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Abstract

H.L. Krall and I.M. Sheffer considered the problem of classifying certain second-order partial dif-
ferential equations having an algebraically complete, weak orthogonal bivariate polynomial system
of solutions. Two of the equations that they considered are

(
x2 + y

)
uxx + 2xyuxy + y2uyy + gxux + g(y − 1)uy = λu,

and

x2uxx + 2xyuxy + (
y2 − y

)
uyy + g(x − 1)ux + g(y − γ )uy = λu.

Even though they showed that these equations have a sequence of weak orthogonal polynomial solu-
tions, they were unable to show that these polynomials were, in fact, orthogonal. The orthogonality
of these two polynomial sequences was recently established by Kwon, Littlejohn, and Lee solving
an open problem from 1967.

In this paper, we construct explicit weight functions for these two orthogonal polynomial se-
quences, using a method first developed by Littlejohn and then further developed by Han, Kim,
and Kwon. Moreover, two additional partial differential equations were found by Kwon, Littlejohn,
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and Lee that have sequences of orthogonal polynomial solutions. These equations are given by(
x2 − x

)
uxx + 2xyuxy + y2uyy + (dx + e)ux + (dy + h)uy = λu,

xuxx + 2yuxy + (dx + e)ux + (dy + h)uy = λu.

In each of these examples, we also produce explicit orthogonalizing weight functions.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In 1967, Krall and Sheffer [8] (see also [14]) considered, and solved, the problem
of classifying all weak orthogonal polynomial solutions (see Definition 2.1) satisfying
second-order partial differential equations of the form

L[u] := A(x,y)uxx + 2B(x, y)uxy + C(x, y)uyy + D(x,y)ux + E(x,y)uy

= λu, (1.1)

where the eigenvalue parameter is a function of only the degree of the polynomial solution.
Up to a complex linear change of variable, they showed that there are nine distinct weak
orthogonal polynomial systems to the differential equation of the form (1.1). They found
necessary and sufficient conditions for the existence of these polynomial solutions to the
differential equation (1.1) and expressed these conditions in terms of an infinite system
of recurrence relations for moments of the corresponding (weak) orthogonalizing moment
functional. These conditions were later rewritten in a simpler form by Littlejohn [14] us-
ing the classical Lagrangian symmetry equations and the moment equations associated
with (1.1). Although Krall and Sheffer identified all differential equations which have
weak orthogonal polynomials as solutions, they only partially succeeded in showing that
the polynomial solutions are, in fact, orthogonal.

In a recent paper, Kwon, Lee, and Littlejohn [10] explained the orthogonality for the
weak orthogonal polynomials found by Krall and Sheffer. More specifically, the authors
in [10] showed that the polynomial solutions {φm,n(x, y)}∞m,n=0 to the partial differential
equations

x2uxx + 2xyuxy + (
y2 − y

)
uyy + g(x − 1)ux + g(y − γ )uy = λy, (1.2)(

x2 + y
)
uxx + 2xyuxy + y2uyy + gxux + g(y − 1)uy = λu (1.3)

are orthogonal. Furthermore, in [10], they found new second-order partial differential equa-
tions having weak orthogonal polynomials as solutions:(

x2 − x
)
uxx + 2xyuxy + y2uyy + (dx + e)ux + (dy + h)uy = λu, (1.4)

xuxx + 2yuxy + (dx + e)ux + (dy + h)uy = λu. (1.5)

These equations were omitted from the Krall–Sheffer classification since a complex change
of variable will transform these equations into ones found by Krall and Sheffer. However,
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even though these changes of variable will preserve the orthogonality of the corresponding
orthogonal polynomial solutions, the positive-definiteness of the orthogonalizing moment
functionals will not be preserved; consequently, we feel that it is necessary to distinguish
these equations and orthogonal polynomial solutions.

Because all these partial differential equations have polynomial solutions closely related
to the Bessel polynomials, we will say that these polynomial solutions are of Bessel type.

This two-variable Krall–Sheffer classification mirrors the well-known one-dimensional
classification due to S. Bochner in 1929 [2] (see also Lesky [12]), who determined, up to
a complex linear change of variable, all sequences of polynomials which satisfy a second-
order ordinary differential equation of the form

a2(x)y′′ + a1(x)y′ + a0(x)y = λy (1.6)

and are orthogonal with respect to a bilinear form of the type

(f, g) =
∫
R

f (x)g(x) dμ, (1.7)

where μ is a real, finite, signed Borel measure with finite moments of all orders. In a more
recent extension of this classical result, Kwon and Littlejohn [11] reconsidered this clas-
sification problem from a real linear change of variable point of view. This classification,
which is crucial in the developments of this paper, will be further considered in Section 3
below.

In this paper, we construct real orthogonalizing weight functions for the orthogonal
polynomials satisfying the partial differential equations given in (1.2)–(1.5). Consequently,
orthogonalizing weights are now known for seven of the nine polynomial systems studied
by Krall and Sheffer as well as the new polynomial systems satisfying the partial differen-
tial equations (1.4) and (1.5). We shed some light on a real orthogonalizing weight function
for the orthogonal polynomials satisfying the partial differential equation (1.3) with g > 0
but, unfortunately, we are unable at this time to produce an explicit weight function for
these polynomials when g > 0.

