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Abstract—The paper presents sufficient conditions for the existence of positive solutions of
the equation z'/(t) + g(t)f(t,z(t),z’(t)) = O with the Dirichlet conditions z(0) = 0, z(1) = 0
and of the equation (p(t)z’(t)) + p(t)q(t)f(¢, z(t),p(t)x’(t)) = 0 with the boundary conditions
lim,_,o+ p(t)2'(t) = 0, £(1) = 0. Our nonlinearity f is allowed to change sign and f may be singular
at £ = 0. The proofs are based on a combination of the regularity and sequential techniques and the
method of lower and upper functions. © 2003 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

In this paper, we consider two singular boundary value problems (BVPs for short)

=" (t) + q(t) f (¢, 2(t), 2’ (t)) = 0, (1
z(0) = 0, z(1) =0, (2)
and
(p(t)2'(t)) + p(t)a(t) £ (¢, 2(t), p(t)2'(t)) = O, (3)
Jim p(0)a'()) =0, (1) =0, @)

where our nonlinearity f is allowed to change sign and f may be singular at = 0. Singular
problems (1),(2) and (3),(4) have been discussed intensively in the literature (see, e.g., {1-4] and
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references therein) usually when f is nonnegative (i.e., positone problems). This assumption has
been overcome for BVP (1),(2) in [5-9], for BVP (1),(2) in [10], and for both BVPs in [11,12].
In [5-7,9,10], it is assumed that f is independent of =’. The case where f may depend on the z’
variable was considered in [8,11,12].

The aim of this paper is to generalize some assumptions given in [6,11,12] for the solvability
of BVPs (1),(2) and (3),(4) in the class of positive functions on (0,1). The solvability is proved
by a combination of the regularity and sequential techniques and the method of lower and upper
functions. First, by a lower function o and a sequence {f,} of upper functions, we define a
family of regular BVPs depending on n € N. Then, using the Schauder fixed-point theorem
(see, e.g., [2,13]), we establish the existence of their solutions z, which lie between o and G,
(Lemmas 1-3). The Arzeld-Ascoli theorem will then complete the solvability of BVP (1),(2)
(Theorems 1 and 2) and BVP (3),(4) (Theorem 3).

We say that z is a solution of BVP (1),(2) if z € C([0,1])NC?((0, 1)), z satisfies the boundary
conditions (2), and (1) holds on (0,1).

A function z is said to be a solution of BVP (3),(4) if z € C°([0,1]) N C1((0,1)), pz’ €
C°([0,1])) N C((0,1)), z satisfies the boundary conditions (4) and (3) holds on (0,1).

From now on, ||z|| = max{|z(t)| : ¢t € [0,1]} denotes the norm in the Banach space C°(|0,1])
and the derivative on the right (respectively, on the left) of a function z at a point ¢, we will
denote by z’,(t) (respectively, =’ (t)).

Throughout the paper, we will use the following assumptions.

(H;) ¢ € C°((0,1)), ¢ > 0 on (0,1).

(Hz) f e C°([0,1] x (0,00) x R).

(H3) There exists a € C%([0,1]) N C((0,1)) having the second derivative on (0,1) with a(0) =

o(1) = 0, @>0o0n (0, 1) such that sup{|a’(¢)] : ¢t € (0,1)} <oo, a”(t)+q(t) f(t, a(t), e’ (t)) >
0 for t € (0,1) and for a decreasing sequence {f,} C (0,1), lim,,_,o #, = 0 and an increas-
ing sequence {t,} C (0,1), lim,_,o ¢, =1, £ < t3, we have (for n € N)

a(t) < a(t,), for t € [0,%,], ao(ty) > oft), for t € [ty, 1],

FEma(n),0)20,  fltmaltn),0) 2 0. ®)

(Hs) With {£,} and {t,} given in (H3), for each n € N, there exists 3, € C°([0,1])nC1((0,1))
having the second derivative on (0,1) such that

Bn(t) > al(t,), for t € [0,%,), Bn(t) > alty), for t € (t,,1], 6
Br > a, on [tn,tn], ©)
_q(t)f (t—ny ﬂn(t)! ﬁ:;(t)) ’ for t € (0, t_n) ’

Ba(t) < 4 —a@)f (t,Bn(t), Br(t)), for t € [tn,tn],
—q()f(tn, Bu(t), Bn(t)), fort € (tn,1),

and
L = sup{}|Bn|l : n € N} < 00, S =sup{|8,(t)|:t € (0,1), m € N} < 00.

