Codes modulo finite monadic string-rewriting systems

Friedrich Otto
Fachber. Mathematik/Informatik, Gesamthochschule Kassel, Postfach 101 380, 34109 Kassel, Germany

Paliath Narendran
Department of Computer Science, Institute for Programming and Logics, State University of New York, Albany, NY 12222, USA

Abstract

A set $C \subseteq \Sigma^*$ is called a code modulo a string-rewriting system T if, for all $u_1, u_2, \ldots, u_k, w_1, w_2, \ldots, w_m \in C$, $v_1 v_2 \cdots v_k \rightarrow^* T w_1 w_2 \cdots w_m$ implies that $k = m$ and $v_i = w_i$, $i = 1, \ldots, k$. Here we show that it is decidable whether a regular set is a code modulo T, when T is a finite string-rewriting system that is monadic and confluent, or that is special and λ-confluent.

1. Introduction

A set of strings $U = \{u_i \mid i \in I\} \subseteq \Sigma^*$ is called independent if, for each $i \in I$, $u_i \notin (U - \{u_i\})^*$, i.e., the string u_i cannot be written as a product of strings from $U - \{u_i\}$. The set U is a code if, for all $k, m \geq 0$ and all $v_1, \ldots, v_k, w_1, \ldots, w_m \in U$, $v_1 v_2 \cdots v_k = w_1 w_2 \cdots w_m$ implies that $k = m$ and $v_i = w_i$, $i = 1, 2, \ldots, k$, i.e., each string from U^* has a unique factorization as a product of strings from U. Obviously, each code is an independent set, but not necessarily vice versa. For example, the set $A := \{ab, ba, aba\}$ is independent, but it is not a code, since $(ab)(aba) = (aba)(ba)$.

Here we are interested in the following generalization of these notions. Let T be a string-rewriting system on Σ, and let \leftrightarrow_T^* denote the Thue congruence induced by T. A set of strings $U = \{u_i \mid i \in I\} \subseteq \Sigma^*$ is called independent mod T if, for each $i \in I$, u_i is not congruent to any string from $(U - \{u_i\})^*$, and it is called a code mod T if, for all $k, m \geq 0$...
and all \(v_1, v_2, \ldots, v_k, w_1, w_2, \ldots, w_m \in U \), \(v_1 v_2 \ldots v_k \leftrightarrow^* w_1 w_2 \ldots w_m \) implies that \(k = m \) and \(v_i = w_i, \ i = 1, 2, \ldots, k \). Algebraically these notions can be interpreted as follows. Let \(M_T \) denote the factor monoid \(\Sigma^*/\leftrightarrow^* \). Then the set \(U \) is independent mod \(T \) if and only if, for each \(i \in I, u_i \) does not belong to the submonoid of \(M_T \) that is generated by \(U - \{ u_i \} \), and \(U \) is a code mod \(T \) if and only if the submonoid of \(M_T \) that is generated by \(U \) is in fact freely generated by \(U \).

It is decidable whether a regular set \(U \) is independent or whether it is a code \([3, 5]\). On the other hand, there exists a finite string-rewriting system \(T \) that is even length-reducing and confluent such that it is undecidable in general whether or not a finite set \(U \) is independent mod \(T \) \([11, \text{Theorem 3.4}]\). Further, given a finite, length-reducing and confluent string-rewriting system \(T \) on some alphabet \(\Sigma_2 \) and a subalphabet \(\Sigma_1 \) of \(\Sigma_2 \), it is undecidable in general whether or not \(\Sigma_1 \) is a code mod \(T \) \([12, \text{Theorem 3.4}]\). The latter undecidability result also holds for the class of finite monadic string-rewriting systems that are weakly confluent \([13]\). On the other hand, the property that a finite set \(U = \{ u_1, \ldots, u_n \} \) is independent mod \(T \) can be expressed by a linear sentence \([2]\). Thus, if \(T \) is a finite string-rewriting system that is (i) monadic and confluent \([2]\), that is (ii) monadic and \(\lambda \)-confluent, and that presents a group \([10]\), or that is (iii) special and \(\lambda \)-confluent \([14]\), then it is decidable in polynomial time whether or not a finite set is independent mod \(T \).

Here we show that it is decidable whether a regular set \(U \) is a code modulo a finite string-rewriting system \(T \) provided \(T \) is (i) monadic and confluent or (ii) special and \(\lambda \)-confluent. Actually, we show that the following technical problem is decidable:

Instance: A finite string-rewriting system \(T \) on some alphabet \(\Sigma \) such that (i) \(T \) is monadic and confluent or (ii) \(T \) is special and \(\lambda \)-confluent, and a regular set \(R \subseteq \Sigma^* \) (specified in a suitable way).

Question: Do there exist strings \(u, v \in R \) such that \(u \neq v \), but \(u \leftrightarrow^*_T v \)?

The decidability of this problem implies the decidability of the former as follows. Let \(U \subseteq \Sigma^* \) be a regular set. If \(U \) is not a code (and this is decidable), then certainly \(U \) is not a code mod \(T \). If, however, \(U \) is a code, then \(U \) is not a code mod \(T \) if and only if there are strings \(u, v \in U^* \) such that \(u \neq v \) and \(u \leftrightarrow^*_T v \). Since \(U^* \) is regular, this is decidable by the latter result.

In Section 2 we first restate some of the fundamental definitions and notions regarding string-rewriting systems in short to establish notation. For a thorough introduction to string-rewriting systems the interested reader is asked to consult the literature, e.g., the recent monograph \([4]\). Then we state our main result formally. Our proof, presented in Section 3, effectively reduces the problem considered to some decidable problems on regular and deterministic context-free languages. For this part we assume the reader to be familiar with the basic theory of finite-state acceptors and pushdown automata as, e.g., presented in \([6]\).
2. Special and monadic string-rewriting systems

Let Σ be a finite alphabet. Then Σ^* denotes the set of strings over Σ including the empty string λ. For $w \in \Sigma^*$, $|w|$ denotes the length of w. A string-rewriting system T on Σ is a subset of $\Sigma^* \times \Sigma^*$, the elements of which are called (rewrite) rules. By $\text{dom}(T)$ we denote the set $\{\ell \mid \exists r : (\ell \rightarrow r) \in T\}$ of all left-hand sides of rules, and by $\text{range}(T)$ we denote the set $\{r \mid \exists \ell : (\ell \rightarrow r) \in T\}$ of all right-hand sides. The system T is called length-reducing if $|\ell| > |r|$ holds for each rule $(\ell \rightarrow r) \in T$; it is called monadic if it is length reducing and $\text{range}(T) \subseteq \Sigma \cup \{\lambda\}$, and it is called special if it is length-reducing and $\text{range}(T) = \{\lambda\}$.

