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Abstract

This paper mainly concerns defect operators and defect functions of Hardy submodules,
Bergman submodules over the unit ball, and Hardy submodules over the polydisk. The defect
operator (function) carries key information about operator theory (function theory) and
structure of analytic submodules. The problem when a submodule has finite defect is attacked
for both Hardy submodules and Bergman submodules. Our interest will be in submodules
generated by polynomials. The reason for choosing such submodules is to understand the
interaction of operator theory, function theory and algebraic geometry.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The classical Beurling’s theorem [Beu] says that for each invariant subspace M of
the Hardy space H*(D) on the unit disk D there is an inner function 5 such that
M =nH?*(D). Since H*(D) admits a natural C[z]-module structure coming from
multiplication by polynomials, we will call the Hardy space as the Hardy module, and
an invariant subspace as a submodule (over the polynomial ring C[z]). Let Py, denote
the orthogonal projection from H?(D) onto M. Then Beurling’s theorem means

Py = M, M;.
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To recover the inner function # from the representation of P, we let K, and K;{” be
the reproducing kernels of H?(D) and M, respectively. Then

K = PyK; =n(2)nk;,

and hence

2

2 K]
- 2
[IKl

(Al = [|Pyks|P,  2eD, (1.1)

where k; = K;/||K;|| is the normalized reproducing kernel. Moreover, it is easy to
see

1Pakz > = Cn@m)K;, K> (1.2)

To generalize the operator-theoretic aspects of function theory on the unit disk to
multi-variable operator theory, one considers the Hardy space H*(D“) on the unit
polydisk in the d-dimensional complex space C?. We endow H*(DY) with the
Clz1, ..., zq4]-module structure coming from multiplication of polynomials. In
Douglas and Paulsen’s Hilbert module language [DP], we will call H*(D?) the
Hardy module over the polydisk. By a submodule M of H*(D?) we mean that M is
closed, and invariant under multiplication by polynomials. A natural problem is to
consider the structure of submodules of H?(D?). However, one quickly sees that a
Beurling-like characterization is impossible [DP,Rul], and hence attention is directed
to find intrinsic notions of characterizing higher dimensional submodules. Along this
line, many efforts were made by several authors (cf. [CG,DP,DPSY,DY,Fa,Guol,
Guo2,GY,Ya,Yal,Ya2,Ya3,Ya4)).
Motivated by (1.1), we introduce defect function of a submodule M as follows:

Dy (2) = [[KM|P/IIK:P = ||Pvksl],  2eD, (1.3)

where K and k; are the reproducing kernel and the normalized reproducing kernel
of Hz(lDd), respectively. Then one finds that the defect function D, is a complete
invariant in the sense of function theory, and its comparison to (1.1) shows that
defect function is a higher dimensional function-theoretic counterpart of an inner
function which expresses a submodule of H?(D). Moreover, motivated by (1.2), one
easily check that there is a unique bounded linear operator, denoted by 4,,, such
that

Dy(2) = {AyK;,K; >, JeD (1.4)

This operator is called the defect operator of M, and its exact form will be given in
Section 2. The defect operator is an invariant of submodules in the sense of operator
theory. One will see that defect operator (function) carries key information about
operator theory (function theory) and structure of submodules. We define the defect
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index of a submodule M as the rank of the defect operator A,,. This numerical
variant for submodules plays a role of multiplicity of a submodule in an appropriate
sense. By Beurling’s theorem, each submodule of H?*(D) has defect index 1. To
understand higher dimensional submodules better, we are naturally led to ask when
a submodule of H*(D?) (d>2) has finite defect, that is, when the defect operator
Ay has finite rank for a higher dimensional submodule M. This is the so-called
“Finite defect problem” for Hardy submodules over the polydisk.

We also will be concerned with the two most common Hilbert modules on the unit
ball of C?, namely, the Hardy module and the Bergman module. There are several
reasons for studying defect operators of submodules on the unit ball. One reason is
that the theory of defect operators (functions) relies heavily on geometry of domains
on which submodules are defined. As one knows, the ball is the prototype of two
important classes of regions that have been studied in depth, namely, the strictly
pseudoconvex domains and the bounded symmetric domains. Another reason is that
the theory of defect operators (functions) is closely related to reproducing kernel
theory. Other reasons will become apparent later.

In the present paper, we are mainly concerned with submodules generated by
polynomials. The reason for choosing such submodules is to understand the
interaction of operator theory, function theory and algebraic geometry.

Section 2 considers defect operators, defect functions and defect indices of Hardy
submodules over the polydisk. Actually one finds that defect operators (functions)
reveal rigidity of submodules. In Section 3, our interest is in “Finite defect problem”
for Hardy submodules over the unit ball. Using the theories of algebraic variety and
analytic variety it is shown that a submodule generated by polynomials has finite
defect only if the submodule has finite codimension. Section 4 concerns defect
operators (functions) of Bergman submodules over the unit ball.

2. Defect operators for Hardy submodules over the polydisk
2.1. Definitions and examples

Given an invariant subspace M of the Hardy space H*(D) over the unit disk D,
the Beurling’s theorem [Beu] implies that there is an inner function # such that
M = nH?*(D). As in Introduction, let K; and KM be the reproducing kernels of
H?*(D) and M, respectively. Then

KM = PyK, = n(A)nk;,
and hence

M2
_ 1K)

K P [1Park ], (21

In(2)]?

here k;, = K;/||K,||. This shows that the inner function can be captured from (2.1).
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Recall that the Hardy space H2(|Dd ) over the polydisk D is a functional Hilbert

space consisting of some analytic functions on the polydisk DY whose reproducing
kernel and the normalized reproducing kernel are, respectively

1 K 1= )2
K(z)=————— kilz)= )' Hk ‘ ( |A_k| ) _
ITe (1 — Arzx) KAl k:1 (1 — Zzi)
Noticing that the Hardy space H*(D?) admits a natural C[zy,...,z4]-module

structure coming from multiplication by polynomials, we thus call the Hardy space

H?*(D?) as the Hardy module over the polydisk. By a submodule M of H*(D?) we
mean that M is a closed invariant subspace under multiplication by polynomials.
Given a submodule M, the defect function Dy, (1) of M is defined by

2
(Lol

[l

Dar(3) = — IPukiIP,  2eD, (2.2)

where Kj” = Py K, be the reproducing kernel of the submodule M and P,, is the
orthogonal projection from H?*(DY) onto M. Letting R; = Py M. Py be the
restriction of M., to the submodule M, then R; is an isometry on M for 1<i<d. For
a multi-index o = (o, ...,04) of nonnegative integers, let R* = R}' ~~-RZ,‘1, and, as
usual, || = oy + -+ + 0y. Then from the definition of the defect function Dy, it is
easy to check that there exists a unique bounded linear operator, denoted by A4,,,
such that

KM d
m(2) = I =T (0 = 1uP)IPuKiP = <AuK; K; D, (2.3)
HK;II Pl
where
Av= > DIRRT =N (—D)PMrpy M. (2.4)
0<a<(l,...,1) 0<a<(l,...,1)

We call 4, the defect operator of the submodule M. The reader also notice that the
defect operator A4,, and the projection P, is connected by

PuK; = K; AyK;, JleD? (2.5)

In particular, for a submodule M of the Hardy module H?(D?) on the bidisk, its
defect operator is

Ay = Py — M Py M? — M, Py M, + M. .,Pyy M .
Similar to the case of the symmetric Fock space H; [Guo3], we will see that a

submodule is uniquely determined by its defect function, and hence is uniquely
determined by its defect operator.
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Proposition 2.1. For two submodules M and N of H*(DY), if Dy(2) =
Dy(2), VieD? then M = N, and therefore, if Ayy = Ay, then M = N.

