middle cutting or 
still sharp tool (VB = 0.185 mm), and worn tool or the end cutting (VB = 0.306); (a), (b), (c) I-kaz 2D display; (d), (e), (f) I-kaz three dimensional 

of main cutting force; and (g), (h), (i) I-kaz three dimensional of feed force. 
 

 
 
 
 
 
 
 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Z2  = 3.88 x 10-8 Z2  = 5.28 x 10-8 Z2  = 7.16 x 10-8 

ZFc  = 3.17 x 10-8 ZFc  = 4.21 x 10-8 ZFc = 5.89 x 10-8 

ZFf  = 1.29 x 10-8 
ZFf  = 2.78 x 10-8 ZFf  = 3.83 x 10-8 
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Fig. 4. Correlation of tool wear and I-kaz coefficient. 
 

An interesting correlation between I-kaz coefficient and tool wear progression is shown in Fig. 4. It can be seen 
that the increasing in flank wear value causes the I-kaz coefficient values to increase. The increase coefficients of I-
kaz in feed force has the biggest percentage of about 69.58%, followed by I-kaz 2D coefficient of about 37.52%, and 
the lowest is I-kaz coefficient in cutting force of about 28.64%. Increasing of I-kaz coefficients in all cases from this 
study is similar with earlier findings that I-kaz coefficient increases due to changes in signals amplitude and 
frequency of the cutting forces [10-12]. By comparing these two methods approach, the highest increasing is I-kaz 

coefficient in feed force. But, the flank wear can also be determined by visualization, and the I-kaz 2D display of 
graphical representations is more significant than other displays. Therefore, both I-kaz 2D and I-kazTM method can 
applied to determine tool wear progression during turning process. They can be utilized to be the parameters for 
monitoring of tool wear by using threshold values on certain cutting condition.  

5. Conclusion 

I-kazTM method and its derivation like I-kaz 2D are suitable to analyze force signals in turning process for tool 
wear monitoring. It provides a multi-resolution analysis which can be used in both coefficient values and graphical 
display representations. These results reveal that feed force is very significant due to flank wear, and I-kaz 2D is 
suitable to visualize any changes in the signals. 
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