The contents of this paper are as follows. In Section 2, we recall the basic definitions and
terminologies for orthogonal polynomials in two variables and review some of their basic
facts. In Section 3, we revisit the one-dimensional classifications due to Bochner and others
as well as review some key constructions of weight functions in this situation. Section 4
deals with a general constructive technique for two-variable orthogonalizing weights of
bivariate orthogonal polynomial solutions to second-order partial differential equations.
Lastly, in Section 5, we apply this general method to construct explicit weights for the
orthogonal polynomial solutions to Eqs. (1.2)–(1.5).

2. Preliminaries

We denote the set of all polynomials in one variable x by P1 and the set of all polyno-
mials in the two independent variables x and y by P2. By a bivariate polynomial system
(PS), we mean a sequence {φn−j,j (x, y) | n ∈ N0; j = 0,1, . . . , n} of polynomials with
real coefficients such that degφm,n = m + n for all m,n ∈ N0 and {φn−j,j }n is linearly
j=0
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independent modulo polynomials of degree � n − 1. This linear independence is equiva-
lent to the statement that the matrix (a

n,j
i )ni,j=0 is nonsingular for each n ∈ N0, where a

n,j
i

(0 � i � n) are the coefficients in the expression

φn−j,j (x, y) =
n∑

i=0

a
n,j
i xn−iyi + lower degree terms.

For each n ∈ N0, it is convenient to view {φn−j,j }nj=0 as the (n + 1)-dimensional column

vector Φn := (φn,0, φn−1,1, . . . , φ0,n)
T and the PS {φn−j,j (x, y) | n ∈ N0; j = 0,1, . . . , n}

as the sequence {Φn(x, y)}∞n=0 of column vectors. Lastly, we say that the PS {Φn(x, y)}∞n=0
is monic if, for each n ∈ N0 and 0 � j � n, φn−j,j (x, y) = xn−j yj + lower order terms.

For i = 1,2, a linear mapping σ :Pi → C is called a moment functional. When i = 1,
we refer the reader to [11] for various properties of one-variable moment functionals. The
action of a moment functional σ on a polynomial φ ∈ P2 is denoted by 〈σ,φ〉 instead of
the customary σ(φ). Similarly, we define the action of a moment functional σ on a matrix
Q = (Qi,j ), where each Qi,j ∈P2, through the formula

〈σ,Q〉 = (〈σ,Qi,j 〉
)
.

For any moment functional σ , we define the first partial derivatives of σ , as moment func-
tionals, by

〈σx,φ〉 := −〈σ,φx〉, 〈σy,φ〉 := −〈σ,φy〉 (φ ∈ P2), (2.1)

and define multiplication ψσ , where ψ ∈ P2, to be the moment functional defined by

〈ψσ,φ〉 := 〈σ,ψφ〉 (φ ∈ P2). (2.2)

Definition 2.1. A PS {Φn(x, y)}∞n=0 is called a weak orthogonal polynomial system
(WOPS) if there is a nonzero moment functional σ such that

〈σ,φm,nφk,l〉 = 0 if (m,n) 	= (k, l).

In this case, we say that {Φn(x, y)}∞n=0 is a WOPS relative to σ . A WOPS {Φn(x, y)}∞n=0
relative to σ is called an orthogonal polynomial system (OPS) if 〈σ,φm,nφk,l〉 =
Km,nδm,kδn,l where each Km,n is a nonzero constant and δm,k denotes the Kronecker delta
symbol. If Km,n > 0 for each m,n � 0, then we say that {Φn(x, y)}∞n=0 is a positive-definite
OPS relative to σ .

Definition 2.2. A moment functional σ is called quasi-definite (respectively positive-
definite) if there is an OPS (respectively a positive-definite OPS) relative to σ .

The following algebraic characterization of orthogonality for polynomials in two vari-
ables is important to the study of orthogonal polynomials in more than one variable.
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Theorem 2.1. For a nonzero moment functional σ , the following conditions are equivalent:

(i) σ is quasi-definite;
(ii) there is a unique monic WOPS {Pn(x, y)}∞0 relative to σ ;

(iii) there is a monic WOPS {Pn(x, y)}∞0 such that Hn := 〈σ,PnP
T
n 〉 is nonsingular for

each n ∈ N0.

Proof. See [7,8]. �
From Definitions 2.1 and 2.2, it follows that a PS {Φn(x, y)}∞n=0 is an OPS (respectively

a positive-definite OPS) relative to σ if and only if 〈σ,ΦmΦT
n 〉 = Hnδm,n, where Hn :=

〈σ,ΦnΦ
T
n 〉 is a nonsingular (respectively positive-definite) diagonal matrix.

For any PS {Φn(x, y)}∞n=0, there is a unique moment functional σ defined by the condi-
tions

〈σ,1〉 = 1, 〈σ,φm,n〉 = 0 (m + n � 1).

In this case, we call σ the canonical moment functional of a PS {Φn(x, y)}∞n=0. Note that
if a PS {Φn(x, y)}∞n=0 is a WOPS relative to σ , then σ is necessarily a constant multiple of
the canonical moment functional of {Φn(x, y)}∞n=0.

3. Results for the classical orthogonal polynomials

In this section, we review some fundamental results concerning the classification of
(one-variable) sequences of polynomial solutions to second-order ordinary differential
equations of the form (1.6) that are orthogonal with respect to bilinear forms of the
type (1.7). In addition, we review an important technique of constructing orthogonaliz-
ing weights for these polynomials; these results are crucial for the constructions that will
take place in the next section.