The single-step reduction relation induced by T is denoted by \rightarrow_T. Its reflexive transitive closure \rightarrow^*_T is the reduction relation induced by T, and its reflexive, symmetric and transitive closure \leftrightarrow^*_T is the Thue congruence generated by T.

A string $w \in \Sigma^*$ is reducible (mod T) if there exists a string $z \in \Sigma^*$ such that $w \rightarrow_T z$; otherwise, w is irreducible (mod T). The set of irreducible strings, which is denoted by $\text{IRR}(T)$, is a regular set, for which a deterministic finite-state acceptor can be constructed in polynomial time from T whenever the system T is finite.

For $w \in \Sigma^*$, $D_T^*(w) = \{u \in \Sigma^* \mid w \rightarrow^*_T u\}$ is the set of descendants of w, and for $L \subseteq \Sigma^*$, $A_T^*(L) = \bigcup_{w \in L} D_T^*(w)$. If T is monadic, and $L \subseteq \Sigma^*$ is a regular set, then the set $A_T^*(L)$ is regular, too [8]. If, in addition, T is finite, then a nondeterministic finite-state acceptor for the set $A_T^*(L)$ can be constructed in polynomial time from T and from a finite-state acceptor for the set L ([2], for a detailed presentation of this construction see [4]).

A string-rewriting system T is noetherian if there does not exist an infinite sequence of reductions of the form $w_0 \rightarrow_T w_1 \rightarrow_T w_2 \rightarrow_T \ldots$, it is confluent if, for all $u, v \in \Sigma^*$, $u \rightarrow^*_T v$ implies that $D_T^*(u) \cap D_T^*(v) \neq \emptyset$, i.e., u and v have a common descendant. If T is noetherian and confluent, each congruence class $[w]_T := \{z \in \Sigma^* \mid z \leftrightarrow^*_T w\}$ contains a unique irreducible string. Obviously, if T is length-reducing, then it is noetherian; in fact, an irreducible descendant of w can then be computed in time bounded above by a polynomial in $|w|$ and $\text{size}(T)$ ($:= \Sigma_{(\ell \rightarrow r) \in T} (|\ell| + |r|)$) [1].

Sometimes a string-rewriting system T considered is not confluent in general, but only on certain congruence classes. Here T is said to be confluent on $[w]_T$ if $[w]_T$ contains a single irreducible string only. We say that T is λ-confluent if it is confluent on $[\lambda]_T$, and a monadic system T is called weakly confluent if it is confluent on $[\lambda]_T$ for all $\lambda \in \Sigma \cup \{\lambda\}$.

Finally, a string-rewriting system T is called normalized if, for each rule $(\ell \rightarrow r) \in T$, $\ell \in \text{IRR}(T - \{\ell \rightarrow r\})$ and $r \in \text{IRR}(T)$. Given a finite string-rewriting system T that is monadic and (weakly) confluent, or that is special and λ-confluent, an equivalent system T_0 of the same form can be constructed in polynomial time such that T_0 is normalized [7, 9, 14]. Thus, we can restrict our attention to finite normalized systems in these cases.
Concerning finite monadic and weakly confluent string-rewriting systems we just want to restate the following undecidability result from [13].

Theorem 2.1. The following problem is undecidable in general.

Instance: A finite, monadic, and weakly confluent string-rewriting system \(T \) on some alphabet \(\Sigma \), and a subalphabet \(\Gamma \subseteq \Sigma \).

Question: Is \(\Gamma \) a code mod \(T \)?

In the following we will only be concerned with finite string-rewriting systems that are either monadic and confluent or special and \(\lambda \)-confluent. We want to establish the following result.

Theorem 2.2. The following problem is decidable.

Instance: A finite string-rewriting system \(T \) that is monadic and confluent or that is special and \(\lambda \)-confluent, and a regular set \(U \subseteq \Sigma^* \).

Question: Is \(U \) a code mod \(T \)?

Comparing Theorem 2.2 to Theorem 2.1 we see the following. For a finite monadic string-rewriting system \(T \) the property of weak confluence is not even powerful enough to enforce that it becomes decidable whether a finite subset of the given alphabet \(\Sigma \) is a code mod \(T \), while the stronger property of confluence is sufficient to solve the more general problem of deciding whether or not an arbitrary regular set \(U \subseteq \Sigma^* \) is a code. Our goal is to prove Theorem 2.2.

While each congruence class of a monadic and confluent string-rewriting system contains a unique irreducible string, this is not true in general for special and \(\lambda \)-confluent systems. However, for these systems we do at least have the following normal form theorem.

Proposition 2.3 (Otto and Zhang [14]). Let \(T \) be a special string-rewriting system on \(\Sigma \).

(a) For each string \(u \in \Sigma^+ \), there is a unique factorization of the form

\[
 u = u_0 a_1 u_1 \ldots a_m u_m
\]

for some \(m \geq 0 \), where

(i) \(u_0, u_1, \ldots, u_m \) are maximal invertible factors of \(u \) (some of which may be empty), and

(ii) \(a_1, \ldots, a_m \in \Sigma \).

(b) Let \(u, v \in \Sigma^+ \), and let \(u = u_0 a_1 u_1 \ldots a_m u_m \) and \(v = v_0 b_1 v_1 \ldots b_n v_n \) be the factorizations of \(u \) and \(v \), respectively. Then \(u \mathrel{\xrightarrow{+}} v \) if and only if

(i) \(n = m \),

(ii) \(a_i = b_i \) for \(i = 1, \ldots, m \), and

(iii) \(u_i \mathrel{\xrightarrow{+}} v_i \) for \(i = 0, 1, \ldots, m \).
Accordingly, the above factorization of a string \(u \) is called the \textit{normal form} of \(u \). Here a factor \(x \) of a string \(u \) is a \textit{maximal invertible factor} of \(u \) if \(x \) is invertible mod \(T \), i.e., \(xy \leftrightarrow^* \lambda \leftrightarrow^* yx \) for some \(y \in \Sigma^* \), and no invertible factor \(z \) of \(u \) properly contains \(x \).

