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1. INTR~D~~TI~N 

The classical Chebyshev alternation theorems characterize the best uniform 
approximation to a continuous real valued function F by functions fin a 
specified subspace M, by the oscillating nature of the difference F(x) -f(x). 
For example, if Mis a unisolvent linear space of functions on the closed interval 
[0, 11, if M has dimension N (e.g. M consists of the polynomials in x of degree 
at most N - l), and iff f M has the property that for some particular N + 1 
points xi E [O, 11, 

FW -f(xJ = C-1)’ P, i=1,2 )...) N+l, 

where P = IIF-fll = omy, IF(x) -J-Cdl, 
. . 

thenfis the unique best uniform approximation to F on [0, 11. (An interesting 
treatment may be found in [6].) 

The crucial property used in the proof seems to be the unisolvence of M, 
which is equivalent to 

(1) rff~ Mandxl,x2 ,..., xN are distinct points of[O, l] such thatf(x,) = 0 
for i= 1,2, . . . . N, thenf-0; 

as well as to 

(2) Given distinct points x1, x2,. . ., xN in [0, 13, and real constants cl, there 
exists a unique function f E M such that f(xJ = c1 for i == 1, 2,. . ., N. 

The classical alternation theorems belong solely to the study of functions of 
one variable; the basic reason for this is probably the Mairhuber characteriza- 
tion theorem which shows that the notion of unisolvence is essentially restricted 
to functions of one variable (see [4], [S]). If X is a compact connected subset 
of R” and if C [X] contains a unisolvent linear subspace of finite dimension at 
least 2, then X is homeomorphic either to the unit interval or the unit circum- 
ference. 

In spite of this, we shall in this note obtain some general alternation type 
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theorems applying to any finite dimensional subspace M of C [X] for X a cell 
in R”, n > 2. Our principal result is the following 

THEOREM 1. Let M be a subspace of C [ X] with dim(M) = N. Then, 2r points 
(P~},~, {qi},” can be selected in X with the property that $FE C[X] andf E kf, 
and 

F(Pi> --f(Pi) = P i = 1,2, 3, . . ., r 

F(qJ -f (4J = -P i= 1,2,3 ,..., r 

where p = jlF --f/l, then f is a best uniform approximation to F on X. (Here, 
r 6 N.) 

We shall prove this with r = N, and in this case also obtain the fact that f 
will then be the unique best approximation to F. Since uniqueness is an un- 
common event in the approximation of functions of several variables, this is 
a very convincing argument that r = Nis much too large. This is also supported 
by the special cases that are examined in the present paper, and by certain 
observations following the proof of Theorem 1. This suggests the following 
conjecture for functions of II variables, n 3 2, defined on an n-cell. 

Conjecture. In general, the total number of alternation points can be reduced 
to N when N is even, and to N + 1 when N is odd. (Thus, r = [(N + 1)/2].) 

The division into even and odd dimension would seem, from the examples 
given in Section 5, to be essential. However, there may exist pathological 
choices for A4 in which many fewer alternation points are needed. Nor does 
it seem that such alternation conditions are necessary, or that any general 
statement can be made about the cardinal number or structure of the set of 
p E X where (F(p) -f(p)) = 1IF - f Jj, where f is an optimal approximation to 
F, and F and M are arbitrary. 

This approach is very closely related to the H-sets studied by Collatz (see 
[31>* 

2. PROOF OF THEOREM 1 

The following result was proved in [2] (see also [I]). In effect, it recovers a 
portion of the unisolvence property for a general subspace M. 

LEMMA. Let M be a subspace of C[X] of dimension N. Then, there are non- 
empty sets 0,, O,, . . ., O,, disjoint and open in X, such that 

(3) If f E M, xi is any point in 0,, and f(x,) = 0 for i = 1, 2,. . ., N, then 
f=O. 