In an extension of the Bochner classification, Kwon and Littlejohn [11] showed that, up
to a real linear change of variable, there are six distinct sequences of polynomial solutions
to second-order differential equations of the form (1.6) that are orthogonal with respect to
the bilinear form (1.7). These polynomial systems are the:

(1) Jacobi polynomials {P (α,β)
n (x)}∞n=0, which satisfy the differential equation(

1 − x2)y′′ + [
(β − α) − (α + β + 2)x

]
y′ = λy,

and are an OPS (respectively a positive-definite OPS) if and only if −α,−β,−α −
β − 1 /∈ N (respectively α,β > −1).

(2) Laguerre polynomials {L(α)
n (x)}∞n=0, which satisfy the differential equation

xy′′ + (α + 1 − x)y′ = λy,

and are an OPS (respectively a positive-definite OPS) if and only if −α ∈ N (respec-
tively α > −1).
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(3) Bessel polynomials {B(d,e)
n (x)}∞n=0, which satisfy the differential equation

x2y′′ + (dx + e)y′ = λy, (3.1)

and are an OPS if and only if e 	= 0 and −(d + 1) /∈ N, but are never a positive-definite
OPS.

(4) Hermite polynomials {Hn(x)}∞n=0, which satisfy the differential equation

y′′ − 2xy′ = λy,

and are a positive-definite OPS.
(5) Twisted Hermite polynomials {Ȟn(x)}∞n=0, which satisfy the differential equation

y′′ + 2xy′ = λy,

and are an OPS but are not a positive-definite OPS.
(6) Twisted Jacobi polynomials {P̌ (α,β)

n (x)}∞n=0, which satisfy the differential equation(
1 + x2)y′′ + (

(α + β + 2)x + i(α − β)
)
y′ = λy,

and are an OPS if and only if −(α + β + 1) /∈ N0 and ᾱ = β but are never a positive-
definite OPS.

In [9] (see also [13]), the following result is obtained:

Theorem 3.1. Suppose that the second-order differential equation (1.6) has a sequence of
polynomial solutions {pn(x)}∞n=0, where deg(pn) = n for each n ∈ N0. Then {pn(x)}∞n=0 is
an orthogonal polynomial sequence with respect to a distribution w ∈D′(R) if and only if
each of the following conditions is satisfied:

(i) w acts on the set P1 of all one-variable polynomials,
(ii) 〈w,1〉 	= 0,

(iii) w satisfies the first-order differential equation (called the weight equation)

a2(x)w′ + (
a′

2(x) − a1(x)
)
w = u (x ∈ R), (3.2)

where u ∈ D′(R) is a distribution that acts on P1 and satisfies 〈u,xn〉 = 0 for all
n ∈ N0.

Remark 3.1. The weight equation (3.2) is equivalent to the following infinite system of
moment (recurrence) equations:

(an + d)wn+1 + (bn + e)wn + cnwn−1 = 0 (n ∈ N0); (3.3)

here a2(x) = ax2 + bx + c, a1(x) = dx + e and wn = 〈w,xn〉 for each n ∈ N0.

Remark 3.2. A distribution u, with the properties given in Theorem 3.1, is called a poly-
nomial killer. Any nontrivial function g : R → R satisfying

∫
R

xng(x) dx = 0 (n ∈ N0)
generates a polynomial killer u through the formula

〈u,ϕ〉 =
∫

ϕ(x)g(x) dx
(
ϕ ∈D(R)

)
,

R
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where D(R) is the space of infinitely differentiable, real-valued functions with compact
support. For example, Stieltjes [17] showed that the function

g(x) =
{

e−x1/4
sin(x1/4), x � 0,

0, x < 0,
(3.4)

generates a polynomial killer (see also [18, p. 126] as well as [3, Chapter 2, Section 6]);
that is to say,∫

R

xng(x) dx = 0 (n ∈ N0).

Remark 3.3. The general Bessel polynomials {B(d,e)
n (x)}∞n=0 seem to depend on two

parameters d and e. In fact, a change of variable t = 2x/e transforms the differential equa-
tion (3.1) into the differential equation

t2Y ′′ + (dt + 2)Y ′ = n(n + d − 1)Y. (3.5)

We denote the polynomial solutions of Eq. (3.5) by {yd−2
n (t)}∞n=0. These two notations for

Bessel polynomials are used interchangeably throughout this paper.

In [9], the authors effectively use Theorem 3.1, with the polynomial killer generated
by (3.4), to construct a weight function for the simple Bessel polynomials {y0

n(x)}. Ma-
roni, in [15], extended the range of the technique used in [9] to general Bessel polynomials
{ya

n(x)} for a � 12(2/π)4 −2. For the general Bessel case, the corresponding weight equa-
tion (3.2) is

x2w′ − (ax + 2)w = u, (3.6)

where u is a nonzero polynomial killer.
We remark that a general technique for constructing weight functions for orthogonal

polynomials in one variable has been developed by Duran [5]. Consequently, from his
constructive technique, it is possible to construct orthogonalizing weight functions for the
general Bessel polynomials when a ∈ R satisfies −(a + 1) /∈ N. We remark, however, that
the weight functions that Duran obtains for the Bessel polynomials are not as explicit as
the ones obtained by Kwon et al. [9] or Maroni in [15].

