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Abstract

This paper mainly concerns defect operators and defect functions of Hardy submodules,

Bergman submodules over the unit ball, and Hardy submodules over the polydisk. The defect

operator (function) carries key information about operator theory (function theory) and

structure of analytic submodules. The problem when a submodule has finite defect is attacked

for both Hardy submodules and Bergman submodules. Our interest will be in submodules

generated by polynomials. The reason for choosing such submodules is to understand the

interaction of operator theory, function theory and algebraic geometry.
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1. Introduction

The classical Beurling’s theorem [Beu] says that for each invariant subspace M of

the Hardy space H2ðDÞ on the unit disk D there is an inner function Z such that
M ¼ ZH2ðDÞ: Since H2ðDÞ admits a natural C½z�-module structure coming from
multiplication by polynomials, we will call the Hardy space as the Hardy module, and
an invariant subspace as a submodule (over the polynomial ring C½z�). Let PM denote

the orthogonal projection from H2ðDÞ onto M: Then Beurling’s theorem means

PM ¼ MZM
�
Z :
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To recover the inner function Z from the representation of PM we let Kl and KM
l be

the reproducing kernels of H2ðDÞ and M; respectively. Then

KM
l ¼ PMKl ¼ ZðlÞZKl;

and hence

jZðlÞj2 ¼ jjKM
l jj2

jjKljj2
¼ jjPMkljj2; lAD; ð1:1Þ

where kl ¼ Kl=jjKljj is the normalized reproducing kernel. Moreover, it is easy to
see

jjPMkljj2 ¼ /ðZ#ZÞKl;KlS: ð1:2Þ

To generalize the operator-theoretic aspects of function theory on the unit disk to

multi-variable operator theory, one considers the Hardy space H2ðDdÞ on the unit
polydisk in the d-dimensional complex space Cd : We endow H2ðDdÞ with the
C½z1;y; zd �-module structure coming from multiplication of polynomials. In

Douglas and Paulsen’s Hilbert module language [DP], we will call H2ðDdÞ the
Hardy module over the polydisk. By a submodule M of H2ðDdÞ we mean that M is
closed, and invariant under multiplication by polynomials. A natural problem is to

consider the structure of submodules of H2ðDdÞ: However, one quickly sees that a
Beurling-like characterization is impossible [DP,Ru1], and hence attention is directed
to find intrinsic notions of characterizing higher dimensional submodules. Along this
line, many efforts were made by several authors (cf. [CG,DP,DPSY,DY,Fa,Guo1,
Guo2,GY,Ya,Ya1,Ya2,Ya3,Ya4]).
Motivated by (1.1), we introduce defect function of a submodule M as follows:

DMðlÞ ¼ jjKM
l jj2=jjKljj2 ¼ jjPMkljj; lADd ; ð1:3Þ

where Kl and kl are the reproducing kernel and the normalized reproducing kernel

of H2ðDdÞ; respectively. Then one finds that the defect function DM is a complete
invariant in the sense of function theory, and its comparison to (1.1) shows that
defect function is a higher dimensional function-theoretic counterpart of an inner

function which expresses a submodule of H2ðDÞ:Moreover, motivated by (1.2), one
easily check that there is a unique bounded linear operator, denoted by DM ; such
that

DMðlÞ ¼ /DMKl;KlS; lADd : ð1:4Þ

This operator is called the defect operator of M; and its exact form will be given in
Section 2. The defect operator is an invariant of submodules in the sense of operator
theory. One will see that defect operator (function) carries key information about
operator theory (function theory) and structure of submodules. We define the defect
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index of a submodule M as the rank of the defect operator DM : This numerical
variant for submodules plays a role of multiplicity of a submodule in an appropriate

sense. By Beurling’s theorem, each submodule of H2ðDÞ has defect index 1: To
understand higher dimensional submodules better, we are naturally led to ask when

a submodule of H2ðDdÞ ðdX2Þ has finite defect, that is, when the defect operator
DM has finite rank for a higher dimensional submodule M: This is the so-called
‘‘Finite defect problem’’ for Hardy submodules over the polydisk.
We also will be concerned with the two most common Hilbert modules on the unit

ball of Cd ; namely, the Hardy module and the Bergman module. There are several
reasons for studying defect operators of submodules on the unit ball. One reason is
that the theory of defect operators (functions) relies heavily on geometry of domains
on which submodules are defined. As one knows, the ball is the prototype of two
important classes of regions that have been studied in depth, namely, the strictly
pseudoconvex domains and the bounded symmetric domains. Another reason is that
the theory of defect operators (functions) is closely related to reproducing kernel
theory. Other reasons will become apparent later.
In the present paper, we are mainly concerned with submodules generated by

polynomials. The reason for choosing such submodules is to understand the
interaction of operator theory, function theory and algebraic geometry.
Section 2 considers defect operators, defect functions and defect indices of Hardy

submodules over the polydisk. Actually one finds that defect operators (functions)
reveal rigidity of submodules. In Section 3, our interest is in ‘‘Finite defect problem’’
for Hardy submodules over the unit ball. Using the theories of algebraic variety and
analytic variety it is shown that a submodule generated by polynomials has finite
defect only if the submodule has finite codimension. Section 4 concerns defect
operators (functions) of Bergman submodules over the unit ball.

2. Defect operators for Hardy submodules over the polydisk

2.1. Definitions and examples

Given an invariant subspace M of the Hardy space H2ðDÞ over the unit disk D;
the Beurling’s theorem [Beu] implies that there is an inner function Z such that
M ¼ ZH2ðDÞ: As in Introduction, let Kl and KM

l be the reproducing kernels of

H2ðDÞ and M; respectively. Then

KM
l ¼ PMKl ¼ ZðlÞZKl;

and hence

jZðlÞj2 ¼ jjKM
l jj2

jjKljj2
¼ jjPMkljj2; ð2:1Þ

here kl ¼ Kl=jjKljj: This shows that the inner function can be captured from (2.1).
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Recall that the Hardy space H2ðDdÞ over the polydisk Dd is a functional Hilbert

space consisting of some analytic functions on the polydisk Dd whose reproducing
kernel and the normalized reproducing kernel are, respectively

KlðzÞ ¼
1Qd

k¼1 ð1� lkzkÞ
; klðzÞ ¼

Kl

jjKljj
¼
Qd

k¼1 ð1� jlkj2Þ1=2Qd
k¼1 ð1� lkzkÞ

:

Noticing that the Hardy space H2ðDdÞ admits a natural C½z1;y; zd �-module
structure coming from multiplication by polynomials, we thus call the Hardy space

H2ðDdÞ as the Hardy module over the polydisk. By a submodule M of H2ðDdÞ we
mean that M is a closed invariant subspace under multiplication by polynomials.
Given a submodule M; the defect function DMðlÞ of M is defined by

DMðlÞ ¼ jjKM
l jj2

jjKljj2
¼ jjPMkljj2; lADd ; ð2:2Þ

where KM
l ¼ PMKl be the reproducing kernel of the submodule M and PM is the

orthogonal projection from H2ðDdÞ onto M: Letting Ri ¼ PMMzi
PM be the

restriction ofMzi
to the submoduleM; then Ri is an isometry onM for 1pipd: For

a multi-index a ¼ ða1;y; adÞ of nonnegative integers, let Ra ¼ Ra1
1 ?Rad

d ; and, as

usual, jaj ¼ a1 þ?þ ad : Then from the definition of the defect function DM ; it is
easy to check that there exists a unique bounded linear operator, denoted by DM ;
such that

DMðlÞ ¼ jjKM
l jj2

jjKljj2
¼
Yd

k¼1
ð1� jlkj2ÞjjPMKljj2 ¼ /DMKl;KlS; ð2:3Þ

where

DM ¼
X

0papð1;y;1Þ
ð�1ÞjajRaR�a ¼

X
0papð1;y;1Þ

ð�1ÞjajMa
z PMM�a

z : ð2:4Þ

We call DM the defect operator of the submodule M: The reader also notice that the
defect operator DM and the projection PM is connected by

PMKl ¼ Kl DMKl; lADd : ð2:5Þ

In particular, for a submodule M of the Hardy module H2ðD2Þ on the bidisk, its
defect operator is

DM ¼ PM � Mz1PMM�
z1
� Mz2PMM�

z2
þ Mz1z2PMM�

z1z2
:

Similar to the case of the symmetric Fock space H2
d [Guo3], we will see that a

submodule is uniquely determined by its defect function, and hence is uniquely
determined by its defect operator.
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Proposition 2.1. For two submodules M and N of H2ðDdÞ; if DMðlÞ ¼
DNðlÞ; 8lADd ; then M ¼ N; and therefore, if DM ¼ DN ; then M ¼ N:

To prove the Proposition we need the following lemma. The proof of the lemma
appeared in [Eng]. Of course, the lemma can also be proved by using Taylor
expansion.

