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Abstract-The paper presents sufficient conditions for the existence of positive solutions of 
the equation z”(t) + q(t)f(t,r(t),z’(t)) = 0 with the Dirichlet conditions z(O) = 0, z(1) = 0 
and of the equation (p(t)%‘(t))’ + p(t)q(t)f(t,z(t),p(t)z’(t)) = 0 with the boundary conditions 
lim,,,+ p(t)z’(t) = 0, x(l) = 0. Our nonlinearity f is allowed to change sign and f may be singular 
at 2 = 0. The proofs are based on a combination of the regularity and sequential techniques and the 
method of lower and upper functions. @ 2003 Elsevier Ltd. All rights reserved. 

Keywords-singular Dirichlet problem, Singular mixed problem, Positive solution, Sign changing 
nonlinearity. 

1. INTRODUCTION 
In this paper, we consider two singular boundary value problems (BVPs for short) 

x”(t) + q(t)f@, x(t), x’(t)> = 0, 
x(0) = 0, z(1) = 0, 

and 

(PW’W)’ + P(~)q(w(t, 4m4W(t)) = 0, 
tliF+ p(t)x’(t) = 0, z(1) = 0, 

(1) 
(2) 

where our nonlinearity f is allowed to change sign and f may be singular at x = 0. Singular 
problems (l),(2) and (3),(4) have been discussed intensively in the literature (see, e.g., [l-4] and 
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references therein) usually when f is nonnegative (i.e., positone problems). This assumption has 
been overcome for BVP (l),(2) in [5-91, for BVP (l),(2) in [lo], and for both BVPs in [11,12]. 
In [5-7,9,10], it is assumed that f is independent of z’. The case where f may depend on the x’ 
variable was considered in [8,11,12]. 

The aim of this paper is to generalize some assumptions given in [6,11,12] for the solvability 
of BVPs (l),(2) and (3),(4) in the class of positive functions on (0,l). The solvability is proved 
by a combination of the regularity and sequential techniques and the method of lower and upper 
functions. First, by a lower function CY and a sequence {p,,} of upper functions, we define a 
family of regular BVPs depending on n E N. Then, using the Schauder fixed-point theorem 
(see, e.g., [w31), we establish the existence of their solutions x, which lie between cx and /3* 
(Lemmas l-3). The ArzelbAscoli theorem will then complete the solvability of BVP (l),(2) 
(Theorems 1 and 2) and BVP (3),(4) (Theorem 3). 

We say that x is a solution of BVP (l),(2) if x E C1([O, l])nC2((0, l)), x satisfies the boundary 
conditions (2), and (1) holds on (0,l). 

A function x is said to be a solution of BVP (3),(4) if x E C”([O,l]) n C’((O,l)), px’ E 
CO(P, 11) r-l CY(O, l)), x satisfies the boundary conditions (4) and (3) holds on (0,l). 

From now on, 11x11 = max{]x(t)] : t E [0, 11) denotes the norm in the Banach space C”([O, 11) 
and the derivative on the right (respectively, on the left) of a function x at a point t, we will 
denote by x> (t) (respectively, xc’_ (t) ) . 

Throughout the paper, we will use the following assumptions. 

WI) q E C’((O, I>), q > 0 on (O,l). 
032) f E Co@, 11 x (0, m) x a). 
(Hs) There exists (Y E C”([O, 11) fl Cl((O,l)) h aving the second derivative on (0,l) with a(0) = 

o(l) = 0, a>Oon (0,l) such that sup{]&(t)] : t E (O,l)} <cm, cr”(t)+q(t)f(t,a(t),a’(t)) 2 
0 for t E (0,l) and for a decreasing sequence {&} c (0, l), lim,,, &, = 0 and an increas- 
ing sequence {tn} C (0, l), lim n.+m t, = 1, fr < tl, we have (for n E N) 

a(t) 5 Q (G> , for t E [O,t-,] , +J 2 a(t), for t E [tn, I], 
f (L Q: (cd, 0) 2 0, f (tn, 4L)7 0) 2 0. (5) 