4. Real weight functions for bivariate orthogonal polynomials of Bessel type

Suppose that for a (possibly signed) weight function w1(x) on [a, b],

(i) xmw1(x) ∈ L1(a, b) for each m ∈ N0 and
(ii) {pn(k;x)}∞n=0 is an OPS relative to the weight function ρ2k+1(x)w1(x) on the interval

(a, b) for each k ∈ N0, where ρ(x) is a positive function on the interval (a, b).
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Also, suppose {qn(y)}∞n=0 is an OPS with respect to the (possibly signed) weight func-
tion w2(y) on the interval (c, d) such that

ρk(x)qk

(
y/ρ(x)

)
is a polynomial in x and y of degree k for each k ∈ N0. (4.1)

To guarantee the validity of (4.1), we assume that

(a) ρ(x) is a polynomial of degree � 1 or
(b) ρ(x) = √

αx2 + βx + γ (β2 − 4αγ 	= 0) and {qn(y)}∞n=0 is a symmetric OPS (that is,
qn(−y) = (−1)nqn(y) for each n ∈ N0).

From the one-variable polynomial sequences {pn(k;x)}∞n=0 and {qn(y)}∞n=0, we can
define a new bivariate sequence of polynomials {Φn(x, y)}∞n=0 through the formula

φn−k,k(x, y) = pn−k(k;x)ρk(x)qk

(
y/ρ(x)

)
(0 � k � n). (4.2)

Theorem 4.1. Let {Φn(x, y)}∞n=0 be the polynomial sequence defined by (4.2). Then
{Φn(x, y)}∞n=0 is a PS; moreover, {Φn(x, y)}∞n=0 is an OPS with respect to the (possibly
signed) weight function

w(x,y) = w1(x)w2
(
y/ρ(x)

)
(4.3)

on the domain R = {(x, y) | a < x < b, cρ(x) < y < dρ(x)}.

Proof. To prove this theorem, we show that for m,n ∈ N0 and 0 � i � m, 0 � j � n,∫ ∫
R

φm−i,i (x, y)φn−j,j (x, y)w(x, y) dx dy

= δm,nδi,j

b∫
a

p2
m−i (i;x)ρ2i+1(x)w1(x) dx

d∫
c

q2
i (y)w2(y) dy. (4.4)

We first show that

pm−i (i;x)pn−j (j ;x)ρi+j+1(x)w1(x) ∈ L1(a, b). (4.5)

Using the notation ‖f (x)‖2 = | ∫ b

a
f 2(x)ρ(x)w1(x) dx|1/2, we see from condition (i) and

the Cauchy–Schwarz inequality that

∣∣∣∣∣
b∫

a

pm−i (i;x)ρi+j (x)pn−j (j ;x)ρ(x)w1(x)

∣∣∣∣∣
�

∥∥ρi(x)pm−i (i;x)
∥∥

2

∥∥ρj (x)pn−j (j ;x)
∥∥

2

=
∣∣∣∣∣

b∫
a

p2
m−i (i;x)ρ2i+1(x)w1(x) dx

∣∣∣∣∣
1/2∣∣∣∣∣

b∫
a

p2
n−j (j ;x)ρ2j+1(x)w1(x) dx

∣∣∣∣∣
1/2

< ∞.
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Define the transformation T :R → D = (a, b) × (c, d) by

T (x, y) = (
x, y/ρ(x)

)
.

Then T is a bijection of R onto D with the Jacobian determinant |JT (x, y)| = 1/ρ(x).
Since, by (4.5), pm−i (i;x)pn−j (j ;x)ρi+j+1(x)w1(x) ∈ L1(a, b) and qi(y)qj (y)w2(y) ∈
L1(c, d), we have, by change of variables,

b∫
a

pm−i (i;x)pn−j (j ;x)ρi+j+1(x)w1(x) dx

d∫
c

qi(y)qj (y)w2(y) dy

=
∫ ∫
D

F(x, y) dx dy

=
∫ ∫
R

(F ◦ T )(x, y)
∣∣JT (x, y)

∣∣dx dy

=
∫ ∫
R

pm−i (i;x)pn−j (j ;x)ρi+j (x)w1(x)qi

× (
y/ρ(x)

)
qj

(
y/ρ(x)

)
w2

(
y/ρ(x)

)
dx dy

=
∫ ∫
R

φm−i,i (x, y)φn−j,j (x, y)w(x, y) dx dy,

where F(x, y) = pm−i (i;x)pn−j (j ;x)ρi+j+1(x)w1(x)qi(y)qj (y)w2(y). Then we have
(4.4) from the orthogonality of {pn(k;x)}∞n=0 and {qn(y)}∞n=0, which completes the proof
of the theorem. �
Remark 4.1. In [19], Xu considered a situation similar to Theorem 4.1 under the stricter
assumption that each wi(x) is positive and nondecreasing for each i = 1,2. We note
that Theorem 4.1 can be formulated using quasi-definite moment functionals and more
orthogonal polynomials including the twisted Jacobi, twisted Hermite, and Bessel polyno-
mials [10].

Remark 4.2. For the weight function w(x,y) defined in (4.3), we have for φ ∈P2,

〈
w(x,y),φ(x, y)

〉 =
b∫

a

ρ(x)w1(x)

[ d∫
c

φ
(
x,ρ(x)y

)
w2(y) dy

]
dx.

In particular, if we take φ(x, y) = xmyn, we have the following expression for the moments
of w(x,y):

wm,n := 〈
w(x,y), xmyn

〉
=

b∫
xmρn+1(x)w1(x) dx

d∫
ynw2(y) dy (m,n ∈ N0). (4.6)
a c
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If at least one of these iterated integrals is not well defined, then we agree that these iterated
integrals will be regularized (see [6]).

Consider the second-order partial differential equation

L[u] := Auxx + 2Buxy + Cuyy + Dux + Euy = λnu, (4.7)

where A(x,y) = ax2 + d1x + e1y + f1, 2B(x, y) = 2axy + d2x + e2y + f2, C(x, y) =
ay2 + d3x + e3y + f3, D(x) = gx + h1, E(y) = gy + h2 and λn = an(n − 1) + gn; the
various letters refer to real constants.