Actually, if \(T \) is a special system that is finite and \(\lambda \)-confluent, then the normal form of a string \(u \) can be determined in polynomial time. In fact, let \(U(T) \) denote the set of invertible \(\Sigma^* \) mod \(T \), i.e., \(w \in U(T) \) if and only if \(zw \leftrightarrow^* \lambda \leftrightarrow^* wz \) for some \(z \in \Sigma^* \), and let \(D_T \) be the following subset of \(U(T) \):

\[
D_T := \{ u \in \Sigma^* \mid u \cdot \Sigma^* \cap \text{dom}(T) \neq \emptyset \neq \Sigma^* \cdot u \cap \text{dom}(T), \text{ and no proper nonempty prefix } v \text{ of } u \text{ satisfies } \Sigma^* \cdot v \cap \text{dom}(T) \neq \emptyset \}.
\]

Then \(D_T \) is a finite biprefix code that can easily be obtained from \(T \). Further, \(U(T) \cap \text{IRR}(T) \subseteq D_T^\perp \), i.e., an irreducible string \(u \) is invertible mod \(T \) if and only if \(u \in D_T^\perp \). Thus, it is easily decidable whether or not an irreducible string is invertible mod \(T \). Further, for each \(u \in D_T \), we can obtain a string \(v \in \Sigma^* \), \(|v| < \mu \), such that \(uv \leftrightarrow^* \lambda \leftrightarrow^* vu \), i.e., we have a mapping \(^{-1} : U(T) \cap \text{IRR}(T) \rightarrow U(T) \) such that, for all \(w \in U(T) \cap \text{IRR}(T) \), \(\lambda w^{-1} \leftrightarrow^* \Lambda w^{-1} w \), and \(|w^{-1}| < \mu \cdot |w| \). Here \(\mu = \max \{|f| \mid f \in \text{dom}(T)\} \). Finally, we can construct a generalized sequential machine (gsm) \(GNF \) that, given an irreducible string \(u \in \Sigma^* \) as input such that \(u_0 a_1 u_1 \ldots a_m u_m \) is the normal form of \(u \), computes the string \(u_0 b_1 u_1 \ldots b_m u_m \), where \(\Gamma := \{ b_i \mid a_i \in \Sigma \} \) is a new alphabet in one-to-one correspondence to \(\Sigma \).

These technical results, which are taken from [14], will be useful tools for proving Theorem 2.2 in the case of finite, special, and \(\lambda \)-confluent string-rewriting systems.

3. The proof

As shown in the introduction it suffices to establish the following result in order to prove Theorem 2.2.

\textbf{Theorem 3.1.} The following problem is decidable:

\textbf{Instance:} A finite string-rewriting system \(T \) that is monadic and confluent or that is special and \(\lambda \)-confluent, and a regular set \(R \subseteq \Sigma^* \).

\textbf{Question:} \(\exists u, v \in R : u \neq v \), but \(u \leftrightarrow^* \lambda \leftrightarrow^* v \)?

Our proof will be based on the following two observations. Let \(R \subseteq \Sigma^* \). The \textit{syntactic congruence} \(\text{syn}(R) \) of \(R \) is defined by

\[
\text{syn}(R) = \{ (u, v) \mid \forall x, y \in \Sigma^* : xuy \in R \text{ iff } xyv \in R \},
\]

and the factor monoid \(\Sigma^*/\text{syn}(R) \) is known as the \textit{syntactic monoid} of \(R \). It is well known that this monoid is finite if and only if the set \(R \) is regular. In this case, let
denote the cardinality of the syntactic monoid of \(R \), and let \(\text{SUBS}(R) \) be the following set:

\[
\text{SUBS}(R) := \{ v \in \Sigma^* \mid \exists u, w \in \Sigma^*: uvw \in R \},
\]

i.e., \(\text{SUBS}(R) \) is the set of all factors of strings of \(R \). The following lemma now expresses our first observation.

Lemma 3.2. Let \(T \) be a string-rewriting system on \(\Sigma \), and let \(R \subseteq \Sigma^* \) be a regular set. If there exist \(\sigma_R + 1 \) distinct strings \(w_1, w_2, \ldots, w_{\sigma_R + 1} \in \text{SUBS}(R) \) such that \(w_i \leftrightarrow_T^* w_j \) for all \(i, j, 1 \leq i < j \leq \sigma_R + 1 \), then there are two distinct strings \(x, y \in R \) such that \(x \leftrightarrow_T^* y \).

Proof. Since \(\sigma_R + 1 > |\Sigma^*/\text{syn}(R)| \), there are indices \(i, j, 1 \leq i < j \leq \sigma_R + 1 \), such that \((w_i, w_j) \in \text{syn}(R) \). Since \(w_i \in \text{SUBS}(R) \), \(u_w, v \in R \) for some \(u, v \in \Sigma^* \). Since \((w_i, w_j) \in \text{syn}(R) \), this implies that \(u_w v \in R \), too. Further, from \(w_i \leftrightarrow_T^* w_j \) we obtain \(u_w v \leftrightarrow_T^* u_w v \). However, since \(w_i \neq w_j \), also \(u_w v \neq u_w v \), i.e., \(u_w v \) and \(u_w v \) are two distinct strings from \(R \) that are congruent mod \(T \).