(Hs) p € C°((0,1)), p> 0 on {0,1).

(Hg) There exists a € C°([0,1]) N C1({0,1)) with pa’ continuous on [0,1] and differentiable
on (0,1), lim; o+ p()e’(t) = 0, a(l) = 0, &« > 0 on [0,1) such that (p(t)c/(t))’ +
p(t)q(t) f(t, a(t), p(t)a’(t)) > 0 for t € (0,1) and for a decreasing sequence {t,} C (0,1),
lim,, .00 In = 0 and an increasing sequence {t,} C (0,1), limp_o tn =1, #1 < t1, inequal-
ities (5) hold.



Nonnegative Solutions of Singular Boundary Value Problems 1829

(H7) With {f,} and {t,,} given in (Hs), for each n € N, there exists 8, € C°([0,1]) N C*((0,1))
with pg, continuous on [0, 1] and differentiable on (0, 1), lim,_,o+ p(¢)83;,(t) < 0 such that
inequalities (6) and

—~p()q(t) f (En, Bn(t), p()BL(E)), for t e (0,%,),
()8 (1)) < { ~p(t)a(t) f(t, Ba(t), p(t)Bp(t)),  for t € [tn,ta],
—p(t)a(t)f(tn, Bn(t), P(£)B(t)), fort € (tn,1),

hold for n € N and

L, = sup{||Bx] : n € N} < oo, S, =sup{|lpB.| : t € (0,1) m € N} < co.

REMARK 1. From the inequalities af(t) < oft,) for t € [0,%,] and o(t,) > a(t) for t € [t,, 1]
which appear in (H3) and (Hg), we deduce that o/(f,) > 0 and o'(t,) <0 for n € N.

2. SOLVABILITY OF BVP (1),(2)

Let Assumptions (Hz)-(Hy) (or (H2) and (Hs)—(Hr)) be satisfied. For each n € N, let f, €
C°([0,1] x R?), f, € C°%([0,1] x (0,00) x R), and A,, € C°([0,1]) be defined by the formulae

( f(En,a(ln),y) +o(a(l.)~z), for (t,z,y) €[0,%,) x (—oo0,x ()} X R,

f(@n,z,9), for (¢,x,y) € [0,%,) x [a (), 5.(8)] X R,

f (Ens Bn(t),y) + &(Ba(t) —z),  for (t,7,y) € [0,%) X (Ba(t), 0) X R,

f(ta(t),y) + ¢(alt) - z), for (t,2,y) € [tn,tn] X (=00,a(t)) xR,
falt,z,y) = ¢ f(t,z,9), for (t,,y) € [tn, tn] X [a(t), Bn(t)] xR, (7)

F(t, Ba(t),y) + ¢(Bn(t) — 2), for (t,z,y) € [t_mtn] X (Bn(t),0) X R,
f(tnyaltn), y) + d(a(tn) — z), for (t,z,y) € (tn,1] X (—00,(tn)) x R,

ftn,z,9), for (t,z,y) € (tn,1] X [a(tn), Bn(t)] X R,
£t Ba(), 1) + $(Ba0) = 2),  for (4,2,9) € (b 1] % (Bu(t),00) X R,
where
-1, foru< -1,
o(u) = { uw, forlul <1, (8)
1, foru>1,
f(@n,z,y), for (¢,z,y) €0,,) x (0,00) x R,
falt,z,y) = { ft,z,y), for (t,2,y) € [tn,ta] x (0,00) x R, (9)
fQtn,z,y), for (t,z,y) € (tn,1] x (0,00) X R,
and

a(t,), fortel0,%,),

An(t) = { alt), forte [t,,t,], (10)
a(t,), forte (t,,1].

Consider the auxiliary regular BVPs

() + qt) fu(t, z(2), 2’ (£)) = O, (11)
z(0) =a(ty),  z(1) = alty), (12)
depending on n € N.

