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Abstract

Waldmann, U., Semantics of order-sorted specitications, Theoretical Computer Science 94 (1992)
1-35.

QOrder-sorted specifications (i.e. many-sorted specifications with subsort relations) have been proved
to be a useful tool for the description of partially defined functions and error handling in abstract
data types.

Several definitions for order-sorted algebras have been proposed. In some papers an operator
symbol, which may be multiply declared, is interpreted by a family of functions (“over-
loaded” algebras). In other papers it is always interpreted by a single function (“non-

overloaded” algebras). On the one hand, we try to demonstrate the differences between these

two approaches with respect to equality, rewriting and completion; on the other hand, we prove
that in fact both theories can be studied in parallel provided that certain notions are suitably

defined.
The overloaded approach differs from the many-sorted and the nonoverloaded one in that the
overloaded term algebra is not necessarily initial. We give a decidable sufficient criterion for the

initiality of the term algebra, which is less restrictive than GJM-regularity as proposed by Goguen,
Jouannaud and Meseguer.

Sort-decreasingness is an important property of rewrite systems since it ensures that
confluence and Church—-Rosser property are equivalent, that the overloaded and nonover-
loaded rewrite relations agree, and that variable r\\/Pr]anq do not vm[d critical n,urg, We prove
that it is decidable whether or not a rewrite rule is sort-decreasing, even if the signature is not

. regular.

Finally, we demonstrate that every overloaded completion procedure may also be used in the
nonoverloaded world, but not conversely, and that specifications exist that can only be completed
using the nonoverloaded semantics.
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1. Introduction

In mathematics and computer science, conventionally, every object occurring in
some formula has a certain type. A variable n generally represents a natural number,
o ranges over real numbers and the exponential function maps real numbers to real
numbers. Often, these domains are related by inclusions, for example, the set of
naturals is a subset of the reals, so that in the term exp(n} the variable n may occur at
a position where a real number is expected. Besides, operators are overloaded, so that
the symbol -+ is used for the addition of naturals as well as for the addition of real and
complex numbers and even vectors. On the one hand, overloading simplifies the
notation; on the other hand, it is useful to express the similarity of these different
operations (¢.g. they all are associative and commutative).

The use of types, subsorts, and overloading for logic, specification and program-
ming was already proposed by Oberschelp [33]; later it became well-known especially
through Goguen et al. [16,18,19,20]. Order-sorted specifications simplify the pre-
sentation of partially defined functions and allow a more elegant formulation of error
recovery and error propagation in algebraic specifications [14, 15,39]. Using a logic
with subsorts, the efficiency of an automatic theorem prover can be increased
[3,35,43]. The typing mechanisms of several programming languages are based on
order-sorted signatures; apart from the OBJ family [9,21,27] we should mention
Smolka’s language TEL [38], where a combination of subsorts and polymorphism is
used. A three-level system of values, types and partially ordered sorts was introduced
by Nipkow and Snelting [32].
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Several definitions for order-sorted algebras have been proposed. In some of the
above-mentioned papers an operator symbol, which may be multiply declared, is
interpreted by a family of functions; in other papers it is always interpreted by a single
function (or by a family of functions that may be considered as restrictions of a single
function). Usually, the first approach is called “overloaded™; the second one “nonover-
loaded™ (although it could be argued that in “nonoverloaded” algebras overloading is
restricted but still possible).

In general, overloaded and nonoverloaded algebras do not induce the same notion
of equality on the set of terms; and the corresponding definitions and theorems for the
overloaded and the nonoverloaded case often differ in unobtrusive details since
frequently the additional possibilities of overloaded algebras have to be paid for with
restrictions.

In this paper we investigate equality, rewriting, and completion in order-sorted
signatures, following Gnaedig et al. [13]. In contrast to Poigné’s and Stell’s more
categorial approaches [34,40] we lay stress on the pragmatical comparison of over-
loaded and nonoverloaded semantics: on the one hand, we try to demonstrate the
differences and pitfalls; on the other hand, we prove that both theories can be studied
in parallel provided that certain notions are suitably defined.

2. Foundations

2.1. Basic notations

We use the standard symbols €, », U, \ and x for the membership relation and the
set theoretic operations intersection, union, set difference and cartesian product. The
subset relation is denoted by <. The symbol 0 represents the empty set, the set of
natural numbers (including 0) is abbreviated by N. The expression A” denotes the set
of all tuples or strings over A with length n, the letter € symbolizes the empty tuple or
empty string. Finally, A* and A" are defined by 4*:={ J,>, 4" and 4" := U,,;l A"

A function f with domain A and range B is written as f: 4 B; for some A’ < A the
set f(4"):={ f(x)|xeA'} is the image of A" under fand f'|,- is the restriction of fto A'.
The symbol id , means the identity function from A to A. Given two functions f: 4 —> B
and g: B—C, the composition (g f): A—C of fand g is the function that maps every
xeA to g(f(x))eC; this is denoted by x+—g( f(x)).

A binary relation < over A that is reflexive and transitive is a quasi-ordering; if it is
also antisymmetric, it is called a partial ordering. An antireflexive, transitive and
antisymmetric relation is called a strict ordering. Let (4, <) be a partially ordered set.
An element ae A is maximal if a < b implies a=b for every be 4. We say that a is the
greatest element of 4 if b < a holds for every be A. Analogously, we define “minimal”
and “least” elements. A strict ordering < over A is said to be noetherian if there is no
infinite sequence (dq, a,, ...) such that a;,, <q, for all ieN.
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Given two binary relations -, =4 x B and —, € Bx C, we define their composi-
tion (&, 9=, AXC by x(—,°—>,)z <= 3yeB: x—,y, y—,z. Let — be a binary
relation over A. The inverse relation of — is abbreviated by « and the symmetric
closure by «». The symbol — * represents the transitive closure, —* is the reflexive
and transitive closure and «—* is the equivalence closure of —.

2.2. Signatures and algebras

Definition 2.1. An order-sorted signature is a triple (S, <, 2), where S is a set of sorts,
< a partial ordering over S, and 2 a family {X, |weS*, seS! of (not necessarily
disjoint) sets of operator symbols.

The equivalence closure (< U 2)* of the relation < is denoted by =~. The equiva-
lence classes of S modulo = are called connected components of S. The ordering < 1s
extended componentwise to strings s,...s,€S*; so, we have s,...s,<s7...s, if and only
if s;<si for 1 <ign.

In order to make the notation simpler and more intuitive, we shall often write
f:w-osinstead of fe X, ;and f: — sinstead of fe 2, ,. We also use X as an abbreviation
for both (S, <, X)and { J, 2, ..

Definition 2.2. The set T, of ground terms over X with sort s is the least set with the
following properties:

(i) feTs  if [ >50 and s,<s.

W) fty,...,t,)eTs ¢ if fis,...5,—s¢ such that sq<s and 1,eT;,, for every
ie{l,....n}.

Ts;:= Uses T, , denotes the set of all ground terms over 2.

Sometimes we need a more general notion of terms, which does not have the sort
constraints of the previous definition.

Definition 2.3. The set ET; of extended ground terms over X is the least set with the
following properties:

() feETsif f1 >5,.

(i) f(ty,...,t,)eETy if f:s,...5,—5s¢ and ,e ET; for 1 <i<n.

The set Ty is a subset of ETy. If an extended term reET; is an element of T, we say
that ¢ is a well-formed term; otherwise, t is called ill-formed. As shown by Comon
[4, 5] an order-sorted signature can be considered as a finite bottom-up tree automa-
ton. Then ET; is the set of all trees over the alphabet of the automaton, Ts_, is the
subset of ET, that is recognized by the automaton in the final state s.
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As usual, positions (also known as occurrences) of a term are denoted by strings of
natural numbers. The set of all positions of an extended term teET; is Pos(t); the
subterm of t at the position pePos(t) is written t/p. Given a position pePos(t), the
result of the replacement of the subterm at p in ¢ by ¢’ is written as t[ p«<t']. Note that
t[ pt'] may be ill-formed even if t and ¢" are well-formed terms.

Definition 2.4. The spectrum spctr(z) of a term te Ty is the set of all sorts seS such that
teTs ;. The set of all spectra of terms in Ty is denoted by spctr;.

The spectrum of a term can be computed using the following recursion formulae:
spetr( f)={seS|f: =35 §<s)
spetr(f(ty.....t,))="{seS| fis,...8,—5, §<s, Vi<n: s;espetr(t;)}

The following lemma is due to Schmidt-Schauf3 [36].

Lemma 2.5. If the signature (S, <, 2) is finite, then spctry is finite and effectively
computable. Besides, there exists a finite and computable set Q =Ty such that for every
spectrum Mespctry there is a term teQ satisfying M =spctr(z).

Definition 2.6. Let (S, <, X) be an order-sorted signature. An overloaded (S, <, 2)-
algebra A4 (Z-C¥ -algebra) consists of a family {A4;|seS} of sets and a function
A} A,— A, for every feZ,, ; such that the following conditions are fulfilled:

(i) A, €A, if s<s'.

(i) A * equals A¥"* on A, if s<s', w<w’ and feX, "2, .
We use 4,  as an abbreviation for A, x -+~ x A4,,, 4, is some one-point set. (The
functions A% may be regarded as constants.)