(Hd) With {En} and {tn} g iven in (Hs), for each n E M, there exists pn E C”([O, 11) nCl((O, 1)) 
having the second derivative on (0,l) such that 

for t E [0, i$) , 

on It-,, &I , 

for t E (tn, 11, 
(6) 

l -q(t)f (t-,,A(t),PA(t)), for t E (O,L), 

P;(t) 5 -q(t)f (t, A(t), K(t)) , for t E L tnl , 
-q(t)f (tn, A(t), K(t)), for t E (tnl I), 

and 

L = sup{]]&]] : n E NJ) < 00, s = sup {p;(t)1 : t E (0, l), 77% E N} < 00. 

F&d P E C”((O, l)), P > 0 on ((41). 
(Hs) There exists c~ E C”([O, l]) n C1((O, 1)) with pcu’ continuous on [0, l] and differentiable 

on (0, l), limt+O+ p(t)a’(t) 2 0, o(l) = 0, (Y > 0 on [O,l) such that (p(t)a’(t))’ + 
p(t)q(t)f(t, a(t),p(t)a’(t)) 2 0 for t E (0,l) and for a decreasing sequence {zn} c (0, l), 
lim 71-+M &, = 0 and an increasing sequence {tn} c (0, l), lim,,, t, = 1, zi < tl, inequal- 
ities (5) hold. 



Nonnegative Solutions of Singular Boundary Value Problems 1829 

(Hr) With {fn} and {tn} g iven in (He), for each n E N, there exists ,& E C’([O, 11) n C’((O,l)) 
with p/?L continuous on [0, l] and differentiable on (0, l), limt-,o+ p(t)/?;(t) 5 0 such that 
inequalities (6) and 

-p(t)q(t)f (t-,, &(t),p(t)PA(t)) , for t E (0, t;t) , 

(PwP3w 5 -PMW(4 /Al(~),PW~@)), for t E [t;t , tn] , 

-p(t)q(t)f(t,,P,(t),P(t)P~(t)), for t E (b, 11, 

hold for n E N and 

L* = SUP{IIPnll : n E N) < 00, S, = sup { IIpP~II : t E (0,l) m E M} < 00. 

REMARK 1. From the inequalities a(t) 5 cr(&) for t E [0,&l and a&) 2 a(t) for t E [tn, l] 
which appear in (Hs) and (Hs), we deduce that a’(&) 2 0 and c-u’(&) < 0 for n E N. 

2. SOLVABILITY OF BVP (l),(2) 
Let Assumptions (Hz)-(Hd) (or (Hz) and (Hs)-(Hr)) b e satisfied. For each n E N, let f,, E 

co@, 11 x w2>, Al E co@, 11 x (0, m) x w, and A,, E C’([O, 11) be defined by the formulae 

fn(t,x,Y) = 

where 

and 

’ f(t;t,(r(f),~)+~(a(t-,)-x), for (t,x,Y) E [0,&d x (--oo,~(t-,)) XR 
f (t-,, x, Y) 9 for @,x, y) E l&t;,) x [a (64 ,Pdt)l x R, 
f (a,&&(t)7 Y) + N%&(t) - x), for @,X,Y) E [CL) x (A(%~) x R, 

f@, 4tL Y) + 444) - xl, for (t,x,y) E [L,Ll x (--ma(t)) x R, 

f cc XT Y), for C&x, Y) E [L&J x Mt),Pn(t>l x K (7) 
f(h Am, Y) + wMt> - x>, for (&x,9) E [L&J x (A(t), 00) x R, 
f(L, 4hJ, Y> + 4(4&l) - xl, for 0, x7 y> E h, 11 x (-~4rO) x R 
f(tn,x,Y), for (4x, 9) E (h, 11 x b(GJ,P&)l x W, 