We say that = is a solution of BVP (11),(12) if z € C*([0,1]) N C%((0,1)), = satisfies the
boundary conditions (12), and (11) holds on (0, 1).
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LEMMA 1. Let Assumptions (Hy)—(Hy),

(A1) |f @t z,9)| < (g(z) + h(z))y(lyl) for (¢,2,y) € [0,1] x (0,L] x R, where g € C°((0,L]) is
nonincreasing and positive on (0, L], h € C°([0, L]) is nonnegative and nondecreasing on
[0, L], and ¥ € C°([0,00)) is positive and nondecreasing on [0, o), and

(A2)

1 o]
1
t)(g(a(t)) + h(L))dt < ——ds,
|| atsten + e < [
be satisfied with u = sup{|a(t,) — a(t,)| : n € N}.
Then, for each n € N, there exists a solution  of BVP (11),(12) such that
An(t) S2() < Bult), '@ <K,  forte[0,1], (13)

where A,, is given by (10) and the positive constant K satisfies the inequality
| a0y +hayas < [ s (14)
0 1 ¢(3)

ProOF. Fix n € N and let z be a solution of BVP (11),(12). We first prove that A,, < z on
[0,1]. Suppose that the last inequality is not true. Then,

max{An(t) = 2(t) : ¢ € [0, 1]} = An(te) — a(t0) >0, (15)

where tg € (0,1) since A,(0) — 2(0) = A, (1) — z(1) = 0. The next part of the proof is divided
into four cases.

CASE 1. Let ty € (0,%,) U (tn,1). Then, z'(to) = AL(te) = 0 and if o € (0,%,) (the case where
to € (ta,1) can be treated quite analogously) then

z"(to) = —q(to) [f (b, @ (21) , 0) + ¢ (@ (tn) — x(t))] < —q(to) f (n, x (), 0) < O.

Hence, (An(t) ~ z(t))i=:, = —z"(to) > O, contrary to (15).
CASE 2. Let ty = &,. Then, 2’ (to) < 0 and 2/, (to) > a'(to) > O (see Remark 1). Thus,
z'(to) = 0, and so

z"(to) = —q(to)[f (to, a(to), 0) + d(alto) — (t0))] < —a(to) f(to, a(t0),0) < O. (16)

Hence, A, — z is decreasing on a left neighbourhood of ¢ = tg, contrary to (15).
CASE 3. Let ty € (£n,tn). Then, z'(to) = AL (to) (= a'(to)) and

z"(to) = —q(to)[f (to, (o), @ (o)) + B(An(to) ~ z(t0))]
< —q(to)f(to, a(to), & (to)) < o (to) = A7i(to),
whence (An(t) — z(t)i_,, > 0, contrary to (15).
Casg 4. Let tg = t,. Then, 2/ (to) < o/(ts) < 0 (see Remark 1) and z/, (t0) > 0 which yields

z'(tg) = 0, and consequently, (16) holds. Hence, A, — z is increasing on a right neighbourhood
of t = tg, contrary to (15).

We are going to show that ¢ < 3, on [0,1]. Suppose, on the contrary, that
max{z(t) — Bn(t) : t € [0,1]} = z(tx) — Bnlt«) > 0. (17)
Since £(0) — Bn(0) < 0 and z(1) — Bn(1) < 0, we see that t, € (0,1). Then, z'(t.) = G, (t.) and

x',(t*) = —q(t.) [f (t_mﬁn(t*)u@:;(t*)) + ¢(Bnlts) — x(t*))]
> —q(t) f (Bns Brlte), Bn(ta)) 2 Ba(ts),
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provided t. € (0,%,),

2"(ts) = —q(t)[f (txs Ba(ts), Bn(ts)) + S(Bn(te) — z(t4))]
> "Q(t*)f(t*’ﬂn(t*)v :B:t(t*)) 2 ﬂ;{(t*),

provided t. € [f,,tn], and finally,

2" (t) = —q(t)[f(tn, Bn(ts), Bp(ts)) + ¢(Balts) — z(t4))]
> —q(t)f(tn, Br(ts), Ba(ts)) 2 Br(ts),

provided t. € (t,,1). Hence, (z(t) — Bn(t))i=;. > 0, contrary to (17).
We have verified that A,, <z < 8, < L on [0,1], and consequently,

2"(t) + q(t) fa(t, 2(8), 2 (8)) =0,  t€(0,1),

where f, is defined by (9).