Definition 2.7. Let (S, <, Z) be an order-sorted signature. A nonoverloaded (S, <, 2)-
algebra A (X-.4°¢ ¥ -algebra) consists of a family {A4,|seS} of sets and a function
A;:D$—-C, for every feX such that the following conditions are fulfilled:
(i) A,c A, if s<5.
(i) D¥ is a subset of (C4)*, where C = J,_ 4.
(i) If feX,, ,, then A, = D% and 4,(4,) < A,.

A, and A, are defined as in the overloaded case.

Sp...8

Obviously, we can make Ty (which we abbreviate as T) a X-("# -algebra by defining
I;i=Ty and T/ 5(t,,....t,)=f(ty,....t,) for frw—s, w=s,...5, and 1, T;,. Analog-
ously, we can make Ty a X-.4°¢"¥ -algebra by defining T:= Ty ;; in this case, for an
operator symbol feX we define Df:= ), . T, and Ty(ty,..., t,):=f(ts,.... t,) for
(tys...,ty)eD].
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Definition 2.8. Let A and B be two (S, <, X)-(¢'¥ -algebras. An (S, <, X)-0¥ -homo-
morphism h:A— B is an S-sorted family of functions {h;: 4,—B|seS} such that

(1) h equals hy on A, if s<s'.

(i) h(AF (ety, . 0,))= By (hs, (xy),..., by (2,)) for all feX, ,, w=s,...s,, and
(xy,...,0,)EA,,.

An "y -homomorphism h: A—B is called an (‘¥ -isomorphism if an ¢'# -homo-
morphism k' B— A exists satisfying i’ > h=id , and h°h'=id. Here the composition
operator © is meant componentwise.

Definition 2.9. Let A and B be two (S, <, X)-.4"("¥ -algebras. An (S, <, 2)-A4"0¥ -
homomorphism h: A— B is a function h:C,—Cjp such that

(1) h(A,)< B, for each seS.

(i) A(DF)=D% and h(Ap(ay,...,2,))=B(h(2,),..., h(x,)) for all feX and
(oy,..., 2,)eD7.

An . ¥°C¥ -homomorphism h: A— B is called an .4"@ ¥ -isomorphism if an A" C¥" -
homomorphism h': B— A exists satisfying h'=h=id, and h+h'=id.

For every fixed signature (S, <, 2) the 2-("¥ -algebras and Z-(¢¥ -homomorphisms
make up the category OSA{’, and the X-.4"("¥ -algebras and X-A4"¢¥ -homomor-
phisms make up the category OSA, ¢’ .

Using overloaded homomorphisms as described above it can be happen that an
equation is satisfied by some algebra A and is not satisfied by some other algebra A’
isomorphic to 4 [20, 31]. The subsequent condition excludes such a situation. (For
the same reason later we will have to restrict ourselves to equations t ~ t/, where ¢t and
t" are members of the same connected component of the sort set S.)

Definition 2.10. A signature (S, <, X) is called coherent if, whenever two sorts s, s are
contained in the same connected component of S, then there is a sort s° such that s < s°
and s’ <s".

The claim for coherence constitutes a considerable restriction of the notion of
homomorphisms. If (S, <, X'} is coherent, every ¢¥ "-homomorphism can be described
as an (S/=)-sorted family of functions; if S consists of only one connected component,
it can even be regarded as a single function.

Nonoverloaded algebras and homomorphisms do not cause such problems; thus,
coherence is unnecessary here.

Definition 2.11. A X-¢'# -algebra A is called initial in the set of all overloaded
2-algebras if for every Z-C’7 -algebra B there is exactly one ¢¥ -homomorphism
h: A— B (analogously, for .4"¢*¥ -algebras).

Definition 2.12. Let (S, <, 2) be a signature and A be a Z-(¢¥ -algebra. An element
aeA is called an (“# -interpretation of teTy if
(i) t=f(ty,...,t,) for some n=0,
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(i) f:5,...8,—5,

(iii) t;€Ty g, for all ie{l,..., n},

(iv) a;€A,, is an interpretation of ¢; for all ie{1,..., n},
(V) =A% (dg, .., Oy)

Obviously, every term te T, has at least one interpretation in every Z-C¥ -algebra.
However, it can happen that a term has more than one interpretation in certain
algebras. '

Definition 2.13. A signature (S, <,2) is called ¢"# -consistent if every term teT; has
exactly one interpretation in every X-('¥ -algebra.

If condition (v) in Definition 2.12 is replaced by a=A4 (a;,..., %,), we can similarly
define the "¢y -interpretation of a term. However, as the .4"("¥ -interpretation is
always uniquely determined, every signature is trivially 4" -consistent. Therefore
“consistent” will subsequently always mean “¢*¥ -consistent” unless explicitly said
otherwise.

Theorem 2.14. Given a signature (S, <, 2), the following three properties are equivalent:

(1) (S, <,2) is consistent.

(i) For every neN and every t=f(t,,...,t,)€Ty the set L(ty:= {wseS " |w=s,...5,,
fiwos, t,€Ts | has exactly one equivalence class modulo the relation =, where
=, denotes the equivalence closure of < v (L(t) x L(1)).

(iii) For every neN, every operator fe X, and for all spectra M y,..., M ,espctry the set
L:={wseS*|w=s,...s,, [t w—s, ;e M} is empty or has exactly one equivalence class
modulo the relation =, .

Proof. We show at first that (i) implies (ii). For t=f(ty,...,t,)€ Ty and wseL(t) let
[ws],:= {WSeL(t)|W§ =, ws} be the equivalence class of ws modulo = ). Now we
simultaneously define a X-¢¥ -algebra I and a function term:I—-T; such that
term(I,)= Ty, for all se§.

o {f,[§] el;iff: >5 and 5<s.

term({ f, [§1;7)=/.

o {filsi---3ua8)rar. iy @15y atn)ely if fisg...s,—8 §<s, and if o€l and
t;=term(x;) hold for every ie{l,..., n}.

term({fy [t o Su8 1 fetro oy 2 (@150 00)) = f(term(ay), ..., term(a,)).

e Nothing is in I unless it so follows from the preceding rules.
For f:s,...s,—s with n>0 let I} *° be defined by

ISl x oo x I =1,

@1yt )L 81 S8 iy 2 (00, -0, ap), Where t;:= term(x;).
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[t is easily proved that I is a - -algebra and that term(z)=1t holds if acl, is an
interpretation of teTy ,.

Suppose that (S, <, ') is consistent and f'(¢,,..., t,)e T for some n>=0. Assume that
ws and w's” are contained in L(1). For ie{l,...,n} let ; be the uniquely determined
interpretation of ;. As term(x;)=t; holds, we know that I}%(ay,...,2,)=
S [WS]f(n ..... (1., ,)  and 1;'/'8/(3‘1a--‘a9(n)=<.f; [“’,S/]f(tl ..... ) 2O 0 );
since both values are interpretations of 1, we have ws=,,,w's".

We now prove the (ii)=(i) part by induction on the term structure. Let 4 be a X-
(4 -algebraandlet t=f{(t,,....1,)€T, where n 0. By the induction hypothesis ¢; has
a uniquely determined interpretation «; in A for all ie{l,...,n}. Suppose that
a=A}*(ay.....a,) and o' = A} (a,,..., 2,) are interpretations of ¢. Since ws, w's'e L()
and since L(t) has exactly one equivalence class modulo the relation =, there is
a sequence w¥s%,..., w™s™ of elements of L(r) such that ws=w%"° w’'s’=w™s™ and
wk1 “or w* sk T = whs* holds for every ke{l,...,m}. As (a;,...,%,) is
a member of A, for each ke{0....m}, we have A¥ " (a,..., a,)=
AP oy, o,); this implies o= AW 32y, .0, )= A% (21, 2%,) =0,

Because for every term r,€T, there is a spectrum M;espctry (and conversely) such
that M, =spctr(t;), the equivalence of (ii} and (iii) is obvious. [

Sk‘lgwks

From condition (iii) we can conclude that the consistency of a finite signature is
decidable.

Theorem 2.15. For every coherent signature X the following properties are equivalent:
(1) 2 is consistent.
(i1) The overloaded term algebra Ty is initial in the class of all X-( 4 "-alyebras, and for
all terms t such that te Ty ;N Ty (-, we have s =s'.

Proof. Let 2 be a consistent signature and 4 be an arbitrary 2-¢'¢ -algebra. The
function i: Ty— A4 maps every term teTs to its interpretation in 4. Defining i;:= ilt,
we can show that i is the unique X-homomorphism from T to A by induction on the
term structure; thus, the algebra Ty is initial.

Next consider the final X-¢'¥ -algebra C: For seS we have C,:= {[s]}, where [s]
denotes the equivalence class {s'eS|s' = s} of s modulo =; furthermore, C¥ ¥ is the
constant function mapping every tuple (¢,,...,¢,)eC,, to [s]. It is easy to check that
[s] is an interpretation of ¢ in C if te Ty, holds. Suppose that reTs Ty, then [s]
and [s] are interpretations of t; by consistency we have [s]=[s"] and, thus, s~s'".