Lemma 2.2. Let O be a bounded complete Reinhart domain (i.e. a bounded domain

with the property that for l ¼ ðl1; l2;y; ldÞAO; if jmijp1; i ¼ 1; 2y; d; then

ðm1l1; m2l2;y; mdldÞAO). Suppose a function f ðl; zÞ is defined on O� O; and it is

analytic in z; and co-analytic in l: If f ðl; lÞ ¼ 0 for any lAO; then f ¼ 0:

The Proof of Proposition 2.1. As done for the symmetric Fock space H2
d [Guo3], to

obtain the desired conclusion, considering functions

GMðl; zÞ ¼ /DMKl;KzS; GNðl; zÞ ¼ /DNKl;KzS;

then GMðl; zÞ and GNðl; zÞ are analytic in z; and co-analytic in l; respectively. By
(2.3)

GMðl; lÞ ¼ DMðlÞ ¼ DNðlÞ ¼ GNðl; lÞ:

Applying Lemma 2.2 gives

GMðl; zÞ ¼ GNðl; zÞ;

and hence DM ¼ DN : By (2.5)

ð1� l1z1Þ?ð1� ldzdÞ/PMKl;KzS

¼ /DMKl;KzS ¼ /DNKl;KzS

¼ ð1� l1z1Þ?ð1� ldzdÞ/PNKl;KzS;

and hence, M ¼ N: &

Remark 2.3. In our joint paper [GY], we study the core operators and the core

functions of Hardy submodules on the bidisk D2: In fact, the core operator for a
submodule just is the defect operator introduced in this section. The core function

for a submodule M is defined by GMðl; zÞ ¼ /DMKl;KzS for l; zAD2; and hence
the defect function DMðlÞ ¼ GMðl; lÞ:

First let us record some results from [GY] which are proved in the case of the

bidisk D2:
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Proposition 2.4. Let M be a submodule of H2ðDdÞ; then we have

1. the defect function DMðlÞ is subharmonic, and for almost all zATd with respect to

the measure dy1?dyd ; DMðlÞ-1 as l-z; where Td ¼ fz ¼ ðz1;y; zdÞ : jz1j ¼
? ¼ jzd j ¼ 1g is the distinguished boundary of Dd ;

2. the defect operator DMX0 if and only if there is an inner function Z such that

M ¼ ZH2ðDdÞ;
3. if DM is in trace class, then Trace DM ¼ 1:

Proof. It is easy to see that the proof for term (1) is completely parallel to the case of
the bidisk in [GY]. But term (2) was not mentioned in [GY]. Here we verify term (2).

In fact, if there is an inner function Z such that M ¼ ZH2ðDdÞ; then PM ¼ MZM
�
Z ;

and hence DM ¼ Z#ZX0: To verify the opposite direction, notice that there exist a
sequence ffngCM such that

DM ¼
X

n

fn#fn: ðSOTÞ

By (2.2) and (2.3)

DMðlÞ ¼ jjPMkljj2 ¼ /DMKl;KlS ¼
X

n

jfnðlÞj
2p1;

and by the term (1),
P

n jfnðzÞj
2 ¼ 1 on Td : This implies that

TraceðDMÞ ¼
X

n

jjfnjj
2 ¼ 1

ð2pÞd

X
n

Z
Td

jfnðzÞj
2
dy1?dyd ¼ 1:

This shows that DM is trace class. Similarly to the proof of Corollary 3.4 in [DY], we
have that

S ¼ M~ðz1M þ?þ zdMÞaf0g

and it is easy to check that every function from S is eigenvector of DM with
the corresponding eigenvalue 1: Taking a function Z from S with jjZjj ¼ 1; then
DM � Z#ZX0: Note that

TraceðDM � Z#ZÞ ¼ 0

and hence DM ¼ Z#Z: By Proposition 2.4(1), Z is an inner function. Applying
Proposition 2.1 we see M ¼ ZH2ðDdÞ: Term (3) was proved in the bidisk case in
[GY]. In fact, term (3) directly comes from (1). To see this, let mn; n ¼ 1; 2;y be
eigenvalues of DM counting multiplicity, and fn be the corresponding unital

ARTICLE IN PRESS
K. Guo / Journal of Functional Analysis 213 (2004) 380–411 385



eigenvectors. Then DM ¼
P

n mnfn#fn: By term (1) and (2.3), we have

Trace DM ¼
X

n

mn ¼ 1

ð2pÞd

X
n

mn

Z
Td

jfnðzÞj
2
dy1?dyd

¼ 1

ð2pÞd

Z
Td

DMðzÞdy1?dyd ¼ 1:

Now turn to general isometric Hilbert modules. Let T ¼ ðT1;y;TdÞ be a tuple of
commuting operators acting on a Hilbert spaceH: Then, one naturally makesH into
a Hilbert module over the polynomial ring C½z1;y; zd �: The C½z1;y; zd �-module
structure is define by

p � x ¼ pðT1;y;TdÞx; pAC½z1;y; zd �; xAH:

We say that two modules H1 and H2 over the polynomial ring C½z1;y; zd � are
unitarily equivalent if there is a unitary module map U from H1 onto H2; that is,
U :H1-H2 is a unitary operator, and Up � f ¼ p � Uf for any polynomial p and
fAH1: By an isometric Hilbert module H over C½z1;y; zd � we mean H’s canonical

operators T1;y;Td are isometries. Then each submodules of H2ðDdÞ is an isometric
Hilbert modules. As done for Hardy submodules, by following (2.4) we define the
defect operator DH of an isometric module H as:

DH ¼
X

0papð1;y;1Þ
ð�1ÞjajTaT�a; ð2:6Þ

and define the defect index of the module H as the rank of the defect operator DH : It
follows that if two isometric modules H1 and H2 are unitarily equivalent, then their
defect operators are unitarily equivalent, and hence two modules have the same
defect index. The next examples will show that defect index play a role of multiplicity
of an isometric module in an appropriate sense.

Example 1. Let H be an isometric module over C½z� whose canonical operator S is a
pure isometry (that is, S satisfies S�n-0 in the strong operator topology). Then by
the Von Neumann–Wold Decomposition theorem, H is unitarily equivalent to

H2ðDÞ#Cn; where n ¼ rankðI � SS�Þ is the defect index of H:

Example 2. Let H be an isometric module over C½z1; z2� whose canonical operators
S ¼ ðS1;S2Þ are pure isometries. By [AEM], DHX0 if and only if H is unitarily

equivalent to H2ðD2Þ#Cn; where n ¼ rankðDHÞ is the defect index of H:

Let us make a simple comment about defect indices of Hardy submodules. By

Proposition 2.4(1), a submodule M of H2ðDdÞ has defect index 1 if and only if
DMX0; if and only if M ¼ ZH2ðDdÞ for some inner function Z: For a submodule M
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of H2ðDdÞ; since

S ¼ M~ðz1M þ?þ zdMÞaf0g

and every function from S is eigenvector of DM with the corresponding eigenvalue 1;
combining this fact with Proposition 2.4(3) implies that there is not a submodule M

whose defect index is 2: Recently, Yang studied a class of submodules over the
bidisk, the so-called Mq-type submodules [Ya4]. A Mq-type submodule M is

M ¼ Z1ðzÞH2ðD2Þ þ Z2ðwÞðD2Þ;

where Z1 and Z2 are nontrivial inner functions. It is shown that such a M is closed,
and its defect operator is

DM ¼ Z1ðzÞ#Z2ðzÞ þ Z2ðwÞ#Z2ðwÞ � Z1ðzÞZ2ðwÞ#Z1ðzÞZ2ðwÞ;

and hence Mq-type submodules have defect index 3 (see [Ya4]). Moreover, a careful

verification shows that the submodule ½z � w; zw� generated by z � w and zw on the
bidisk has defect index 5.
The following example will show that defect operator capture key information

about operator theory.