Secondly, the statement

\[(1) \exists u, v \in R: u \neq v \text{ and } u \leftrightarrow_T^* v\]

is equivalent to the disjunction of the following two statements, since if \(u \) and \(v \) exist with the above properties, then we can compare them using the lexicographical ordering on \(\Sigma^* \):

\[(2) \exists u, v \in \Sigma^* \exists a \in \Sigma: u \in R, uav \in R, \text{ and } u \leftrightarrow_T^* uav, \text{ or} \]

\[(3) \exists u, v, w \in \Sigma^* \exists a, b \in \Sigma, a \neq b: uav \in R, ubw \in R, \text{ and } uav \leftrightarrow_T^* ubw.\]

We shall now deal with the latter two statements separately. So let \(T \) be a finite string-rewriting system on \(\Sigma \) that is either monadic and confluent or that is special and \(\lambda \)-confluent, and let \(R \subseteq \Sigma^* \) be a regular set. For the following considerations we fix the system \(T \) and the set \(R \), and take \(n := |\Sigma| \). For \(a \in \Sigma \), we define a language \(I_a \) as follows:

\[
I_a := \{ u_0 \#_a v_0 \mid u_0, v_0 \in \text{IRR}(T), \text{ and } \exists u \in R \exists v \in \Sigma^*: u \leftrightarrow_T^* u_0, v \leftrightarrow_T^* v_0, \text{ and } uav \in R \},
\]

where \(\#_a \) is an additional symbol.

Lemma 3.3. The language \(I_a \) is regular, and from \(R, T \) and \(a \in \Sigma \), a finite-state acceptor for \(I_a \) can be constructed effectively.

Proof. Let \(H_a := \{ u\#_a v \mid u \in R, v \in \Sigma^* \text{ and } uav \in R \} \). Then \(H_a \) is a regular set, for which a finite-state acceptor can easily be constructed. Since the string-rewriting system \(T \) is
monadic (or even special), the set \(\Delta^*_{T}(H_a) \) is regular, and a finite-state acceptor can be constructed that accepts this set. Hence, the set

\[
\Delta^*_{T}(H_a) \cap IRR(T) \cdot \{\#_{a}\} \cdot IRR(T) = I_a
\]

is also regular, and a finite-state acceptor for this set can be constructed effectively.

Let \(J_a \) denote the set

\[
J_a := \{ u_0 a v_0 | u_0, v_0 \in IRR(T), \text{ and } \exists u \in R \exists v \in \Sigma^* : u \rightarrow^* u_0, v \rightarrow^* v_0, \text{ and } uav \in R \}.
\]

Then \(J_a = \Psi_a(I_a) \), where \(\Psi_a : (\Sigma \cup \{\#_{a}\})^* \rightarrow \Sigma^* \) is the morphism induced by \(b \mapsto b (b \in \Sigma) \) and \(\#_{a} \mapsto a \). Thus, we conclude the following.

Corollary 3.4. The language \(J_a \) is regular, and a finite-state acceptor for \(J_a \) can be constructed effectively.

Let \(u_0 a v_0 \in J_a \). Then \(u_0 \) and \(v_0 \) are irreducible mod \(T \). If \(u_0 a v_0 \) admits a reduction sequence of length \(m \), i.e., there is a reduction sequence of the form

\[
u_0 a v_0 = z_0 \rightarrow^T z_1 \rightarrow^T \cdots \rightarrow^T z_m,
\]

then \(u_0 \) and \(v_0 \) can be factored as \(u_0 = x_m \cdots x_1 x_0 \) and \(v_0 = y_0 y_1 \cdots y_m \) such that, for all \(i = 1, \ldots, m \),

\[
z_{i-1} = x_m \cdots x_i x_{i-1} a_{i-1} y_{i-1} y_i \cdots y_m \rightarrow^T x_m \cdots x_i a_i y_i \cdots y_m = z_i
\]

for some \(a_1, \ldots, a_m \in \Sigma \cup \{\lambda\} \), where \(a_0 = a \).

Lemma 3.5. If the language \(J_a \) contains a string that admits a reduction sequence of length \((n+1) \cdot \sigma_R + 1 \), then there are two distinct strings \(x, y \in R \) with \(x \rightarrow^T y \).

Proof. Assume that the string \(u_0 a v_0 \in J_a \) admits a reduction sequence of length \(m := (n+1) \cdot \sigma_R + 1 \). Then \(u_0 = x_m \cdots x_1 x_0 \) and \(v_0 = y_0 y_1 \cdots y_m \) such that

\[
u_0 a v_0 = x_m \cdots x_1 x_0 a y_0 y_1 \cdots y_m \rightarrow^T x_m \cdots x_1 a y_1 \cdots y_m \rightarrow^T \cdots \rightarrow^T x_m a_m y_m
\]

for some \(a_1, \ldots, a_m \in \Sigma \cup \{\lambda\} \). Since \(u_0 a v_0 \in J_a \), there are strings \(u \in R \) and \(v \in \Sigma^* \) such that \(u \rightarrow^* u_0 \), \(v \rightarrow^* v_0 \) and \(uav \in R \). \(T \) being monadic implies that \(u \) and \(v \) can be factored as \(u = f_m \cdots f_1 f_0 \) and \(v = g_0 g_1 \cdots g_m \) such that \(f_i \rightarrow^T x_i \) and \(g_i \rightarrow^T y_i \), \(i = 0, 1, \ldots, m \). Thus,

\[
uav = f_m \cdots f_1 f_0 a g_0 g_1 \cdots g_m,
\]

and

\[
f_{i-1} \cdots f_0 a g_0 \cdots g_{i-1} \rightarrow^* x_{i-1} \cdots x_0 a y_0 \cdots y_{i-1} \rightarrow^* a_i
\]

where \(x_0 = a_0 \), \(y_0 = a_0 \), \(a_1, \ldots, a_m \in \Sigma \cup \{\lambda\} \), and \(a_0 \neq a \).
for all $i = 1, 2, \ldots, m$. Since $m > (n+1) \cdot \sigma_R$, there are indices $0 < i_1 < i_2 < \cdots < i_{\sigma_R} < i_{\sigma_R+1} \leq m$ such that $a_{i_1} = a_{i_2} = \cdots = a_{i_{\sigma_R+1}}$. Let

$$A := \{ f_{j_1} \cdots f_{j_{\sigma_R}} a_{g_1} \cdots g_{j_{\sigma_R+1}} | j_1, j_2, \ldots, j_{\sigma_R+1} \}.$$

Then $A \subseteq \text{SUBS} \{ \{ u_{av} \} \} \subseteq \text{SUBS}(R)$. All strings from A are congruent to a_{i_1}, and, for all $k = 1, 2, \ldots, m$, $f_k g_k \neq \lambda$ implying that $|A| = \sigma_R + 1$. Thus, Lemma 3.2 applies. \hfill \Box

If the string $u_0 a v_0 \in J_a$ ($u_0, v_0 \in \text{IRR}(T)$) does not admit a reduction sequence of length m for some fixed integer m, then u_0 and v_0 can be factored as $u_0 = u_1 u_2$ and $v_0 = v_2 v_1$, where $|u_1|, |v_2| \leq (m-1) \cdot \mu$, $u_2 a v_2 \rightarrow^* w$ and $u_1 w v_1 \in \text{IRR}(T)$. The reason is the fact that in a reduction sequence of length at most $m-1$ only a suffix u_2 of u_0 and a prefix v_2 of v_0 can be involved that are of length not exceeding $(m-1) \cdot \mu$, since u_0 and v_0 are irreducible.

