Two Relations Between Oblique and Λ -Orthogonal Projectors

J. K. Baksalary and R. Kala Department of Mathematical and Statistical Methods Academy of Agriculture 60-637 Poznań, Poland

Submitted by H. Schneider

ABSTRACT

Let \mathcal{L} and \mathfrak{M} be any complementary subspaces. In this article, two relations established by T. N. E. Greville between the projector $P_{\mathcal{L}|\mathcal{M}}$ on \mathcal{L} along \mathfrak{M} and the orthogonal projectors on \mathcal{L} and \mathfrak{M} are generalized by admitting any Λ -orthogonal projectors, with Λ being a positive definite matrix. Also, two representations of Λ are found for which, given \mathcal{L} and \mathfrak{M} , Λ -orthogonal projectors on \mathcal{L} become identical with $P_{\mathcal{L}|\mathfrak{M}}$.

1. INTRODUCTION

Let \mathcal{L} and \mathfrak{M} be any two complementary subspaces of the *n*-dimensional complex vector space \mathcal{C}^n , i.e., such that $\mathcal{L} \cap \mathfrak{M} = \{0\}$ and $\mathcal{L} \oplus \mathfrak{M} = \mathcal{C}^n$, and let Λ be any $n \times n$ positive definite matrix. Further, let L and M denote any matrices whose columns span the subspaces \mathcal{L} and \mathfrak{M} , respectively. We denote by $P_{\mathcal{L}|\mathcal{M}}$ the projector on \mathcal{L} along \mathfrak{M} , and by $P_{\mathcal{L}|\Lambda}$ the Λ -orthogonal projector on \mathcal{L} . The former is uniquely determined by the equations $P_{\mathcal{L}|\mathcal{M}}L=L$ and $P_{\mathcal{L}|\mathcal{M}}M=0$, while the latter admits the representation

$$\mathbf{P}_{\mathcal{E}:\Lambda} = \mathbf{L}(\mathbf{L}^*\Lambda \mathbf{L})^{-} \mathbf{L}^*\Lambda, \tag{1}$$

the superscripts "*" and "-" denoting the conjugate transpose and a g-inverse of the matrix, respectively. If $\Lambda = I$, the identity matrix, then the term "orthogonal", instead of "I-orthogonal", and the symbol $P_{\mathcal{E}}$, instead of $P_{\mathcal{E},I}$, are used throughout this paper.

 LINEAR ALGEBRA AND ITS APPLICATIONS 24:99–103 (1979)
 99

 © Elsevier North Holland, Inc., 1979
 0024-3795/79/020099+5\$01.75

Greville [2] proved that \mathbf{P}_{elow} can be expressed in terms of \mathbf{P}_{e} and \mathbf{P}_{ow} as

$$\mathbf{P}_{\mathcal{E}|\mathfrak{M}} = (\mathbf{I} - \mathbf{P}_{\mathfrak{M}} \mathbf{P}_{\mathcal{E}})^{-1} (\mathbf{I} - \mathbf{P}_{\mathfrak{M}})$$
$$= \mathbf{P}_{\mathcal{E}} (\mathbf{P}_{\mathcal{E}} + \mathbf{P}_{\mathfrak{M}} - \mathbf{P}_{\mathfrak{M}} \mathbf{P}_{\mathcal{E}})^{-1}.$$
(2)

In Sec. 2 of the present paper it is shown that this result can be strengthened by replacing $\mathbf{P}_{\mathcal{C}}$ with $\mathbf{P}_{\mathcal{C},\Lambda}$ and $\mathbf{P}_{\mathfrak{M}}$ with $\mathbf{P}_{\mathfrak{M};\Lambda}$, with any Λ . Moreover, a counterexample is given to establish the impossibility of a further generalization of the result consisting in the simultaneous use of $\mathbf{P}_{\mathcal{C},\Lambda}$ and $\mathbf{P}_{\mathfrak{M};\mathbf{K}}$ when $\mathbf{K}\neq\Lambda$. In the next section of the paper, a relation between oblique and Λ -orthogonal projectors is considered from another point of view. Namely, two formulae for positive definite Λ 's are derived for which, given \mathcal{L} and \mathfrak{M} , the projector $\mathbf{P}_{\mathcal{C},\Lambda}$ is identical with $\mathbf{P}_{\mathcal{C}|\mathcal{M}}$.