To prove the Proposition we need the following lemma. The proof of the lemma

appeared in [Eng]. Of course, the lemma can also be proved by using Taylor
expansion.

Lemma 2.2. Let Q be a bounded complete Reinhart domain (i.e. a bounded domain
with the property that for A= (A1, ...,2q4)€Q, if |w|<1, i=1,2...,d, then
(Ui A1, o hay oony igla) €RQ). Suppose a function f(A,z) is defined on Q x Q, and it is
analytic in z, and co-analytic in A. If f(A,2) = 0 for any A€ Q, then f = 0.

The Proof of Proposition 2.1. As done for the symmetric Fock space H3 [Guo3], to
obtain the desired conclusion, considering functions

Gu(h,2) = {AuK; K->, Gy(4,z2) = {AnK;, K ),

then Gy(4,z) and Gy(4,z) are analytic in z, and co-analytic in A, respectively. By
(2.3)

Gy (4,4) = Dy (2) = Dn(4) = G (2, 4).
Applying Lemma 2.2 gives
Gy (L, z) = Gn(2,2),
and hence 4, = Ay. By (2.5)
(1= Ziz1) (1 — Agza) {PuK;, K-
= (4K, K- ) = {ANK;, K-
= (1= Zz1) (1 = Jaza) PN K K
and hence, M = N. O

Remark 2.3. In our joint paper [GY], we study the core operators and the core
functions of Hardy submodules on the bidisk D2. In fact, the core operator for a
submodule just is the defect operator introduced in this section. The core function
for a submodule M is defined by Gy (4,z) = {AyK;,K.)> for J,zeD?, and hence
the defect function Dy (1) = Gy (4, 4).

First let us record some results from [GY] which are proved in the case of the
bidisk D?.
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Proposition 2.4. Let M be a submodule of H*(DY), then we have

1. the defect function Dy (J.) is subharmonic, and for almost all ze T¢ with respect to
the measure dO,---d0y, Dy (A)—1 as A—z, where T = {z = (z1,...,24) : |z1| =
woo = |zq| = 1} is the distinguished boundary of D,

2. the defect operator Ay =0 if and only if there is an inner function n such that
M = nH*(D);

3. if Ay is in trace class, then Trace Ay = 1.

Proof. It is easy to see that the proof for term (1) is completely parallel to the case of
the bidisk in [GY]. But term (2) was not mentioned in [GY]. Here we verify term (2).

In fact, if there is an inner function # such that M = nH?*(DY), then Py = MyM;,

and hence 4, = n®n=0. To verify the opposite direction, notice that there exist a
sequence {¢,} =M such that

Ay = Z ¢n®¢n' (SOT)

By (2.2) and (2.3)

Dy (2) = ||Puks||* = CAuKi K> =Y 1, (A <1,

and by the term (1), >_, |¢,,(z)]> = 1 on T¢. This implies that

Teace(du) = 110l = g 3 [ Wn(o)Pe0r vy = 1.

This shows that 4,, is trace class. Similarly to the proof of Corollary 3.4 in [DY], we
have that

S=MS(zM+ - +z4M)#{0}

and it is easy to check that every function from S is eigenvector of A4,, with
the corresponding eigenvalue 1. Taking a function # from S with ||| = 1, then
Ay —n®n=0. Note that

Trace(dy —n®n) =0

and hence 4y = n®n. By Proposition 2.4(1), # is an inner function. Applying
Proposition 2.1 we see M = nHz(lDd). Term (3) was proved in the bidisk case in
[GY]. In fact, term (3) directly comes from (1). To see this, let u,, n=1,2,... be
eigenvalues of 4, counting multiplicity, and ¢, be the corresponding unital
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eigenvectors. Then 4y =), 1,4, ® ¢,. By term (1) and (2.3), we have

1 2
Trace 4y = = " 2(2)|7d0, ---db
=D = g 3w I 0o,

1
=—— [ Dy(z)d6,---db; = 1.
(2n)! Jya )
Now turn to general isometric Hilbert modules. Let T = (77, ..., T,) be a tuple of
commuting operators acting on a Hilbert space H. Then, one naturally makes H into
a Hilbert module over the polynomial ring Clzy, ..., z4]. The Clzy, ..., z4]-module

structure is define by
P'éZP(le-wTd)éa PGC[le-deLée}'I'

We say that two modules H; and H, over the polynomial ring Clzy, ...,z4] are
unitarily equivalent if there is a unitary module map U from H, onto H,, that is,
U:H,— H, is a unitary operator, and Up-f = p- Uf for any polynomial p and
f € H,. By an isometric Hilbert module H over C|zy, ..., z;] we mean H’s canonical
operators 77, ..., Ty are isometries. Then each submodules of Hz([Dd) is an isometric
Hilbert modules. As done for Hardy submodules, by following (2.4) we define the
defect operator Ay of an isometric module H as:

dp= > (=)irTe (2.6)

and define the defect index of the module H as the rank of the defect operator Ay. It
follows that if two isometric modules H; and H, are unitarily equivalent, then their
defect operators are unitarily equivalent, and hence two modules have the same
defect index. The next examples will show that defect index play a role of multiplicity
of an isometric module in an appropriate sense.

Example 1. Let H be an isometric module over C|[z] whose canonical operator S is a
pure isometry (that is, S satisfies S*” —0 in the strong operator topology). Then by
the Von Neumann-Wold Decomposition theorem, H is unitarily equivalent to
H?*(D)®C", where n = rank(I — SS*) is the defect index of H.

Example 2. Let H be an isometric module over C[zy, z;] whose canonical operators
S = (S, S5,) are pure isometries. By [AEM], A5 >0 if and only if H is unitarily
equivalent to H*(D?)®C", where n = rank(4y) is the defect index of H.

Let us make a simple comment about defect indices of Hardy submodules. By
Proposition 2.4(1), a submodule M of Hz(lDd) has defect index 1 if and only if
Ay =0, if and only if M = 11H2([D’1) for some inner function #. For a submodule M
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of H*(DY), since

S=Mo =z M+ - +z;M)#{0}

and every function from S is eigenvector of 4,; with the corresponding eigenvalue 1,
combining this fact with Proposition 2.4(3) implies that there is not a submodule M
whose defect index is 2. Recently, Yang studied a class of submodules over the
bidisk, the so-called M,-type submodules [Ya4]. A M,-type submodule M is

M =5, (z) H*(D?) + n,(w)(D?),

where 5, and 7, are nontrivial inner functions. It is shown that such a M is closed,
and its defect operator is

Ay =11 (2) @n,(2) + (W) @ (w) — 11 (2)n2(w) @y ()2 (w),

and hence M,-type submodules have defect index 3 (see [Ya4]). Moreover, a careful
verification shows that the submodule [z — w, zw] generated by z — w and zw on the
bidisk has defect index 5.

The following example will show that defect operator capture key information
about operator theory.

Example 3. Let H be an isometric module over C|zy, ...,z4] (d>2) with canonical
operators Sy, ..., Sq. Assume some S; has finite multiplicity rank(/ — S;S7)< co.
Then there is no submodule M of H?(D?) such that M is unitarily equivalent to H.
To show this, we may assume rank(/ — S;S};) < oo, and write P for I — S;S};. Then

AH _ Z (71)|zx\ S*SH — Z (71)\1’\5%])5*5{’,

0<a<(l,...,1) o<’ <(1,...,1)
where o’ = (o, ...,04-1) and § = (Si, ..., Sq—1). We thus have
Trace 4y = 0.