. f(bl,rcn(t), Y) + ww - x)7 for @,X,Y) E (h, 11 x (A(%~) x I, 

i 

-1, for u < -1, 

c)(u) = 21, for ]u] < 1, 

1, for u > 1, 

l 

f(Lx,y), for (~x,Y) E [O,L) x (O,m) x R 

Jn@, 2, Y) = f@, x9 YL for (t, 2, Y> E ILLI x (0, 00) x R 

f(L x, Y>, for (4 2, Y) E (h, 11 x (0, m) x R 

( a C&J, for t E 10, L> , 

(8) 

(9) 

for t E [iFn,tn], 
for t E (tn, 11. 

(10) 

Consider the auxiliary regular BVPs 

(11) 
(12) 

depending on n E N. 
We say that z is a solution of BVP (11),(12) if z E C’([O,l]) n C2((0, l)), x satisfies the 

boundary conditions (12), and (11) holds on (0,l). 
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LEMMA 1. Let Assumptions (HI)-(Hd), 

(AI) IJV,X,Y)I 5 (g(x) + h(x))$~(lvl) for (CX,Y) E P, 11 x (0,4 x R where 9 E C”(@ Ll) is 
nonincreasing and positive on (0, L], h E Co ([0, L]) is nonnegative and nondecreasing on 
[0, L], and II, E C”( [0, m)) is positive and nondecreasing on [0, CQ), and 

(A21 

s 

1 

qttM4t)) + h(L)) dt < 
s 

O” 1 
- 

0 p $J,(s) dsT 

be satisfied with p = sup{Ic~(t~) - &)I : n E N}. 

Then, for each n E M, there exists a solution x of BVP (11),(12) such that 

An@) I x(t) I A%(% Ix’(t)1 I K, fort E [O,l], 

where A, is given by (10) and the positive constant K satisfies the inequality 

(13) 

s 

1 

qtWt4)) + h(L)) ds 5 
s 

K 1 
- 

0 p q(s) ds. 
(14) 

PROOF. Fix n E N and let x be a solution of BVP (11),(12). We first prove that A, 5 z on 
[0, I]. Suppose that the last inequality is not true. Then, 

max{A,(t) - x(t) : t E [O,l]} = A,(to) - x(to) > 0, (15) 

where to E (0,l) since A,(O) - z(O) = A,(l) - z(l) = 0. Th e next part of the proof is divided 
into four cases. 
CASE 1. Let to E (0, fn) U (tn, 1). Then, x’(to) = AL(to) = 0 and if to E (0, &) (the case where 
to E (tn, 1) can be treated quite analogously) then 

x”@O> = -q(to) [f (L a (G) ) 0) + 4 (a (G) - x(to))] < -q@o)f (L a (G) ,O) < 0. 

Hence, (A,(t) - x(t))& = -x”(to) > 0, contrary to (15). 

CASE 2. Let to = t-,. Then, x!Jto) I 0 and x$(to) 1 cd(to) L 0 (see Remark 1). Thus, 
x’(to) = 0, and so 

x”(iO) = -q(to>[f(to, Q(to>, 0) + d(a(to) - &o))l < -q(to)f(to, 4to>7 0) I 0. 
Hence, A,, - x is decreasing on a left neighbourhood of t = to, contrary to (15). 
CASE 3. Let to E (fn,tn). Then, x’(to) = Ak(to) (= a’(b)) and 

x”(to) = -q(to)[f(to> 4to)> a’tto)) + dtAn(to) - xtto))l 
< -q(to)f(to, a(to), a’(to)) 5 (r”(to) = A:(to), 

(16) 

whence (An(t) - x(t)& > 0, contrary to (15). 
CASE 4. Let to = t,. Then, xy(to) 5 cv’(to) I 0 ( see Remark 1) and x!+(to) 2 0 which yields 
x’(to) = 0, and consequently, (16) holds. Hence, An - x is increasing on a right neighbourhood 
of t = to, contrary to (15). 