(4) Given points x1 E o),, and real constants cl, there is a unique f E M 
such that f (xl) = cl for i = 1,2,. . ., N. 
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We use this Lemma to prove Theorem 1. We may choose the sets 0, to be 
open in R” and connected, and such that their closures are disjoint and have 
the property described in the Lemma. Choose two distinct points pi, qi in O,, 
and let /3, be an arc in 0, from pr to qr. We therefore have 2r points of X, with 
r = N. Suppose that FE C[X], f0 E M, and that 

F(PJ -fo(~J = P i = 1,2,. . ., N 

Fki) -h(qi) = -P i= 1, 2, 3 ,..., N 

where p = l/F-foil. Letf” be any optimal approximation to F on X, so that 
IIF -f*ll = p&F) = I;L\/F -fjj < p. Set g =f* -f. = cf* - F) + (F -fo). 

Then, 
g(n) = (f* - F) (14 -t P B -PM(F) -t P 2 0 

g(qi) = cf* - F> (qr) - P 6 PM(F) - P 6 0. 

But, p1 and q1 are the ends of the arc /3* in 0,. Either g is 0 at an end point, or g 
changes sign on /3, and must have a zero somewhere on pi. In either case, g 
has a zero somewhere in the closure of 0,. Since g E M, g z 0 and f. = f *. 

Note that the uniqueness of best approximation was obtained by the initial 
step of shrinking the original sets 0, of the Lemma, obtaining new open sets 
whose closures were disjoint and which had the same unisolvence property. 
It is very suggestive to examine the effect of taking the 0, as large as possible. 
Suppose that N is even, and that the sets Oi can be taken large enough so that 
they are mutually disjoint, but their boundaries have common points as shown 
in Figure 1 (for N = 4). 

FIG. 1 
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It is then clear that we can choose these common points as the alternation 
points, in effect coalescing pairs of pi and pairs of qi, and reduce their total 
number from 2N to N. In all the cases I have studied, this simplification is 
possible by a proper choice of the sets Bi. Since their closures will not be 
unisolvence sets, we must carry through the argument of the proof using strict 
inequality, thereby proving only that p = pM(F), so thatf, is a best approxima- 
tion, but it is not necessarily true thatf=f*. 

FIG. 2 

Likewise, when N is odd, and the sets Oi can be chosen so that they have 
touching boundaries as shown in Figure 2, then in addition to the common 
boundary points, one extra point of 0, may be selected in order to have the 
desired behavior on the arcs pi; in effect, we have merged the original points 
in pairs, but have one point left over. Thus, in this case, we have been able to 
reduce the total number of alternation points required to N + 1. 

In the next sections, we examine in detail certain very simple cases where 
such sets 0, can be found explicitly. 

3. SPECIAL CASES : N = 1 

As yet, special methods must be used to determine optimal unisolvence sets 
0, for a specific function subspace M, so that Theorem 1 can be obtained in 
its sharper form, with r = [(N + 1)/2]. In general, the starting point is to look 
at the components of the complement of the zero set of functions f E M, and 
then construct the sets 0, as the intersection of certain of these. The unisolvence 
property can be described by saying that the sets 9, are such that no zero set 
of any function f E M, f $0, can touch all of the sets 0:. 

Since the points pi, qr of Theorem 1 will often be boundary points of the Oi, 
especially when we are seeking to coalesce them, it is reasonable to select them 
on the zero set of some function in M. From this viewpoint, the property that 
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lies behind Theorem 1 would be the requirement that if a finite set of points 
p,, pz,..., PZr (properly labeled) lies on the zero set r of a function go E M, 
then no function g E N can obey g(PJ (-1)’ > 0. Note that if there is an arc y 
contained in I’ which passes through the Pj, then one can infer that g must 
have certain zeros on y, in number 2r if y is closed, 2r - 1 if y is not closed. 
The desired property would then follow if we could argue that any g E M with 
this number of zeros in common with go, must in fact vanish on r. 

When n = 2, zero sets tend normally to be curves, and the intersection of 
two zero sets is apt to be a finite set, so such an argument is apt to be possible 
in dealing with functions of only two variables. However, with n > 3, this is 
no longer the case, and one should expect additional restrictions on the choice 
of alternation points Pj. 

The case dim(M) = 1, while very special, casts some light on the general 
theory. The single unisolvence set 0 can be chosen as any component of the 
set of points p E X where 4(p) # 0, with M = {all f= cqh, c real}. Condition 
(3) is clearly obeyed, and the corresponding form of Theorem 1 becomes: 

THEOREM 2. Zf p, q are in the closure of 0, and f. E M satisfies 

(5) 
F'(P) -h(P) = IF-foll 

fT9) -t&z) = -IIF-fdl 
then f. is a best uniform approximation to F among the multiples of $. Zf both 
points are in 0, then f. is the unique best approximation to F. 