For $a \in \Sigma$, we define the language L_a as follows:

$$L_a := \{ u_0 a v_0 | u_0 \# a v_0 \in I_a \text{ and } u_0 a v_0 \rightarrow^*_T u_0 \}. $$

Observe that if $u_0 a v_0 \in L_a$, then there exist strings $u \in R$ and $v \in \Sigma^*$ such that $u \rightarrow^*_R u_0$, $v \rightarrow^*_T v_0$, $u a v \in \text{R}$, and $u_0 a v_0 \rightarrow^*_T u_0$, i.e., $u a v \rightarrow^*_T u_0 a v_0 \rightarrow^*_T u_0 \rightarrow^*_T u$ and $u a v \in R$. Thus, if $L_a \neq \emptyset$ for some $a \in \Sigma$, then statement (2) holds for T and R.

Lemma 3.6. Let $m \in \mathbb{N}$, and let $a \in \Sigma$ be such that the language J_a does not contain a string which admits a reduction sequence of length m. Then L_a is a regular language, and a finite-state acceptor for L_a can be constructed effectively from T, R, a and m.

Proof. If $u_0 a v_0 \in L_a$, then $u_0 a v_0 \in I_a$ and $u_0 a v_0 \rightarrow^*_T u_0$. Since I_a is a regular language, there is a finite-state acceptor B_a for this language. A finite-state acceptor for the language L_a is thus obtained by combining B_a with a finite-state acceptor C_a that is to verify the condition $u_0 a v_0 \rightarrow^*_T u_0$.

By the hypothesis the string $u_0 a v_0 \in J_a$ does not admit a reduction sequence of length m. Hence, u_0 and v_0 can be factored as $u_0 = u_1 u_2$, $v_0 = v_2 v_1$, $|u_2|, |v_2| \leq (m-1) \cdot \mu$, such that $u_2 a v_2 \rightarrow^*_T w$ and $u_1 w v_1 \in \text{IRR}(T)$, i.e., the process of reducing this string to some irreducible descendant actually involves only a factor of length at most $2 \cdot (m-1) \cdot \mu + 1$ surrounding the distinguished occurrence of the letter a.

For the construction of C_a we need to distinguish between (i) the case that the string-rewriting system T is monadic and confluent and (ii) the case that T is special and λ-confluent.

- **Case (i):** If $u_0 \# a v_0 \in L_a$, then $u_0 a v_0 \rightarrow^*_T u_0$, and hence, since T is confluent and u_0 is irreducible, $u_0 a v_0 \rightarrow^*_T u_1 w v_1 = u_0 = u_1 u_2$. Thus, $u_0 = u_1 u_2$, $v_0 = v_2 v_1$, $|u_2|, |v_2| \leq (m-1) \cdot \mu$, $u_2 a v_2 \rightarrow^*_T w$ and $w v_1 = u_2$. Hence, we can design the finite-state acceptor C_a to work as follows:

 - On input $u_0 \# a v_0$, C_a reads u_0 from left to right always storing the last $(m-1) \cdot \mu$ symbols read in its finite control. Thus, when the symbol $\#$ is encountered, the finite
control contains the suffix \(u_2 \) of \(u_0 \) of length \((m - 1) \cdot \mu \). Then the prefix \(v_2 \) of \(v_0 \) of length \((m - 1) \cdot \mu \) is read and also stored in the finite control. Upon reading the \((m - 1) \cdot \mu\)th symbol of \(v_0 \), the contents of the finite control is replaced by the pair of strings \((w, u_2)\), where \(w \) is the irreducible descendant of \(u_2 a v_2 \). Now \(C_a \) accepts if and only if \(w v_1 = u_2 \), where \(v_1 \) is the remaining input. It is easily seen from the above discussion that a string \(x \) is accepted by both \(B_a \) and \(C_a \) if and only if \(x \) is in the language \(L_a \). This completes the proof of case (i).

Case (ii): If \(u_0 v_0 \in L_a \), then \(u_0 a v_0 \in \mathcal{T} u_0 \). Hence, by Proposition 2.3 \(u_0 a v_0 \) and \(u_0 \) have normal forms \(u_0 a v_0 = x_0 a_1 x_1 \ldots a_r x_r \) and \(u_0 = y_0 a_1 y_1 \ldots a_r y_r \), respectively, such that \(x_i \leftrightarrow \mathcal{T} y_i \), \(i = 0, 1, \ldots, r \). Since \(u_0 \) is a prefix of \(u_0 a v_0 \), we can conclude that there is an index \(s \in \{0, 1, \ldots, r\} \) such that the following properties hold:

\[
\begin{align*}
&x_s = x_0 a_1 y_1 \ldots a_r y_r \triangleright \mathcal{T} x_s, \\
&x_s = x_0 a_1 y_1 \ldots a_r y_r \triangleright \mathcal{T} x_s, \\
&v_2 = y_1 \ldots a_r y_r a x_1' \triangleright \mathcal{T} a y_1' a x_1',
\end{align*}
\]

Recall that the \(y_i \) are maximal invertible factors of \(u_0 \). Thus, if \(s - 1 \) is the largest index such that \(x_i = y_i \) for all \(i = 0, 1, \ldots, s - 1 \), then \(x_s \) cannot be a factor of \(u_0 \), i.e., \(y_s a_1 y_{s+1} \ldots a_r y_r \) is a proper prefix of \(x_s \).