Example 3. Let H be an isometric module over C½z1;y; zd � ðdX2Þ with canonical
operators S1;y;Sd : Assume some Si has finite multiplicity rankðI � SiS

�
i ÞoN:

Then there is no submodule M of H2ðDdÞ such that M is unitarily equivalent to H:
To show this, we may assume rankðI � SdS�

dÞoN; and write P for I � SdS�
d : Then

DH ¼
X

0papð1;y;1Þ
ð�1Þjaj SaS�a ¼

X
0pa0pð1;y;1Þ

ð�1Þja
0 j
%
Sa0P

%
S�a0 ;

where a0 ¼ ða1;y; ad�1Þ and
%
S ¼ ðS1;y;Sd�1Þ: We thus have

Trace DH ¼ 0:

From Proposition 2.4(3), there is no submodule M of H2ðDdÞ such that M is
unitarily equivalent to H:
Example 3 also shows that each Mzi

; restricted on a submodule M; has infinite
multiplicity. This fact also was noticed by Fang [Fa]. We also find that study for
defect operators of isometric modules is relevant in the theory of operator models in
the polydisk [AEM,CV]. &

2.2. Finite defect problem

Beurling’s theorem shows that each submodule of H2ðDÞ has defect index 1: To
understand higher dimensional submodules better, we are naturally led to ask when
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a submodule of H2ðDdÞ ðdX2Þ has finite defect, that is, when the defect operator
DM has finite rank for a higher dimensional submodule M: This is the so-called
‘‘Finite defect problem’’. Clearly, if M is a finite codimensional submodule, then M

has finite defect. From this it is deduced that if M is unitarily equivalent to a finite
codimensional submodule, then M has finite defect. Notice that if M is unitarily
equivalent to a finite codimensional submodule, say, N; then by [ACD], there is an
inner function Z such that M ¼ ZN: However, as shown by Mq-type submodules,

this never contain all submodules with finite defect indices. Moreover, In [GY], it

was shown that for a homogenous submodule M of H2ðD2Þ (i.e. a submodule
generated by homogeneous polynomials), M has finite defect if and only if there are
a monomial zs

1z
t
2 and a finite codimensional submodule N such thatM ¼ zs

1z
t
2N; that

is, M is unitarily equivalent to a finite codimensional submodule.
Combining the above facts and the next example in dimension 3 will show that the

study for defect operators depends strongly on the dimension of the polydisk.

Example 4. Consider the homogeneous submodule M ¼ ½z2; z3� of the Hardy
module H2ðD3Þ generated by z2; z3: It is not difficult to verify that the reproducing
kernel of the submodule M is

KM
l ðzÞ ¼ 1

ð1� l1z1Þð1� l2z2Þð1� l3z3Þ
� 1

ð1� l1z1Þ
:

By (2.5) we have

DMKlðzÞ ¼ l2z2 þ l3z3 � l2l3z2z3

¼ ½ðz2#z2 þ z3#z3 � z2z3#z2z3ÞKl�ðzÞ;

and hence

DM ¼ z2#z2 þ z3#z3 � z2z3#z2z3:

However, by Theorem 3.1 in [Guo2] the submodule M ¼ ½z2; z3� is not unitarily
equivalent to any finite codimensional submodule.
From the above several observations, the answer to the following question may be

difficult.

Finite defect problem. Can one completely characterize those higher dimensional
submodules which have finite defect indices?

In the dimension d ¼ 2; we can completely characterize those submodules
generated by polynomials that have finite defect indices.
For this we need some preliminaries.
Let I be an ideal of the polynomials ring C½z1;y; zd �: Since the polynomial ring

C½z1;y; zd � is Noetherian [ZS], the ideal I is generated by finitely many polynomials.
This implies that I has a greatest common divisor p; and so, I can be uniquely

ARTICLE IN PRESS
K. Guo / Journal of Functional Analysis 213 (2004) 380–411388



written as I ¼ pL; which is called the Beurling form of I (cf. [Guo2]). For a

polynomial p with ZðpÞ-Dda|; we decompose p ¼ p1p2 such that the zero set

of each prime factor of p1 meets D
d nontrivially, and Zðp2Þ-Dn ¼ |: Define LðpÞ

on C½z1;y; zd � as follows: LðpÞ ¼ 1 if ZðpÞ-Dd ¼ |; LðpÞ ¼ p1 if ZðpÞ-Dda|:
Set

Vd ¼ fzACd : jzij41; for i ¼ 1; 2;y; dg:

For an ideal I of the polynomial ring C½z1;y; zd �; as usual, we write ½I � for the
submodule generated by I ; that is, ½I � ¼ I :

Theorem 2.5. Let I be an ideal of the polynomial ring C½z1; z2�; and let I ¼ pL be its

Beurling form. Then ½I �; as a submodule of H2ðD2Þ; has finite defect index if and only if

ZðLðpÞÞ-V2 ¼ |; and in this case there are a rational inner function Z and a finite

codimensional submodule N such that ½I � ¼ ZN:

Theorem 2.5 comes from the next Theorem 2.6 whose proof is long. We will place
the proof of Theorem 2.6 at the end of this section.

Theorem 2.6. Let I be an ideal of C½z1;y; zd �; and let I ¼ pL be its Beurling form. If

½I � has finite defect, then there exists a polynomial r satisfying ZðrÞ-Dd ¼ | such that

jpj ¼ jrj on Td :

Let r be polynomial in Theorem 2.6 satisfying ZðrÞ-Dd ¼ |: Then by [Guo2,

Proposition 2.9], the principal submodule ½r� generated by r equals H2ðDdÞ; and
therefore, r is outer in Rudin’s sense [Ru1]. Consequently, the condition jpj ¼ jrj on
Td implies that p=r is a rational inner function. Note that r is uniquely determined by
p except for a modular 1 constant because outer function r is uniquely determined

by the restriction of jrj to Td :Writing Zp for the rational inner function p=r; then we

have

Corollary 2.7. Let I be an ideal of C½z1;y; zd �; and let I ¼ pL be its Beurling form. If

½I � has finite defect, then ½I � ¼ Zp½L�:

Recall a theorem, due to Rudin [Ru1, Theorem 5.2.6]. This theorem says that

a polynomials p is the numerator of a rational inner function on Dd if and only
if p has no zero in Vd : Combining Rudin’s theorem, Theorem 2.6 and fact that

½q� ¼ H2ðDdÞ if a polynomial q satisfies ZðqÞ-Dd ¼ |; we have

Corollary 2.8. Let I be an ideal of C½z1;y; zd �; and let I ¼ pL be its Beurling form. If

ZðLðpÞÞ-Vda|; then ½I � is of infinite defect.
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By Corollary 2.8 we can obtain the following.

Corollary 2.9. Let p is a polynomial. Then the principal submodule ½p� has finite defect

if and only if ZðLðpÞÞ-Vd ¼ |; and in this case there is a rational inner function Zp

such that ½p� ¼ ZpH2ðDdÞ:

Proof. The necessariness is from Corollary 2.8. To achieve the opposite direction,

assume that ZðLðpÞÞ-Vd ¼ |: Then by Rudin’s theorem mentioned above, there is

a polynomial r satisfying ZðrÞ-Dd ¼ | such that LðpÞ=r is a rational inner function.
It follows that

½p� ¼ LðpÞ
r

½r� ¼ ZpH2ðDdÞ:

This gives the desired conclusion. &

The proof of Theorem 2.5. If ½I � has finite defect, then applying Corollary 2.8 gives
ZðLðpÞÞ-V2 ¼ |: To reach at the opposite direction, by Rudin’s theorem

mentioned above, there is a polynomial r satisfying ZðrÞ-D2 ¼ | such that
LðpÞ=r is a rational inner function. Since the greatest common divisor of L is 1; and
hence by [Ya1], L is a finite codimensional ideal of C½z1; z2� and it follows that the
submodule ½L� is finite codimensional. Note that ½rL� ¼ ½L� by [Ge]. This means that

½I � ¼ LðpÞ
r

½rL� ¼ Zp½L�;

and hence ½I � is unitarily equivalent to the finite codimensional submodule ½L�; and
so, ½I � has finite defect.
Let us see an example.

Example 5. We consider the submodule ½z1 þ z2 þ a� of H2ðD2Þ; where a is constant.
If jajX2; then by [Ge],

½z1 þ z2 þ a� ¼ H2ðD2Þ;

and hence in this case, the submodule has defect index 1: If jajo2; then
Zðz1 þ z2 þ aÞ-V2a|; and hence by Corollary 2.8, the submodule ½z1 þ z2 þ a�
has infinite defect.

Now turning to the proof of Theorem 2.6 we need two lemmas. The next lemma
comes from [Guo2].

Lemma 2.10. Let f ¼ p=q be a rational function, where p and q are without common

factors. If f is analytic on Dd ; then ZðqÞ-Dd ¼ |:
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The following lemma is key for the proof of Theorem 2.6.