We are going to show that x 5 fin on [0, 11. Suppose, on the contrary, that 

max{x(t) - p,(t) : t E [O,l]} = x(&) - D,(G) > 0. (17) 

Since x(0) - &(O) IO and z(l) - ,&(l) IO, we see that t, E (0,l). Then, x’(L) = P;(L) and 

xl’@*) = -q(L) [f (t;t,Pntt*)r PL@*)) + 4(PT&*) - xc(t*))l 

> -q(t*)f (t-,7 Lw*), Pkb*)) 1 P:(L)? 
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provided t, E (O,t-,), 

d’(t*) = -q(t*)[f(t*,P,(t*),gJt*)) + 4(A(t*) - z(t*))l 

> -q(t*)f(t*,Pn(t*),P~(t*)) 1 Pii( 

provided t, E [&, tn], and finally, 

d’(t*) = -q(t*)[f&,&(t*), Pk(t*>> + d@n(t*) - ++>)I 
> -q(t*)f(tnr Pn(t*), K(t*)) 2 Pat*), 

provided t, E (tn, 1). Hence, (x(t) - /?n(t))fz’=t. > 0, contrary to (17). 
We have verified that A, < x < /3,, 5 L on [0, 11, and consequently, 

x”(t) + q(t)f;, 0, x(t), x’(t)) = 0, t E (O,l), 

where fn is defined by (9). 
Let 11x’]] = ]2’(5)] for some t E [O,l]. S ince a(&) - a&) = x(1) - x(0) = x’(n), where 

n E (0, l), we see that ]z’(v)] I /I. Suppose that ]]x”]] = z’(c) > /A (for ]]s’]] = -z’(t) > p, we 
proceed similarly). Then, there exists v E [O, 1) such that x’(v) = ,U and x’ > 1-1 on the open 
interval with the end points Y and <. Without loss of generality, we can assume that Y < 5. 
Then, 

x”(t) I dMx(t>) + ~(x(wM(x’(t)) I dWd4)) + ~(L)Mx’(t)L t E (40, 

and integrating the inequality 

-g-gj I q(t)(g(&)) + W)), 

from u to t, we get ll~‘li 1 s- I E I 1 

u $(s) ds s Y 
dtM4t)) + h(L)) dt I q(tM4)) + WI) dt. 

0 

Hence, ]]x’() 5 K by (14). We have proved that any solution x of BVP (11),(12) satisfies 
inequalities (13). 

Let V = max{K, S, sup{]a’(t)] : t E (0, l)}}, 

for y > V + 1, 

for ]y] i V + 1, 
for y < -V - 1, 

and 

G@,X,Y> = fn(t,x,Y*), (4 x7 Y> E IO, 11 x IF. 
Now, it is easy to check from the Schauder fixed-point theorem that the BVP 

x”(t) + q(W,*(t, 4th x’(t)> = 0 (18) 

has a solution z E C’((0, 11) II C2((0, 1)). Of course, x satisfies (13) and from the definition of 
f,t, it follows that z is a solution of BVP (11),(12). I 
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LEMMA 2. Let Assumptions (HI)-(&), sup{q(t) : t E (0, 1)) = Q < co, 

(Bl) lf(t,x, y)l 5 (r(t) + w(t)s(x) + h(x) + lyl)+(lyl) for (t,z,y) E [0, l] x (O,L] x R, where 
W,T E CO([O, 11) are nonnegative, g E CO((0, L]) is nonincreasing and positive on (0, L], 
h E CO([O, L]) is nonnegative and nondecreasing on [0, L], and II, E C’([O, 00)) is positive 
and nondecreasing on [0, M), and 

P2) 

L + h(L) + J ‘(r(t) + w(t)g(cr(t))) dt < ; J * 1 
- 

0 p tics) dsl 

where p= sup{la(t,) - c$&)l : n E N} is satisfied. 