Since \(y_i \) is invertible, the congruence \(y_i \leftrightarrow \mathcal{T} x_s = y_s a_{s+1} y_{s+1} \ldots a_r y_r a x'_i \triangleright \mathcal{T} x_s \), and hence, since \(T \) is \(\lambda \)-confluent, that \(a_{s+1} y_{s+1} \ldots a_r y_r a x'_i \triangleright \mathcal{T} \lambda \). Thus, \(|x'_i|, |a_{s+1} y_{s+1} \ldots a_r y_r| \leq (m - 1) \cdot \mu \). Hence, we can design the finite-state acceptor \(C_a \) to work as follows:

On input \(u_0 \mathcal{S}_a v_0 \), \(C_a \) reads \(u_0 \) from left to right always storing the last \((m - 1) \cdot \mu \) symbols read in its finite control. Thus, when the symbol \(\mathcal{S}_a \) is encountered, the finite control contains the suffix \(u_2 \) of \(u_0 \) of length \((m - 1) \cdot \mu \). On reading the symbol \(\mathcal{S}_a \), the string \(u_2 \) is replaced by the longest suffix \(a_1 y_1 \ldots a_r y_r a x'_s \triangleright \mathcal{T} x_s \), where \(x_2 = x_0 \mathcal{S}_a v_3, a_{s+1} y_{s+1} \ldots a_r y_r a x'_s \triangleright \mathcal{T} x_s \triangleright \mathcal{T} \lambda, y_2 \mathcal{S}_a \mathcal{S}_a \) is a formal inverse of the string \(y_i \), and \(a_i' \) is a specially marked copy of the symbol \(a_i \) \((i = s + 1, \ldots, r)\). It remains to verify that the normal form of \(v_3 \mathcal{S}_a v_1 \) has the form \(a_1 x_1 \ldots a_r x_r \) with \(x_2 \mathcal{S}_a \mathcal{S}_a \), \(i = s + 1, \ldots, r \).

Since \(T \) is \(\lambda \)-confluent, \(x_i \leftrightarrow \mathcal{T} y_i \) if and only if \(y_i \mathcal{S}_a \mathcal{S}_a \), and since \(T \) is a special system and \(v_3 \mathcal{S}_a v_1 \) is irreducible, \(C_a \) can check this while reading \(v_3 \mathcal{S}_a v_1 \) from left to right. Thus, as in case (i) we obtain a finite-state acceptor for the language \(L_a \) by combining \(B_a \) and \(C_a \). This completes the proof of Lemma 3.6. □

Since statement (2) holds for \(T \) and \(R \) if and only if \(L_a \neq \emptyset \) for some \(a \in \Sigma \), and since the emptiness problem for regular languages is decidable, we obtain the following conclusion.

Corollary 3.7. The following problem is decidable.
Instance: A finite string-rewriting system T that is either monadic and confluent or that is special and λ-confluent, a regular set $R \subseteq \Sigma^*$, and an integer $m \in \mathbb{N}$ such that none of the languages J_a ($a \in \Sigma$) contains a string that admits a reduction sequence of length m.

Question: Does statement (2) hold for T and R?

It remains to deal with statement (3). For $a \in \Sigma$, let K_a and M_a be the following languages:

$$K_a := \{ u_0 \# v_0 \mid u_0, v_0 \in IRR(T), \text{ and } \exists u, v \in \Sigma^*: u \rightarrow^*_T u_0, v \rightarrow^*_T v_0, \text{ and } uav \in R \},$$

and

$$M_a := \{ u_0 \# v_0 \mid u_0, v_0 \in IRR(T), \text{ and } \exists u, v \in \Sigma^*: u \rightarrow^*_T u_0, v \rightarrow^*_T v_0, \text{ and } uav \in R \}. $$

Along the lines of the proofs of Lemma 3.3, Corollary 3.4, and Lemma 3.5 the following can be shown.

Lemma 3.8.

(a) The languages K_a and M_a are regular, and from R, T and $a \in \Sigma$, finite-state acceptors can be constructed effectively for them.

(b) If, for some $a \in \Sigma$, the language M_a contains a string that admits a reduction sequence of length $(n + 1) \cdot \sigma_R + 1$, then there are two distinct strings $x, y \in R$ with $x \leftrightarrow^*_T y$.

Further, for $a, b \in \Sigma$, $a \neq b$, we consider the language

$$H_{a,b} := \Sigma^* \cdot \{\#\} \cdot (\Sigma_0 \times \Sigma_0)^*,$$

where $\Sigma_0 := \Sigma \cup \{\perp\}$, which is defined as follows:

$$H_{a,b} := \left\{ u_0 \# \left\lfloor \begin{array}{c} v_0 \\ w_0 \end{array} \right\rfloor u_0, v_0, w_0 \in IRR(T), \text{ and } \exists u, v, w \in \Sigma^*: u \rightarrow^*_T u_0, v \rightarrow^*_T v_0, w \rightarrow^*_T w_0, \text{ and } uav, ubw \in R \right\}. $$

Here \perp and $\#$ are new symbols, and $\left\lfloor \begin{array}{c} v_0 \\ w_0 \end{array} \right\rfloor$ stands for $(v_0^m) (b_1^m) \cdots (b_s^m)$, where $v_0 = a_0 a_1 \ldots a_r \in \Sigma^*$, $w_0 = b_0 b_1 \ldots b_s \in \Sigma^*$, $m = \max \{r, s\}$, and $a_i = \perp$ and $b_j = \perp$ for $i > r$ and $j > s$, respectively. If $u_0 \# \left\lfloor \begin{array}{c} v_0 \\ w_0 \end{array} \right\rfloor \in H_{a,b}$, then there exist strings $uav \in R$ and $ubw \in R$ such that $u \rightarrow^*_T u_0$, $v \rightarrow^*_T v_0$, and $w \rightarrow^*_T w_0$. Now we define $L_{a,b} \subseteq \Sigma^* \cdot \{\#\} \cdot (\Sigma_0 \times \Sigma_0)^*$ through

$$L_{a,b} := \left\{ u_0 \# \left\lfloor \begin{array}{c} v_0 \\ w_0 \end{array} \right\rfloor \in H_{a,b} \mid u_0 av_0 \leftrightarrow^*_T u_0 bw_0 \right\}. $$
If \(u_0 \# [\omega_0] \in L_{a,b} \), then there exist strings \(uav \in R \) and \(ubw \in R \) such that \(uav \mapsto^* \) \(u_0av_0 \mapsto^* u_0bw_0 \mapsto^* ubw \), i.e., statement (3) is satisfied for \(T \) and \(R \). Conversely, if this statement is satisfied for \(T \) and \(R \), then, for some letters \(a, b \in \Sigma \), \(a \neq b \), \(L_{a,b} \neq \emptyset \). Thus, we see that statement (3) is satisfied for \(T \) and \(R \) if and only if \(L_{a,b} \) is nonempty for some letters \(a, b \in \Sigma \), \(a \neq b \). Therefore, the following technical results are of interest.