Lemma 2.11. Let I be an ideal of C½z1;y; zd �: If the submodule ½I � has finite defect

index l; then there are polynomials p1;y; ps; q1;y; qt (here s þ t ¼ l) and r satisfying

the greatest common divisor

GCDðp1;y; ps q1;y; qt; rÞ ¼ 1

and ZðrÞ-Dd ¼ | such that

1. the rational functions p1=r;y; ps=r; q1=r;y; qt=r belong to ½I �; and

fp1;y; ps; q1;y; qtg is a generating set of ½I �;
2. D½I � ¼

Ps
i¼1

pi

r
#pi

r
�
Pt

j¼1
qj

r
#qj

r
;

3.
Ps

i¼1 jpiðzÞj2 �
Pt

j¼1 jqjðzÞj2 ¼ jrðzÞj2 for zATd :

Proof. Since D½I � is adjoint, there exist mutually orthogonal vectors f1;f2;y;fs

ðsX1Þ; c1;c2;y;ct ðtX0Þ in D½I �H
2ðDdÞ (here s þ t ¼ l) such that

D½I � ¼ ðf1#f1 þ f2#f2 þ?fs#fsÞ � ðc1#c1 þ c2#c2 þ?ct#ctÞ:

By (2.5), one sees

P½I �Kl ¼
Xs

i¼1
fiðlÞfi �

Xt

j¼1
cjðlÞcj

" #
Kl: ð2:7Þ

This implies that the vectors ff1;f2;y;fs;c1;c2;y;ctg is a generating set of ½I �:
For any fAH2ðDdÞ; consider the densely defined operator Mf in H2ðDdÞ whose
domain of definition contains C½z1;y; zd � by Mfh ¼ fh: From [Ru5], we see that

M�
f is densely defined, and

DomðM�
fÞ+C½z1;y; zd �:

According to (2.7), for any polynomial h and each lADd the following holds

P½I � �
Xs

i¼1
Mfi

M�
fi
�
Xt

j¼1
Mcj

M�
cj

 !" #
hðlÞ

¼ P½I � �
Xs

i¼1
Mfi

M�
fi
�
Xt

j¼1
Mcj

M�
cj

 !" #
h;Kl

* +

¼ h;P½I �Kl �
Xs

i¼1
fiðlÞfi �

Xt

j¼1
cjðlÞcj

" #
Kl

* +

¼ 0:
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It follows that

P½I �h ¼
Xs

i¼1
Mfi

M�
fi
�
Xt

j¼1
Mcj

M�
cj

 !
h

for any polynomial h: It is easy to see that for each fAH2ðDdÞ and every polynomial
p; M�

fp also is a polynomial since H2ðDdÞ enjoys an orthonormal basis fzagaAZd
þ
:

Picking polynomials q1;y; qsþt in I ; then

Xs

i¼1
Mfi

M�
fi

qk �
Xt

j¼1
Mcj

M�
cj

qk ¼ qk; k ¼ 1;y; s þ t: ð2:8Þ

Claim. There exist polynomials q1;y; qsþt in I such that

r ¼

M�
f1

q1 y M�
fs

q1 M�
c1

q1 y M�
ct

q1

M�
f1

q2 y M�
fs

q2 M�
c1

q2 y M�
ct

q2

^ ^ ^ ^ ^ ^

M�
f1

qsþt y M�
fs

qsþt M�
c1

qsþt y M�
ct

qsþt

���������

���������
c0; ð2:9Þ

that is, rðzÞ is a nonzero polynomial. To get a contradiction assume that the above

determinant rðzÞ � 0 for any polynomials q1;y; qsþt in I : Then we have rð0Þ ¼ 0:
Since

rð0Þ ¼

/q1;f1S y /q1;fsS /q1;c1S y /q1;ctS

/q2;f1S y /q2;fsS /q2;c1S y /q2;ctS

^ ^ ^ ^ ^ ^

/qsþt;f1S y /qsþt;fsS /qsþt;c1S y /qsþt;ctS

���������

���������
¼ 0; ð2:10Þ

and all fi and cj are in ½I �; there are polynomial sequences in I ; fq
ðnÞ
1 g; y; fq

ðnÞ
s g and

fp
ðnÞ
1 g; y; fp

ðnÞ
t g such that q

ðnÞ
i converge to fi; and p

ðnÞ
j converge to cj in the norm of

H2ðDdÞ: Noticing that vectors f1;f2;y;fs;c1;c2;y;ct are mutually orthogonal,
this yields the following:

jjf1jj
2?jjfsjj

2jjc1jj
2?jjctjj

2 ¼ 0:

This contradiction implies that the Claim is true.
By the Claim there exist polynomials q1;y; qsþt in I such that the determinant

rðzÞc0 in (2.9). Noticing that rðzÞ is a nonzero polynomial, and applying Cramer’s
rule to solve the corresponding s þ t equations (2.8), then there exist polynomials
q1; r1; q2; r2;y; qsþt; rsþt satisfying GCDðqj; rjÞ ¼ 1 for j ¼ 1;y; s þ t such that

f1 ¼ q1=r1;y;fs ¼ qs=rs; c1 ¼ qsþ1=rsþ1;y;ct ¼ qsþt=rsþt:
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Since all fi and cj are analytic on Dd ; applying Lemma 2.10 gives

ZðrjÞ-Dd ¼ |; j ¼ 1; 2;y; s þ t:

Set

q0
j ¼ qjr1?rj�1rjþ1?rsþt; j ¼ 1; 2;y; s þ t; r0 ¼ r1r2?rsþt:

Let q ¼ GCDðq0
1; q0

2;y; q0
sþt; r0Þ and

p1 ¼ q0
1=q; p2 ¼ q0

2=q;y; psþt ¼ q0
sþt=q; r ¼ r0=q:

Then polynomials p1; p2;y; ; psþt; r satisfy

GCDðp1; p2;y; psþt; rÞ ¼ 1

and

f1 ¼ p1=r;y;fs ¼ ps=r; c1 ¼ psþ1=r;y;ct ¼ psþt=r:

Since fp1=r;y; psþt=rg is a generating set of ½I �; by [Guo2, Proposition 2.9],
this insures that fp1;y; psþtg is a generating set of ½I �: Furthermore, from
Proposition 2.4(1) and (2.3) we have

Xs

i¼1
jpiðzÞj2 �

Xt

j¼1
jpsþjðzÞj2 ¼ jrðzÞj2; zATd :

This completes the proof. &

The proof of Theorem 2.6. We use Lemma 2.11 to complete the proof of the theorem.
Considering Lemma 2.11(3)

Xs

i¼1
jpiðzÞj2 �

Xt

j¼1
jqjðzÞj2 ¼ jrðzÞj2; zATd ; ð2:11Þ

we take a large natural number N satisfying that piðzÞzN ; qjðzÞzN ; rðzÞzN become

polynomial for i ¼ 1; 2;y; s; j ¼ 1; 2;y; t; where zN ¼ zN
1 zN
2 ?zN

d :Multiplying two

side of (2.11) by zN gives

Xs

i¼1
piðzÞpiðzÞzN �

Xt

j¼1
qjðzÞqjðzÞzN ¼ rðzÞrðzÞzN : ð2:12Þ

Setting

q ¼ GCDðp1; p2;y; ps; q1; q2;y; qtÞ; ð2:13Þ
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Lemma 2.11 says GCDðq; rÞ ¼ 1: Combining this fact with the equality (2.12) shows
that there is a polynomial h such that

rðzÞzN ¼ qðzÞhðzÞ;

and hence the following is true

rðzÞ ¼ zNqðzÞ hðzÞ; zATd :

From the above equality we see that ðN;N;y;NÞ can be written as

ðN;N;y;NÞ ¼ ðk1; k2;y; kdÞ þ ðk0
1; k0

2;y; k0
dÞ

such that FðzÞ ¼ zk1
1 zk2

2 ?zkd

d qðzÞ and GðzÞ ¼ z
k0
1

1 z
k0
2

2 ?z
k0

d

d hðzÞ become polynomials.
By ZðrÞ-Dd ¼ |; we see

ZðFÞ-Dd ¼ |: ð2:14Þ

Let I ¼ pL be the Beurling form of the ideal I : Decompose p ¼ p0p00 such that the

zero set of each prime factor of p0 meets Dd nontrivially, and Zðp00Þ-Dd ¼ |: Then
by [DPSY] or [Guo2]

½I �-C½z1;y; zd �D½p0�-C½z1;y; zd � ¼ p0 C½z1;y; zd �:

From the above inclusion and (2.13), there exists a polynomial p000 such that
q ¼ p0p000: Since

FðzÞ ¼ zk1
1 zk2

2 ?zkd

d qðzÞ ¼ zk1
1 zk2

2 ?zkd

d p0ðzÞp000ðzÞ

is a polynomial, this means that ðk1; k2;y; kdÞ can be written as

ðk1; k2;y; kdÞ ¼ ði1; i2;y; idÞ þ ð j1; j2;y; jdÞ

such that HðzÞ ¼ zi1
1 zi2
2?zid

d p0ðzÞ and QðzÞ ¼ z
j1
1 z

j2
2 ?z

jd
d p000ðzÞ become polynomials.