From Proposition 2.4(3), there is no submodule M of H?(DY) such that M is
unitarily equivalent to H.

Example 3 also shows that each M., restricted on a submodule M, has infinite
multiplicity. This fact also was noticed by Fang [Fa]. We also find that study for
defect operators of isometric modules is relevant in the theory of operator models in
the polydisk [AEM,CV]. O

2.2. Finite defect problem

Beurling’s theorem shows that each submodule of H?(D) has defect index 1. To
understand higher dimensional submodules better, we are naturally led to ask when
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a submodule of H*(D) (d>2) has finite defect, that is, when the defect operator
Ay has finite rank for a higher dimensional submodule M. This is the so-called
“Finite defect problem”. Clearly, if M is a finite codimensional submodule, then M
has finite defect. From this it is deduced that if M is unitarily equivalent to a finite
codimensional submodule, then M has finite defect. Notice that if M is unitarily
equivalent to a finite codimensional submodule, say, N, then by [ACD], there is an
inner function 5 such that M = nN. However, as shown by M,-type submodules,
this never contain all submodules with finite defect indices. Moreover, In [GY], it
was shown that for a homogenous submodule M of H?*(D?) (i.e. a submodule
generated by homogeneous polynomials), M has finite defect if and only if there are
a monomial z{z4 and a finite codimensional submodule N such that M = z}Z N, that
is, M is unitarily equivalent to a finite codimensional submodule.

Combining the above facts and the next example in dimension 3 will show that the
study for defect operators depends strongly on the dimension of the polydisk.

Example 4. Consider the homogeneous submodule M = [z;,z3] of the Hardy

module H*(D3) generated by z3, z3. It is not difficult to verify that the reproducing
kernel of the submodule M is
1 1

KM(z) = = = - — —.
’ (1 —/1121)(1 —2222)(1 —A3Z3) (1 —)LlZ])

By (2.5) we have
Ay K;(z) = oz + J323 — Aad3zazs
=[(22® 22 + 23 z3 — 2223 ® 2223) K] (2),
and hence
Ay =22®22+ 23 Q23 — 2223 ® 2223.

However, by Theorem 3.1 in [Guo2] the submodule M = [z5,z3] is not unitarily
equivalent to any finite codimensional submodule.

From the above several observations, the answer to the following question may be
difficult.

Finite defect problem. Can one completely characterize those higher dimensional
submodules which have finite defect indices?

In the dimension d =2, we can completely characterize those submodules
generated by polynomials that have finite defect indices.

For this we need some preliminaries.

Let I be an ideal of the polynomials ring Clzy, ..., z4]. Since the polynomial ring
Clzy, ..., z4] is Noetherian [ZS], the ideal I is generated by finitely many polynomials.
This implies that 7 has a greatest common divisor p, and so, / can be uniquely
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written as [ = pL, which is called the Beurling form of 7 (cf. [Guo2]). For a
polynomial p with Z(p)nD?#0, we decompose p = p;p> such that the zero set
of each prime factor of p; meets DY nontrivially, and Z(p,) n D" = @. Define L(p)
on Clzy, ...,z4] as follows: L(p) =1 if Z(p)nDY = 0; L(p) = p1 if Z(p) "D #0.
Set

Vg = {zeCd szl >1, for i=1,2,...,d}.

For an ideal I of the polynomial ring C|zy, ..., z4], as usual, we write [I] for the
submodule generated by I, that is, [I] = 1.

Theorem 2.5. Let I be an ideal of the polynomial ring C|z,z;], and let I = pL be its
Beurling form. Then (1|, as a submodule of H*(D?), has finite defect index if and only if
Z(L(p))n¥" =0, and in this case there are a rational inner function n and a finite
codimensional submodule N such that [I| = nN.

Theorem 2.5 comes from the next Theorem 2.6 whose proof is long. We will place
the proof of Theorem 2.6 at the end of this section.

Theorem 2.6. Let I be an ideal of Clzy, ..., z4], and let I = pL be its Beurling form. If
(1] has finite defect, then there exists a polynomial r satisfying Z(r) 0D = 0 such that
Ip| = |r| on T9.

Let r be polynomial in Theorem 2.6 satisfying Z(r) nD? = . Then by [Guo2,
Proposition 2.9], the principal submodule [r] generated by r equals H*(DY), and
therefore, r is outer in Rudin’s sense [Rul]. Consequently, the condition |p| = |r| on
T¢ implies that p/r is a rational inner function. Note that r is uniquely determined by
p except for a modular 1 constant because outer function r is uniquely determined
by the restriction of |r| to T¢. Writing 1, for the rational inner function p/r, then we
have

Corollary 2.7. Let I be an ideal of C|z\, ...,z4], and let I = pL be its Beurling form. If
(1] has finite defect, then [I] = 1n,[L].

Recall a theorem, due to Rudin [Rul, Theorem 5.2.6]. This theorem says that

a polynomials p is the numerator of a rational inner function on DY if and only
if p has no zero in ¥;. Combining Rudin’s theorem, Theorem 2.6 and fact that

[¢) = H*(D?) if a polynomial ¢ satisfies Z(¢q) nD? = §, we have

Corollary 2.8. Let I be an ideal of C|z1, ...,z4], and let I = pL be its Beurling form. If
Z(L(p)) "V qa#0, then (1] is of infinite defect.
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By Corollary 2.8 we can obtain the following.

Corollary 2.9. Let p is a polynomial. Then the principal submodule [p] has finite defect
if and only if Z(L(p)) 7V q =0, and in this case there is a rational inner function 1,

such that [p] = 111,H2(|Dd).

Proof. The necessariness is from Corollary 2.8. To achieve the opposite direction,
assume that Z(L(p)) ¥ 4 = 0. Then by Rudin’s theorem mentioned above, there is
a polynomial r satisfying Z(r) n D¢ = § such that L(p)/r is a rational inner function.
It follows that

) = 200 =y 2 (D),

r

This gives the desired conclusion. [

The proof of Theorem 2.5. If [I] has finite defect, then applying Corollary 2.8 gives
Z(L(p))nv,=0. To reach at the opposite direction, by Rudin’s theorem
mentioned above, there is a polynomial r satisfying Z(r)nD? = such that
L(p)/r is a rational inner function. Since the greatest common divisor of L is I, and
hence by [Yal], L is a finite codimensional ideal of C[zi,z;] and it follows that the
submodule [Z] is finite codimensional. Note that [rL] = [L] by [Ge]. This means that

="

r

[rL] = n,[L],

and hence [I] is unitarily equivalent to the finite codimensional submodule [L], and
so, [I] has finite defect.
Let us see an example.

Example 5. We consider the submodule [z; + z; + o] of H?(D?), where o is constant.
If || >2, then by [Ge],

(21 + 22 + o] = HY(D?),
and hence in this case, the submodule has defect index 1. If |x|<2, then
Z(zi + 22+ a)n ¥ 2 #0, and hence by Corollary 2.8, the submodule [z] + z; + o]

has infinite defect.

Now turning to the proof of Theorem 2.6 we need two lemmas. The next lemma
comes from [Guo2].