Lemma 3.9. Let \(T \) be a finite monadic and confluent string-rewriting system, and let \(a, b \in \Sigma \) such that \(a \neq b \).

(a) The language \(H_{a,b} \) is regular, and from \(R, T \) and \(a, b \in \Sigma \), a finite-state acceptor can be constructed effectively for it.

(b) Let \(m \in \mathbb{N} \) be such that neither \(M_a \) nor \(M_b \) contains a string that admits a reduction sequence of length \(m \). Then the language \(L_{a,b} \) is regular, and a finite-state acceptor for \(L_{a,b} \) can be constructed from \(T, R, a, b \) and \(m \).

Proof. (a) Consider the language \(R_{a,b} = \{ u \# v \# w \mid uav \in R \) and \(ubw \in R \} \). This language is certainly regular. In fact, a finite-state acceptor for \(R_{a,b} \) can be constructed from the product of two copies of a finite-state acceptor for \(R \). This product acceptor would work in 3 phases: In phase 1, while the factor \(u \) is being read, both copies would work in parallel. In phase 2, while the factor \(v \) is being read, one copy would process the input, while the other would be idle. Finally, in phase 3, while the factor \(w \) is being read, the first copy would be idle, while the other would process the input. Using the construction described in [2] we can then obtain a finite-state acceptor for the language \(\Delta^*_T(R_{a,b}) \cap \text{IRR}(T) \cdot \{ \} \cdot \text{IRR}(T) \cdot \{ \} \cdot \text{IRR}(T) = \{ u_0 \# v_0 \# w_0 \mid u_0, v_0, \ w_0 \in \text{IRR}(T), \) and \(uav, ubw \in R : u \mapsto^* u_0, v \mapsto^* v_0, \) and \(w \mapsto^* w_0 \} \). This finite-state acceptor will essentially still work in 3 phases. Now by running phases 2 and 3 in parallel, we obtain a finite-state acceptor for the language \(H_{a,b} \).

(b) If \(u_0 \# [\omega_0] \in L_{a,b} \), then \(u_0 \# [\omega_0] \in H_{a,b} \), and \(u_0av_0 \mapsto^* u_0bw_0 \). Thus, we obtain a finite-state acceptor for the language \(L_{a,b} \) by combining the acceptor for \(H_{a,b} \) with a finite-state acceptor \(C_{a,b} \) that is to verify the condition \(u_0av_0 \mapsto^* u_0bw_0 \).

If \(u_0 \# [\omega_0] \in L_{a,b} \), then \(u_0av_0 \in M_a \) and \(u_0bw_0 \in M_b \). By our hypothesis neither the string \(u_0av_0 \in M_a \) nor the string \(u_0bw_0 \in M_b \) admits a reduction sequence of length \(m \). Thus, if \(u_0av_0 \mapsto^*_T u_0bw_0 \), then \(u_0, v_0, w_0 \) have factorizations of the form \(u_0 = u_1u_2, v_0 = v_2v_1, \) and \(w_0 = w_3w_1 \) such that \(|u_2|, |v_2|, |w_2| \leq (m-1) \cdot \mu, u_2av_2 \mapsto^*_T g, u_2bw_2 \mapsto^*_T h \) and \(u_1gv_1 = u_1hw_1 \in \text{IRR}(T) \). Hence, we can design the finite-state acceptor \(C_{a,b} \) to work as follows:

On input \(u_0 \# [\omega_0] \), \(C_{a,b} \) reads \(u_0 \) from left to right always remembering the last \((m-1) \cdot \mu \) symbols read. Then the prefix \([\omega_i'] \) of \([\omega_0'] \) of length \((m-1) \cdot \mu \) is read, and upon reading the last symbol of \([\omega_i'] \), the pair of strings \((g, h)\) is stored in \(C_{a,b}'s \) finite control. Now \(C_{a,b} \) accepts if and only if \(gv_1 = hw_1 \), where \([\omega_i'] \) is the remaining input. \(\square \)
To deal with the case that the string-rewriting system T is special and λ-confluent, we consider the following languages $H_{a,b}$ and $K_{a,b}$ ($a, b \in \Sigma, a \neq b$):

$$H_{a,b} = \{ \rho(v_0)\$_a w_0 \mid u_0, v_0, w_0 \in \text{IRR}(T), \text{ and} \}$$

$$\exists u, v, w \in \Sigma^*: u \rightarrow _T u_0, v \rightarrow _T v_0, w \rightarrow _T w_0, \text{ and } uav, ubw \in R \},$$

where $\$_a$ is a new letter, and ρ denotes the function reversal, and

$$K_{a,b} = \{ \rho(v_0)\$_a w_0 \in H_{a,b} \mid u_0av_0 \leftrightarrow _T u_0bw_0 \}.$$

If $\rho(v_0)\$_a w_0 \in K_{a,b}$, then there are strings $u, v, w \in \Sigma^*$ such that $u \rightarrow _T u_0, v \rightarrow _T v_0, w \rightarrow _T w_0, uav \in R, ubw \in R$, and $uav \leftrightarrow _T ubw$. Hence, statement (3) is satisfied for T and R if and only if $K_{a,b}$ is nonempty for some letters $a, b \in \Sigma, a \neq b$. We want to prove that under certain conditions the language $K_{a,b}$ is deterministic context-free.

Lemma 3.10. Let T be a finite special and λ-confluent string-rewriting system, let $a, b \in \Sigma, a \neq b$, and let $m \in \mathbb{N}$ be such that neither M_a nor M_b contains a string that admits a reduction sequence of length m. Then the language $K_{a,b}$ is deterministic context-free, and a deterministic pushdown automaton (dpda) accepting this language can be constructed from T, R, a, b and m.