Definition 4.1. (See [8]) The partial differential equation (4.7) is called admissible if
λm 	= λn for m 	= n.

If a PS {Φn(x, y)} satisfies a partial differential equation of the form (4.7), then the
canonical moment functional σ of {Φn(x, y)}∞0 satisfies

L∗[σ ] := (Aσ)xx + 2(Bσ)xy + (Cσ)yy − (Dσ)x − (Eσ)y = 0. (4.8)

Furthermore, (4.8) has a unique solution up to a constant multiple if (4.7) is admissible;
for further information, see [8,14].

Theorem 4.2. (See [7,14]) For an OPS {Φn(x, y)} relative to a moment functional σ , the
following statements are equivalent:

(i) {Φn(x, y)} satisfies the partial differential equation (4.7).
(ii) The moments {μm,n} of σ , defined by μm,n := 〈σ,xmyn〉 for each m,n ∈ N0, satisfy

the recurrence relations

0 = Bm,n := 2
[
a(m + n) + g

]
μm,n+1 + me2μm−1,n+1 + [md2 + 2ne3]μm,n

+ mf2μm−1,n + 2nf3μm,n−1 + 2nd3μm+1,n−1 (4.9)

0 = Cm,n := 2
[
a(m + n) + g

]
μm+1,n + [2md1 + ne2]μm,n + nd2μm+1,n−1

+ 2mf1μm−1,n + nf2μm,n−1 + 2me1μm−1,n+1. (4.10)

(iii) σ satisfies the moment equations

M1[σ ] := (Aσ)x + (Bσ)y − Dσ = 0, (4.11)

M2[σ ] := (Bσ)x + (Cσ)y − Eσ = 0. (4.12)

(iv) L[·]σ is formally symmetric on polynomials in the sense that〈
L[p]σ,q

〉 = 〈
L[q]σ,p

〉
for all p,q ∈P2.

Theorem 4.3. Let {Φn(x, y)} be an OPS satisfying the admissible second-order partial dif-
ferential equation (4.7). Then a nontrivial distribution w ∈ D′(R2) is an orthogonalizing
weight of {Φn(x, y)} if and only if w has the following properties:
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(i) 〈w,1〉 	= 0;
(ii) w is a distribution which acts on P2, the space of bivariate polynomials;

(iii) for i = 1,2, Mi[w] is a polynomial killer in two variables; that is to say,〈
Mi[w], xmyn

〉 = 0 for each m,n ∈ N0 (i = 1,2).

Proof. (⇒) Let w be an orthogonalizing weight for an OPS {Φn(x, y)}∞n=0 satisfying a
partial differential equation of the form (4.7). Clearly, (i) and (ii) are obvious. Using Defi-
nitions 2.1 and 2.2, part (iii) follows from the observations that

−2
〈
M2[w], xmyn

〉 = Bm,n = 0,

and

−2
〈
M1[w], xmyn

〉 = Cm,n = 0,

where Bm,n and Cm,n are defined in (4.9) and (4.10).
(⇐) This is clear from Theorem 4.2. �
In the following, we show how to construct polynomial killers in two variables using

one-variable polynomial killers.

Theorem 4.4. Let g : (0,∞) → R be a nontrivial function such that xng(x) ∈ L1(0,∞)

for each n ∈ N0 and
∞∫

0

xng(x) dx = 0 (n ∈ N0);

that is, g generates a polynomial killer. Let h : (c, d) → R be any function such that ph ∈
L1(c, d) for all p ∈P1. Then

K1(x, y) = g(x)h(y/x), K2(x, y) = g(x)(y/x)h(y/x)

generate two-dimensional polynomial killers ui ∈ D′(Ř) in Ř = {(x, y) | x > 0, cx <

y < dx} in the sense that〈
ui,p(x, y)

〉 := ∫ ∫
Ř

p(x, y)Ki(x, y) dŘ = 0 (p ∈ P2; i = 1,2).

Proof. Let Ď = {(x, y) | x > 0, c < y < d} and S : Ř → Ď be the transformation defined
by

S(x, y) = (x, y/x).

Then S is a C1-bijection of Ř onto Ď and |JS(x, y)| = 1/x. Since xm+n+1g(x) ∈ L1(0,∞)

and ynh(y) ∈ L1(c, d), we have xm+n+1yng(x)h(y) ∈ L1(Ď) and

0 =
∞∫

0

xm+n+1g(x)dx

d∫
c

ynh(y) dy =
∫ ∫

ˇ ˇ
xm+n+1yng(x)h(y) dx dy
D=S(R)
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=
∫ ∫
Ř

xmyng(x)h(y/x)dx dy =
∫ ∫
Ř

xmynK1(x, y) dx dy.

That is, K1(x, y) generates a polynomial killer in Ř.
Similarly, we have

0 =
∞∫

0

xm+n+1g(x)dx

d∫
c

yn+1h(y)dy =
∫ ∫

Ď=S(Ř)

xm+n+1yn+1g(x)h(y) dx dy

=
∫ ∫
Ř

xm−1yn+1g(x)h(y/x)dx dy =
∫ ∫
Ř

xmynK2(x, y) dx dy,

and the proof is complete. �
We now recall a classical result, extending Boas’ moment theorem (see [3, pp. 74–75]),

on the multi-dimensional moment problem [1] which states that for any sequence {μα}∞|α|=0
of real numbers, there exists a signed Borel measure μ on R

k such that

μα =
∫
Rk

xα dμ(x)
(
α ∈ N

k
0; x = (x1, x2, . . . , xk) ∈ R

k
)
, (4.13)

where N
k
0 := {(α1, α2, . . . , αk) | αi � 0, αi ∈ N0}, xα = x

α1
1 x

α2
2 · · ·xαk

k and |α| = ∑k
i=1 αi .