Lemma 2.10. Let f = p/q be a rational function, where p and q are without common
factors. If f is analytic on DY, then Z(g)n D¢ = ¢.
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The following lemma is key for the proof of Theorem 2.6.

Lemma 2.11. Let I be an ideal of Clzy, ...,z4). If the submodule [I| has finite defect
index [, then there are polynomials py, ...,ps,q1, ..., q; (here s + t = ) and r satisfying
the greatest common divisor

GCD(]’I? - Psq1, ~--7(1t7") =1

and Z(r) "D = O such that

1. the rational functions pi/r,....ps/r,q1/r, ...,q/r Dbelong to [I], and
{1, ., Ps, Q1 .-, q:} is a generating set of [I];
2. A=, hel - Z;:1 %®%5
s 2 2 2
3. 2 @) = X @) = r(@)] for ze T

Proof. Since 4 is adjoint, there exist mutually orthogonal vectors ¢y, ¢y, ..., ¢
(s=1), Y1, ¥, ..., ¥, (£20) in A H*(D?) (here s+ ¢ = I) such that

An=(01®D1 + 0, @b + - 0, @) — (b @Yy + 2 @Yy + b, ®Y,).

By (2.5), one sees

Pk =D (Db =Y w00 | K (2.7)
=1 =

This implies that the vectors {¢,, s, ..., 5, Y1, Yo, ..., ¥, } is a generating set of [I].
For any ¢ e H?>(D?), consider the densely defined operator M, in H*(DY) whose
domain of definition contains Clzi, ...,z4] by Myh = ¢h. From [Ru5], we see that
M is densely defined, and

Dom(My)=2Clzy, ..., za).

According to (2.7), for any polynomial 4 and each 2e D? the following holds

h(2)

S t
Py = ( My My = waMJZ,)
i=1 =1
S t
- < Py - <Z My, M;, — Z M¢/M$j>]h,Ki>
f =1
s t
= <h, P K; — [Z ¢i(2)p; — Z lﬁj(i)l//j] K/1>
i=1 J=1

=0.
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It follows that

Pyh = <Z My M, —
i=1

13

My, M;;j) h

j=1

for any polynomial /. It is easy to see that for each ¢p € H 2(I]Zl)“’) and every polynomial
p» Mjp also is a polynomial since H*(D?) enjoys an orthonormal basis {z“}%zi.
Picking polynomials ¢, ..., g5, in I, then

s ‘
My, M g —> My My qi =i, k=1,....s+1 (2.8)
i=1 J=1
Claim. There exist polynomials q, ..., qgs., in I such that
Mq*slql M:j‘)qu M;lql M&j/ql
o | Mot Mo My Mg £0, (2.9)
M;lqs+t M;\‘]sﬂ Mlzl%ﬂ Mf;/lwt
that is, r(z) is a nonzero polynomial. To get a contradiction assume that the above
determinant r(z) =0 for any polynomials q,, ...,qs.,; in I. Then we have r(0) = 0.
Since
Cqiypr> o Lqudgy  Lqiby o Ly
+(0) = <f]27.¢1> = <qz,.¢s> <qz7.l//1> = <qz,’¢z> —0, (210

i 01> oo Lsrs D> Gsir V1> oo sy ¥y

and all ¢; and \; are in [I], there are polynomial sequences in I, {qﬁ")}, e {q§”>} and
{pgn)}, ey {pﬁ”)} such that q(") converge to ¢;, andpj(-”) converge to W, in the norm of

1
H*(DY). Noticing that vectors ¢, P, ces P W, W, o, are mutually orthogonal,
this yields the following:

117+ byl P11 |- [ |1 = 0.

This contradiction implies that the Claim is true.

By the Claim there exist polynomials ¢y, ..., ¢ss, in I such that the determinant
r(z)#£0 in (2.9). Noticing that r(z) is a nonzero polynomial, and applying Cramer’s
rule to solve the corresponding s+ ¢ equations (2.8), then there exist polynomials
q1,¥1,42,72, .., qst1, T'sy Satisfying GCD(q;,r;) =1 for j=1,...,5+ ¢ such that

¢ =aq1/m, s D =qs/rs, WY1 =qse1/Fsi1, sy = Gt/ Fsti-
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Since all ¢; and ; are analytic on D9, applying Lemma 2.10 gives
Z(r)nD =0, j=1,2,... s+t
Set
q} =i, J= 12,0548 P =1 regy.

Let ¢ = GCD(q}, 45, ..., 4, ,,7") and

Pv=a4y/4, P2 =G5/ G5 o Dsi = Ay /4, T =14
Then polynomials py, pa, ...,, Psis, I satisfy

GCD(Pl»PZa ~~'7p5+t7r) =1

and

(/)l :p]/V, "'ad)s :pS/r7 l//l :le_l/V, "'al//l :p.H-I/r'

Since {pi/r,...,ps+¢/r} is a generating set of [I], by [Guo2, Proposition 2.9],
this insures that {pi,...,psy,} is a generating set of [I]. Furthermore, from
Proposition 2.4(1) and (2.3) we have

Z |pl | _Z |pv+/ | = ( )| y ZET‘!.

This completes the proof. [

The proof of Theorem 2.6. We use Lemma 2.11 to complete the proof of the theorem.
Considering Lemma 2.11(3)

S
> pi2)P —Zlqj I =1Ir(@)’, zeT?, (2.11)
=1

we take a large natural number N satisfying that p;(z)zV, ¢;(z)z", r(z)z" become
polynomial fori = 1,2, ...,s; j = 1,2, ..., ¢, where z¥ = zVz)... 2. Multiplying two

side of (2.11) by zV gives

> pil2piz)2" -
i=1

=r(2)r(z)z". (2.12)

t
> 4(2)g(2)="
=1
Setting

q:GCD(phpZa"'apqulaqL"'aql)v (213)
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Lemma 2.11 says GCD(q,r) = 1. Combining this fact with the equality (2.12) shows
that there is a polynomial /4 such that

From the above equality we see that (N, N, ..., N) can be written as
(N,N,...,N) = (ki,ka, ..., kq) + (K}, K5, ..., k)
such that F(z) = zﬁ“z§3~--z§”m and G(z) = zlfl‘zlzclz---zzi‘ﬁ become polynomials.
By Z(r)nD? = 0, we see
Z(F)nD? = ¢. (2.14)

Let I = pL be the Beurling form of the ideal I. Decompose p = p'p” such that the

zero set of each prime factor of p’ meets D¢ nontrivially, and Z(p”) nD? = . Then
by [DPSY] or [Guo2]

N Clzty .oy zal [P0 Clzi,y ..oy za) = P Clzy, -y 24).

From the above inclusion and (2.13), there exists a polynomial p” such that
'p”. Since

q=pp
F(2) = 2025 2gE) — 21 )

is a polynomial, this means that (ky,k», ..., k) can be written as

(klakzv "'akd) = (i],iz, -"7id) + (j17j27 "'7jd)

such that H(z) = z}'z} ---z;‘,’p’(z) and Q(z) = z{" 2-2"2 -~~z-{§”p”’(z) become polynomials.
From (2.14), we have

Z(H)nD? = 0.

Setting

then R(z) is a polynomial satisfying Z(R) nDY = §. Note that on the distinguished
boundary T of D, we have |p(z)| = |R(z)|, and the theorem follows. [J
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3. Defect operators of Hardy submodules over the unit ball

This section will study the defect operators and the defect functions for Hardy
submodules over the unit ball B; of C?. One will find that structures of submodules
is highly distinct from the case of the polydisk. Furthermore, in Section 3.2, it is
shown that a submodule generated by polynomials has finite defect if and only if
such a submodule has finite codimension. The proof of the result is based on the
theories of analytic variety and algebraic variety.