Let ||z'[| = |='(¢)| for some ¢ € [0,1]. Since a(tn) — aft,) = z(1) — z(0) = z'(n), where
n € (0,1), we see that |z'(n)] < u. Suppose that [|z”|| = 2/(€) > pu (for ||2’|| = —2'(§) > p, we
proceed similarly). Then, there exists v € [0,1] such that z'(v) = p and =’ > u on the open
interval with the end points v and £. Without loss of generality, we can assume that v < §.
Then,

2"(t) < q(t)(g(2(t)) + h(z (1)) (2'(t)) < a(t)(g(a(t)) + HLNP(Z'(})),  te (v§),
and integrating the inequality

zIl(t)
TETON <q@)(gla(®)) +r(L)), te (),

from v to &, we get
="l 1 13 1
/‘ E(?) ds < /, Q(t)(g(a(t)) + h(L)) dt < /(; q(t)(g(a(t)) + h(L)) dt.

Hence, ||z/|| < K by (14). We have proved that any solution = of BVP (11),(12) satisfies
inequalities (13).
Let V = max{K, S,sup{|a/(t)] : t € (0,1)}},

V+1, fory >V +1,
v =<y, for |y <V +1,
V-1, fory<-V-1,

and
it z,y) = falt,z, "),  (t,z,y) €[0,1] x R%

Now, it is easy to check from the Schauder fixed-point theorem that the BVP
() + q(t) fr (¢, (1), 2'(t)) = 0 (18)

has a solution z € C*([0,1]) N C?((0,1)). Of course, z satisfies (13) and from the definition of
£, it follows that z is a solution of BVP (11),(12). ]
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LEMMA 2. Let Assumptions (H1)—(Hy), sup{g(t):t € (0,1)} = Q < o0,
(B) 1f(tz,y)| < (r(t) + w(t)g(z) + h(z) + [y)¥(y]) for (t,z,y) € [0,1] x (0,L] x R, where
w,T € C°([0,1]) are nonnegative, g € C°((0, L]) is nonincreasing and positive on (0, L],
h € C°([0, L]) is nonnegative and nondecreasing on [0, L], and ¢ € C°([0, c0)) is positive
and nondecreasing on [0, 00), and
(B2)

> 1

L+h(L)+ 1(r(t) + w(t)g(a(t))) dt < L ——ds,
0 QJ. ¥(s)

where p = sup{|a(t,) — a(t,)| : n € N} is satisfied.

Then, for each n € N, there exists a solution z of BVP (11),(12) satisfying inequalities (13)
where K is a positive constant such that

1 K
L+h(L)+ /o (r() + w(t)g(a(t)) ds < % / ﬁ ds. (19)

PRrOOF. Fix n € N and let = be a solution of BVP (11),(12). We can now proceed analogously
to the proof of Lemma 1 to verify that A, < ¢ < B, < L on {0,1] and |2'(n)| < p for some
7 € (0,1). Let ||z’|| = |z'(£)| with a £ € [0,1] and let ||z'|] > p. Then, there exists v € [0, 1]
such that |z'(v)] = u and |z’| > p on the open interval with the end points v and §. Without
restriction of generality, we can assume that v < £ and 2’ > p on (v, £]. Then,

() < q(t)(r(t) + w(t)g(a(t)) + h(z(t)) + ' (£))p (' (t))
< Q(r(t) + w(t)g(a(t)) + h(L) + 2/ (t))(<' (1),

for t € (v,€) and integrating the inequality

:l:"(t) )
e Q(r(t) + w(t)g(a(t)) + ML) +2'(t)),  te (8,

over [V, €], we have

[ wsa (h(L)(g D) +a(©) ~20) + [ (0 +u(Bgla() dt)

1
<Q(m)+ L+ [ (1) + wlglao)) dr)

Therefore, ||z/|| < K by (19), and consequently, any solution z of BVP (11),(12) satisfies inequal-
ities (13). Now, by the Schauder fixed-point theorem, there is a solution x of BVP (11),(12) for
which (13) holds. |

THEOREM 1. Let Assumptions (Hy)—(H4), (A1), and (Ay) be satisfied. Then, there exists a
solution x of BVP (1),(2) such that

aft) <z(t) <L, )| <K, fort € [0,1], (20)

where K is given in Lemma 1.
PROOF. By Lemma 1, for each n € N, there exists a solution x,, of BVP (11),(12) satisfying the
inequalities

An(t) Szn(t) SBa(t) < L, |zp(H)I <K, forte[0,1] (21)
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Hence, the sequence {z,} is bounded in C*([0, 1]) and since