From this fact, the orthogonality for any OPS {Φn(x)} in k variables can be written in
integral form as∫

Rk

φα(x)φβ(x) dμ(x) = Kαδα,β, α,β ∈ N
k
0,

where μ is a signed Borel measure on R
k , Kα is a nonzero constant for each α ∈ N

k
0 and

δα,β is the Kronecker Dirac delta function defined by

δα,β =
{

0 (α 	= β),

1 (α = β).

By Theorem 4.3, in order to find a real-valued weight function for an OPS {Φn(x, y)}
satisfying a second-order partial differential equation (4.7), we need to solve the system of
nonhomogeneous weight equations

(Aw)x + (Bw)y − Dw = u1, (4.14)

(Bw)x + (Cw)y − Ew = u2, (4.15)

where each ui (i = 1,2) is a two-dimensional polynomial killer. Conversely, if we can find
a distribution w, which acts on P2, satisfying Eqs. (4.14) and (4.15), then w is a real weight
for an OPS {Φn(x, y)}∞n=0.

Similar to the situation with one-variable classical orthogonal polynomials, the weight
function for a positive-definite bivariate OPS can be found by simultaneously solv-
ing (4.14) and (4.15) with ui ≡ 0 in the distributional sense. In the case of a quasi-definite
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(specifically, non positive-definite) OPS, however, the simultaneous distributional solution
of (4.14) and (4.15) with ui ≡ 0 does not necessarily produce a real-valued weight for an
OPS (see [14]).

Before discussing explicit weight functions for the four bivariate OPS’s of Bessel type
for the partial differential equations (1.2)–(1.4), and (1.5), we discuss further pertinent
information concerning the Bessel polynomials {ya

n(x)} that we will require in the con-
structions below.

For −(a + 1) /∈ N, Favard’s theorem [3, pp. 21–22] and a result of Duran [4] guarantees
that the Bessel polynomials {ya

n(x)} are orthogonal on the real line with respect to signed
weight function from the Schwarz class S(R); furthermore, any such weight function must
necessarily satisfy the distributional differential equation

x2w′ − (ax + 2)w = u,

where u is a polynomial killer. For a � 12(2/π)4 −2 � −0.02893, Maroni constructed the
following explicit weight function wa(x) for {ya

n(x)}:

wa(x) =
{

0, x � 0,

xa exp(−2/x)
∫ ∞
x

t−a−2 exp(2/t − t1/4) sin(t1/4) dt, x > 0,

this result generalizes the work of Kwon et al. [9].
Let �(a,b)(t) be a distributional weight in Schwartz space for the Bessel polynomials

{B(a,b)
n (t)}∞n=0 satisfying the following nonhomogeneous differential equation:(

t2�(a,b)(t)
)′ = [at + b]�(a,b)(t) + G(a,b)(t), (4.16)

where G(a,b)(t) is a nonzero polynomial killer with a 	= 0,−1, . . . and b 	= 0. Such a dis-
tribution �(a,b) does exist (see Section 3). The moments {u(a,b)

n }∞n=0 of �(a,b)(t) satisfy
the recurrence relation

(n + a)u
(a,b)
n+1 + bu(a,b)

n = 0 (n � 0), (4.17)

where u
(a,b)
n := 〈�(a,b), tn〉 = ∫ ∞

0 tn�(a,b)(t) dt . In fact, we have

u(a,b)
n = Γ (a)(−b)n

Γ (n + a)
.

5. Examples

We are now in position to construct orthogonalizing weights for the polynomial solu-
tions to Eqs. (1.2)–(1.5) for certain ranges of the equations’ parameters.

Example 5.1. We first consider the second-order partial differential equation defined
in (1.2) where we assume that g /∈ {1,0,−1, . . .}. As mentioned earlier, Krall and Shef-
fer showed that this equation has at least a WOPS of solutions. In fact, as shown in [10],
Eq. (1.2) has an OPS {Φn(x, y)}∞n=0 of Bessel type as solutions if g+n 	= 0 and gγ +n 	= 0
for each n ∈ N0. In fact, the polynomial solutions, corresponding to the eigenvalue para-
meter λ = λn = n(n − 1 − g), are specifically given by
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φn−k,k(x, y) = B
(g+2k,−g)
n−k (x)xkL

(gγ−1)

k (gy/x) (n ∈ N0, 0 � k � n), x, y > 0,

(5.1)

where {B(g+2k,−g)
n−k (x)} and {Lgγ−1

k (y)} are Bessel and Laguerre polynomials, respectively
(see Section 3). For g,γ > 0, we define the function w(x,y) on D = {(x, y) | x, y > 0} by

w(x,y) = �(g−1,−g)(x)e−g
y
x x1−gγ ygγ−1. (5.2)

Then

M1
[
w(x,y)

] = (
x2w

)
x

+ (xyw)y − (gx − g)w

= G(g−1,−g)(x)e−g
y
x x1−gγ ygγ−1,

M2
[
w(x,y)

] = (xyw)x + ((
y2 − y

)
w

)
y

− (gy − gγ )w

= G(g−1,−g)(x)e−g
y
x x2−gγ ygγ−2

are both polynomial killers in D = {(x, y) | x, y > 0} by Theorem 4.4. Thus w(x,y) is a
real-valued weight function for the OPS {Φn(x, y)}∞n=0 defined by (5.1).