3.1. Preliminaries

We begin by recalling some notions. The Hardy space H?(B,) consists of analytic
functions f in the unit ball B, satisfying

O<r<l1

/1P = sup / () do< oo,
0By

where do is the natural rotation-invariant probability measure on 0B;. As one
knows, each function f in H?(B,) has a non-tangential limit (&) at almost every
point £e€ 0B, with respect to do. Furthermore,

117 = /8 @ do.

The Hardy space H*(B,) is a reproducing function space. The reproducing kernel
and the normalized reproducing kernel are, respectively,

1 K;

KX(Z) = — — s kl = .
(1 —Azg — o — ﬂvdZd)d ||K)||

(3.1)

Since H?(By) is invariant under multiplication by polynomials, the space H*(B,)
naturally admits a C[zy, ..., z,]-module structure. Given a submodule M of H*(B,),
as done in Section 2, we 1ntroduce the defect function Dj,(4) and the defect operator
Ay for the submodule M. The defect function Dy,(4) is defined by

2
[Lodl

2
; |
|||

m(4) = , (3.2)

= |[Puk;

where KM = Py K; be the reproducing kernel of the submodule M, Py is the

orthogonal projection from H?(B,;) onto M. From the definition of the defect
function Dy, it is easy to check that there exists a unique bounded linear operator,
denoted by 4,,, such that

1K) i
A
Dul) = HK;II [ -2 Al

d
|1PuK;|)> = <AuK;, K, (3.3)
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where

d
d!
k *
Ay = Py + Z (—1) m Z MZ[IZ"Z"'kaPMMZilzfz"‘zz,c'
k=1 : Cind,.ike{1,2,....d}

We call 4,, defect operator of the submodule M, and rank4,, defect index of M.
The reader easily verifies that the defect operator 4,, and the projection Py is
connected by

PMKA :KA AMK;I, ;Lele. (34)

In the dimension d = 2, the defect operator of a submodule M is

Apt = Pag — 2(Mo, Py M + Mo, Py M?) + 2M.., Pyr M

2122

+ M2Py M5 + M2 Py M.
“1 “2

As the same in Sections 2, submodule is uniquely determined by its defect function,
and hence is uniquely determined by its defect operator.

Proposition 3.1. For submodules M and N, if Dy(A) = Dy(A),¥7.€By, then M = N.
Therefore, if Ayy = Ay, then M = N.

However, unlike Hardy-submodules on the polydisk, in general, the defect
functions for submodules of H?*(B;) need not be subharmonic. Let us check an
example.

Example 6. Set
H} = {feH*(B,): f(0,0) = 0}.

Then an easy computing shows that the defect function D(z) for the submodule H is
given by

D(z)=1—(1—|z] - |=])"
Since

9*D(z) n 9*D(z)

46z 2
005 T 0m05 (|z1]" + 122]7)s

applying [Kr, Corollary 2.1.12] shows that D(z) is not subharmonic.

Moreover, similarly to Proposition 2.4, we have
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Proposition 3.2. Let M be a submodule of H*(B,). Then

1. for almost all ze 0B, with respect to the measure do, Dy(A)—1 as A—z non-
tangentially;

2. the defect operator Ay =0 if and only if there is an inner function n such that
M = nH*(DY);

3. if Ay is in trace class, then Trace Ay = 1.

Proof. The proof of term (1) is completely similar to that of Theorem 2.1 in [GY].
We omit the details. The proofs of terms (2) and (3) are parallel to (2) and (3) of
Proposition 2.4. [

Remark. Concerning the symmetric Fock space H§ over the unit ball B, considered
by Arveson [Arvl,Arv2], an analogous result to Proposition 3.2(1) was presented in
[GRS] whose proof is completely different from Proposition 3.2(1).

For two submodules M and N of H?*(B,), we call that they are unitarily
equivalent if there exists a unitary operator U : M — N such that Upf = pUf for any
polynomial p and f € M. It is easy to see that if M and N is unitarily equivalent, then
their defect operators are unitarily equivalent, and hence M and N have the same
defect.

3.2. Finite defect problem

As the same in Section 2, we are naturally led to study submodules with finite
defect indices. By identity (3.4), the range 4,,H*(B,) is a generating set of M, and it
follows that if M has finite defect, then M must be finitely generated. Clearly, if M is
of finite codimension in H?(B,), then M has finite defect, and therefore, if M is
unitarily equivalent to a finite codimensional submodule, then M has finite defect.
Using function theory from [Ru2,Ru3], it is easy to prove that if M is unitarily
equivalent to a finite codimensional submodule, say, N, then there is an inner
function # such that M = nN. Concerning inner functions on the unit ball, Rudin
posed the existence problem of inner functions over the unit ball in the sixties: Do
there exist nonconstant inner functions in H* (B;) [Ru2]? This problem was
affirmatively solved in 1982 by Aleksandrov [Ru3].

Before continuing let us see an example.

Example 7. Suppose M is homogeneous, that is, M is generated by homogeneous
polynomials. Then M has finite defect only if M is of finite codimension in H?(B,).
In fact, if M is homogeneous, then it is not difficult to check that M has
an orthonormal basis consisting of homogeneous polynomials, and hence P,
maps polynomials to polynomials. Also, note that for any ¢ e H* (B,), M} maps
polynomials to polynomials. This shows that the defect operator A4, maps
polynomials to polynomials. If 4, is of finite rank /, then there exist polynomials
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p1, ..., p; and real numbers a;, ..., o; such that

I
Ay = upe ®pi,

k=1

and by (3.4) we have that
!
Py =) wM,M;.
k=1
This gives

1
Prgyom =1 — Z oMy, M
k=1

Combining (3.2) and Proposition 3.2(1) yields the following

/

1= alpe(&F =0

k=1

for any (e 9B,. According to the Coburn’s theorem [Cob], the projection Pp2 (g, o m
is compact and hence M is finite codimensional in H?(B,). Recall that the Coburn’s
theorem says the following: Let C*[M-,, ..., M.,] be the C*-algebra generated by the
operators M.,,...,M., on H*(B,), then C*[M.,,...,M.,] contains all compact
operators ", and there exists a x-isomorphism

C[M.,, ..., M.,| | = C(8By),

where the correspondence is given by M., + # +—z; fori=1,...,d.

Notice that this example stands in rather stark contrast with the case of the Hardy
module H%(D?). Indeed, we conjecture that the answer to the following problem
is yes.

Conjecture. Let M be a nonzero submodule of H*(B,). Then M has finite defect only
if there are a finite codimensional submodule N, and an inner function n such that
M =yN.

If we assume this conjecture, then the conjecture implies the following: if I is an
ideal of Clzy,...,z4], and the submodule [I] has finite defect, then [/] is finite
codimensional in H*(B,). To see this, by the conjecture, [1] is unitarily equivalent to
a finite codimensional submodule N. Since each finite codimensional submodule is
generated by polynomials, from [Guo2, Theorem 5.2] one has [I] = N.

Actually, we will prove this result.
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Theorem 3.3. Let I an ideal of Clzy, ...,zq4). If [I] has finite defect, then [I] is finite
codimensional in H*(By).

For this theorem, we will need several propositions and lemmas.