In this special case, the fact that all functions in A4 also vanish on the zero 
set r of 4, permits Theorem 2 to be strengthened by adding the following 
statement : 

Zf p E T and IF(p) - fo(p)( = liF-foll, then f .  is an optimal approximation 
to F in M. 

Zf both p and q are in the closure of 0, but not in T, and conditions (5) hold, 
then f .  is the unique best approximation to F. 

Several simple examples will illustrate this. Take X as the unit square 
[0, l] x [0, I], and let I$&, y) = x + y. Here, r = {(O,O)), and 0 can be taken 
as the interior of X. If F(x, y) = x2 + y2 - +, then we may take p = (1,l) and 
q=(+&-l,+2/-- 6 1) as alternation points, with f(x, y) = (16 - 2)(x + y) 

and p = l[F - f (I = (A&) - 2&. Thus, we conclude that f  is the best approxima- 
tion to Fin M. 

With the same choice of X, let 4(x, y) = x2 - y and let 0 be the open subset 
of X lying above y = x2. With F(x, y) = x + y, we find that the optimal 
approximations are f  = c+, for -1 < c < 2 1. This is true because in each case, 
JW,l) -f(Ll)l =llF-fll=2, noting that the point (1,l) lies in the zero 
set of 9. (Note that this shows that there may be only a single point in Xwhere 
IF-f 1 peaks.) 
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4. SPECIAL CASES: N EVEN 

Let us choose M, as the space of all functions 

j-(x, y) = A(x* + y2> + Bx + Cy + D. 

Take X as any convex set. The zero sets off E MI will be a line, a circle, or all 
of X. A class of unisolvent sets for M, is given by the following: 

LEMMA. Let D,, Dz, D3 be open discs such that each of the following sets 
contains points of X: 

8, = DI - (D2 U D3) 

02=DZ-(D3UD1) 

&=D3-(D, U D2) 

9, = D1 (I DZ r-I D3. 

Then, any function in Ml which is zero at some point in each set Oi is identically 
zero. 

Proof. What must be shown is that no line or circle can pass through a point 
in each of the sets 8,. Suppose that Pi E 0, and that these lie on a circle Tin 
the order P,, P2, P3, P4. Then, the open disc Dj must contain the line segment 
from P4 to Pj and it is evident that the disc D2 must contain either PI or P3, 
contradicting the fact that the sets Oi are disjoint. 

Using this as suggested in Figure 3 and in the discussion of Theorem 1, we 
arrive at the foliowing: 

FIG. 3 
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THEOREM 3. Let P,, Pa, P,, P4 be concyclic points in X, in this order. Let 
FE C[X] andf E MI satisfy 

W'J -f@',) = C-l)'ll~-fll. 
Then, f is an optimal uniform approximation to Fin MI. 

A similar theorem can be obtained for the space 

M2 = (all Axy + Bx + Cy + D}. 

Here, the zero sets are a special class of hyperbolas, and the corresponding 
unisolvence sets are those illustrated in Figure 4. 

FIG. 4 

THEOREM 4. Let P,, Pz, P3, P4 lie on a branch of a hyperbola with the equation 
gO(x, y) = 0, go E M2, go + 0 the points being labeled in their natural order on 
this curve. Then, if F E C[X] andfs M2 satisfy P(Pj) -f(Pj) = (-l)j/lF -fl], 
f is an optimal uniform approximation to Fin M2. 

These examples confirm the conjecture that one needs only N alternation 
points when N is even, in order to obtain a sufficient characterization of an 
optimal approximation. However, as observed earlier, alternation is not 
necessary. This is also shown by the following observation. With the space 
M2 above, choose F(x, y) = x2 + y2 and X as the unit disc. Then, the best 
approximation to F is easily seen to be the constant function with value 3, 
and it is not possible to find four distinct points Pi in X which have the alterna- 
tion property. 
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In the last two examples, with n = 2, the zero sets of functions in M have 
been curves; it was therefore to be expected that order conditions similar to 
those of the classical one-variable theory should apply to the choice of the 
alternation points and the signs of the difference F(p) -f(p). When n > 3, 
zero sets will in general no longer be curves, and the criteria imposed on the 
P, will be more complicated. 