To prove the reverse direction let A be a 2-(" 7 -algebra and let  be a term that is
contained in Ty ;~ Ty . We have s = s"; since X is coherent, there must be some sort s°
such that s<(s” and s <s". It follows that h(t)=hg (t)= hy (1) for the uniquely deter-
mined homomorphism h:T,— A. Hence, h(t) is independent of s and we can define
a function h such that h(t)=h(r) for all sorts sespctr(r). Now a simple proof by
induction shows that we have for every term reT;: If « is an interpretation of ¢, then
a=h(t). Hence, the interpretation of ¢ is uniquely determined. O
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If a term teTs has two sorts s; and s,, where s, %5,, the signature X is not
¢+ -consistent, but the term algebra Ty may be initial nevertheless. In this case the
homomorphism /4 from Ty to some algebra A is uniquely determined, but the image of
t under h may be not uniquely determined (i.e. we can have hy(t)#he(t) for
s,s’espctr(t)); hence, we have to exclude such signatures.

If X is consistent and coherent and if # is a homomorphism from T; to some
Z-C 7 -algebra A, then hy(t) is independent of s (for all sorts sespctr(t)). In this
situation we shall often omit the sort s and simply write h(r). However, this is in
general not possible for homomorphisms h: A— B, where 4A#T;.

In the nonoverloaded case coherence is not necessary; besides, every signature is
trivially .4 °¢' 7 "-consistent. Thus, we have the following theorem.

Theorem 2.16. The nonoverloaded term algebra Ty is the initial - A4 -algebra; it is
determined uniquely (up ro isomorphism).

2.3. Variables
Definition 2.17. An S-sorted variable set is a family ¥'={¥,|seS} of disjoint sets.

A variable x of sort s is written as x:s. We shall use V as an abbreviation for
Uses

Let (S, <, 2) be an order-sorted signature and V' be a variable set disjoint from X.
By componentwise union of X and V we get a new signature (S, <, 2u V') defined by
ZulV), =2 ulV,and (ZUV), =2, for w#e. Now we can regard the term
algebra Ty, as an overloaded or nonoverloaded (S, <, X)-algebra; this is denoted by
Te(V).

The set of all variables in a term reTs(}) is abbreviated by Var(z).

Definition 2.18. An assignment v from a variable set V' into a X-algebra A is a family of
functions {v,: V;> A,|seS}.

Using the overloaded semantics we encounter an additional problem at this point.
As demonstrated by the following example, adding variables to a signature X~ may
destroy the consistency of 2.

Example 2.19. The following signature is consistent:
(S, €)= ‘{53 <3, $2 <81 <8¢, 5, <8 SSO}H
2={a:—s;3, 181280, f151 280, [153 50 }.

If we add a variable set V" such that (x:s,)eV, however, the term f(x:5s,) may have
more than one interpretation in a (X V' )-(4 -algebra and Ty, is not initial in the set
of all (ZuV)-("¥ -algebras.
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Thus, we must explicitly claim that (XuX) is consistent for every variable set X.
A signature X having this property is called strongly consistent. The following lemma
shows that the strong consistency of finite signatures is decidable.

Lemma 2.20. Let Y be a variable set containing exactly one variable y:s of every sort
s€S. Then the signature (X0 X ) is consistent for every variable set X if and only if (XU Y)
is consistent.

Proof. By Theorem 2.14 it is sufficient to show that spctry_y Sspctrs,,y holds for
every variable set X. Given a spectrum Mespctry, y, let ¢ be a term in Ty _y so that
M =spctr(t). We replace every variable in t by a variable from Y with the same sort;
this yields a term t'eT;_y. Obviously, spctr(t) =spctr(t'); since spetr(t’)espctrs,y, this
implies spctrs, x Sspctrs,y. The proof of the reverse direction is trivial. [

Coherence and strong consistency imply that the term algebra is free in the set of all
overloaded X-algebras; this is proved in exactly the same way as in the unsorted
case [22].

Theorem 2.21. Let X be a coherent and strongly consistent signature. Then the ¥ -
algebra Ty(V) is the free -1 -alyebra generated by V, ie. for every X-C¥ -algebra
A and every assignment v from V to A there is exactly one (¥ -homomorphism
v¥:Tg(V)—> A that extends v.

In the nonoverloaded case additional prerequisites are unnecessary.

Theorem 2.22. The .4 -algebra Ts(V) is the free X-.4"C¥ -algebra generated by V,
i.e. for every X-.4 ("1 -algebra A and every assignment v from V to A there is exactly one
A7C -homomorphism v* . Ts(V)— A that extends v.

Definition 2.23. A substitution ¢ is an assignment from a variable set Y into the term
algebra Ty(X). In general, the uniquely determined extension ¢*:Ty(Y)—>Ts(X ) of
o will also be denoted by o.

A substitution 6: {x,,..., x, } > T«(X ) that maps the variables x1,..., x, to the terms
fiy..-, Ly, TESECtively, is written as o= {x +>ty,.... X, 1, }

Definition 2.24. A substitution ¢: X —>T;(Y) is called a specialization if it is injective
and if it maps every variable x: s from X to a variable (of the same or of a smaller sort).

2.4. Equations

From now on we consider only coherent and strongly consistent signatures in the
overloaded case.
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Definition 2.25. A X-equation is a triple (X, t, t'), where X is a variable set and t and ¢’
are terms from T;(X ). Besides, in the overloaded case we have to claim that ¢ and ¢’
belong to the same connected component of S. (Note that by coherence this condition
is satisfied if and only if t and ' have a common sort seS§.)

We usually write (VX )t~ instead of (X, ¢, t'); if X = Var(t)u Var(t'), we may omit
the variable set.

Definition 2.26. A pair (2, E), where 2 is a signature and E is a set of XZ-equations is
called a specification.

Definition 2.27. Let (VX )txt' be an equation, where ¢, 'eTy(X),, and let A be
a X-(v -algebra. If v¥(r)=v¥(t') holds for every assignment v: X — A, we say that
A satisfies the equation (VX )r=t’, which is abbreviated by A=, (VX )r=t".

Let (VX )txt' be an equation and 4 be a X-A"(¥ -algebra. If v*(f)=v*(t') holds for
every assignment v: X — A, we say that A satisfies the equation (VX )t =t’, which is
abbreviated by A= ., (VX )tx1.

A X-algebra A satisfies a set E of equations if it satisfies every equation from E; such
an algebra A4 is called a (X, E)-algebra. Provided that every (Z, E)-@¥ -algebra
satisfies the equation (VX )r=t', we write El=,, (VX )fat'; analogously, we write
El= (¢, (YX)txt if every (2, E)-4"("v -algebra satisfies the equation (YX)t = t'.

Whether an equation (VX )t = t’ is satisfied by an algebra or not may depend on the
variable set X, as demonstrated in [8, 17]. Obviously, it is always possible to rename
the variables in an equation. The following lemma yields a criterion under which
circumstances it is even possible to add or to delete a variable.

Lemma 2.28. Let X be a signature and (YX )l ~r be a Z-equation. If there is a ground
term teTy ,, or if X contains a variable of a sort s'<s, then for every X-algebra A

AE(V(Xu{y:sihlzxr <= AEMX)ixr

Proof. Without loss of generality, we may assume that y¢ X. Suppose that 4 does not
satisfy the equation (VX )/=r. Then there must be an assignment v from X to 4 such
that v(/)#v(r). Now we construct an assignment u from (X u{y:s}) to A. For every
xeX let p(x):= v(x). If there is a ground term teT; ,, we set u(y):= o, where o is the
interpretation of t in A; otherwise, X contains a variable y': s, s'<s; in this case we
define u{y):=v(y’). As ylxy=v, we have u(l)=v{)#v(r)=u(r).

To prove the reverse direction assume that the algebra A does not satisfy the
equation (V(Xu{y:s}))!=r, ie. that there is some assignment g from Xu{y:s} to
A such that p(l)#u(r). We define the assignment v: X—A by v:= ujy, and have
v(l)#v(r); therefore, A does not satisfy the equation (VX )I~r. O
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We have shown that both the initial Z-¥ -algebra and the initial 2-.4"¢ ¥ -algebra
have the set of all ground terms as their carriers. If equations are absent, the
overloaded and the nonoverloaded algebras induce the same notion of equality on the
set of terms:

D=y (VX)txt = O, (VX)ixt < t=t.

We encounter quite a different situation if the set of equations is not empty, as shown
by the following example (cf. [10]).

Example 2.29. Let 2 and E be defined by
(S, )=1{51<50, 52<50},
X={a: —>s¢, b: o5y, c: 555, f15150, 15250},
E={axb, axc}.
Consider the following (X, E)-('¥ -algebra A:
Ag={o, 0y, 0}, A= {a}, A, = {2},
A=, AyTi=oa, AvTi=a, AP Traea, APV iaea.

As the operator declarations f:s,—s, and f:s,—s, are interpreted by different
functions in A, the algebra A satisfies the equations (V@)a=xb and (V@)a=c, but not
(V) f(by=f(c). In an 4"+ -algebra every operator symbol corresponds to exactly
one function; so, every (Z, E)-.4 "+ -algebra satisfies the equation (V0)f(b)xf(c).
Thus, we have El= | ., (YX)f(b)=f(c), but not E|=,, (YX)f(b)=f(c).