It can be noted that the results of Sec. 2 are applicable in calculating $P_{\mathcal{L}|\mathcal{M}}$ by the method of Greville when not $P_{\mathcal{L}}$ and $P_{\mathcal{M}}$ but $P_{\mathcal{L};\Lambda}$ and $P_{\mathcal{M};\Lambda}$ are known for some Λ . The results of Sec. 3, however, provide an alternative method for computing $P_{\mathcal{L}|\mathcal{M}}$ viz. as a Λ -orthogonal projector on \mathcal{L} with a previously determined appropriate Λ .

2. GENERALIZATION OF GREVILLE'S RESULT

The theorem of Greville [2], here quoted in (2), follows from the fact that the matrix $\mathbf{I} - \mathbf{P}_{\mathfrak{M}} \mathbf{P}_{\mathfrak{L}}$ is nonsingular whenever the subspaces \mathfrak{L} and \mathfrak{M} are disjoint. This is in fact a simple corollary from the result of Lent (cf. Ben-Israel and Greville [1, p. 200]) stating that the null space of $\mathbf{I} - \mathbf{P}_{\mathfrak{M}} \mathbf{P}_{\mathfrak{L}}$ is $\mathfrak{L} \cap \mathfrak{M}$. The lemma below shows that the statement is also true in a more general case where instead of orthogonal, Λ -orthogonal projectors are used. It seems noteworthy that the lemma is proved without using explicitly the notion of the vector norm, which plays a critical role in the proof given by Lent.

LEMMA. Let \mathcal{L} and \mathfrak{M} be any subspaces of \mathcal{C}^n , and Λ be any $n \times n$ positive definite matrix. Then the null space of $I - P_{\mathfrak{M};\Lambda} P_{\mathcal{L};\Lambda}$ is $\mathcal{L} \cap \mathfrak{M}$.

Proof. Let \mathfrak{N} stand for the null space of $\mathbf{I} - \mathbf{P}_{\mathfrak{M};\Lambda}\mathbf{P}_{\mathfrak{L};\Lambda}$. If $\mathbf{x} \in \mathfrak{L} \cap \mathfrak{M}$, then $\mathbf{P}_{\mathfrak{L};\Lambda}\mathbf{x} = \mathbf{x}$ and $\mathbf{P}_{\mathfrak{M};\Lambda}\mathbf{x} = \mathbf{x}$ regardless of Λ . Hence $(\mathbf{I} - \mathbf{P}_{\mathfrak{M};\Lambda}\mathbf{P}_{\mathfrak{L};\Lambda})\mathbf{x} = \mathbf{0}$ or $\mathbf{x} \in \mathfrak{N}$. Thus, $\mathfrak{L} \cap \mathfrak{M} \subset \mathfrak{N}$.

Conversely, if $\mathbf{x} \in \mathfrak{N}$, then

$$\mathbf{x} = \mathbf{P}_{\mathfrak{M};\Lambda} \mathbf{P}_{\mathfrak{L};\Lambda} \mathbf{x},\tag{3}$$

/ - >

and therefore $x \in \mathfrak{M}$. To prove that simultaneously $x \in \mathfrak{L}$, premultiply (3) by $x^*\Lambda$ and utilize the fact that $\Lambda P_{\mathfrak{M};\Lambda}$ is Hermitian, which follows immediately from (1). Hence

$$(\mathbf{\Lambda}\mathbf{P}_{\mathfrak{M}:\mathbf{\Lambda}}\mathbf{x})^*\mathbf{P}_{\mathfrak{L}:\mathbf{\Lambda}}\mathbf{x} = \mathbf{x}^*\mathbf{\Lambda}\mathbf{x}.$$

But it has already been noted that $P_{\mathfrak{M}:\Lambda}x = x$. Therefore

$$\mathbf{x}^* \mathbf{\Lambda} (\mathbf{I} - \mathbf{P}_{\mathcal{C}: \mathbf{\Lambda}}) \mathbf{x} = \mathbf{0},$$

and then, since $I - P_{\mathcal{L};\Lambda}$ is idempotent and $\Lambda(I - P_{\mathcal{L};\Lambda})$ is Hermitian,

$$\mathbf{x}^*(\mathbf{I}-\mathbf{P}_{\mathfrak{L}:\Lambda})^*\Lambda(\mathbf{I}-\mathbf{P}_{\mathfrak{L}:\Lambda})\mathbf{x}=\mathbf{0}.$$

In view of the positive definiteness of Λ , this is equivalent to $(I - P_{\mathcal{L};\Lambda})x = 0$ or to $x \in \mathcal{L}$. Thus, $\mathfrak{N} \subset \mathcal{L} \cap \mathfrak{M}$, and the proof is completed.