@(t) —zhta)l = | [ ale)Fult,zale), ) dt\

< Y(K)

t2
[ atotate) + ey,

for 1,2 € [0,1] and n € N, we deduce that {z (¢)} is equicontinuous on [0,1]. The Arzela-Ascoli
theorem guarantees the existence of a subsequence {zx,} of {z,} converging to z in C([0,1]).
Then, z € C'([0,1)), z(0) = z(1) =0, z > ¢, and |z’| < K on {0,1]. In addition,

Jim fe (6,2, (8,24, ) = lim_ Feo (60, (8), 2, (1) = £(8,2(0),2/(1),

for t € (0,1) and |fi, (¢, zx, (t), 7}, (£))| < (g(a(t)) + R(L)W(K) for ¢t € (0,1) and n € N. Let
£ € (0,1). Taking the limit in the equalities

zh (t) = 7l (€) - /£ 08 (5,2, (5), 2%, (5) ds, e [0,1],

as n — 00, we have
2(t) = o/ (€) - /E 9(3)f(s,2(s), 2'(s)) ds,  te(0,1].

Hence, z € C*([0,1])NC?((0,1)) and x satisfies (1) on (0,1). We have proved that z is a solution
of (1),(2) satisfying (20). 1
ExXAMPLE 1. Consider the differential equation

" +t(1 —-t) (% +z'— ,\2) =0, (22)

where A # 0 is a constant. Set € = (1/18)(vV AT + 144 — \?). Then, (H3) and (Hy) hold with

a(t) = et(1 ~t), Bn(t) = B = max{1, (A\%e)/4}/)? and, for instance, {, = 1/(4n), t, = 1—1/(4n).

Applying Theorem 1 with ¢(t) = t(1 — t), L = max{1,(A\%e)/4}/)?, u = 0, g(z) = 1/z, h(z) =

1+ A2, and ¢(u) = 1 + u, there exists a solution of BVP (22),(2) such that

max {1, (A\%) /4}
AZ ’

THEOREM 2. Let Assumptions (H;)-(Hy), (B:1), and (B3) be satisfied and let sup{q(t) : t €

(0,1)} < oo. Then, there exists a solution z of BVP (1),(2) satisfying inequalities (20), where K
is given in Lemma 2.
ProOOF. By Lemma 2, for each n € N there exists a solution z, of BVP (11),(12) for which

inequalities (21) hold. Now, we can argue as in the proof of Theorem 1 to prove the assertions
of our theorem. |

EXAMPLE 2. Consider the differential equation

2
x” + ((?Qx__t).> + ml -t - AZ) (1 + .’L'I) = 0, (23)

where A is a constant. Then, (H3) and (H,) hold with a(t) = t(1 —t)/(5+ A2), Bu(t) =B =1
and, for instance, £, = 1/(4n), t, =1 — 1/(4n). Applying Theorem 2 with Q =1, L =1, u = 0,
r(t) = t, w(t) = t2(1 - t)?, g(x) = 1/22, h(z) = A%, and ¥(u) = 1 + u, we see that there exists a
solution of BVP (23),(2) such that

t1-1t)
B+ A

et(l —t) <z(t) < t € [0,1].

<zt) <1, telo1]
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3. SOLVABILITY OF BVP (3),(4)
Let Assumptions (Hi), (Hz), (Hs), and (Hy) be satisfied. Consider the family of regular BVPs

()’ (1)) + p(Wat) fn(t, (1), p()2' (1)) =0, (24)
tl—i}(%- p(t)z'(t) =0, z(1) = a(ts), (25)

depending on n € N, where f, is defined by (7).
We say that z is a solution of BVP (24),(25) if z € C°([0,1]) n C*((0,1)), pz’ € C°([0,1]) N
C*((0,1)), z satisfies the boundary conditions (25), and (24) holds on (0, 1).