The different notions of equality are reflected by different inference systems for the
overloaded and the nonoverloaded case.

Inference system 2.30. Let 2 be a signature and E be a set of Z-equations. Using the
following rules new equations can be derived from E.

(E1) Reflexivity: (VX)t~t.
(E2) Symmetry: (YX)r=t
(VX)) =t
(E3) Transitivity: (VX)t~t, (VX)) =t
(VX)t=~t” '
(E4a) ¢+ -Congruence: (YX)t =t (VX)) xt,

(VX)) f(ty,....t.)=f(th,.... t,)

if t;, t;eTe(X),, and f:51...5,50.
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(E4b) A" v -Congruence: VX))t~ (VX ),

if both f(t,,..., t,) and f(t},..., t,) are well-formed
terms (i.e. if 1,€Te(X),,, f8;...5, =50 and if
teT (X ), f181 .8, 80).

(E5) Substitutivity: (VX)atxot'

if (VY)t~t'is an element of the initial set of equa-
tions E and if 0: Y- T:(X) is a substitution.

If an equation (VX )r =1’ can be derived from E using the rules (E1)—(E3), (E4a) and
(ES), we write EF, , (VX )txt ort (zyﬁ t'; if it can be derived using (E1)—(E3), (E4b)
and (ES), this is denoted by Et ., (VX)t~1 or t = .

Given X, X and E, we define a 2-("f "-algebra T ;(X)(abbreviated by T) as follows:

Ii={[1]]1eT(X)},

where [1]:={'eTy(X)|Et,, (VX)txt'} denotes the equivalence class of r. For
fiw—os, w=s,...5, let the function T} ° be defined by

Ty Ty, < x Ty =T,
(- L D=L )]
for representatives t,,..., t, such that ;,eTz(X);,.
It is easy to verify that Ty (X )} is in fact a Z-(¥ -algebra.

Theorem 2.31. Let X be a signature and E be a set of Z-equations. Then the following
properties are equivalent:
(i) EF,, (YX)txt.
(i) Every (X, E)-C ¥ -algebra A satisfies the equation (VX)t=~t1'
(i) The €7 -algebra Ty g(X) satisfies the equation (YX )t =t

Proof. The (i)=>(ii) part is proved by induction on the length k of the derivation of the
equation (VX )ttt

To prove that (ii) implies (iii) it is obviously sufficient to show that Ty g(X) is
a (X, E)-algebra. Let (VY)t=t be an equation in E and let v be any assignment from
Y to Ty g(X). We choose some substitution o: Y—Ty(X) satisfying cyev(y) for all
ye Y. Since (VY )t xt'€E, according to rule (E5) the equation (VX )ot x> at’ is derivable;
so, by the definition of Ty (X) we know that v(t)=[ct]=[ct']=v(t').
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To prove the direction from (iii) to (i) assume that Ty (X ) satisfies some equation
(VX )=t ie. v¥(t)=v*(t') holds for every assignment v from X to Ty (X ). We choose
v(x):=[x] for xe X and get [t]=v*{t)=v*(t')=[1']; so, by the definition of T; g(X)
the equation (VX )t x~t must be derivable. [

The following theorem can now be proved as in the many-sorted case (e.g. as

in [8]).

Theorem 2.32. The ("4 -algebra Ty p(X ) is the free (X, EY-("¥ -algebra generated by X,
ie. for every (X, E)-C¥ -algebra A and every assignment v: X — A there is exactly one
¢ -homomorphism ¥: Ts (X )—> A4 such that v(x)=7,([x]) for all xeX,.

As a special case of the preceding theorem for X =0, we have the following
corollary.

Corollary 2.33, The (Y -algebra Ty g:= Ty p(0) is initial in the set of all overloaded
(Z, E)-algebras, i.e. for every (X, E)-C:1 -algebra A there is exactly one homomorphism
h . TE. E_>A'

We shall now present the corresponding definitions and theorems for the nonover-
loaded case [39]. In order not to make the notations more clumsy by using still more
indices we sometimes use the same symbols as in the overloaded case.

Definition 2.34. Let X be a signature, X a variable set and E a set of Z-equations. The
Z-A47Cv -algebra T, (X)) (abbreviated by T') is defined as follows:
Ts = { [[] | IETE(X )s}s

where [t]:= {t'eT(X)|E+, (YX)tx1'} denotes the equivalence class of ¢.
For feX let D} and T, be defined by

D= |J T.
fiw—s
and
Tf:D;—‘)CT

([t ], [t =1 f(ty,....t,)] for representatives ¢,,...,t, such that

t,€Ts(X),, and fis,...5,—5.

Theorem 2.35. Let X be a signature and E be a set of Z-equations. Then the following
properties are equivalent:
(@) Eb ¢, (VX )11
(i) Every (X, E)-.A"(¥ -algebra A satisfies the equation (VX )txt'.
(ili) The A "¢+ -algebra Ty (X)) satisfies the equation (VX )t~ t'.
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Theorem 2.36. The A4"("¥ -algebra Ty (X)) is the free (X, E)-A"(Y -algebra generated
by X, ie. for every (X, E)-A"O¥ -algebra A and every assignment v: X —A there is
exactly one A"+ "-homomorphism ¥: Ty g(X)— A such that v(x)=7([x]) for all xe X.

Corollary 2.37. The A" C¥ -algebra Ty g:= T (0) is initial in the set of all nonover-
loaded (X, E)-algebras.

Note that it is in general undecidable whether the overloaded and the nonover-
loaded semantics of a set of equations coincide.

Theorem 2.38. Given an order-sorted specification (X, E) it is undecidable whether the

relations ?_T)E( and = ¥ agree.

Proof. Consider a specification (X, E,) over a sort set {s, } and two arbitrary ground
terms t, t'e Ty, . The problem to determine whether t and ¢’ are E;-equal is in general
undecidable [8]. We define a new specification (S, <, X, E) as follows:

(S’ <):{51<50v 52<SOv S3<SO}9
Y=Xula: os,, b 553, f15,950, 153250},
E=Eulaxb, txf(a), t xf(b)}.

If (VQ)t ~t' does not follow from E, we have Et,, (Y@)t~1, but E+,,, (YOt =1

thus, ﬂ:f% # = ®. On the other hand, if t and t' are E,-equal, then =% and = 9
are the same. Since E F(VO)tx( < (:1‘,’; == ¢, the equality of TQE and

is undecidable.

0
E

«

-

2.5. Remarks

A number of more or less different descriptions of order-sorted algebras have been
presented in the literature.

The definition of overloaded algebras that is used in this paper agrees mainly with
[11,13,19,20, 27, 31]. The algebras that Goguen et al. [ 16, 18] have described in some
early papers are overloaded as well; however, in these papers homomorphisms are not
families of functions but (as in the .47("¥ -case) functions; note that this makes
coherence unnecessary. An extension of the overloaded concept has been presented by
Kreowski and Qian [29].

Our definition of nonoverloaded algebras is oriented chiefly towards [39]; however,
we allow an operator symbol to have more than one arity. Similar descriptions can be
found in [26, 35, 36, 37]. In Gogolla’s papers [14, 15] and in Oberschelp’s “einfache
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mehrsortige Logik” (simple many-sorted logic) [33] operator symbols are interpreted
by families of functions, but these can always be considered as restrictions of a single
function; hence, these approaches must be regarded as nonoverloaded, too. Poigné
[34] differs from the aforementioned authors in that he aliows distinct sorts to have
nondisjoint variable sets.

Oberschelp’s “mehrsortige Logik mit mehrfacher Interpretation der Pradikate und
Funktionszeichen” (many-sorted logic with multiple interpretation of predicates and
function symbols) [33] stands between the overloaded and nonoverloaded worlds.

The name “regularity” is used in different ways in papers on order-sorted algebras.
In papers dealing with . 4 (" ¥ -algebras a signature (S, <, 2) is in general called regular
if and only if every term reT:(X ) has a least sort. This property proves to be very
useful for computing unificators in both the overloaded and the nonoverloaded case,
as demonstrated in Subsection 4.1, but it is neither necessary nor sufficient for the
overloaded term algebra to be initial: regularity and ¢ ¥ -consistency do not imply
each other.

Example 2.39. The signature X, is strongly consistent, but not regular.

(S, €)= {51<50a 51<30}'

,
Zi=ta:r osg, a8y, 40 o8y
The signature X, is regular, but not consistent.

(S?q g): {S}<51 Sso, S3<S2<SO}’

Xy={a: o535, 115,50, [182—80 }

In the overloaded world regularity often means a substantially stronger property,
which we will call GIM-regularity to avoid misunderstanding. A signature (S, <, 2) is
called GJM-regular {16] if for every w'eS*, so that f:w—s and w” <w, there exists
a least w’'s’ satisfying f/: w'—s and w” < w’. The GJM-regularity of a signature 2 implies
the regularity of X: its real importance is, however, that it implies the strong (¥ -
consistency of 2 and, thus, the initiality of the overloaded term algebra. Indeed,
regularity and strong consistency together are still weaker than GJM-regularity, such
that, even if regularity is actually needed, GIJM-regularity generally poses an unnec-
essarily strong restriction. Note for instance that in this paper GJM-regularity is not
needed at all and that the same is right for Ganzinger’s translation of order-sorted
specifications to conditional many-sorted specifications [11].