Then, for each n E N, there exists a solution x of BVP (11),(12) satisfying inequalities (13) 
where K is a positive constant such that 

L + h(L) + J ‘(r(t) + w(t)g(a(t))) ds I + J K 1 
0 fi rLodS. 

(1% 

PROOF. Fix n E N and let z be a solution of BVP (11),(12). We can now proceed analogously 
to the proof of Lemma 1 to verify that A,, 5 x 5 pn 5 L on [0, l] and lx’(v)1 < /.J for some 
r] E (0,l). Let 11x’lj = Iz’([)I with a 6 E [0, l] and let 1lz’ll > CL. Then, there exists v E [0, l] 
such that Ix’(u)l = p and lx’1 > K on the open interval with the end points u and 6. Without 
restriction of generality, we can assume that u < < and x’ > p on (v,t]. Then, 

x”@> < dt)(r(t) + w(M4)) + h(x(t)) + x’(t)Mx’(t)) 
5 Q(+) + w(M4t)) + h(L) + x’(t)Mx’(t)), 

for t E (Y, E) and integrating the inequality 

a 5 Q(N + w(tM4t)) + h(L) + x’(t)), t E (40, 

over [v, e], we have 

J llx'll 1 - ds I Q p I+) h(L)(t - u) +X(E) - 44 + J((r(t) + wM4t))) dt > 
<q(h(L)+L+~l ” ) (r(t) + wW(4))) dt . 

Therefore, llx’l( 5 K by (19), and consequently, any solution x of BVP (11) , (12) satisfies inequal- 
ities (13). Now, by the Schauder fixed-point theorem, there is a solution z of BVP (11),(12) for 
which (13) holds. I 

THEOREM 1. Let Assumptions (H&(Hd), (Al), and (AZ) be satisfied. Then, there exists a 
solution x of BVP (l),(2) such that 

4) I x:(t) I L, Ix’Wl I K, for t E [0, 11, (20) 

where K is given in Lemma 1. 

PROOF. By Lemma 1, for each n E N, there exists a solution x, of BVP (11),(12) satisfying the 
inequalities 

&z(t) 5 x&) 5 i%(t) 5 -L b;(t)1 2 K, for t E (0, 11. (21) 
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Hence, the sequence {z,} is bounded in @([O, 11) and since 

(4&l) -442)l = I(~(~)f,(t,z,(t).26(t))dtl 

II 

t2 

I 109 q(WMt>) + h(L)) dt 9 
t1 

for t1, t2 E [O, l] and n E N, we deduce that {z;(t)} is equicontinuous on [0, l] . The ArzelBAscoli 
theorem guarantees the existence of a subsequence {zk,} of {zn} converging to z in C’([O, 11). 
Then, x E Cl([O, l]), x(0) = x(1) = 0, 2 > (Y, and lx’\ 5 K on [O, 1). In addition, _ 

,,l;c fk, (t, xk,(t), x;,(t)) = &i& fkn (+k,@)r xi,,@)) = f (t,z@)d(t)), 

for t E (0,l) and If;c,(t,Zk,(t),2~n(t))l I (g(a(t)) + h(L))$(K) for t E (0,l) and n E N. Let 
< E (0,l). Taking the limit in the equalities 

Xi, (t> = Xi, (0 - 1’ ‘ddfkn (3, zk, (s),d_ b,) ds, t E [O,ll, 

as n + 00, we have 

x’(t) = x’(E) - I’ q(s)f (s, x(s), x’(s)) ds, t E [O, 11. 