Lemma 3.4. Let f = p/q be a rational function, where p and q are without common
Sactors. If f is analytic on By, then Z(q) "By = 0.

Proof. Similarly to the proof of [Guo2, Lemma 3.2]. O
Lemma 3.5. Let g be a polynomial, and Z(q) "By = 0. Then [q) = H*(By).
Proof. See the Remark following Proposition 2.9 in [Guo2]. O

Let f be analytic on B;. For each £e€0dBy, the slice function f; is defined by
fe(z) = f(z&), Vze D. The same as the proof of Lemma 3.7 in [Guo2] we have

Lemma 3.6. Let f be analytic on By. If for almost all £€ 0By, the slice function
Jfe(z) = f(2&) is a polynomial, then f is a polynomial.

We will need a result which comes from [Rul, Theorem 14.3.3].

Lemma 3.7. Assume d>2. Let Q be a bounded domain in C°, and let A(Q) =
C(Q)nHol(Q) be the so-called Q-algebra. If f € A(Q),ge A(Q), and | f(1)| < |g(1)| for
each boundary point A of Q, then | f(z)|<l|g(z)| for every zeQ.

Proposition 3.8. Let I be an ideal of Clzi, ..., z4), and [I] have finite defect index .

Then there exist polynomials py, ...,ps, q1, ...,q; (here s+t = 1) and r satisfying the
greatest common divisor

GCD(P1y -y P51y -1 q1) = 1, (3.5)

and Z(r) "By = 0 such that

1. the rational functions pi/r,....ps/r,q1/r,...,q/r belong to [I], and
{p1, .. ,Ps, Q1 ---,q:} is a generating set of [I];
2. 4=, het - Z;:l %®%5
s 2 o2 2
3. 5 PO = X Mg = 11O, £eoBa.

Proof. Combining Lemmas 3.4, 3.5 and the proof of Lemma 2.11 shows that
Proposition 3.8(1), (2), (3) are true, and

GCD(p1, ..., Pssq1s oy G, 7)) =1, Z(r)nB; = 0. (3.6)
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Below, we will combine (3.6) and Proposition 3.8(3) to prove (3.5). Since Proposition
3.8(3) will be used several times, it is singled out here,

Z Gk _Z |g;(¢) W =r(&)f, EedBy. (3.7)
=1

To prove (3.5), let

p=GCD(p1, ...,Ps,q1y -, q1)
and

PL=PP1, - Ps = PPy 41 = DPys s i = DYy

By (3.7), there exists a positive constant y such that

MO <y PO, VEeoBy.
Combining this fact with Z(r) "By = @, and applying Lemma 3.7 we have

Z(p)nB; = 0.

For each £€0B,, by (3.7)

e”) [Z 1Pl ()] —Z e (e”) 1|rg(e"0)|2. (3.8)

Set N = max{degp;, ...,degp,,degq;...,degq,, degr}, where degh denotes the
homogeneous degree of a polynomial 4. Then we have

s t
pe(e”)pe(e®)e™’ [Z Pie()p(e?)e™" — Z qje(e")d; (e"e)e’N(’l
i=1

J=1
— re(e)re(@)e. (3.9)

Since polynomials p¢(z), r¢(z) in the variable z have no zero point on the unit disk D,
they are outer functions in the Hardy space H*(D). Note that p;(e??)e™", p/.(e®)e™?,

qj:(e)e™N, 1 (e?)e*™ are analytic polynomials in e for each {€dB,. Therefore,
for each £ e 0By, the outer factor of the right side in (3.9) equals rz( 1) 'and the outer
factor of the left side equals p: 2(e"”) x some polynomial. By the uniqueness of inner—
outer decomposition of functions in H?(D) [Gar], the slice function 7 ( 0y / P: 2(e) is

a polynomial for each ¢€9B,. By Lemma 3.6, the function r?/p* is a polynomial,
and hence

P’ =GCD(p*, ).



K. Guo | Journal of Functional Analysis 213 (2004) 380—411 401

Since GCD(p, r) = 1, this implies that p? is a constant, and hence p is a constant. This
shows that (3.5) is true. The proposition follows. [I

Proposition 3.9. Let I be an ideal of the polynomial ring C|z1, ..., z4]. If [I] has finite
defect, then the ideal I has only finitely many zeros in By, that is, Z(I) "By is a finite
set.

For this proposition we need some preliminaries involving the theories of analytic
variety and algebraic variety.

An analytic variety in C? is a closed set ¥ = C¢ with the following property: for
each ze V' correspond analytic functions f1, ..., f,, defined on some neighborhood O
of z such that

Vo =Z(fi)n--nZ(f).

If, in addition, these r functions can be so chosen that their Jacobian matrix has rank
r at z, then z is called a regular point of V" at which V" has complex dimension d — r.
In symbols, dim,} = d — r. Notice that the complex dimension of V" at a regular
point is independent of choices of functions. If dim,V = k at every regular point
of V, then V is said to have pure dimension k. An analytic variety of pure dimension
1 is called an analytic curve. More generally, one defines the complex dimension
of V as

dimV = supdim, V,

where the supremum is taken over all regular points of V" (cf. [Her]).

An algebraic variety ¥ in C? is the intersection of the zero-sets of finitely many
polynomials. Since each ideal of C[zj,...,z4] is generated by finitely many
polynomials, algebraic varieties are zero sets of ideals of Clzy, ...,z4]. A algebraic
variety V is called irreducible if V= ViUV, implies V' = V| or V = V>, where V)
and V), are algebraic varieties. A basic result from algebraic geometry [Ken] states
that each algebraic variety can be uniquely decomposed as a finite irredundant union
of irreducible varieties. Similarly to analytic variety, one can define regular points,
dimension for an algebraic variety. We refer the reader to [Ken, Chapter 1V] for
details. An algebraic variety of pure dimension 1 is called an algebraic curve.

Lemma 3.10. Let S be an irreducible algebraic curve, and let S* be the set of all regular
points of S. Then S* is connected.

This lemma may be known by many algebraic geometricians, but we cannot locate
a reference recording this result.

Proof. From [Her, p. 108, Corollary 1], for each irreducible analytic variety ¥ in C¢,
I*, the set of all regular points of V', is connected. Therefore, it is sufficient to show

that S, as an analytic curve in C?, is irreducible. To get a contradiction we assume
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that S is reducible. Then by [Her, p. 111, Theorem 8], S can be decomposed as

S=5uSHuSiu...,

where each S; is irreducible analytic variety in C?, and S;#S. Since S has pure
dimension 1, by [Her, p.109, Corollary 3], every S; has pure dimension < 1. Clearly,
there exists at least one §; such that S; has pure dimension 1. Applying [Ru4,
Theorem 2] to this S; shows that S; is an irreducible algebraic curve. Since S be an
irreducible algebraic curve, this implies S; = S. This contradiction shows that S is an
irreducible analytic curve, completing the proof. [

Lemma 3.11. Let S be an irreducible algebraic curve, and S "By #0. Then S N 0By is
an infinite set.