Example 2.40. The signature X5 is both strongly consistent and regular, but not
GIJM-regular:

(S, <y={s3<5; <50, 535,50 ),

Ey=la: —s3, [15050, 15180, [ 1520}
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Unlike GJM-regularity, consistency 1s semantically defined. This has the
further advantage that it can be easily adapted to other types of order-sorted algebras
{e.g. [10, 33]), always yielding a sufficient criterion for the initiality of the term
algebra.

3. Rewriting

3.1. Rewrite relations

An equation (VY)/~ris called a rewrite rule if we want to indicate that it should be
used operationally in a specific direction. In order to express this notationally, we
shall in general write (VY)/—r instead of (VY )I=r; if Y=Var(/)uVar(r), we may omit
the variable set Y. (We do not restrict to rules where Var(r)< Var(l), following [6]).

Nevertheless, rewrite rules can be used as undirected equations, e.g. if R is a set of
rewrite rules, we can ignore their orientation and write t =%¢’; on the other hand, we
may sometimes regard “ordinary” equations are rewrite rules.

Definition 3.1. Let R be a set of rewrite rules. A term t€Ty(X ) rewrites to t'eTy(X)
with a rewrite rule (VY)/—r in R at the position pePos(t) if the following conditions
are satisfied:

(1) There exists a substitution ¢: ¥Y—>T3(X ) such that al=1t/p.

() t'=t[peor].

(ii1) (a) In the overloaded case: there exists a sort se§ such that t[ p«(x:s)] is

a well-formed term and ol, oreT;(X),.
(b) In the nonoverloaded case: ¢ is a well-formed term.

We abbreviate this by IT>§ or twﬁ, respectively. Sometimes we are also interest-

ed in the rule or in the position; in this case we write tT%'“’""’] t or t‘_—myﬁ‘[p.l—*’l t.
(The application of an equation (YY)/~r to a term is defined analogously.)

Certain axioms, such as commutativity, are in general not turned into rewrite rules
since they would cause the rewrite relation not to terminate. Instead, the set of terms is
partitioned into congruence classes modulo these equations, and one uses a rewrite
relation on the congruence classes.

Definition 3.2. The relation (—V)ﬁ/E is defined by T»ﬁ/g:z ——ﬂ—1§0(—1>§0 —Tﬁ.
, , " p

Analogously, — rE = = ’E‘o—>‘“ Xo

NG B d B g B

X
B

~
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Rewriting using the relation —%,; has some serious disadvantages. It may be very
inefficient to determine whether a term ¢ can be reduced by — % ; the question may
even be undecidable if the E-equivalence class of ¢ is infinite. Thus, we now consider
the weaker relation =¥ .

Definition 3.3. A term teTy(X) rewrites to '€ Tz(X ) with a rewrite rule (VY)/—r in
R at the position p modulo E if the following conditions are satisfied.
(i) There exists a substitution ¢: Y—-Ty(X) such that 4/ {ny-l/p or ol = ¥t/p,
respectively.
(i) ' =t[p+or].
(ii1) (a) In the overloaded case: there exist sorts s,5'€S such that [ p(x:s)] and
t[p(x:s)] are well-formed terms and t/p, ole Ts(X ), and !, oreT(X),.

(b) In the nonoverloaded case: t[ p—al] and ¢’ are well-formed terms.

We abbreviate this by t——3. gt or t——5 1, respectively.
y (&4 A6t p y

We can easily prove by induction on the length of p that tﬁ—1>3§'lﬂ-’*’1t’ implies

tﬂzyﬁt’; thus, we know that — X< - ¥ RS — XE < fﬁuf (analogously in
the nonoverloaded case). However, we encounter a crucial difference between un-
sorted (or many-sorted) and order-sorted rewriting. As demonstrated by Smolka et al.
[39]. given an order-sorted rewrite system R the relations =% and &% are no longer

guaranteed to be equal.

Example 3.4,

(S$ S): {Sl SSO}s

Z={a: 58y, b1 oS8y, ¢t o580, 18181},

R={a—c, boc}.
In the overloaded as well as in the nonoverloaded case f(a)="%f(b) holds, but not
fla)& % f(b). As f(c) is not a well-formed term, there cannot exist a <> g-derivation of
this equation. Note that R is even confluent.
3.2. Sort-decreasingness

Definition 3.5. A rewrite rule (VY)I—r is called sort-decreasing if for all sorts seS and
all substitutions ¢: Y—=T;(X) we have

aleTs(X), = oreTs(X),.
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An equation (VY )/ ~r is called sort-preserving if for all sorts seS and all substitutions
0. Y—-Ty(X) we have

oleT(X ), < oreT:(X),.

A sort-decreasing rule may be applied to a term ¢ whenever its left-hand side
matches with a subterm of t since both the conditions (iii)(a) and (iii)(b) in Definition
3.1 are trivially satisfied. Besides if te Ty(X ), rewrites to ¢’ with a sort-decreasing rule,
then t' is in Ty(X), as well.

Lemma 3.6. Ler X be a variable set containing at least one variable of every sort. Let
Q be a subset of T<(X) such that for every spectrum Mespctry y there is a term teQ
satisfying M =spctr(t). Then the following two properties are equivalent:

(1) The rewrite rule (VY )l—r is sort-decreasing.

(il) For all substitutions ¢:Var(lyu Var(r)—Q we have spctr(al) < spetr(or).

Proof. Let V=Var(l)uVar(r). We first prove that (i) implies (ii). Suppose that
g:V—Q is a substitution and that the sort s is contained in spctr(g/). This implies
oleT:(X), and, as the rewrite rule (VY)/—r is sort-decreasing, we get sespctr(or).

To prove the reverse direction assume that ¢'/e Ty(X), for an arbitrary substitution
o Y-Ty(X) and a sort seS. Now choose a substitution o:¥V—-Q such that
spetr(ax)=spctr(o'x) for every variable xe V. By induction on the term structure it
can be proved that spctr(at)=spctr(o’'t) for all terms teTs(}V'); so, we have sespctr(a’l)
if and only if sespctr(al). By property (ii) this implies sespctr(or); thus, sespctr(c'r)
and o'reTe(X),. 0O

Theorem 3.7. For finite signatures the sort-decreasingness of a rewrite rule is decidable.
Proof. If the signature (S, <, 2)is finite, we can compute a finite set Q < Ty(X ) having
the property described above according to Lemma 2.5. As there are only finitely many
substitutions ¢ : Var(l)uVar(r)— Q, sort-decreasingness is decidable. O

Corollary 3.8. For finite signatures the sort-preservingness of an equation is decidable.
Proof. As in Lemma 3.6 we show that (VY)Ixr is sort-preserving if and only if
spctr(al)=spctr(or) holds for every substitution ¢: Var(l)uVar(r)—Q. (The set Q is

chosen as in Theorem 3.7.) [

Lemma 3.9. Let R be a set of sort-decreasing rules. Then the overloaded and the
nonoverloaded rewrite relations coincide, i.e. we have tT>§t’ if and only iftwﬁ t'.

Proof. If every rule in R is sort-decreasing, both the conditions (iii) (a) and (iii)(b) in
Definition 3.1 are trivially satisfied. O
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Lemma 3.10. Let E be a set of sort-preserving equations. Then E induces in the
overloaded and in the nonoverloaded case the same notion of equality on Tg(X); we have
t (zét’ if and only if't = Xt

Y . o

Proof. First we show that in the overloaded as well as in the nonoverloaded case
E = txt"implies spctr(t)=spctr(t’). This is easily proved by induction on the length of
the derivation. For the rules (E1)-(E3) it is trivial; for rule (E4a) or (E4b) it follows
from the recursion formula to compute spctr( f(z,,..., t,)); for rule (E5) it results from
the sort-preservingness of the equations in E.

Now we consider the two rules (E4a) and (E4b) once more. Since all equations
(VYX)t;x~t; have the property that spctr(t;)=spctr(t}), the additional conditions of
rule (E4a) and (E4b) are equivalent. Both inference rules coincide; hence, (:115

equals Tf O
g

Corollary 3.11. Let R be a set of sort-decreasing rules and E be a set of sort-preserving
equations. Then ~(—>§,E equals T»i‘m and (—1>f r equals T}( R
"y RNEAR ' ey

Provided that the conditions of the above lemmas are fulfilled, we can omit the
indices (¥~ and .4°('¥" at the relations — %, -} z. =&,z and = ;. However, this is
not correct for the relations = § and =} . as the following example demonstrates.

Example 3.12. Let > and R be defined by
(S, g)z{sl <Sp, 52<So},
2={a:-s0,b: o8, .8y, f15, 950, [15:5},
R={a-b, a>c}.

We have f(b) = %f(c), but not f(b) ﬁ%f(c). Note that all rules in R are sort-
decreasing.