Hence, z E C1([O, l])nC2((0, 1)) an d x satisfies (1) on (0,l). We have proved that x is a solution 
of (l),(2) satisfying (20). I 
EXAMPLE 1. Consider the differential equation 

x”+t(l-t)(~+xu) =o, (22) 

where X # 0 is a constant. Set e = (l/18)(4- - X2). Then, (Ha) and (H4) hold with 
a(t) = et(1 -t), /3,(t) = 0 = max{l, (X2E)/4}/X2 and, for instance, i& = 1/(4n), t, = 1 - 1/(4n). 
Applying Theorem 1 with q(t) = t(1 -t), L = max{l,(X2&)/4}/X2, ~1 = 0, g(s) = l/2, h(z) = 
1 +X2, and $(u) = 1+ U, there exists a solution of BVP (22),(2) such that 

41 -t> 5 x(t) 5 max y2&) i4) , t E IO, l]. 
THEOREM 2. Let Assumptions (HI)-(Hd), (BI), and (B2) be satisfied and let sup{q(t) : t E 
(O,l)} < co. Then, there exists a solution x of BVP (l),(2) satisfjring inequalities (201, where K 
is given in Lemma 2. 

PROOF. By Lemma 2, for each n E N there exists a solution Z, of BVP (11),(12) for which 
inequalities (21) hold. Now, we can argue as in the proof of Theorem 1 to prove the assertions 
of our theorem. I 
EXAMPLE 2. Consider the differential equation 

2” + 
t(l-t) 2 (( ) - + 5’ - t - x2 

X 1 
(1 + xc’) = 0, (23) 

where X is a constant. Then, (Hs) and (H4) hold with a(t) = t(1 - t)/(5 + X2), ,8,(t) = 0 = 1 
and, for instance, t;, = 1/(4n), t,, = 1 - 1/(4n). Applying Theorem 2 with & = 1, L = 1, p = 0, 
r(t) = t, w(t) = F(l - q2, g(s) = l/ x2, h(z) = X2, and +(u) = 1 + U, we see that there exists a 
solution of BVP (23),(2) such that 

w < x(t) 5 1, t E [O, 11. 
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3. SOLVABILITY OF BVP (3),(4) 

Let Assumptions (HI), (Hz), (Hs), and (H7) be satisfied. Consider the family of regular BVPs 

(Pw’tt))’ + ?mtwnt4 4t)?Ptwtt)) = 03 (24) 
lim &)x’(t) = 0, 

t-o+ 4) = 4tn), (25) 

depending on n E N, where fn is defined by (7). 
We say that z is a solution of BVP (24),(25) if 2 E C’([O, 11) n C’((0, l)), PX’ E C’([O, 11) n 

C1((O, l)), x satisfies the boundary conditions (25), and (24) holds on (0,l). 

LEMMA 3. Let Assumptions (HI), (HZ), (Hs)-(HT), (Al) with L = L,, 

J 
1 p(tMtM4)) + ML*)) dt < J m 1 - 

0 0 @,(s) ds 
and 

pt~M~M4~)) + h(L)) dv ds < 00, (27) 

be satisfied. Then, for each n E N, there exists a solution x of BVP (24),(25) such that 

&z(t) I x(t) i Al(t), IPtwtt)l I v, for t E [O, 11, 

where A, is given by (10) and the positive constant V satisfies the inequality 

J 
1 

ptt)q(t)(d4t)) + f4.L)) dt I J ” 1 
- ds. 

0 0 Ns) 

(26) 

(28) 

(2% 

PROOF. Fix n E N and let x be a solution of BVP (24),(25). We are going to show that x 
satisfies (28). Suppose that 

max{h,(t) - x(t) : t E [O,l]} = An(to) - x(t0) > 0, (30) 

where to E [0, 1) since An(l) - x(1) = 0. Then, four cases occur. 
CASE 1. Let to = 0. Then, 

lim (f CL, Q! (L) ,p(t>x’(t)) + 4 (Q(&) - xc(t)>) = f(%, 4%), 0) + dAntO)) - x(O)) t-+0+ 
1 d&(O)) - x(O)) > 0, 

and so 
(pW’(t))’ = -p(W) [f (t-,, CY (Cd ,p(W(t)) + 4 (An t&J - 4t))l < 0, 

on a right neighbourhood U c (0, z,,) of t = 0. Hence, px’ is decreasing on U and from 

tliT+ p(t)x’(t) = 0, 

we deduce that x’ < 0 on U, contrary to (30). 