From (2.14), we have

ZðHÞ-Dd ¼ |:

Setting

RðzÞ ¼ HðzÞp00ðzÞ ¼ zi1
1 zi2
2?zid

d p0ðzÞp00ðzÞ;

then RðzÞ is a polynomial satisfying ZðRÞ-Dd ¼ |: Note that on the distinguished
boundary Td of Dd ; we have jpðzÞj ¼ jRðzÞj; and the theorem follows. &
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3. Defect operators of Hardy submodules over the unit ball

This section will study the defect operators and the defect functions for Hardy

submodules over the unit ball Bd of C
d : One will find that structures of submodules

is highly distinct from the case of the polydisk. Furthermore, in Section 3.2, it is
shown that a submodule generated by polynomials has finite defect if and only if
such a submodule has finite codimension. The proof of the result is based on the
theories of analytic variety and algebraic variety.

3.1. Preliminaries

We begin by recalling some notions. The Hardy space H2ðBdÞ consists of analytic
functions f in the unit ball Bd satisfying

jj f jj2 ¼ sup
0oro1

Z
@Bd

j f ðrxÞj2 dsoN;

where ds is the natural rotation-invariant probability measure on @Bd : As one

knows, each function f in H2ðBdÞ has a non-tangential limit f ðxÞ at almost every
point xA@Bd with respect to ds: Furthermore,

jj f jj2 ¼
Z
@Bd

j f ðxÞj2 ds:

The Hardy space H2ðBdÞ is a reproducing function space. The reproducing kernel
and the normalized reproducing kernel are, respectively,

KlðzÞ ¼
1

ð1� l1z1 �?� ldzdÞd
; kl ¼

Kl

jjKljj
: ð3:1Þ

Since H2ðBdÞ is invariant under multiplication by polynomials, the space H2ðBdÞ
naturally admits a C½z1;y; zd �-module structure. Given a submodule M of H2ðBdÞ;
as done in Section 2, we introduce the defect function DMðlÞ and the defect operator
DM for the submodule M: The defect function DMðlÞ is defined by

DMðlÞ ¼ jjKM
l jj2

jjKljj2
¼ jjPMkljj2; ð3:2Þ

where KM
l ¼ PMKl be the reproducing kernel of the submodule M; PM is the

orthogonal projection from H2ðBdÞ onto M: From the definition of the defect
function DM ; it is easy to check that there exists a unique bounded linear operator,
denoted by DM ; such that

DMðlÞ ¼ jjKM
l jj2

jjKljj2
¼ 1�

Xd

j¼1
jljj2

" #d

jjPMKljj2 ¼ /DMKl;KlS; ð3:3Þ
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where

DM ¼ PM þ
Xd

k¼1
ð�1Þk d!

k!ðd � kÞ!
X

i1;i2;y;ikAf1;2;y;dg
Mzi1

zi2
?zik

PMM�
zi1

zi2
?zik

:

We call DM defect operator of the submodule M; and rankDM defect index of M:
The reader easily verifies that the defect operator DM and the projection PM is
connected by

PMKl ¼ Kl DMKl; lABd : ð3:4Þ

In the dimension d ¼ 2; the defect operator of a submodule M is

DM ¼PM � 2ðMz1PMM�
z1
þ Mz2PMM�

z2
Þ þ 2Mz1z2PMM�

z1z2

þ Mz2
1
PMM�

z2
1
þ Mz2

2
PMM�

z2
2
:

As the same in Sections 2, submodule is uniquely determined by its defect function,
and hence is uniquely determined by its defect operator.

Proposition 3.1. For submodules M and N; if DMðlÞ ¼ DNðlÞ; 8lABd ; then M ¼ N:
Therefore, if DM ¼ DN ; then M ¼ N:

However, unlike Hardy-submodules on the polydisk, in general, the defect

functions for submodules of H2ðBdÞ need not be subharmonic. Let us check an
example.

Example 6. Set

H2
0 ¼ f fAH2ðB2Þ : f ð0; 0Þ ¼ 0g:

Then an easy computing shows that the defect function DðzÞ for the submoduleH2
0 is

given by

DðzÞ ¼ 1� ð1� jz1j2 � jz2j2Þ2:

Since

@2DðzÞ
@z1@z1

þ @2DðzÞ
@z2@z2

¼ 4� 6ðjz1j2 þ jz2j2Þ;

applying [Kr, Corollary 2.1.12] shows that DðzÞ is not subharmonic.

Moreover, similarly to Proposition 2.4, we have
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Proposition 3.2. Let M be a submodule of H2ðBdÞ: Then

1. for almost all zA@Bd with respect to the measure ds; DMðlÞ-1 as l-z non-

tangentially;
2. the defect operator DMX0 if and only if there is an inner function Z such that

M ¼ ZH2ðDdÞ;
3. if DM is in trace class, then Trace DM ¼ 1:

Proof. The proof of term (1) is completely similar to that of Theorem 2.1 in [GY].
We omit the details. The proofs of terms (2) and (3) are parallel to (2) and (3) of
Proposition 2.4. &

Remark. Concerning the symmetric Fock space H2
d over the unit ball Bd considered

by Arveson [Arv1,Arv2], an analogous result to Proposition 3.2(1) was presented in
[GRS] whose proof is completely different from Proposition 3.2(1).

For two submodules M and N of H2ðBdÞ; we call that they are unitarily
equivalent if there exists a unitary operator U :M-N such that Upf ¼ pUf for any
polynomial p and fAM: It is easy to see that ifM and N is unitarily equivalent, then
their defect operators are unitarily equivalent, and hence M and N have the same
defect.

3.2. Finite defect problem

As the same in Section 2, we are naturally led to study submodules with finite

defect indices. By identity (3.4), the range DMH2ðBdÞ is a generating set of M; and it
follows that ifM has finite defect, thenM must be finitely generated. Clearly, ifM is

of finite codimension in H2ðBdÞ; then M has finite defect, and therefore, if M is
unitarily equivalent to a finite codimensional submodule, then M has finite defect.
Using function theory from [Ru2,Ru3], it is easy to prove that if M is unitarily
equivalent to a finite codimensional submodule, say, N; then there is an inner
function Z such that M ¼ ZN: Concerning inner functions on the unit ball, Rudin
posed the existence problem of inner functions over the unit ball in the sixties: Do
there exist nonconstant inner functions in HNðBdÞ [Ru2]? This problem was
affirmatively solved in 1982 by Aleksandrov [Ru3].
Before continuing let us see an example.

Example 7. Suppose M is homogeneous, that is, M is generated by homogeneous

polynomials. Then M has finite defect only if M is of finite codimension in H2ðBdÞ:
In fact, if M is homogeneous, then it is not difficult to check that M has
an orthonormal basis consisting of homogeneous polynomials, and hence PM

maps polynomials to polynomials. Also, note that for any fAHNðBdÞ; M�
f maps

polynomials to polynomials. This shows that the defect operator DM maps
polynomials to polynomials. If DM is of finite rank l; then there exist polynomials
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p1;y; pl and real numbers a1;y; al such that

DM ¼
Xl

k¼1
akpk#pk;

and by (3.4) we have that

PM ¼
Xl

k¼1
akMpk

M�
pk
:

This gives

PH2ðBd Þ~M ¼ I �
Xl

k¼1
akMpk

M�
pk
:

Combining (3.2) and Proposition 3.2(1) yields the following

1�
Xl

k¼1
akjpkðxÞj2 ¼ 0

for any xA@Bd : According to the Coburn’s theorem [Cob], the projection PH2ðBd Þ~M

is compact and hence M is finite codimensional in H2ðBdÞ: Recall that the Coburn’s
theorem says the following: Let C�½Mz1 ;y;Mzd

� be the C�-algebra generated by the

operators Mz1 ;y;Mzd
on H2ðBdÞ; then C�½Mz1 ;y;Mzd

� contains all compact
operators K; and there exists a �-isomorphism

C�½Mz1 ;y;Mzd
�=KDCð@BdÞ;

where the correspondence is given by Mzi
þK/zi for i ¼ 1;y; d:

Notice that this example stands in rather stark contrast with the case of the Hardy

module H2ðDdÞ: Indeed, we conjecture that the answer to the following problem
is yes.

Conjecture. Let M be a nonzero submodule of H2ðBdÞ: Then M has finite defect only

if there are a finite codimensional submodule N; and an inner function Z such that

M ¼ ZN:

If we assume this conjecture, then the conjecture implies the following: if I is an
ideal of C½z1;y; zd �; and the submodule ½I � has finite defect, then ½I � is finite
codimensional in H2ðBdÞ: To see this, by the conjecture, ½I � is unitarily equivalent to
a finite codimensional submodule N: Since each finite codimensional submodule is
generated by polynomials, from [Guo2, Theorem 5.2] one has ½I � ¼ N:
Actually, we will prove this result.

ARTICLE IN PRESS
K. Guo / Journal of Functional Analysis 213 (2004) 380–411398



Theorem 3.3. Let I an ideal of C½z1;y; zd �: If ½I � has finite defect, then ½I � is finite

codimensional in H2ðBdÞ:

For this theorem, we will need several propositions and lemmas.