Repeating the arguments of Greville [2, p. 831], but now with reference to the lemma above, we get the following

COROLLARY. If \mathcal{L} and \mathfrak{M} are disjoint subspaces of \mathcal{C}^n , then the matrix $\mathbf{I} - \mathbf{P}_{\mathfrak{M} \land \mathbf{\Lambda}} \mathbf{P}_{\mathcal{L} \land \mathbf{\Lambda}} \mathbf{P}_{\mathfrak{L} \land \mathbf{\Lambda}}$ is nonsingular for any $n \times n$ positive definite $\mathbf{\Lambda}$.

It is natural to ask if the result of the corollary remains true when the projectors involved are related to two different inner products, i.e., when $P_{\mathfrak{N};K}$, with $K \neq \Lambda$, is substituted for $P_{\mathfrak{N};\Lambda}$. The following example disproves this conjecture.

Let $L^* = (1 \ 1)$ and $M^* = (1 \ 0)$. It is obvious that the subspaces \mathcal{L} and \mathfrak{M} are disjoint. However, choosing

$$\mathbf{\Lambda} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \text{ and } \mathbf{K} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix},$$

it follows from (1) that

$$\mathbf{P}_{\mathcal{C};\Lambda} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$
 and $\mathbf{P}_{\mathfrak{M};K} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$,

and consequently,

$$\mathbf{I} - \mathbf{P}_{\mathfrak{M}; \mathbf{K}} \mathbf{P}_{\mathfrak{L}; \mathbf{\Lambda}} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

a singular matrix.

Now we are in a position to establish an extension of the theorem of Greville [2] quoted in (2).

THEOREM 1. If \mathcal{C} and \mathcal{M} are complementary subspaces of \mathcal{C}^n , then

$$\mathbf{P}_{\mathcal{E}|\mathfrak{M}} = (\mathbf{I} - \mathbf{P}_{\mathfrak{M};\Lambda} \mathbf{P}_{\mathcal{E};\Lambda})^{-1} (\mathbf{I} - \mathbf{P}_{\mathfrak{M};\Lambda})$$
(4)

$$= \mathbf{P}_{\mathcal{L};\Lambda} (\mathbf{P}_{\mathcal{L};\Lambda} + \mathbf{P}_{\mathfrak{M};\Lambda} - \mathbf{P}_{\mathfrak{M};\Lambda} \mathbf{P}_{\mathcal{L};\Lambda})^{-1}$$
(5)

for any $n \times n$ positive definite matrix Λ .

Proof. Let \mathcal{L}^{\perp} denote the orthogonal complement of \mathcal{L} . It is obvious that

$$\mathbf{P}_{\mathfrak{M}^{\perp}|\mathfrak{C}^{\perp}}\mathbf{P}_{\mathfrak{M}^{\perp};\Lambda^{-1}} = \mathbf{P}_{\mathfrak{M}^{\perp};\Lambda^{-1}}.$$
(6)

Also, it can be verified that

$$\mathbf{P}_{\mathfrak{M}^{\perp}|\mathfrak{L}^{\perp}} = \mathbf{P}_{\mathfrak{L}|\mathfrak{M}}^{*} \text{ and } \mathbf{P}_{\mathfrak{M}^{\perp};\Lambda^{-1}} = (\mathbf{I} - \mathbf{P}_{\mathfrak{M};\Lambda})^{*}.$$

Thus, taking conjugate transposes on both sides of (6) and utilizing the obvious equality $\mathbf{P}_{\mathfrak{L},\Lambda}\mathbf{P}_{\mathfrak{L}|\mathfrak{M}} = \mathbf{P}_{\mathfrak{L}|\mathfrak{M}}$, we get

$$(\mathbf{I} - \mathbf{P}_{\mathfrak{M}; \Lambda} \mathbf{P}_{\mathfrak{L}; \Lambda}) \mathbf{P}_{\mathfrak{L}|\mathfrak{M}} = \mathbf{I} - \mathbf{P}_{\mathfrak{M}; \Lambda}.$$

From this (4) follows immediately, since the matrix $I - P_{\mathfrak{M};\Lambda} P_{\mathfrak{L};\Lambda}$ is invertible due to the corollary given above.