CASE 2. Let to E (0, &) U (tn, 1). Then, x’(to) = Ak(to) = 0. Suppose that to E (O,&) (the case 
to E (I&, 1) can be treated analogously). Then, 

(p(t>x’(t)>:,t, = -p(to>qtto) [f (L Q: 64 7 0) + +(Ltto) - x(to))l 

< -P(to>q(to)f (GL,~ (L) ,o> I 0. 

Hence, x’ < 0 on a right neighbourhood of t = to, contrary to (30). 
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CASE 3. Let to E {&,tn}. If to =.t,, then x!+(ta) 2 0 and xL(tc) 5 cr’(to) L 0 (see Remark 1). 
Hence, x’( to) = (I’ = 0 and 

(P@b’(t>):,t, = -P(to)Q(to)v(to~ 40L 0) + 4(40) - 4to))l 
< -p(to)q(to)f(to, a(to), 0) I (p(t>a’(t)):,t,. 

Consequently, (x - (Y)’ > 0 on a left neighbourhood of t = to, contrary to (30). For the case 
to = t-,, the proof is similar. 

CASE 4. Let to E (&, t,). Then, x’(to) = cr’(t0) and 

(P(w(t>>:,t, = -P(toMto)Mto, 4tO)~P(tOw(to)) + 4(4to) - 4to))l 
< -P(to)q(to>f(to,~(to),P~~o~~‘~~o~~ 5 w)cw:=t,. 

Hence, again (x - Q)’ > 0 on a left neighbourhood of t = to, contrary to (30). 

We have proved that An(t) 5 x(t) for t E [O,l]. Suppose that x 5 & on [0, l] is not true. 
Then, 

max{x(t) - &(t) : t E [O,l]} = x(h) - A(&) > 0, (31) 

and t, E [O,l) since x(1) = a(tn) 5 pn(l). 
(a) Let t, = 0. If lim,,o+ p(t&(t) < 0 then (& -x)’ < 0 on a right neighbourhood oft = 0, 

contrary to (31). Let lim,,o+ p(t)/?;(t) = 0. Then, 

lim (f(t;l,Pn(t),p(t)x’(t)) - f(~~,p,(t),~(t)P:,(t)) + d&(t) -x(t)>) t+o+ 
= f(LPn(O),O) - f(LA(O),O) + d@n(O) -X(O)) < 0, 

and so from the inequality 

P(we) - A(t)) 2 - &mM if (LPn(s)~P(s)~‘(s)) 
- f(tn,Pn(s),~(s)P,(s)) +4&(s) - 4s))l ds, 

which is satisfied on any interval (0, E] C (0, fn) w h ere x > /3,, we see that (x - 0,)’ > 0 
on a right neighbourhood of t = 0, contrary to (31). 

(b) Let t, E (O,z,J U [t,,,l). Then, x’(t*) = @A(t.) an we can assume that, for example, d 
t, E (0,&l since the proof is similar for the case that t, E [t,, 1). From the inequalities 

(P(t)x’(t)>:=t. = -p(t*)q(t*) [f (fm A(t*),P(t*)P:,(t*)) + d@n(t*> - x(t*))l 
> --P(t*Mt*)f (L, A(t*LP(t*)P;(t*)) 2 (PwP:,w:=,* 7 

it follows that (x - ,f3,)’ > 0 on a right neighbourhood oft = t,, contrary to (31). 
(c) Let t, E (&, tn). Then, x’(t*) = &(t*) and 

(P(w(tx,t. = -P(t*Mt*)[f(t*? Mt*)?P(t*)P:,(t*)) + m&*) - +*))I 
> -P(t*)q(t*)f(t*,P,(t*),P(t*)P~(t*)) 2 (PwmL,.. 