Lemma 3.4. Let f ¼ p=q be a rational function, where p and q are without common

factors. If f is analytic on Bd ; then ZðqÞ-Bd ¼ |:

Proof. Similarly to the proof of [Guo2, Lemma 3.2]. &

Lemma 3.5. Let q be a polynomial, and ZðqÞ-Bd ¼ |: Then ½q� ¼ H2ðBdÞ:

Proof. See the Remark following Proposition 2.9 in [Guo2]. &

Let f be analytic on Bd : For each xA@Bd ; the slice function fx is defined by

fxðzÞ ¼ f ðzxÞ; 8zAD: The same as the proof of Lemma 3.7 in [Guo2] we have

Lemma 3.6. Let f be analytic on Bd : If for almost all xA@Bd ; the slice function

fxðzÞ ¼ f ðzxÞ is a polynomial, then f is a polynomial.

We will need a result which comes from [Ru1, Theorem 14.3.3].

Lemma 3.7. Assume dX2: Let O be a bounded domain in Cd ; and let AðOÞ ¼
CðOÞ-HolðOÞ be the so-called O-algebra. If fAAðOÞ; gAAðOÞ; and j f ðlÞjpjgðlÞj for

each boundary point l of O; then j f ðzÞjpjgðzÞj for every zAO:

Proposition 3.8. Let I be an ideal of C½z1;y; zd �; and ½I � have finite defect index l:
Then there exist polynomials p1;y; ps; q1;y; qt (here s þ t ¼ l) and r satisfying the

greatest common divisor

GCDðp1;y; ps; q1;y; qtÞ ¼ 1; ð3:5Þ

and ZðrÞ-Bd ¼ | such that

1. the rational functions p1=r;y; ps=r; q1=r;y; qt=r belong to ½I �; and

f p1;y; ps; q1;y; qtg is a generating set of ½I �;
2. D½I � ¼

Ps
i¼1

pi

r
#pi

r
�
Pt

j¼1
qj

r
#qj

r
;

3.
Ps

i¼1 jpiðxÞj2 �
Pt

j¼1 jqjðxÞj2 ¼ jrðxÞj2; xA@Bd :

Proof. Combining Lemmas 3.4, 3.5 and the proof of Lemma 2.11 shows that
Proposition 3.8(1), (2), (3) are true, and

GCDðp1;y; ps; q1;y; qt; rÞ ¼ 1; ZðrÞ-Bd ¼ |: ð3:6Þ
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Below, we will combine (3.6) and Proposition 3.8(3) to prove (3.5). Since Proposition
3.8(3) will be used several times, it is singled out here,

Xs

i¼1
jpiðxÞj2 �

Xt

j¼1
jqjðxÞj2 ¼ jrðxÞj2; xA@Bd : ð3:7Þ

To prove (3.5), let

p ¼ GCDðp1;y; ps; q1;y; qtÞ

and

p1 ¼ pp0
1;y; ps ¼ pp0

s; q1 ¼ pq0
1;y; qt ¼ pq0

t:

By (3.7), there exists a positive constant g such that

jrðxÞj2pg jpðxÞj2; 8xA@Bd :

Combining this fact with ZðrÞ-Bd ¼ |; and applying Lemma 3.7 we have

ZðpÞ-Bd ¼ |:

For each xA@Bd ; by (3.7)

jpxðeiyÞj2
Xs

i¼1
jp0

ixðeiyÞj2 �
Xt

j¼1
jq0

jxðeiyÞj2
" #

¼ jrxðeiyÞj2: ð3:8Þ

Set N ¼ maxfdeg p1;y; deg ps; deg q1y; deg qt; deg rg; where deg h denotes the
homogeneous degree of a polynomial h: Then we have

pxðeiyÞpxðeiyÞeiNy
Xs

i¼1
p0

ixðeiyÞp0
ixðeiyÞeiNy �

Xt

j¼1
q0

jxðeiyÞq0
jxðeiyÞeiNy

" #

¼ rxðeiyÞrxðeiyÞe2iNy: ð3:9Þ

Since polynomials pxðzÞ; rxðzÞ in the variable z have no zero point on the unit disk D;

they are outer functions in the Hardy space H2ðDÞ:Note that pxðeiyÞeiNy; p0
ixðeiyÞeiNy;

q0
jxðeiyÞeiNy; rxðeiyÞe2iNy are analytic polynomials in eiy for each xA@Bd : Therefore,

for each xA@Bd ; the outer factor of the right side in (3.9) equals r2xðeiyÞ; and the outer
factor of the left side equals p2xðeiyÞ � some polynomial. By the uniqueness of inner–
outer decomposition of functions in H2ðDÞ [Gar], the slice function r2xðeiyÞ=p2xðeiyÞ is
a polynomial for each xA@Bd : By Lemma 3.6, the function r2=p2 is a polynomial,
and hence

p2 ¼ GCDðp2; r2Þ:
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Since GCDðp; rÞ ¼ 1; this implies that p2 is a constant, and hence p is a constant. This
shows that (3.5) is true. The proposition follows. &

Proposition 3.9. Let I be an ideal of the polynomial ring C½z1;y; zd �: If ½I � has finite

defect, then the ideal I has only finitely many zeros in Bd ; that is, ZðIÞ-Bd is a finite

set.

For this proposition we need some preliminaries involving the theories of analytic
variety and algebraic variety.

An analytic variety in Cd is a closed set VCCd with the following property: for
each zAV correspond analytic functions f1;y; fr; defined on some neighborhood O

of z such that

V-O ¼ Zð f1Þ-?-Zð frÞ:

If, in addition, these r functions can be so chosen that their Jacobian matrix has rank
r at z; then z is called a regular point of V at which V has complex dimension d � r:
In symbols, dimzV ¼ d � r: Notice that the complex dimension of V at a regular
point is independent of choices of functions. If dimzV ¼ k at every regular point
of V ; then V is said to have pure dimension k: An analytic variety of pure dimension
1 is called an analytic curve. More generally, one defines the complex dimension
of V as

dimV ¼ supdimzV ;

where the supremum is taken over all regular points of V (cf. [Her]).

An algebraic variety V in Cd is the intersection of the zero-sets of finitely many
polynomials. Since each ideal of C½z1;y; zd � is generated by finitely many
polynomials, algebraic varieties are zero sets of ideals of C½z1;y; zd �: A algebraic
variety V is called irreducible if V ¼ V1,V2 implies V ¼ V1 or V ¼ V2; where V1
and V2 are algebraic varieties. A basic result from algebraic geometry [Ken] states
that each algebraic variety can be uniquely decomposed as a finite irredundant union
of irreducible varieties. Similarly to analytic variety, one can define regular points,
dimension for an algebraic variety. We refer the reader to [Ken, Chapter IV] for
details. An algebraic variety of pure dimension 1 is called an algebraic curve.

Lemma 3.10. Let S be an irreducible algebraic curve, and let S� be the set of all regular

points of S: Then S� is connected.

This lemma may be known by many algebraic geometricians, but we cannot locate
a reference recording this result.

Proof. From [Her, p. 108, Corollary 1], for each irreducible analytic variety V in Cd ;
V �; the set of all regular points of V ; is connected. Therefore, it is sufficient to show

that S; as an analytic curve in Cd ; is irreducible. To get a contradiction we assume
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that S is reducible. Then by [Her, p. 111, Theorem 8], S can be decomposed as

S ¼ S1,S2,S3,y;

where each Si is irreducible analytic variety in Cd ; and SiaS: Since S has pure
dimension 1; by [Her, p.109, Corollary 3], every Si has pure dimension p1: Clearly,
there exists at least one Sj such that Sj has pure dimension 1: Applying [Ru4,

Theorem 2] to this Sj shows that Sj is an irreducible algebraic curve. Since S be an

irreducible algebraic curve, this implies Sj ¼ S: This contradiction shows that S is an

irreducible analytic curve, completing the proof. &

Lemma 3.11. Let S be an irreducible algebraic curve, and S-Bda|: Then S-@Bd is

an infinite set.