Proof. As observed in the proof of Lemma 3.9(a) the language $\{ u_0 \# v_0 \# w_0 \mid u_0, v_0, w_0 \in \text{IRR}(T), \text{ and } 3uav, ubw \in R: u \rightarrow _T u_0, v \rightarrow _T v_0, w \rightarrow _T w_0 \}$ is regular, and a finite-state acceptor for it can be constructed effectively. From this it is fairly easy to see that the language $H_{a,b}$ is regular, and that a (deterministic) finite-state acceptor for it can be constructed effectively. From this it is fairly easy to see that the language $H_{a,b}$ is regular, and that a (deterministic) finite-state acceptor for $H_{a,b}$ can be obtained. A dpda for the language $K_{a,b}$ is now obtained by combining the finite-state acceptor for $H_{a,b}$ with a dpda $P_{a,b}$ that is to check the condition $u_0av_0 \leftrightarrow _T u_0bw_0$. We design the dpda $P_{a,b}$ to work as follows:

On input $\rho(v_0)\$_a w_0$, $P_{a,b}$ first reads the prefix $\rho(v_0)$. While doing this $P_{a,b}$ computes the normal form $x_0a_1x_1 \cdots a_rx_r$ of v_0, pushing the string $y_1b_1 \cdots y_rb_r$ onto its stack. Here y_i denotes an irreducible descendant of the inverse x_i^{-1} of the string x_i ($i = 0, 1, \ldots, r$), and $\Gamma = \{ b_i \mid a_i \in \Sigma \}$ is a new alphabet in one-to-one correspondence to Σ. (Recall Proposition 2.3 and the discussion following it.) Thus, $P_{a,b}$ stores the normal form of an irreducible string presenting the 'inverse' of the string v_0 on its stack. Observe that this does not cause any problems, since $P_{a,b}$ is reading the reversal $\rho(v_0)$ of the string v_0, and the gsm G_{NF} can be incorporated in the finite control of $P_{a,b}$. In addition, the prefix v_2 of v_0 of length $(m - 1)$ is stored in $P_{a,b}$'s finite control.

Then the factor u_0 is read, and its suffix u_2 of length $(m - 1)$ is stored in the finite control. Finally, the prefix w_2 of w_0 of length $(m - 1)$ is read into $P_{a,b}$'s finite control. Now within its finite control $P_{a,b}$ performs the two reductions $u_2av_2 \rightarrow _T g \in \text{IRR}(T)$ and $u_2bw_2 \rightarrow _T h \in \text{IRR}(T)$. Since neither M_a nor M_b contains a string that admits a reduction sequence of length m, the strings u_1gv_1 and u_1hw_1 are irreducible, where $u_0 = u_1u_2$, $v_0 = v_2v_1$, and $w_0 = w_2w_1$. Thus, $u_0av_0 \leftrightarrow _T u_0bw_0$ if and only if $u_1gv_1 \leftrightarrow _T u_1hw_1$ if and only if the normal forms of u_1gv_1 and of u_1hw_1 are related to
each other as expressed by Proposition 2.3(b). Checking this essentially amounts to comparing the normal form of gv_1 to the normal form of hw_1. Because the stack already contains the normal form of the 'inverse' of v_0, this is easily done by reduction, since the system T is special and λ-confluent. This completes the proof of Lemma 3.10.

Since statement (3) holds for T and R if and only if $L_{a,b} \neq \emptyset$ for some $a, b \in \Sigma$, $a \neq b$, respectively if $K_{a,b} \neq \emptyset$, we have the following conclusion.

Corollary 3.11. The following problem is decidable.

Instance: A finite string-rewriting system T that is either monadic and confluent or that is special and λ-confluent, a regular set $R \subseteq \Sigma^*$, and an integer $m \in \mathbb{N}$ such that none of the languages $M_a (a \in \Sigma)$ contains a string that admits a reduction sequence of length m.

Question: Does statement (3) hold for T and R?

We need one additional technical result.

Lemma 3.12. Let T be a finite monadic string-rewriting system, and let $R \subseteq \Sigma^*$ be a regular set that is specified through some finite-state acceptor. Then the set $\Delta(R) = \{ y \in \Sigma^* | \exists x \in R : x \rightarrow^*_T y \}$ is regular, and a finite-state acceptor for $\Delta(R)$ can be constructed effectively.

Proof. Obviously, $y \in \Delta(R)$ if and only if there is a rule $(l \rightarrow r) \in T$ such that $y = y_1 r y_2$ and $y_1, y_2 \in R$. Hence, a finite-state acceptor for $\Delta(R)$ can easily be obtained from T and a finite-state acceptor for R.

Now we can combine our technical results to get a proof for Theorem 3.1. Let T be a finite string-rewriting system that is either monadic and confluent or special and λ-confluent, let $n = |\Sigma|$, and let $R \subseteq \Sigma^*$ be a regular set. First, the integer $m \geq (n + 1) \cdot \sigma_R + 1$ is computed. Then, for each $a \in \Sigma$, a finite-state acceptor for the language J_a is constructed. Now, for $a \in \Sigma$, J_a contains a string that admits a reduction sequence of length m if and only if $A^m(J_a)$ is nonempty. By Lemma 3.12 this can be checked for all $a \in \Sigma$. If, for some $a \in \Sigma$, J_a does contain such a string, then by Lemma 3.5 there exist strings $x, y \in R$ such that $x \neq y$ and $x \leftrightarrow^*_T y$. Otherwise, by Corollary 3.7 we can verify whether or not statement (2) holds for T and R. In the affirmative, there are distinct strings $x, y \in R$ with $x \leftrightarrow^*_T y$. Otherwise, we construct finite-state acceptors for the languages $M_a (a \in \Sigma)$, and check whether, for some $a \in \Sigma$, M_a contains a string that admits a reduction sequence of length m. Again, this holds if and only if $A^m(M_a) \neq \emptyset$. In the affirmative, R contains distinct strings x, y with $x \leftrightarrow^*_T y$ by Lemma 3.8(b); otherwise, we can decide whether statement (3) holds for T and R by Corollary 3.11. In this situation R contains distinct strings x, y with $x \leftrightarrow^*_T y$ if and only if statement (3) holds for T and R, which completes the proof of Theorem 3.1, and therewith of Theorem 2.2.
References