Hence, (x - /3,,)’ > 0 on a right neighbourhood of t = t,, contrary to (31). 

Therefore, x 5 fl,, on [0, 11. 
Let ](px’]] = l(pd)(<)I. Since lim+,a+p(t)x’(t) = 0, < E (O,l]. By the inequalities A, 5 x 5 

A I: L, on [O, 11, (HI), (Hs), and (Al) with L = L,, 

I(Pw(t))‘l I PMt)(9(4t)) + h(L*>)~(lP(t)x’(t)l>, t E (0,l). 
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Assume that p(J)x’(<) > 0 (th e case where p([)x’(E) < 0 can be considered similarly). Then, 
there exists v E [O,[) such that limt+y+ p(t)x’(t) = 0 and px’ > 0 on (v, [], Integrating the 
ineaualitv 

wt)x’@)) < p(t)q(t)(g(LY(t)) + I-@*)), 
~Mww) - 

from t E (v, 5) to [ and letting t --f v+ , we get 

J IIPZ’II 1 J E 
-ds 5 
tics) v 

dMtM4) + WeI) dt 
0 

J 
1 

5 pWq(tM4t)) + WL)) 4 
0 

and consequently, ]]px’]] < V which follows from (29). Hence, (28) is true. 
The Schauder fixed-point theorem guarantees that BVP (24),(25) has a solution x and by the 

above consideration, we see that x satisfies inequalities (28). I 
THEOREM 3. Let Assumptions (HI), (HZ), (H&(H7), (AI) with L = L, (26), and (27) be 
satisfied. Then, there exists a solution x of BVP (3),(4) such that 

a(t) I x(t) I L*, for t E [O, 11. (32) 
PROOF. By Lemma 3, for each n E N, there exists a solution x, of BVP (24),(25) satisfying 

&L(t) I x7&) 5 A(t) I L*, I?J@>xl(t)l I v, for t E [0, 11. (33) 
Consider the sequence {xn(t)}. It follows from (33) that {xn(t)} and {p(t)xL(t)} are uniformly 
bounded on [0, l] and from the inequalities 

lxn(tl) -x,&4 = If -& Jd~p(s)q(s)~~(s,x~(s),p(s)x:(s))dsdti 

p(sMs)(d4s)) + W*)) dsdt 7 

IJ ta 
IP(h)&(tl) - P@2)&@2)I = pWq(W& xn(t),p(t)4(t)) dt 

t1 t2 I Is p(+dt)kd4)) + h(L)) dt > 
for tl, t2 E [O, l] and n E N, we deduce th’,t {xn(t)} and {p(t)xL(t)} are equicontinuous on [0, 11. 
By the ArzelbAscoli theorem, going if necessary to subsequences, we can assume that {xn(t)} and 
{p(t)xi(t)} are uniformly convergent on [O,l], limn--roo xn(t) = x(t), limn-roop(t)xk(t) = y(t). 
Clearly, x(1) = 0, a(t) 5 x(t) for t E [0, 11, lim t.+O+ y(t) = 0 and y(t) = p(t)x’(t) for t E (0,l). 
Letting n -+ 00 in the equalities 

+x[t;,,t,,](4 o~p(v)q(w)f(w,+,(w),p(w)xb(w))dw J s 
+X[t,,l]W J p(w)q(w>f(tn,xn(w),p(w)x~(w)) dw ds, 

0 I 

where xi,, ,c21 stands for the characteristic function of the interval [cl, cz] c [0, 11, and using 
Lebesgue dominated convergence theorems, we have 

p(w)q(w)f(w> x(w),P(~)x’(w)) dw ds, t E [O, 11. 

Therefore, x E C”( [0, l]) fl C’((0, 1)) and 

(PW’W)’ = -PWdW(4 4t)?Pw(t)), 
Consequently, x is a solution of BVP (3) ,(4) satisfying (32). 

t E (0,l). 

I 
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