Now, replace $\hat{\mathbb{L}}$, \mathfrak{M} and Λ in (4) by \mathfrak{M}^{\perp} , $\hat{\mathbb{L}}^{\perp}$ and Λ^{-1} , respectively, and take conjugate transposes on both sides. Then

$$\mathbf{P}_{\mathcal{E}|\mathcal{M}} = \mathbf{P}_{\mathcal{E};\Lambda} \{ \mathbf{I} - \langle \mathbf{I} - \mathbf{P}_{\mathcal{M};\Lambda} \rangle (\mathbf{I} - \mathbf{P}_{\mathcal{E};\Lambda}) \}^{-1},$$

from which (5) results by elementary calculations.

3. DERIVATION OF A'S FOR WHICH $\mathbf{P}_{\mathcal{L}; \mathbf{A}} = \mathbf{P}_{\mathcal{L}|\mathcal{M}}$

In this section, two representations of a positive definite matrix Λ are found such that, given \mathcal{L} and \mathfrak{M} , the Λ -orthogonal projector on \mathcal{L} coincides with the projector on \mathcal{L} along \mathfrak{M} .

THEOREM 2. Let \mathcal{L} and \mathfrak{M} be any complementary subspaces of \mathcal{C}^n . Then, for any positive numbers λ and μ ,

$$\Lambda_{1} = \lambda \mathbf{P}_{\text{fym}}^{*} \mathbf{P}_{\text{fym}} + \mu \mathbf{P}_{\text{m}|\text{c}}^{*} \mathbf{P}_{\text{m}|\text{c}}$$
(7)

and

$$\mathbf{\Lambda}_2 = \lambda \mathbf{P}_{\mathcal{C}^{\perp}} + \mu \mathbf{P}_{\mathfrak{M}^{\perp}} \tag{8}$$

are positive definite matrices such that $\mathbf{P}_{\mathcal{L};\Lambda_1} = \mathbf{P}_{\mathcal{L}|\mathfrak{M}} = \mathbf{P}_{\mathcal{L};\Lambda_2}$.

Proof. It is easily seen from (1) that $\mathbf{P}_{\mathcal{E};\Lambda}$ is the projector on \mathcal{E} along \mathcal{N}^{\perp} , where $\mathbf{N} = \Lambda \mathbf{L}$. Hence it follows that $\mathbf{P}_{\mathcal{E};\Lambda} = \mathbf{P}_{\mathcal{E}|\mathcal{M}}$ if and only if $\mathcal{N}^{\perp} = \mathcal{M}$, i.e., if Λ is a positive definite solution of the equation

$$\mathbf{M}^* \mathbf{\Lambda} \mathbf{L} = \mathbf{0}. \tag{9}$$

It is a direct consequence of the properties of the projectors involved that Λ_1 and Λ_2 , defined in (7) and (8), satisfy (9). Therefore, since they are obviously nonnegative definite matrices, it only remains to establish their nonsingularity. But, since $r(\Lambda_1) = r([\mathbf{P}_{\mathcal{C}|}, \mathbf{P}_{\mathcal{M}|\mathcal{C}}])$ and $r(\Lambda_2) = r([\mathbf{P}_{\mathcal{C}^\perp}; \mathbf{P}_{\mathcal{M}^\perp}])$, the nonsingularity follows from the fact that $\hat{\mathcal{L}}$ and \mathfrak{M} are complementary subspaces of \mathcal{C}^n .

The authors wish to thank Professor M. Warmus for suggesting the problem considered in Sec. 3. Thanks are also due to the referee for his very helpful comments.

REFERENCES

- 1 A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
- 2 T. N. E. Greville, Solutions of the matrix equation XAX = X and relations between oblique and orthogonal projectors, SIAM J. Appl. Math. 26:828-832 (1974).

Received 17 October 1977; revised 1 March 1978