Next, we claim that if g > 0 and γ < 0 with gγ /∈ {0,−1,−2, . . .}, then the regulariza-
tion w+(x, y) of (5.2) defined by

〈
w+(x, y),φ(x, y)

〉 =
∞∫

0

x�(g−1,−g)(x)
〈
y

gγ−1
+ , e−gyφ(x, xy)

〉
dx (5.3)

is a real weight for an OPS {Φn(x, y)}∞n=0 in (5.1). (See [6] or [16] for the definition of the

regularization y
gγ−1
+ of ygγ−1.)

If we set

vn := 〈
y

gγ−1
+ , e−gyyn

〉
(n ∈ N0),

then the sequence {vn}∞n=0 satisfies the recurrence relation

gvn+1 − (n + gγ )vn = 0 (n ∈ N0), (5.4)

and the moments of w+(x, y), by (4.6), can be written as

wm,n := 〈
w+(x, y), xmyn

〉 = u
(g−1,−g)

m+n+1 vn

since ρ(x) = x. Using the definition (2.1) for the derivatives of moment functionals, we
see that by using (4.17) and (5.4),

〈
M1

[
w+(x, y)

]
, xmyn

〉 = 〈(
x2w+

)
x

+ (xyw+)y − (gx − g)w+, xmyn
〉

= −(m + n + g)
〈
w+(x, y), xm+1yn

〉 + g
〈
w+(x, y), xmyn

〉
= [−(m + n + g)u

(g−1,−g)

m+n+2 + gu
(g−1,−g)

m+n+1

]
vn

= 0,
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and 〈
M2

[
w+(x, y)

]
, xmyn

〉 = 〈
(xyw+)x + ((

y2 − y
)
w+

)
y

− (gy − gγ )w+, xmyn
〉

= −(m + n + g)
〈
w+(x, y), xmyn+1〉

+ (n + gγ )
〈
w+(x, y), xmyn

〉
= −(m + n + g)u

(g−1,−g)

m+n+2 vn+1 + (n + gγ )u
(g−1,−g)

m+n+1 vn

= (n + gγ )

g

[−(m + n + g)u
(g−1,−g)

m+n+2 + gu
(g−1,−g)

m+n+1

]
vn

= 0.

Consequently, Mi[w+(x, y)] (i = 1,2) is a polynomial killer. Thus, for g > 0, γ < 0 and
gγ /∈ {0,−1,−2, . . .}, we see from Theorem 4.3 that w+(x, y) is a real weight for the OPS
{Φn(x, y)}∞n=0 defined in (5.1).

Example 5.2. We now consider the second-order partial differential equation defined
in (1.3), where we assume g /∈ {1,0,−1, . . .}. Krall and Sheffer showed that this equa-
tion has at least a WOPS as solutions but failed to show that these polynomial solutions are
orthogonal. In [10], the authors showed that (1.3) has an OPS {Φn(x, y)}∞n=0 of Bessel type
of solutions if g + n 	= 0 for each n ∈ N0; more precisely, this OPS is explicitly defined in
D = {(x, y) | x, y > 0} by

φn−k,k(x, y) =

⎧⎪⎨
⎪⎩

B
(g+2k,−g)
n−k (y)ykHk

(√− g
2

x
y

)
if g < 0,

B
(g+2k,−g)
n−k (y)ykȞk

(√ g
2

x
y

)
if g > 0,

(5.5)

where {B(g+2k,−g)
n−k (y)} and {Hk(x)} are Bessel and Hermite polynomials, respectively. For

each n ∈ N0 and 0 � k � n, φn−k,k(x, y) satisfies (1.3) when λ = λn = n(n − 1 + g). For
g < 0, we see from Theorem 4.3 that the function w(x,y) defined by

w(x,y) = e
gx2

2y2 �(g−1,−g)(y)

is a real-valued weight function for the OPS in (5.5) since

M1
[
w(x,y)

] = ((
x2 + y

)
w

)
x

+ (xyw)y − gxw = x

y
G(g−1,−g)(y)e

gx2

2y2

and

M2
[
w(x,y)

] = (xyw)x + (
y2w

)
y

− (gy − g)w = G(g−1,−g)(y)e
gx2

2y2

are both polynomial killers in D = {(x, y) | x, y > 0} by Theorem 4.4. In the case that
g > 0, we are unable, at this time, to find a real weight function for this OPS since the real
weight function for the twisted Hermite polynomial is unknown at this time.

We remark that the constructions in Examples 5.1 and 5.2 answer open questions posed
by Krall and Sheffer in 1967 (see [8] and [14]).
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Lastly, we construct real-valued weights for the two OPS’s of Bessel type discovered
recently in [10].