LeEMMA 3. Let Assumptions (Hy), (Hz), (Hs)-(Hz7), (A1) with L = L,,

1 00
/ p(H)at)(g(a() + h(L))dt < | —— ds (26)
0 o Y(s)
and A
1 1 8
/0 o /0 p(v)a(v)(g(a(v)) + h(L.)) dv ds < oo, (27)

be satisfied. Then, for each n € N, there exists a solution z of BVP (24),(25) such that
An(t) S z(t) < Balt), Ip()2'MI <V,  forte0,1], (28)
where A,, is given by (10) and the positive constant V satisfies the inequality
1 Vo
[ poatstae) + bz < [ s (29)
0 o ¥(s)
PROOF. Fix n € N and let = be a solution of BVP (24),(25). We are going to show that z
satisfies (28). Suppose that
max{A,(t) — z(t) : t € [0,1]} = Ap (o) — z(to) > 0, (30)

where tg € {0,1) since A,(1) — (1) = 0. Then, four cases occur.
CASE 1. Let tg = 0. Then,

Jim, (f By Bn) PO (0) + 6 () = 2(6) = £ (B, x(E2),0) + $(An(0)) — 2(0)
> 4(4n(0)) ~ 2(0)) > 0,

and so

(p()z'(t))' = —p(t)a(t) [f (Fn, @ (£2) , ()2’ () + ¢ (An (En) — 2(t))] <O,
on a right neighbourhood i C (0,%,) of t = 0. Hence, pz’ is decreasing on U and from
Jim p(t)z’(t) = 0,

we deduce that =’ < 0 on Y, contrary to (30).

CASE 2. Let tg € (0,£,) U (tn,1). Then, z'(to) = Al (to) = 0. Suppose that o € (0,%,) (the case
to € (tn,1) can be treated analogously). Then, ’

(p()Z' (£))imto = —P(t0)q(to) [f (En, @ (En),0) + d(An(to) — z(to))]
< —p(to)gq(to) f (tn, e (£,),0) < 0.

Hence, ' < 0 on a right neighbourhood of ¢ = ty, contrary to (30).
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CASE 3. Let to € {fn,tn}. If to =t,, then z/, (to) > 0 and z’_(tp) < o/(to) < 0 (see Remark 1).
Hence, z'(to) = o/ (to) = 0 and

(P(1)' ()=t = —P(to)a(to)(f(to, a(to), 0) + $(alto) — z(to))]
< —p(to)g(to) f(to, a(to), 0) < (p(t)e (t))i=to-

Consequently, (z — a)’ > 0 on a left neighbourhood of ¢ = ¢y, contrary to (30). For the case
to = t,, the proof is similar.

CASE 4. Let to € (£,,t,). Then, z’(ts) = a'(tg) and

(P(t)7' (t))1=e, = —P(to)a(to)[f (to, a(to), P(to) (to)) + d(c(to) — z(to))]
< =p(to)q(to) f (to, a(to), p(te)e’ (ta)) < (P(t)a! ()it -

Hence, again (x — @)’ > 0 on a left neighbourhood of ¢t = tp, contrary to (30).
We have proved that A, (t) < z(t) for t € [0,1]. Suppose that z < G, on [0,1] is not true.
Then,
max{z(t) — Bn(t) : t € [0,1]} = z(t.) — Bn(ts) > 0, (31)
and t, € [0,1) since (1) = a(t,) < Bn(1).
(a) Let t, = 0. If lim, ¢+ p(t)B,,(t) < 0 then (8, —z)’ < 0 on a right neighbourhood of t = 0,
contrary to (31). Let lim, ¢+ p(t)B,(t) = 0. Then,

Jm (f (En, Bn(2), p(0)2' (1)) ~ f (Bns Bn (), P(E)OA(2)) + $(Bn(t) — 2(2)))
= f (£, 6n(0),0) — f (£r, r(0),0) + ¢(Bn(0) — z(0)) <0,

and so from the inequality

p(t)(z(t) — Ba(t)) 2 —/0 p()a(s) [f (Tn, Bn(s), p(s)z'(s))
- f(t_mﬂn(s),p(s)ﬂn(s)) + ¢(Bn(s) — z(s))] ds,

which is satisfied on any interval (0,¢] C (0,%,) where = > §,, we see that (z — 5,)’ > 0
on a right neighbourhood of t = 0, contrary to (31).