Proof. Let S�� ¼ S � S� be the set of all singular points of S: Then, by [Ken, p. 190,
Corollary] S�� is a proper subvariety of S; and hence S��is a finite set. Since S is a
connected and unbounded set [Ken, p. 191, Theorem 5.1], Lemma 3.10 implies that

S�-Bda|; S�-@Bda|; S�-ðCd � BdÞa|:

By Lemma 3.10, there is at least one zAS�-@Bd such that to every e40;

S�-fzACd : jz � zjoeg-Bda|: ð3:10Þ

Since S has complex dimension 1 at the regular point z; then by Implicit complex-
analytic mapping theorem [Ken, p. 49, Theorem 3.5], one can choose a open
connected neighborhood O of the origin of the complex plane and a open
neighborhood OðzÞ of z; and analytic functions f1;y;fd�1 defined on O satisfying
f1ð0Þ ¼ ? ¼ fd�1ð0Þ ¼ 0 such that

S-OðzÞ ¼ zþ fðz;f1ðzÞ;y;fd�1ðzÞÞ : zAOg:

Considering the subharmonic function

HðzÞ ¼ jz þ z1j2 þ jf1ðzÞ þ z2j2 þ?þ jfd�1ðzÞ þ zd j2; zAO;

then Hð0Þ ¼ 1: From (3.10) we see that there are infinitely many wAO satisfying
HðwÞo1; and hence by the definition of subharmonic function [Gar], there exist
infinitely many zAO such that HðzÞ41: Set

X ¼ fzAO : HðzÞo1g; Y ¼ fzAO : HðzÞ ¼ 1g; Z ¼ fzAO : HðzÞ41g:

Note that O is connected, and O � Y ¼ X ’,Z is not connected. This implies that Y

is an infinite set, otherwise, O � Y is connected. Since each point in S-OðzÞ is
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regular, we have

zþ fðz;f1ðzÞ;y;fd�1ðzÞÞ: zAYgCS�-@Bd :

By the fact that Y is an infinite set, the set S-@Bd is infinite. &

We now give the proof of Proposition 3.9.

The proof of Proposition 3.9. Let p1;y; ps; q1;y; qt and r be the polynomials
appeared in Proposition 3.8. Then by Proposition 3.8(3) we have

Xs

i¼1
jpiðxÞj2 �

Xt

j¼1
jqjðxÞj2 ¼ jrðxÞj2; xA@Bd : ð3:11Þ

Set V ¼ ZðIÞ-Bd ; and for each aa0; Va ¼ fzAV : rðzÞ ¼ ag:

Claim 1. For each aa0; Va ¼ fzAV : rðzÞ ¼ ag is a finite set. Indeed, by Proposition

3:8 the submodule ½I � is generated by fp1;y; ps; q1y; qtg; and hence

V ¼ Zðp1Þ-?-ZðplÞ-Zðq1Þ?ZðqtÞ-Bd :

This means

Va ¼ fzABd : rðzÞ � a ¼ 0; piðzÞ ¼ 0; qjðzÞ ¼ 0; i ¼ 1;y; s; j ¼ 1;y; tg:

By (3.11) it is easily seen that Va is a compact analytic variety in Bd : Applying [Her,
p. 92, Corollary 1] shows that Va is a finite set. The Claim 1 follows.
To complete the proof, we assume that V ¼ ZðIÞ-Bd is an infinite set. Then there

exists an irreducible component S of ZðIÞ such that S-Bd ; denoted by S0; is an
infinite set.

Claim 2. The variety S has pure dimension 1; that is, S is an irreducible algebraic

curve.

In fact, since S is irreducible, by [Ken, p. 172, Theorem 2.9] each regular point of S

has the same dimension, say, k: Note that the set S� of all regular points of S is dense
in S (cf. [Ken]). Therefore, S�-Bd is dense in S0 ¼ S-Bd : Taking a regular point z
of S0 then by Implicit complex-analytic mapping theorem [Ken, p. 49, Theorem 3.5],

there exist a open neighborhood OCCk about ð0Þ; and a open neighborhood OðzÞ
of z; and analytic functions f1;y;fd�k defined on O satisfying f1ð0Þ ¼ ? ¼
fd�kð0Þ ¼ 0 such that

S0-OðzÞ ¼ zþ fðz1;y; zk;f1ðzÞ;y;fd�kðzÞÞ : zAOg:
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Consider analytic function Qðz1;y; zkÞ defined on O by

Qðz1;y; zkÞ ¼ rðzþ ZÞ � rðzÞ;

where Z ¼ ðz1;y; zk;f1ðz1;y; zkÞ;y;fd�kðz1;y; zkÞÞ: Since rðzÞa0 and Qð0Þ ¼
0; Claim 1 implies that Q has only finitely many zero points in O: Since an analytic
function in several variables has no isolated zero point (cf. [Kr]), this implies k ¼ 1;
and hence the variety S has pure dimension 1; that is, S is an irreducible algebraic
curve.
Before going on we require the following notion. For a prime ideal P of

C½z1;y; zd �; the height of P; denoted by heightðPÞ; is defined as the maximal length l

of any properly increasing chain of prime ideals

0 ¼ P0CP1?CPl ¼ P:

Since the polynomial ring C½z1;y; zd � is Noetherian, every prime ideal has finite
height and the height of an arbitrary ideal is defined as the minimum of the heights of
its associated prime ideals. For an ideal J; one has

dimC ZðJÞ ¼ d � l; ð3:12Þ

where l ¼ heightðJÞ is the height of J; and dimC ZðJÞ the complex dimension of the
zero variety of J (cf. [Ken, p. 196]).
Put I1 ¼ fpAC½z1;y; zd � : ZðpÞ*Sg; and I2 ¼ I1 þ rC½z1;y; zd �: Then I1 is

prime, ZðI1Þ ¼ S and by (3.12) heightðI1Þ ¼ d � 1:

Claim 3. heightðI2Þ ¼ d:

In fact, since I2*I1; we have heightðI2ÞXd � 1: Now assume that heightðI2Þ ¼
d � 1: Taking a finite irredundant primary decomposition of I2

I2 ¼ J1-?-Jn;

then there is a primary ideal Js such that its radical ideal
ffiffiffiffi
Js

p
has the height d � 1:

Since
ffiffiffiffi
Js

p
is prime, and

ffiffiffiffi
Js

p
*I1; we get I1 ¼

ffiffiffiffi
Js

p
: Since rA

ffiffiffiffi
Js

p
; this forces rAI1; and

hence ZðrÞ*S: This contradicts the fact that r has no zero point in Bd :We conclude
therefore that heightðI2Þ ¼ d:
From Claim 3 and [Ken] we see that ZðI2Þ ¼ S-ZðrÞ is a finite set. By (3.11)

one has

S-@BdDZðrÞ-S-@Bd :

This shows that S-@Bd is a finite set. This contradicts Lemma 3.11, and it follows
that I has only finitely many zero points in Bd : The proof of Proposition 3.9 is
completed. &
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To prove Theorem 3.3, we also need the following notions. LetHðBdÞ denote the
space of analytic functions defined on neighborhoods of Bd ; and CNðBdÞ the space
of germs of smooth functions on Bd : Defining seminorms jj � jjn on CNðBdÞ;
n ¼ 0; 1; 2;y; by setting

jj f jjn ¼ maxfjDb
Daf ðzÞj : zABd ; jaj þ jbjpng;

where a ¼ ða1;y; adÞ; b ¼ ðb1;y; bdÞ are ordered d-tuples of nonnegative integers,
and jaj ¼ a1 þ?þ ad ; jbj ¼ b1 þ?þ bd ; and

Da ¼ @

@z1

� �a1

?
@

@zd

� �ad

; D
b ¼ @

@z1

� �b1
?

@

@zd

� �bd

:

If jaj ¼ jbj ¼ 0; Daf ¼ D
b
f ¼ f :

This family of seminorms makes CNðBdÞ into a locally convex topological linear
space. From the basic theory of functional analysis [Ru5], for each continuous linear

functional F on CNðBdÞ there exist a positive constant C and a nonnegative integer
m such that

Fð f ÞpCjj f jjm; fACNðBdÞ: ð3:13Þ

We now will give the proof of Theorem 3.3.

The proof of Theorem 3.3. By Proposition 3.9, ZðIÞ-Bd is a finite set, say,
ZðIÞ-Bd ¼ fl1;y; llg: From the basic theory of algebraic variety [Ken] the ideal I

can be decomposed as I ¼ I1-I2 such that ZðI1Þ ¼ fl1;y; llg; and ZðI2Þ-Bd ¼ |:
It follows that I1 is finite codimensional in C½z1;y; zd �: Since I1I2CICI2 and

I2=I ¼ I2=I1-I2DðI1 þ I2Þ=I1CC½z1;y; zd �=I1;

we see dim I2=IoN; and hence there exists a finite dimensional linear subspace R of
I2 such that

I2 ¼ I ’þR:

It is easy to see that ½I2� ¼ ½I � þR: Since R is finite dimensional, the defect operator
D½I � has finite rank if and only if D½I2� has finite rank. Hence, to complete the proof, it

is enough to show that the following is true: if ZðIÞ-Bd ¼ | and D½I � has finite rank,

then ½I � ¼ H2ðBdÞ: Below, we will use an idea from [PS]. By way of contradiction we
suppose that I is not dense in H2ðBdÞ: Let hAH2ðBdÞ; and h>½I �: Then h induces the

linear functional /�; hSH2ðBd Þ on HðBdÞ; which produces a continuous linear
functional F : HðBdÞ=I-C; where I denotes the closure of I in HðBdÞ: By
Malgrange’s (flatness and separation) Theorem on ideals of smooth functions [Mal],

the extended ideal I � CNðBdÞ is closed in CNðBdÞ; and I � CNðBdÞ-HðBdÞ ¼ I :
This enables us to extend F (using Hahn–Banach’s Theorem) to a continuous linear
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functional