Proof. Let $* = .S — S* be the set of all singular points of S. Then, by [Ken, p. 190,

Corollary] S** is a proper subvariety of .S, and hence S**is a finite set. Since S is a
connected and unbounded set [Ken, p. 191, Theorem 5.1], Lemma 3.10 implies that

S ABy#0, S NOB;#0, S (CT—By)#0.
By Lemma 3.10, there is at least one {€S*n 0B, such that to every ¢>0,
S n{zeC?: |z — {|<e} N By #0. (3.10)
Since S has complex dimension 1 at the regular point {, then by Implicit complex-
analytic mapping theorem [Ken, p. 49, Theorem 3.5], one can choose a open
connected neighborhood O of the origin of the complex plane and a open

neighborhood O(() of ¢, and analytic functions ¢, ..., ¢,_, defined on O satisfying
$1(0) = -+ = $,_1(0) = 0 such that

Sﬂo(o ={+ {(Z’(pl(z)v "'7(/)d—l(2)) : ZEO}'
Considering the subharmonic function
H(z) =244 +101(@) + L + -+ |bg 1 (2) + Lal’, z€0,
then H(0) = 1. From (3.10) we see that there are infinitely many we O satisfying
H(w)<1, and hence by the definition of subharmonic function [Gar], there exist
infinitely many ze O such that H(z)>1. Set

X ={ze0:H(z)<1}, Y={zeO0:H(z)=1}, Z={zeO0:H(z)>1}.

Note that O is connected, and O — Y = X U Z is not connected. This implies that Y
is an infinite set, otherwise, O — Y is connected. Since each point in SN O({) is
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regular, we have
(+H{(z,0,(2), .., g1 (2): ze Y} =S* N OBy.
By the fact that Y is an infinite set, the set SN 0B, is infinite. [
We now give the proof of Proposition 3.9.

The proof of Proposition 3.9. Let pi,...,ps,q1,...,q, and r be the polynomials
appeared in Proposition 3.8. Then by Proposition 3.8(3) we have

S

S i = > g OF =), ¢edBy. (3.11)

i=1 J=1
Set V' =Z(I)nBy, and for each a#0, V, = {zeV : r(z) = a}.

Claim 1. For each 0.#0, V,, = {zeV : r(z) = a} is a finite set. Indeed, by Proposition
3.8 the submodule [I] is generated by {p1, ...,ps,q1...,4:}, and hence

V=2Zp)n-nZp)nZ(qi)-Z(q:) " Ba.

This means
Vy=4zeBy:r(z) —a=0,pi(z) =0,¢;(z) =0,i =1, ....,5,j=1,...,t}.

By (3.11) it is easily seen that V, is a compact analytic variety in B;. Applying [Her,
p. 92, Corollary 1] shows that V, is a finite set. The Claim 1 follows.

To complete the proof, we assume that V' = Z(I) n B, is an infinite set. Then there
exists an irreducible component S of Z(I) such that SnB,, denoted by Sy, is an
infinite set.

Claim 2. The variety S has pure dimension 1, that is, S is an irreducible algebraic
curve.

In fact, since S is irreducible, by [Ken, p. 172, Theorem 2.9] each regular point of S
has the same dimension, say, k. Note that the set S* of all regular points of .S is dense
in S (cf. [Ken]). Therefore, S* N B, is dense in Sy = SN B,. Taking a regular point {
of Sy then by Implicit complex-analytic mapping theorem [Ken, p. 49, Theorem 3.5],
there exist a open neighborhood O<C* about (0), and a open neighborhood O({)
of {, and analytic functions ¢, ..., ¢,_, defined on O satisfying ¢,(0) = --- =
¢4_(0) =0 such that

SonO) =C+{(z1, .., zk, $1(2), ..o, by_i(2)) : z€ O}
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Consider analytic function Q(zi, ..., zx) defined on O by
Oz, ...,zi) =r({+ Z) — r({),

where Z = (z1, ..., zk, (21, .-+, Zk), ooey y_i (21, ..., 2k)). Since r({)#0 and Q(0) =
0, Claim 1 implies that Q has only finitely many zero points in O. Since an analytic
function in several variables has no isolated zero point (cf. [Kr]), this implies k = 1,
and hence the variety S has pure dimension 1, that is, S is an irreducible algebraic
curve.

Before going on we require the following notion. For a prime ideal P of
Clzy, ..., z4], the height of P, denoted by height(P), is defined as the maximal length /
of any properly increasing chain of prime ideals

0=PycP|---cP;=P.

Since the polynomial ring C[zy, ..., z4] is Noetherian, every prime ideal has finite
height and the height of an arbitrary ideal is defined as the minimum of the heights of
its associated prime ideals. For an ideal J, one has

dime Z(J) =d — 1, (3.12)

where / = height(J) is the height of J, and dim¢ Z(J) the complex dimension of the
zero variety of J (cf. [Ken, p. 196]).

Put I} ={peClzi,...,z4) : Z(p)>S}, and L =1 +rClzi,...,zg]. Then I, is
prime, Z(I;) = S and by (3.12) height(/;) =d — 1.

Claim 3. height(I,) = d.

In fact, since I, ©1I;, we have height(l)>d — 1. Now assume that height(/) =
d — 1. Taking a finite irredundant primary decomposition of I,

12 = Jlﬂ --~ﬂJn,

then there is a primary ideal J such that its radical ideal /J; has the height d — 1.
Since +/J; is prime, and \/J; o I, we get I = +/J. Since re+/Jy, this forces rel;, and
hence Z(r) o S. This contradicts the fact that r has no zero point in B;. We conclude
therefore that height(l) = d.

From Claim 3 and [Ken] we see that Z(,) = SnZ(r) is a finite set. By (3.11)
one has

SNOBs=Z(r)nSnoBy.

This shows that SN 0B, is a finite set. This contradicts Lemma 3.11, and it follows
that I has only finitely many zero points in B,;. The proof of Proposition 3.9 is
completed. [
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To prove Theorem 3.3, we also need the following notions. Let #(B,) denote the
space of analytic functions defined on neighborhoods of B;, and C* (By) the space

of germs of smooth functions on B,. Defining seminorms |||, on C*(B,),
n=0,1,2,..., by setting
_ﬂ R
/1], = max{|D"Df (z)| : zeBu, [« + [B|<n},
where o = (o1, ..., %4), f = (B, ..., Bq) are ordered d-tuples of nonnegative integers,

and |o| = oy + -+ + oy, |f| =By + -+ + B4, and

o] %] /51 ﬁd
o (2N (DN (2 (2
621 aZd 821 824

If |2 = |B| = 0, D*f =D'f = .

This family of seminorms makes C* (B,) into a locally convex topological linear
space. From the basic theory of functional analysis [Ru5], for each continuous linear
functional F on C* (B,) there exist a positive constant C and a nonnegative integer
m such that

F()SC Sy feC™ (Ba). (3.13)

We now will give the proof of Theorem 3.3.