Finally it should be mentioned explicitly that even now all ("7 -relations are only
defined for coherent and strongly consistent signatures.

3.3. Confluence and Church—Rosser property

From now on we consider only sort-decreasing rewrite rules; moreover, we assume
that all equations from E are sort-preserving.

Definition 3.13. A rewrite system (R, E) is said to be Church—Rosser modulo E, if the

. x * X X, kX
relations =g g and — g0 =g agree.
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Definition 3.14. A rewrite system (R, E) is said to be confluent modulo E if the relation

* * . . Tk oy *
S Rpe— ke is included in S o =Fo & F L

Theorem 3.15. Let R be a set of sort-decreasing rules and E a set of sort-preserving
equations. The rewrite system (R, E) has the Church—Rosser property modulo E if and
only if it is confluent modulo E.

Proof. Since t—»ﬁ/,Et’ implies t=%_ 1, it suffices to show that the Church—Rosser
property follows from confluence; this can be proved by induction on the length of the
derivation of t =%, ;' according to Inference system 2.30. O

Corollary 3.16. For a set E of sort-preserving equations the two relations =} and
EX agree.

Proof. Let E~' be defined by E~':={(VY)r=!|(VY)lxreE}. Now let R denote
EUE™!, then (R,0) is a confluent rewrite system and t;=5¢t, implies
fi=%o,ot2- By Theorem 3.15 there are terms t3,,€Ty(X) such that ¢, 5% i,
=5ta <*—’,§’,0 t,; this implies t; 5% t3=1,& %1, and, thus, ¢, &¥t,. The proof of the
reverse direction is trivial. [J

Corollary 3.17. Let R be a set of sort-decreasing rules and let E be a set of sort-
preserving equations such that (R, E) is confluent modulo E. Then the following proper-
ties are equivalent:

Mt fﬁuEtz-
(i) t1‘%’£u5t2-
(i) There are t', teTs(X) such that t, %»,{,Et’l (:1§t’2 %—ﬁwtz.
(iV) [1\”——: ﬁuEIZ-

* X
(V) t1<‘(—1> RUEIZ'

L. ¢
Lye——Rr/rl2-

X
E 5270y

(v} There are ty,t5,eTs(X) such that t11—?1>§,5 t =

Proof. Obviously, (ii) implies (i) and (v) implies (iv). Since =¥=&% we know that

— %S S koEs S0, (iif) implies (i) and (vi) implies (v). By Theorem 3.15 the properties

(i) and (iii) and the properties (iv) and (vi) are equivalent; finally, the equivalence of (iii)
X

and (vi) follows from T’R:Ti‘f and o E= £ O
. . d [

~

In the following definitions # replaces R or E\R or R/E.
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Definition 3.18. We say that the rewrite relation —% terminates if there is no infinite
sequence (ty,¢,,...) where t;—% ;..

Definition 3.19. A term ¢ is called irreducible under — 7% if there is no term ¢’ satisfying
t—>§ t'; we also say that ¢ is in Z-normal form. A term ¢ has the #-normal form ¢’ if
t-5% ¢ holds and ¢’ is irreducible under .

If the rewrite relation —»i‘? terminates, every term teTy(X) has at least one #-
normal form.

Definition 3.20. A rewrite system (R, E) is called (E\ R)-Church-Rosser modulo E if

. * * *
the relations=% ¢ and 5% o S¥- XX agree.
RUE ERCE E'R

As in the unsorted case, we can define the global and local confluence and
coherence of the relation —»g\R (see [25] for details). The relations between these
properties are expressed in the following theorem [13].

Theorem 3.21. Let R be a set of sort-decreasing rules and let E be a set of sort-
preserving equations. Provided that the relation — % . terminates, the following proper-
ties are equivalent:

(1) (R, E) is (E\ R)-Church—Rosser modulo E.

(i) The relations &% 5 and S} goSF &5 g agree.

(iti) The relation —¥. g is confluent modulo E and coherent modulo E.

(iv) The relation —>§\R is locally confluent modulo E with respect to R and locally
coherent modulo E.

(v) Forall terms t,t'eTs(X) we have z<f+§u5 t" if and only if there are normal forms
tnps the Of tand t with respect to —§. g such that txr EX .

Proof. As in Jouannaud’s and Kirchner’s unsorted version of this theorem [25], the
proof consists of the implications (i)=(ii)=-(iii) = (iv)=>(v)=(i). Two minor differences
from the unsorted version are due to the fact that in order-sorted rewriting the
relations =% . and &% - do not necessarily agree. In the first place, property (i) and
property (ii) do no longer collapse. Secondly, the proof of the (v)=-(i) part requires
now a simple induction on the length of the derivation of t=3 gt
according to Inference system 2.30. [J

3.4. Remarks

Condition (iii)(a) of Definition 3.3 seems to be rather complicated. Several authors
have presented apparently easier approaches.
For instance one might replace (iii)(a) by one of the following three properties:
(iii) (a) There exists a sort seS such that ¢[ p—(x:s)] is a well-formed term and
ol,oreTs(X),.
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(iii) (a)” There exists a sort seS such that t[pe(x:s)] is a well-formed term and
t/p,oreTs(X),.

(i) (a)” There exists a sort se€S such that t[ p—(x:s)] is a well-formed term and
t/p, ol,oreTz(X),.

Replacing (iii)(a) by (iii)(a), however, renders the relation —N—%\R unsound.

Example 3.22,
(S, €)={s,<s0, 52<50},
Y={a: sy, b:osy, cio8,, f151980, f1550
E={axb},
R={b—c}.
We have f(a)T%\Rf(C)’ but f(a) = 9 g (c) does not hold.

If (iii)(a) is replaced by (ii1)(a)”, the relation T’é\R is sound, but - g\R is no
longer included in _(w_)ﬁ/'E'

Example 3.23.
(S, <)={s1 <50},
T={a:—>s;, bi-sy, cio80, f15180}
E={axc},
R={c—-b}.
We have f(a)——f. zf (b), but f(a)T%/,E f(b) does not hold.

1t

It is less problematic to replace (iii)(a) by (iii)(a)”. This condition is even stronger
than (iii)(a); so, we have 71—»2-(\,2 ET,)Q/EE = X_E- A drawback of this approach,
however, is that the definition of compatibility becomes more complicated.

The decidability of the sort-decreasingness property was already stated in [39, 36].
The criterion mentioned in [39], however, is only correct for regular signatures. In
general, it is not sufficient to check all specializations in order to decide whether
a rewrite rule is sort-decreasing or not.

Example 3.24.
(Ss <)2{51 SSO’ SZ<SO}9
X={a:—>sy, a: oSy, a: >3, b5, f15050—S0, [1519:81 },

R={{(V{x:s0})f(x, x)—b}.
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As spetr(f(a, a))={so, 1 } E {80} =spctr(b), the rewrite rule in R is not sort-decreas-
ing. On the other hand, we have spctr( f(xg:50,Xg:80))=spctr(f(xy:5;, X1:8;))=
spetr( f(xy:85,x2:8,))={s¢} =spctr(b), hence, spctr(of(x:sg,x:80))Sspctr(ob)
holds for every specialization g, and R satisfies the criterion from [39].

The criterion that was given in [36] depends on the assumption that for every seS
and reTy(X) the set of substitutions ¢: X >Ts(Y) satisfying oteT;(Y), has a finite
subset that is complete with respect to the subsumption ordering. The following
example contradicts this assumption.

Example 3.25.
(S, <)=1{5:<51. 52<s1, 81 <So s
X={a:—>sg, a:—>S;, A1 S5, g15181Sg,

fiS0—=50, f152082, [184 85, gisash—s ]

Let t:=g(x:s;,x:5;) and s:=s;. For n=>0 we define the substitution ¢, by
op=1{x:5,~f"(a)}; then o,1€Ts(Y), holds for every n=0. The set of all o, is
complete and minimal, yet infinite. So, there cannot exist a finite and complete set of
substitutions 0 such that 6teT;(Y);,,.

Theorems 3.15 and 3.21 remain valid if we dispense with sort-decreasingness and
sort-preservingness and only require that rules and equations be compatible. Intuit-
ively, compatibility means that whenever a rewrite rule may be applied to a term ¢, this
application is also possible if ¢ is a subterm of some larger term.

Definition 3.26. A rewrite rule (VY)I—r is called ("4 -compatible if for every term
teTy(X) we have: If there is a substitution ¢: Y > Ty(X) and a position pe Pos(t) and if
al=t/p, then there exists a sort s€§ such that [ p(x:s)] is a well-formed term and
both ol and or are in Ty(X);.

A set E of equations is called ¢#"-compatible if for every term teTz(X) we have: If
there is a term ¢" and a position pePos(t) and if t/p = ¥ t', then there exists a sort seS
such that [ p«(x:s)] is a well-formed term and both ¢/p and t" are in Ty(X);.

Definition 3.27. A rewrite rule (VY)/—r is called .4°¢"# -compatible if for every term
te T¢(X ) we have: If there is a substitution ¢: Y- Tg(X ) and a position pe Pos(t) and if
al=t/p, then t[p«<or] is a well-formed term.