Example 5.3. Consider the partial differential equation defined in (1.4). In this case, this
equation has an OPS {Φn(x, y)}∞n=0 of Bessel type as solutions if d + n 	= 0, e − n 	= 0,
d + e + n 	= 0 for each n ∈ N0 and h 	= 0, defined explicitly by

φn−k,k(x, y) = P
(d+e+2k−1,−e−1)
n−k (2x − 1)(1 − x)kB

(d+e,h)
k

(
y/(1 − x)

)
(0 � k � n); (5.6)

here {P (d+e+2k−1,−e−1)
n−k (x)} and {B(d+e,h)

k (y)} are, respectively, Jacobi and Bessel poly-
nomials. The eigenvalue parameter corresponding to φn−k,k(x, y) is given by λ = λn =
n(n − 1 + d). We define a distribution w1 on the interval [0,1] by

〈
w1, φ(x)

〉 =
{∫ 1

0 x−e−1(1 − x)d+e−2φ(x)dx if d + e > −1, e < 0,

〈Wp[x−e−1(1 − x)d+e−2], φ(x)〉 otherwise,

where WP [x−e−1(1 − x)d+e−2] is the distribution obtained by regularizing the integral
1∫

0

x−e−1(1 − x)d+e−2φ(x)dx

on the interval [0,1] (see [16]). The moments vn := 〈w1, x
m〉 of w1 satisfy the recurrence

relation

(n + d − 1)vn+1 − (n − e)vn = 0,

and are given by

vn = Γ (n − e)Γ (d + e − 1)

Γ (n + d − 1)
(n ∈ N0).

Now define the distribution w on D = {(x, y) | 0 < x < 1, y > 0} by〈
w,φ(x, y)

〉 = 〈
w1, (1 − x)

〈
�(d+e,h)(y),φ(x, (1 − x)y)

〉〉
.

Then a calculation shows that the moments of w are given by

wm,n = 〈
w,xmyn

〉 = 〈
w1(x), xm(1 − x)n+1〉〈�(d+e,h)(y), yn

〉
= Γ (m − e)Γ (d + e + n)

Γ (m + n + d)
u(d+e,h)

n . (5.7)

Consequently, from (5.7), we see that〈
M1[w], xmyn

〉 = 〈((
x2 − x

)
w

)
x

+ (xyw)y − (dx + e)w,xmyn
〉

= −[
(m + n + d)wm+1,n + (e − m)wm,n

]
= −(m + n + d)

Γ (m − e + 1)Γ (d + e + n)

Γ (m + n + d + 1)
vn

− (e − m)
Γ (m − e)Γ (d + e + n)

Γ (m + n + d)
vn

= 0,
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and 〈
M2[w], xmyn

〉 = 〈
(xyw)x + (

y2w
)
y

− (dy + h)w,xmyn
〉

= −(m + n + d)wm,n+1 − hwm,n

= −(m + n + d)
Γ (m − e)Γ (d + e + n + 1)

Γ (m + n + d + 1)
vn+1

− h
Γ (m − e)Γ (d + e + n)

Γ (m + n + d)
vn

= −Γ (m − e)Γ (d + e + n)

Γ (m + n + d)

[
(d + e + n)vn+1 + hvn

]
= 0.

Thus, by Theorem 4.3, w is a real weight function for the OPS defined in (5.6).

Example 5.4. We now consider the partial differential equation defined in (1.5). In [10],
the authors showed that this equation has an OPS {Φn(x, y)}∞n=0 of Bessel type as solutions
if d 	= 0, e /∈ {1,0,−1, . . .}, and h 	= 0, defined explicitly by

φn−k,k(x, y) = L
(e+2k−1)
n−k (−dx)xkB

(e,−h)
k

(
y

x

)
(0 � k � n); (5.8)

here, as before, the polynomials involved in (5.8) are Laguerre and Bessel polynomials. In
this case, the eigenvalue parameter λ corresponding to φn−k,k(x, y) is given by λ = λn =
nd . Assume that d < 0 and define the function w(x,y) on D = {(x, y) | x, y > 0} by

w(x,y) =
{

xe−2edx�(e,−h)(y/x) if e > 1,

xe−2+ edx�(e,−h)(y/x) if e < 1 and e /∈ {1,0,−1, . . .}. (5.9)

If we put

vm :=
{∫ ∞

0 xe−2edxxm dx if e > 1,

〈xe−2+ , xmedx〉 if e < 1 and e /∈ {1,0,−1, . . .},
then we see that:

(a) {vm}∞m=0 satisfies the recurrence relation (for the Laguerre polynomials)

dvm+1 − (1 − e − m)vm = 0, (5.10)

(b) {u(e,−h)
m }∞0 satisfies the recurrence relation (for the Bessel polynomials)

(n + e)u
(e,−h)
n+1 − hu(e,−h)

n = 0, (5.11)

(c) wm,n := 〈w,xmyn〉 = vm+n+1u
(e,−h)
n by (4.6).

We claim that w(x,y), defined in (5.9), is a real-valued weight function for the OPS defined
in (5.8); from Theorem 4.3, it suffices to show that Mi[w(x,y)] (i = 1,2) are polynomial
killers in D. Using (5.10) and (5.11), we see that
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〈
M1

[
w(x,y)

]
, xmyn

〉 = −d
〈
w,xm+1yn

〉 − (m + n + e)
〈
w,xmyn

〉
= −dwm+1,n − (m + n + e)wm,n

= [−dvm+n+2 − (m + n + e)vm+n+1
]
u(e,−h)

n

= 0,

and 〈
M2

[
w(x,y)

]
, xmyn

〉 = −m
〈
w,xm−1yn+1〉 − d

〈
w,xmyn+1〉 − h

〈
w,xmyn

〉
= −mwm−1,n+1 − dwm,n+1 − hwm,n

= −(mvm+n+1 + dvm+n+2)u
(e,−h)
n+1 − hvm+n+1u

(e,−h)
n

= 0.

Consequently, w(x,y) is a real-valued weight function for the OPS defined in (5.8).
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