Let M3 = {all A(x* -t y* + z*) + Bx + Cy + Bz}, again with dim(M,) = 4, 
and choose X to be a ball of radius R, containing the origin in its interior. 

THEOREM 5. Let P, = (xi, yt, q), i = 1, 2, 3, 4, obey the conditions: 

(6) 

XI Yl ZI 

det x2 y2 z2 # 0, 

i x3 y3 z3 

XI Yl 21 x,*+y,*+z,* 

(7) det x2 Y2 z2 x2* + y2* + z** 

x3 Y3 z3 x3* + y,* + 232 

x4 Y4 z4 x4* + y,* + z,* 

= 0, 

(8) there are constants ul > 0 such that 

P4 = CL, P, - c%*P* + a3P,. 

Then, if F E C[X] andf, E M3 satisfy 

W’i) -fo(Pi) = WIIF-hll, 

the,function f0 is an optimal uniform approximation to Fin M3. 
Conditions (6) and (7) imply that the points P, lie in the zero set F of a 

function go E Mj of the form 

go(x,y,z)=x2+yz+z2-Box-Coy-Doz. 

Since this set ris a sphere passing through the origin, it is possible to construct 
a closed path y on r which passes through the points P, in the order of the 
subscripts. Condition (8) ensures that no zero set of any g E M3 can separate 
{P, ,P,) from (P2,P4}; thus, no g E M can obey g(P,) (-l)i > 0. Geometrically, 
condition (8) means that P4 lies in the interior of the convex cone generated by 
PI, -P2 and P3, or that no Pi lies in the spherical convex hull of the others. 

In the present case, it may be instructive to give a simple algebraic proof 
of the crucial step. If g E M3, there are constants a, b, c so that for any point 
(x, y, z) on the zero set of go, g(x, y, z) = ax + by + cz. The alternation 
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hypothesis on g is equivalent to (u.PJ(-l)l > 0, for i = 1, 2, 3, 4, where 
u = (a, b, c). Using (g), we have 

U’Pq = cq(WP,) - c&P*) + cr,(U’Pj), 

<o 

contradicting u * P4 > 0. 

5. SPECIAL CASES: N ODD 

In this section, we shall illustrate the remarks following the proof of Theorem 
1, showing that one should expect N+ 1 alternation points, instead of N, 
when N is odd. The simplest representative case to study is 

M4 = {all Ax + BJJ + Cl. 

The zero sets are lines, and the typical collection of unisolvence sets is that 
shown in Figure 5. This yields the following: 

FIG. 5 

THEOREM 6. Let X be a convex region in the plane, and let Pi be points interior 
to Xsuch that 

(9) P, = t(l PI - CL2 P2 + CCJ Pj 

where q > 0 and 01~ - q + q = 1. Then, if FE C[X] and f E M4 satisfy 

F(PJ -f(PJ = (-l)'llF-fll, 
f is a best uniform approximation to Ffrom M4 on X. 

The special condition (9) on the Pi is equivalent to the geometric condition 
that no point Pi lies in the triangle determined by the others, together with 
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the correct ordering of subscripts to fit with the signs; what is needed is merely 
that no line will separate the positive alternation points from the negative 
points. 

As a familiar application, the function f(x, ~1) =+x + fr - ,$ is a best 
approximation to F(x, y) = xy, with /IF-f( = + and having the points (O,O), 
(l,O), (1, I), (0,l) of the unit square X as alternation points. 

It is not sufficient to have only three alternation points, even though the 
dimension of M is 3. This can be seen from the examplef(x, y) = 3x + +y - 3, 
where IIF-fj/ = f and (O,O), (0, l), and (1,l) are alternation points, but f is 
not an optimal approximation to I;&, y) = xy. 

However, this leaves many questions about alternation points and uni- 
solvence sets still open. In special cases, the existence of a very small number of 
alternation points may guarantee that a function f in a space A4 is in fact a 
best approximation to a specific function F. 
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