An equation (VY)l=xr is called .+ "¢ -compatible if both the rules (VY)/—r and
(VY)r—l are 4" (7 -compatible.
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As proved in [42] the .4"C¥ -compatibility of a rewrite rule is decidable; besides
Smolka et al. [39] have demonstrated that it is easy to make a signature A" ¥ -
compatible by construction (add declarations f:T...T—>T for a new, greatest
sort T).

The following example shows that in the overloaded case the weaker notion of
A7 -compatibility is not sufficient for Theorem 3.15 to hold.

Example 3.28.
(S, <)=1{51<5¢, 53S0},
={a:—-s, b:ios, c:o5; f151980, 1535},
R={a—c, b-c}.

The set R is .47("¥"-compatible and confluent. Now we have f(a) f%f(b), but not
f(a)% %f(b). As f(a) and f(c) are not R-equal, there cannot exist an overloaded
& %-derivation for this equation.

4. Completion

4.1. Unification and regularity

From now on we always assume that (S, <,Z) is a signature such that there is
a ground term teT; | for every sort seS.

Definition 4.1. Let ¢, t'e T;(X ). We say that a substitution ¢: X —»Ts(Y) is a unifier of
tand t' if ot =0t holds. A substitution ¢: X - T;(Y)is called an E-unifier of t and ¢’ if
ogt=got’ holds. The set of all unifiers of ¢ and ¢’ is denoted by SU (¢, t'); SUg(z, t')
represents the set of all E-unifiers of ¢ and ¢'.

Definition 4.2. Let 1,1’ Ts(X). A subset U< SU(t, t') is called complete if for every
unifier ¢’ : X->Ts(Y’) there exists a ¢:X—>T«(Y) from U and a substitution
0:Y—>Ts(Y’) such that ¢'=60°0. Analogously, a subset U = SUg(t, t') is called com-
plete if for every E-unifier ¢': X —»Ts(Y’) there exists a 6: X —Ty(Y) from U and
a substitution 6: Y- Tg(Y') such that 6'=;8-0, i.e. ¢'x=p0(ox) for each xeX.

Definition 4.3. A complete set U of unifiers or E-unifiers of ¢ and ¢’ is said to be
minimal if it does not contain two distinct substitutions ¢, ¢’ so that ¢'=00°¢ or
o'=g0°a, respectively, for some substitution 6.
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A complete set of unifiers is called a CSU, a minimal and complete set of unifiers is
called a uCSU.

Overloaded and nonoverloaded semantics do not differ with respect to unification
if we consider syntactical unification or unification with respect to a set of sort-
preserving equations. On the other hand, if E contains an equation that is not
sort-preserving, it may e.g. happen that overloaded E-unification is unitary and
nonoverloaded E-unification is infinitary.

Unification in order-sorted signatures differs substantially from many-sorted unifi-
cation. Even if the signature is finite and if we consider only syntactical unification (i.c.
unification with respect to the empty set of equations), a minimal complete set of
unifiers may be infinite, as demonstrated by the following example.

Example 4.4.
(S, <)={31 <5p, S1<39 }a
Z={a: s, a:osy, a: -5y, f150250, 15181, f151—81}

Consider the terms x:s; and x':s}. For each neN we define the substitution g, by
o= {x:5;—>f"(a), x":sy—f"(a)}. Every o, is a unifier of x and x’ and the set of all
o, is complete and mimimal, yet infinite. Since for any two minimal complete sets of
unifiers U, and U, there is a bijection from U, to U,, the two terms x and x’ cannot
have a finite ¢CSU.

In order to avoid the problems arising from infinite £ CSUs, it is useful to restrict the
class of signatures to be considered.

Definition 4.5. A signature 2 is called regular if every term teTy( V') has a least sort,
which is denoted by LS(z), i.e. if every M espctry , has a smallest element. (We assume
that ¥ contains at least one variable of every sort.)

Since spctryy is finite and computable, the regularity of a finite signature is
decidable (cf. [37]). In regular signatures for every term teT;(Y) there is a variable
xe Y’ such that spetr(x) = spctr(r); similarly, for every substitution o: X —>T;( Y} there
is a specialization 6: X — Y’ such that spctr(at)=spctr(8t) for every teTs(X). The
subsequent theorem originating from Schmidt-SchauBB [35] is an important conse-
quence of this fact.

Theorem 4.6. If (S, <, 2)is afinite regular signature, then for any two terms from Ty(X )
a finite CSU is effectively computable.
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4.2. Critical pairs

We introduce the following conventions. In the rest of this section (S, <,X) is
always a finite and regular signature such that for every sort s€S there is at least one
ground term te Ty ;. (By Lemma 2.28 this implies that the variable set may be omitted
in the notation of applications of rules and equations.) We consider only sort-
decreasing rewrite rules /—r such that Var(r)< Var(/) and such that [ is not a variable.
The set E consists of sort-preserving X-equations t=t’ such that ¢ and ¢’ contain the
same variables; neither ¢ nor ¢’ is a variable, and the strict subterm ordering modulo
E is noetherian. In order to simplify notation we may assume without loss of
generality that E is symmetrical. Unless explicitly stated otherwise, all considerations
are valid in both the overloaded and the nonoverloaded case.

The notion of E-critical pairs was introduced by Jouannaud. The following lemma
originates from [24].

Definition 4.7. Let (VX )g—d and (VX )[—# be two rewrite rules such that Var(y) and
Var(l) are disjoint and let p be a position in ¢ such that g/p is not a variable. If U 1s
a complete set of E-unifiers of ¢/p and I, we call the set

{(od.(6g)[p—or])|oeU}

a complete set of E-critical pairs of the rule g—d with the rule [—r at the position p.
(Analogously for an equation (VX )yxd and a rewrite rule (VX)I—r.)

Lemma 4.8. Let t,t,,t,eTs(Y) and let (VX)g—d and (YX)—>r be two rules in R such
that Var(g)nVar(l)=0 and t, « Ez‘"”"‘[] t— E{”k’*"] t,, where pePos(g) and g/p¢X.
Besides, let C be a complete set of E-critical pairs of the rule g—d with the rule I->r at the
position p. Then there is a pair (q,. g2)eC and a substitution 0 such that t,/o &g0q,
and ty/0 &pq,. (Analogously for an equation (YX g =d and a rewrite rule (VX)l—r.)

4.3. A completion procedure

A sort-decreasing term rewrite system is called complete if it terminates and has the
Church—Rosser property (or (E\R)-Church-Rosser property). Completion is the
transformation of a set of equations into an equivalent complete rewrite system. The
first completion algorithm was presented by Knuth and Bendix [28]. The idea that
the classical completion method can also be used for order-sorted specifications,
provided that all generated rules are sort-decreasing, is due to Gnaedig et al. [13].

Definition 4.9. A strict ordering > on Ts(X) is a reduction ordering if it fulfils the
following conditions:
(i) > is a noetherian ordering.
(i) t; >t, implies at, >ot, for all terms ¢,, 1, and all substitutions o.
(i) Given terms 7, t; and ¢, from Ty(X) such that p is a position of r and that
t[pet,] and t[ p<t,] are well-formed terms, ¢, >, implies t[ p—t,; ] >t[pt,].
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Definition 4.10. We say that a reduction ordering > on Ty(X) is compatible with E if
th=gt >ty =gty implies t) >15.

Reduction orderings have the following fundamental property. A rewrite relation
—  is terminating if and only if R is contained in some reduction ordering >, i.e. if
and only if I >r holds for all rules -7 in R. Analogously, a rewrite relation — g, is
terminating if and only if R is contained in a reduction ordering that is compatible
with E [2]. In the rest of this section we always assume that > is a reduction ordering
on Ty(X) that is compatible with E.

The completion procedure is described as an inference system, where starting with
a set of equations G, and a set of rules R, new pairs (G;, R;) are inferred such that the
relation = g .p remains invariant. It is necessary that all rules /-r in R, are
sort-decreasing and satisfy ! >r; often, R, will be empty.

Inference system 4.11.

Gufll~r},R
(C1) Orienting an equation: %};U—{lr_}}r—}
if the rule [—r is sort-decreasing and [>>r.

(C2) Adding an equation: G, R
Guil=r}. R

. * *
if le=p e qd—roE"

(C3) Simplifying an equation: Gull=r), R
Guig=~r}, R

if l—g.pq

(C4) Deleting an equation: Gufl~r}, R
G, R

if 15,

(C5) Simplifying the right side: G, Ru{l-r}
G, Rull-gq}

lf r"*)R’;E q.

(C6) Simplifying the left side: G, Ru{l—-r}
Gui{g~r}, R

if I—g,£q at a position p#e or if [—gq using
a rule I’—r’ so that [ and I’ are not equal up to
renaming of variables.
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The limit of a derivation sequence (G, Ry), (G, Ry),... is the pair (G, R, ), where
={Ji(;>:G,;and R, :={Ji();2: R, denote the sets of persxstmg rules and per51st-

ing equations. By convention the index i ranges {ro
and has the length n; otherwise, i ranges from 0 to <c.