(b) Let t, € (0,t,] U [tn,1). Then, z'(t.) = B,(t.) and we can assume that, for example,
t« € (0,1,] since the proof is similar for the case that ¢, € [t,,1). From the inequalities

(P(O)Z' (£))ims. = ~P(ta)q(ta) [f (Fn Ba(te), P(£)BA(E)) + S(Bn(ts) — z(t4)))]
> ~p(ta)q(t) f (Fn, Bu(ts), p(ta)BL(te)) = (0(t)BL(E)) 1y, »

it follows that (z — 8,)’ > 0 on a right neighbourhood of ¢ = £,, contrary to (31).
(c) Let t. € (£4,t,). Then, 2’(t.) = B, (t.) and

(PO (1))ims. = ~P(E)a(t)F (b, B (2), D88 (E2)) + BB (ts) — (2))]
> —p(t)q(te) f (ts, Bn(ta), P(8:)Br (84)) = (P(1)Br (8)) 2. -

Hence, (x — 8,) > 0 on a right neighbourhood of t = t., contrary to (31).
Therefore, z < 8, on {0,1].
Let |ipz’|| = l(pz')(€)|. Since lim,_o+ p(t)z’(t) = 0, £ € (0,1]. By the inequalities A, < z <
Bn < L. on [0,1], (Hy), (Hs), and (A4;) with L = L.,

()=’ (£))'] < p(t)a(®)(9(a(®)) + A(L)Y(p(H)' ®)),  te(0,1).
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Assume that p(€)z’(£) > 0 (the case where p(£)z’'(£) < 0 can be considered similarly). Then,
there exists v € [0,¢) such that lim,_,,+ p(t)z'(t) = 0 and pz’ > 0 on (v,£]. Integrating the
inequality

() (£))
Py < POIDE(E) +h(L.)),

from t € (v, €) to € and letting t — v*, we get

lp=’ || 1 €
/0 o B S / p(t)q(t)(ga(t)) + A(L.)) dt

1
< / p(t)a(t)(g(a(t) + h(L.)) dt,
0

and consequently, ||pz’| < V which follows from {29). Hence, (28) is true.

The Schauder fixed-point theorem guarantees that BVP (24),(25) has a solution z and by the
above consideration, we see that z satisfies inequalities (28). 1
THEOREM 3. Let Assumptions (Hy), (Hz), (Hs)—(Hz), (A1) with L = L,, (26), and (27) be
satisfied. Then, there exists a solution x of BVP (3),(4) such that

a(t) < z(t) < L., for t € [0,1]. (32)
PrOOF. By Lemma 3, for each n € N, there exists a solution z,, of BVP (24),(25) satisfying
An(t) S2a(t) < Bu(t) S Ly, Ip()zn ()| <V, forte(0,1]. (33)

Consider the sequence {z,(t)}. It follows from (33) that {z,(t)} and {p(t)z, (¢)} are uniformly
bounded on [0, 1] and from the inequalities

t t
fontt) = aneall = | [ | p(s)q(s)fn(s,xn(s),p(sm(s))dsdtl

]

tn o1 gt
< /tl p_(ﬁ/o p(s)a(s)(g(a(s)) + h(L,)) dsdt

Il

p(t1)zn(t1) — p(t2)zn (t2)] /t 2 p(t)a(t) fa(t, zn(t), p(t)27 (1)) dt}

bl

< / " p()a(t)(9(e(t)) + h(L.)) dt

for t1,t2 € [0,1] and n € N, we deduce that {z,(t)} and {p(t)z, (t)} are equicontinuous on [0,1].
By the Arzela-Ascoli theorem, going if necessary to subsequences, we can assume that {z,(¢)} and
{p(t)x!,(t)} are uniformly convergent on [0,1}], lim, o0 Tn(t) = z(t), limy,— o p(t)z} (t) = (1.
Clearly, z(1) = 0, a{t) < z(¢t) for t € [0,1], lim, ¢+ ¥(¢) = 0 and ~(t) = p(t)z’(t) for t € (0,1).
Letting n — co in the equalities

1 s
Talt) = tn) + / i; [X[o,f,.](s) /O P(0)2(0) ] (Fn T (v), p(v)l (1)) do

X (8) /0 " p(0)a(v) £ (v, 2n(v), p0)z (1)) do

Xt [ " p(0)g(0) £ty Tn(v), PO (V) dv] ds,

where X|c, c,] stands for the characteristic function of the interval [c1,c2] C [0,1], and using
Lebesgue dominated convergence theorems, we have

1 r]
2(t) = / 5(1—) /0 p(v)a(0)f(v,2(v), p(v)a’ (v)) dvds,  te[o,1].
Therefore, z € C°([0,1]) N C1((0,1)) and

()’ (t)) = —p(t)g(t)f(t, z(t), p()z' (1)),  t € (0,1).
Consequently, z is a solution of BVP (3),(4) satisfying (32). 1
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