The proof of Theorem 3.3. By Proposition 3.9, Z(I)nB, is a finite set, say,
Z(I)nBy = {41, ..., A}. From the basic theory of algebraic variety [Ken] the ideal 1
can be decomposed as I = I} n I, such that Z(I)) = {4, ..., 4/}, and Z(L) "B, = 0.
It follows that I; is finite codimensional in Clzy, ..., z4]. Since I} L, =I<I, and

]2/1 = 12/110122(11 —I—Iz)/IlCC[Zl, ...,Zd]/ll,

we see dim I, /I < oo, and hence there exists a finite dimensional linear subspace # of
I, such that

L =142

It is easy to see that [[r] = [I] + #. Since 2 is finite dimensional, the defect operator
Ay has finite rank if and only if 4|7, has finite rank. Hence, to complete the proof, it

is enough to show that the following is true: if Z(I) "By = @ and A4y has finite rank,
then [I] = H*(B,). Below, we will use an idea from [PS]. By way of contradiction we
suppose that I is not dense in H>(B,). Let he H*(B,), and h L [I]. Then / induces the
linear functional {-,/) @, on H (B4), which produces a continuous linear
functional F : #(B,)/I—C, where I denotes the closure of I in #(B,). By
Malgrange’s (flatness and separation) Theorem on ideals of smooth functions [Mal],
the extended ideal 1 - C* (B,) is closed in C*(B,), and I - C*(By)n# (By) = 1.
This enables us to extend F (using Hahn—Banach’s Theorem) to a continuous linear
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functional
F: C*(By)/T- C*(Ba)—>C.
Notice that F is supported by Z(I) nBy, and by (3.11)
Z()nBy = Z(I)nOB, <= Z(r) n0B,.
Therefore, by (3.13) there exist a nonnegative integer m and a constant C such that
ENI<CU S N zynoe,s S €C* (Ba),
where f=f +1-C*(By), and
1l 2y, = max{ D' D (2)] = z€ Z(r) nOBy, o] + | <}
This insures that for any polynomial p,
F(r™1p) = 0.
Since
<V'"+1P7h>H2(BL,) =F("'p+1)=Fr"'p) =0
for any polynomial p, this implies / L ["*!]. By Lemma 3.5,
1) = H?(Ba),

and hence /& =0, reaching a contradiction. The proof of Theorem 3.3 is
completed. [

4. Defect operators of Bergman submodules over the unit ball

In this section we will briefly mention the defect operators and the defect functions
for submodules of the Bergman module L2(B,) over the unit ball B,. The Bergman
space L2(B,) is the closed subspace of L*(By,dv) consisting of analytic functions,
where dv is the normalized volume measure with v(B;) = 1. It is well known that the
reproducing kernel and the normalized reproduce kernel of L2(B,) are, respectively

1 KA(Z)
KA(Z) = — — — ) A= .
(1 — 1121 — 1222 — = /ldzd)d+l HK7H
Since L2(B,) admits a natural C[z, ..., z4]-module structure coming from multi-

plication by polynomials we will call L2(B,) as Bergman module over the unit ball.
As done in Sections 2 and 3, given a submodule we define the defect function Dy, (1)
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as follows:

2
[Lodl

= |1Pvi; |2 4.1
K || Park;| (4.1)

Dy(4) =

From the definition of the defect function Dy, it is easy to check that there is a
unique bounded linear operator, denoted by 4,,, such that

o IKMIP [ ‘
Dy(A) =
v =K Z:

d+1
1PvK||* = <AuKi, Ky, (4.2)

where

=P S S
k=1 ki(d+1—k)! ity ipe{1.2,...d} "

We then define the defect operator of the submodule M as 4,,. In particular, in the
dimension d = 1, for a submodule M of the Bergman module L2(D), its defect
operator is

Ay = Py —2A/MZPM]\4;< +M22PMM;2.

In the case of the Bergman module L2(D), Yang and Zhu have made some progress
for study of defect operators of submodules [YZ]. In this section we will concentrate
attention on dimension d > 2.

As in the previous sections, a submodule is uniquely determined by its defect
function, and hence is uniquely determined by its defect operator. Also, the defect
functions for submodules of L2(B,) need not be subharmonic, in general. An
example is that the defect function of the submodule { /e L?(D) : f(0) = 0} is not
subharmonic.

Moreover, similarly to Proposition 3.2 we have

Proposition 4.1. Let M be a submodule of L>(B,). We have the following:

1. the defect operator Ay =0 only if M = L(By);
2. if M contains a function from H*(B,), then for almost all ze OB, with respect to the
measure da, Dy(A) =1 as 1 — z non-tangentially.

Proof. (1). First note that

S=MOS(z1M+2,M+ - z;M)#{0}

and it is easy to check that every function from S is eigenvector of A4,, with the
corresponding eigenvalue 1. Taking a function g from S with ||g|| =1, then A, —
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g®g=0. By (4.1) and (4.2), we have
CAuK K> = Lg@gK;, Ki ) = |Pukil* = lg(2)]* >0,

and it follows that

/ 1Pk do(2)
Ba

From the above inequality it is deduced that
[Puk;l| =1, ieBq,

and hence M = L2(B,).

(2) Take a nonzero f € M n H*(B,), and set [ f] = fC|zy, ..., z4], which is contained
in M. If we can show D(s(z) = 1 a.e. on dBy, then the conclusion will follow from
the fact

L>[|Paks| P =P kil = Dygy ().

The same argument as in [GY] enables us to get the following:

2
1=Dy(2)= :J;EC)|||

Notice that
y 2 _ 2k 2d _ " 2d
IRl = [ Ve = [ 17,0 o
2do = >
< /3[8[[|fo¢z(f)| da—/ﬁﬂ({P(A,f)U(fﬂ do.

where ¢, is the canonical automorphism of the ball B, that maps the origin to A (cf.
[Ru2, Chapter 2]), and P(4, ¢) is the invariant Poisson kernel at A for the unit ball (cf.
[Ru2, Chapter 3]). We thus obtain that

AP S (AP

1=D (2 .
iy % Tom PUL OO do

Since for almost all ze 0By, faB P(2, &) f(&))* do converges to | f(z)|* as 41—z non-
tangentially, this insures that Dj;(4)—1 as A—zedB; non-tangentially. The
required conclusion follows. [

A natural problem arises here. Does Proposition 4.1(2) hold for any nonzero
Bergman submodule?
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We now turn to studying submodules with finite defect indices. In the dimension
d = 1, this problem was considered by Yang and Zhu [YZ]. In particular, they found
that the defect operator for the submodule generated by the singular inner function
S(z) =exp(—(1 +z)/(1 — z)) has rank 2. Therefore, in the case of the dimension
d =1, one cannot even give a reasonable guess for finite defect problem. In
dimension d>2, we conjecture that M has finite defect only if M has finite
codimension in L2(B,). Indeed, following the proof of Theorem 3.3, we can prove
the following:

Proposition 4.2. Let I an ideal of Clzy, ...,z4). If the submodule [I] has finite defect,
then [I] is finite codimensional in L(B).

Remark 1. The results in this section can be generalized to the weighted Bergman
space L2(Bg,dv,), 0> — 1, where dv,(z) = ¢,(1 — |z)*)"dv(z), and ¢, is a positive
constant such that v,(B,) = 1. For the weighted Bergman module L2(By, dv,), its
reproducing is given by

1
(1 _ <Z’;b>)x+d+l'

Ki(z) =

Similarly to the case of the Bergman module L2(By), one can define defect operators
(functions) for submodules of L2(Bg, dv,).

Remark 2. In [Arvl,Arv2], Arveson developed the theory of d-contractions. We
refer the reader to references mentioned above for a far-reaching operator-algebraic
development of this theory. This theory especially concerns a typical function space
on B,, the so-called symmetric Fock space Hﬁ on B;, which is induced by the
reproducing kernel

1

K;L(Z) 271 — <Z,/l>.

Noticing that H? admits a natural C[zy,...,z,]-module structure coming from
multiplication by polynomial, then H7 is a typical Hilbert module over the unit ball.
Concerning submodules of H§7 a natural problem was asked by Arveson in [Arv2]:
in dimension d>2, must the defect index of each nonzero submodule of H3, which
has infinite codimension in H3, be infinite? The paper [Guo3] shows that the answer
to this problem is yes. However, the techniques used in [Guo3] are completely
different from the present paper, because, as one has seen, the theory of defect
operators relies heavily on expressions of reproducing kernels.
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