The Inference system 4.11 is only a part of the completion algorithm that we want
to describe. In fact, a sequence (Gg,Rg), (G{,R;),... does not yield necessarily

a complete term rewrite system; so, we need a fairness criterion to select suitable
derivations (see [1] for details). As in the unsorted case, every fair derivation yields
a complete term rewrite system. Most parts of the proof of this statement can be
carried out as in Bachmair’s unsorted version. The differences are explained in the
sequel. '

A proof P for an equation t = t" over GURUE is a sequence (¢ y,..., t;)such thatt=t¢,
andt’'=t, and for | <i<keithert,_jogt;ort;_,>gt;ort;_ «gt; ort;_;«<>gt; holds.

As in [ 1], we define an ordering > ¢ on proofs that is well-founded and monotonic
with respect to the proof structure, with respect to the term structure and with respect
to instantiation.

Each application of an inference rule is reflected by transformations of proofs. If
(G', R’} is obtained by an application of one of the inference rules (C1)—(C6) to (G, R),
then the generated congruences = g g and = g are the same. Unlike in the
unsorted case, however, the relations &, p ; and &, g are not necessarily
equal; the same holds for =z and &, g . We can merely show that &, g ¢
is a subset of & g -

Lemma 4.12. Let (Gy, Rg), (G1,Ry),... be a derivation according to Inference sys-
tem4.11 and let P be a proof of t|~t; in G;OR,VE. If j>i and if P is not a proof in
G;uR;UE, then there exists a proof Q of t, =t in G;uR;UE satisfying P> Q.

Noetherian induction on > ¢ yields the following lemma.

Lemma 4.13. Ler (G, Ry), (G, R,),... be a derivation according to Inference system
4.11. Then for every proof P of t,xt, in G;UR,UE there is a proof Q of t,~1, in
G, VR UE such that P= Q.

Lemma 4.14. If G and G’ are two sets of X-equations and l= g holds for every

equation Ixr in G, then

¢ & = ¢ . Analogously, lfl = cr holdsfor every equation

~

I~rin G, then =< G-
. "y

~
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Proof. By induction on Inference system 2.30. [
Using the two preceding lemmas we can prove now Lemma 4.135.

Lemma 4.15. Let (G, Ro), (G, R\),... be a derivation according to Inference sys-
tem 4.11. Then the relations =g g pand = g g agree for every i.

Theorem 4.16. If (Go.Ro), (G, R,),... is a fair derivation according to Inference
system 4.11, then R is a complete term rewrite system.

Proof. Bachmair’s unsorted proof (by induction on the proof ordering >} 1] can be
used as well for order-sorted completion. Note, however, that it does not yield the
equality of =p g and B podpodp obutonly &Spop=5p g pedp . We
need Theorem 3.21 to see that these two properties are indeed equivalent. 0

4.4. Overloaded versus nonoverloaded completion

The Gnaedig-Kirchner—-Kirchner completion procedure described above may be
used in both the overloaded and the nonoverloaded case. Indeed, we can prove that
every overloaded completion procedure has this property.

Theorem 4.17. If G and G’ are two sets of X-equations and === ¢ holds, then we

hav = o om—
ealsoJ“G rer @

Proof. Suppose that === Then lﬁ:fc-r holds for each equation Ixre(G.

Comparing rules (Eda) and (E4b) from Inference system 2.30 we see that

=, & ==4; hence, we have |=;r for each I[~reG. This implies
i3 G Lt ) LtEf G

~
-«

= .
ERT R A

equal. [

= G- By symmetry we obtain —cS

I

: thus, == ; and == , are
G Sa ,1'{1(; ({,(f,.G

~
~
-

Corollary 4.18. Every overloaded completion procedure may be used as a nonoverloaded
completion procedure. If a set of equations can be completed using an overloaded
completion procedure, then its ¢4 -semantics and its A ¢+ -semantics agree.

Proof. Suppose that an overioaded completion procedure is applied to a set G, of

equations and a set R, of sort-decreasing and reductive rules and returns the complete
rewrite system R, . Since

. o Lk .
= G,uRE= = R VE=(TER T E T ER )
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we have by Theorem 4.17 and Corollary 3.11

* ok )
=, G,UR VET R,uE:(_"E\R‘ OHE“*_E\R,)’

us, == uals = .0
th ’ (&) GUURUUE eq Y6y G()URUUE

However, there is no corresponding theorem for nonoverloaded completion algo-
rithms. In the following example we show that there are specifications that can be
completed in the nonoverloaded, but not in the overloaded world.

Example 4.19. Let X be defined by
(S, €)= 153<31<50a S53K8; So},
IT={a:—>s;, bios,, c:os3, f15,950, f15250, f15350).

Consider the set of equations G={axb, axf(a), cxf(b)} and the complete term
rewrite system R={a—c, b-¢, f(c)—c}. It is easy to prove that [ = ‘== g holds for all

[~reG and that [= ;r holds for all I-reR; thus, = = = ¢. If we replace

-~

inference rule (C2) by
, . . G, R .
(C2) Adding an equation Gull~rl R if | = = GuRUE"
(which is correct only for the .47 ¥ -case and, of course, totally impractical), we can, in
fact, complete G and obtain R.
Now consider the following (X, G)-(*¥ -algebra A4:

" .- [ — ’ —
Ay ={a, o, a"}, Ag, =o'}, Ag={a, o}, A, ={a},
E S1 ._1 E 852, _a Ai;.s:g .:a’
Af-a—sal, ol AP a”, 2a, AP s,

The algebra A does not satisfy the equation a=xc; hence, =¥ =r

Assume that there is a complete term rewrite system R’ inducing the same equality
as G. Since g and b and G-equal, there must be some term t such that a%»R,t;%R, b.
The signature X is regular and we have LS(a)=s, and LS(b)=s,; as R’ is sort-
decreasing, spctr(f) must contain both s, and s,, i.e. LS(t)=s;. Obviously, t cannot be
a variable; so, t must be equal to ¢, which is the only nonvariable term having the least
sort s3. This, however, is impossible because a and ¢ are not G-("¥"-equal. Thus,
G cannot be completed using an overloaded completion procedure.
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4.5. Remarks

The completion procedure that has been presented in this section differs from an
unsorted algorithm in only two places.

In the first place there is a difference with respect to the computation of critical
pairs. In general, unification in an order-sorted signature is much less efficient than in
the unsorted case. The restriction to regular signatures (so that unification is at least
finitary) does not pose many problems; however, even in regular signatures uCSUs
may become quite large, producing a considerable number of critical pairs. Besides,
the unifiability problem for regular signatures is NP-complete [39]. Conditions for
unitary unifiability [31, 41] are unfortunately seldom satisfied in practical cases.

The second difference is the demand for sort-decreasingness. It would be advan-
tageous if we could content ourselves with the compatibility of the rewrite rules since
it is easy to make a signature compatible by construction [39], but compatibility is
not sufficient to prove Theorem 4.16 (it is no longer possible to eliminate variable
overlaps). Sort-decreasingness, however, constitutes a considerable restriction for
many applications. Moreover, the problem to decide whether a rewrite rule is not
sort-decreasing is also NP complete, even for signatures with only two sorts s<s'.
(This can be proved by reduction of the MONOTONE 3sAT problem [12, 23] to non-
sort-decreasingness.)

5. Conclusion

We have demonstrated which restrictions are necessary for order-sorted equational
logic, rewriting, unification and completion. In particular, we have shown that
overloaded and nonoverloaded semantics sometimes differ substantially. Whereas
conditions such as strong consistency and coherence are necessary for overloaded
equational logic, in the nonoverloaded world we can get along without any additional
prerequisites. (The well-known problem that terms like pop( pop( push(push(s, x), y)))
may be semantically meaningful but syntactically ill-formed can usually be avoided by
using error supersorts [ 14, 39].)

Some severe restrictions, however, become necessary for completion, ie. for the
transformation of an equational specification into an efficient decision procedure.

The translation of order-sorted specifications into conditional many-sorted speci-
fications that Ganzinger proposed [11] might be a way to overcome these problems.
Here it i1s sometimes possible to create complete systems containing non-sort-decreas-
ing rules, but unfortunately the translation considerably increases the size of a speci-
fication. Perhaps the advantages of the purely order-sorted and of the conditional
many-sorted method could be combined using a partial translation.

Several authors have proposed avoiding the disadvantages of order-sorted re-
writing by using another kind of typing [7, 30, 44]. The order-sorted logics that we
have considered in this paper have a syntactic sort theory. Using syntactic sorts, the
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equational theory E, but evertheless have dlfferent even dlSjOll’l[ spectra In a seman-
tic sort theory there is an axiom like t:s, t=t'=>t":s. This eliminates the need for
compatibility or sort-decreasingness and also the problem of semantically meaningful
but syntactically ill-formed terms, but raises a new problem. It is not longer decidable,
whether a term t has a sort s, whether a term is an instance of another term, or whether
a rule or equation may be applied to a term.

A third possibility, proposed by Comon [5], is to use an unsorted calculus (without
imposing a well-typedness condition) with containment predicates t€s as constraints.
A great advantage of this method is that deciding the solvability of such a constraint is
often much easier than actually solving it and that the expensive computation of
minimal complete sets of order-sorted unifiers can often be avoided.

A comparison of the expressiveness and computational power of these extensions
might be an interesting topic for future research.
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