F̃ : CNðBdÞ=I � CNðBdÞ-C:

Notice that F̃ is supported by ZðIÞ-Bd ; and by (3.11)

ZðIÞ-Bd ¼ ZðIÞ-@BdCZðrÞ-@Bd :

Therefore, by (3.13) there exist a nonnegative integer m and a constant C such that

jF̃ðf̃ÞjpCjj f jjm;ZðrÞ-@Bd
; fACNðBdÞ;

where f̃ ¼ f þ I � CNðBdÞ; and

jj f jjm;ZðrÞ-@Bd
¼ maxfjDb

Daf ðzÞj : zAZðrÞ-@Bd ; jaj þ jbjpmg:

This insures that for any polynomial p;

F̃ðrmþ1pÞ ¼ 0:

Since

/rmþ1p; hSH2ðBd Þ ¼ Fðrmþ1p þ IÞ ¼ F̃ðrmþ1pÞ ¼ 0

for any polynomial p; this implies h>½rmþ1�: By Lemma 3.5,

½rmþ1� ¼ H2ðBdÞ;

and hence h ¼ 0; reaching a contradiction. The proof of Theorem 3.3 is
completed. &

4. Defect operators of Bergman submodules over the unit ball

In this section we will briefly mention the defect operators and the defect functions

for submodules of the Bergman module L2aðBdÞ over the unit ball Bd : The Bergman

space L2aðBdÞ is the closed subspace of L2ðBd ; dvÞ consisting of analytic functions,
where dv is the normalized volume measure with vðBdÞ ¼ 1: It is well known that the
reproducing kernel and the normalized reproduce kernel of L2aðBdÞ are, respectively

KlðzÞ ¼
1

ð1� l1z1 � l2z2 �?� ldzdÞdþ1; kl ¼
KlðzÞ
jjKljj

:

Since L2aðBdÞ admits a natural C½z1;y; zd �-module structure coming from multi-

plication by polynomials we will call L2aðBdÞ as Bergman module over the unit ball.
As done in Sections 2 and 3, given a submodule we define the defect function DMðlÞ
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as follows:

DMðlÞ ¼ jjKM
l jj2

jjKljj2
¼ jjPMkljj2: ð4:1Þ

From the definition of the defect function DM ; it is easy to check that there is a
unique bounded linear operator, denoted by DM ; such that

DMðlÞ ¼ jjKM
l jj2

jjKljj2
¼ 1�

Xd

j¼1
jljj2

" #dþ1

jjPMKljj2 ¼ /DMKl;KlS; ð4:2Þ

where

DM ¼ PM þ
Xdþ1
k¼1

ð�1Þk ðd þ 1Þ!
k!ðd þ 1� kÞ!

X
i1;i2;y;ikAf1;2;y;dg

Mzi1
zi2

?zik
PMM�

zi1
zi2

?zik
:

We then define the defect operator of the submodule M as DM : In particular, in the

dimension d ¼ 1; for a submodule M of the Bergman module L2aðDÞ; its defect
operator is

DM ¼ PM � 2MzPMM�
z þ Mz2PMM�

z2 :

In the case of the Bergman module L2aðDÞ; Yang and Zhu have made some progress
for study of defect operators of submodules [YZ]. In this section we will concentrate
attention on dimension dX2:
As in the previous sections, a submodule is uniquely determined by its defect

function, and hence is uniquely determined by its defect operator. Also, the defect

functions for submodules of L2aðBdÞ need not be subharmonic, in general. An
example is that the defect function of the submodule f fAL2aðDÞ : f ð0Þ ¼ 0g is not
subharmonic.
Moreover, similarly to Proposition 3.2 we have

Proposition 4.1. Let M be a submodule of L2aðBdÞ: We have the following:

1. the defect operator DMX0 only if M ¼ L2aðBdÞ;
2. if M contains a function from H2ðBdÞ; then for almost all zA@Bd with respect to the

measure ds; DMðlÞ-1 as l-z non-tangentially.

Proof. (1). First note that

S ¼ M~ðz1M þ z2M þ?zdMÞaf0g

and it is easy to check that every function from S is eigenvector of DM with the
corresponding eigenvalue 1: Taking a function g from S with jjgjj ¼ 1; then DM �
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g#gX0: By (4.1) and (4.2), we have

/DMKl;KlS�/g#gKl;KlS ¼ jjPMkljj2 � jgðlÞj2X0;

and it follows that Z
Bd

jjPMkljj2 dvðlÞ � 1X0:

From the above inequality it is deduced that

jjPMkljj ¼ 1; lABd ;

and hence M ¼ L2aðBdÞ:
(2) Take a nonzero fAM-H2ðBdÞ; and set ½ f � ¼ fC½z1;y; zd �; which is contained

in M: If we can show D½ f �ðzÞ ¼ 1 a.e. on @Bd ; then the conclusion will follow from

the fact

1XjjPMkljj2XjjP½ f �kljj2 ¼ D½ f �ðlÞ:

The same argument as in [GY] enables us to get the following:

1XD½ f �ðlÞX
j f ðlÞj2

jj fkljj2
:

Notice that

jj fkljj2 ¼
Z
Bd

j f ðzÞj2jklðzÞj2 dv ¼
Z
Bd

j f 3flðzÞj
2

dv

p
Z
@Bd

j f 3flðxÞj
2

ds ¼
Z
@Bd

Pðl; xÞj f ðxÞj2 ds;

where fl is the canonical automorphism of the ball Bd that maps the origin to l (cf.
[Ru2, Chapter 2]), and Pðl; xÞ is the invariant Poisson kernel at l for the unit ball (cf.
[Ru2, Chapter 3]). We thus obtain that

1XD½ f �ðlÞX
j f ðlÞj2

jj fkljj2
X

j f ðlÞj2R
@Bd

Pðl; xÞj f ðxÞj2ds
:

Since for almost all zA@Bd ;
R
@Bd

Pðl; xÞj f ðxÞj2 ds converges to j f ðzÞj2 as l-z non-

tangentially, this insures that D½ f �ðlÞ-1 as l-zA@Bd non-tangentially. The

required conclusion follows. &

A natural problem arises here. Does Proposition 4.1(2) hold for any nonzero
Bergman submodule?
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We now turn to studying submodules with finite defect indices. In the dimension
d ¼ 1; this problem was considered by Yang and Zhu [YZ]. In particular, they found
that the defect operator for the submodule generated by the singular inner function
SðzÞ ¼ expð�ð1þ zÞ=ð1� zÞÞ has rank 2: Therefore, in the case of the dimension
d ¼ 1; one cannot even give a reasonable guess for finite defect problem. In
dimension dX2; we conjecture that M has finite defect only if M has finite

codimension in L2aðBdÞ: Indeed, following the proof of Theorem 3.3, we can prove
the following:

Proposition 4.2. Let I an ideal of C½z1;y; zd �: If the submodule ½I � has finite defect,

then ½I � is finite codimensional in L2aðBdÞ:

Remark 1. The results in this section can be generalized to the weighted Bergman

space L2aðBd ; dvaÞ; a4� 1; where dvaðzÞ ¼ cað1� jzj2ÞadvðzÞ; and ca is a positive

constant such that vaðBdÞ ¼ 1: For the weighted Bergman module L2aðBd ; dvaÞ; its
reproducing is given by

KlðzÞ ¼
1

ð1�/z; lSÞaþdþ1:

Similarly to the case of the Bergman module L2aðBdÞ; one can define defect operators
(functions) for submodules of L2aðBd ; dvaÞ:

Remark 2. In [Arv1,Arv2], Arveson developed the theory of d-contractions. We
refer the reader to references mentioned above for a far-reaching operator-algebraic
development of this theory. This theory especially concerns a typical function space

on Bd ; the so-called symmetric Fock space H2
d on Bd ; which is induced by the

reproducing kernel

KlðzÞ ¼
1

1�/z; lS
:

Noticing that H2
d admits a natural C½z1;y; zd �-module structure coming from

multiplication by polynomial, then H2
d is a typical Hilbert module over the unit ball.

Concerning submodules of H2
d ; a natural problem was asked by Arveson in [Arv2]:

in dimension dX2; must the defect index of each nonzero submodule of H2
d ; which

has infinite codimension in H2
d ; be infinite? The paper [Guo3] shows that the answer

to this problem is yes. However, the techniques used in [Guo3] are completely
different from the present paper, because, as one has seen, the theory of defect
operators relies heavily on expressions of reproducing kernels.
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