# Two Relations Between Oblique and $\Lambda$-Orthogonal Projectors 

J. K. Baksalary and R. Kala<br>Department of Mathematical and Statistical Methods<br>Academy of Agriculture<br>60-637 Poznań, Poland

Submitted by H. Schneider


#### Abstract

Let $\mathbb{E}$ and $\mathfrak{T}$ be any complementary subspaces. In this article, two relations established by T. N. E. Greville between the projector $\mathbf{P}_{\mathcal{E} \mid \boldsymbol{\pi}}$ on $\mathcal{L}$ along $\mathfrak{R}$ and the orthogonal projectors on $\mathcal{E}$ and $\mathbb{K}$ are generalized by admitting any $\Lambda$-orthogonal projectors, with $\Lambda$ being a positive definite matrix. Also, two representations of $\Lambda$ are found for which, given $\mathfrak{L}$ and $\mathfrak{N}$, $\Lambda$-orthogonal projectors on $\mathfrak{L}$ become identical with $\mathbf{P}_{\text {e| }}$.


## 1. INTRODUCTION

Let $\mathcal{E}$ and $\mathscr{R}$ be any two complementary subspaces of the $n$-dimensional complex vector space $\mathcal{C}^{n}$, i.e., such that $\mathcal{E} \cap \mathfrak{R}=\{0\}$ and $\mathcal{E} \oplus \mathscr{R}=$ $\mathcal{C}^{n}$, and let $\Lambda$ be any $n \times n$ positive definite matrix. Further, let $L$ and $M$ denote any matrices whose columns span the subspaces $\mathcal{L}$ and $\mathfrak{R}$, respectively. We denote by $\mathbf{P}_{\mathcal{E} \mid \pi}$ the projector on $\mathcal{E}$ along $\mathfrak{R}$, and by $\mathbf{P}_{\mathcal{E} ; \Lambda}$ the $\Lambda$-orthogonal projector on $\mathcal{E}$. The former is uniquely determined by the equations $\mathbf{P}_{\mathfrak{E} \mid \Re \mathrm{K}} \mathbf{L}=\mathbf{L}$ and $\mathbf{P}_{\mathfrak{E} \mid \mathscr{N}} \mathbf{M}=0$, while the latter admits the representation

$$
\begin{equation*}
\mathbf{P}_{民 ; \boldsymbol{\Lambda}}=\mathbf{L}\left(\mathbf{L}^{*} \boldsymbol{\Lambda} \mathbf{L}\right)^{-} \mathbf{L}^{*} \boldsymbol{\Lambda}, \tag{1}
\end{equation*}
$$

the superscripts "*" and "-" denoting the conjugate transpose and a g-inverse of the matrix, respectively. If $\Lambda=I$, the identity matrix, then the term "orthogonal", instead of "I-orthogonal", and the symbol $\mathbf{P}_{\mathrm{E}}$, instead of $\mathbf{P}_{\mathfrak{E} ; \mathbf{I}}$, are used throughout this paper.

Greville［2］proved that $\mathbf{P}_{\mathcal{E} \mid \text { ® }}$ can be expressed in terms of $\mathbf{P}_{\mathcal{E}}$ and $\mathbf{P}_{\text {ๆ凡 }}$ as

$$
\begin{align*}
& \mathbf{P}_{\mathcal{E} \mid \circledast \pi}=\left(\mathbf{I}-\mathbf{P}_{\Re \pi} \mathbf{P}_{\mathcal{E}}\right)^{-1}\left(\mathbf{I}-\mathbf{P}_{\text {〇R }}\right) \\
& =\mathbf{P}_{\mathfrak{E}}\left(\mathbf{P}_{\mathfrak{R}}+\mathbf{P}_{9 \mathfrak{R}}-\mathbf{P}_{9 \mathbb{R}} \mathbf{P}_{\mathfrak{R}}\right)^{-1} . \tag{2}
\end{align*}
$$

In Sec． 2 of the present paper it is shown that this result can be strengthened by replacing $\mathbf{P}_{\mathcal{E}}$ with $\mathbf{P}_{\mathcal{E}: \Lambda}$ and $\mathbf{P}_{\Re \pi}$ with $\mathbf{P}_{\Re ; \Omega}$ ，with any $\boldsymbol{\Lambda}$ ．Moreover，a counterexample is given to establish the impossibility of a further generaliza－ tion of the result consisting in the simultaneous use of $\mathbf{P}_{\mathcal{Q} ; \mathbf{\Lambda}}$ and $\mathbf{P}_{\mathscr{O R}_{\mathbf{K}}}$ when $\mathbf{K} \neq \boldsymbol{\Lambda}$ ．In the next section of the paper，a relation between oblique and $\Lambda$－orthogonal projectors is considered from another point of view．Namely， two formulae for positive definite $\Lambda$＇s are derived for which，given $\mathcal{L}$ and $\mathfrak{R}$ ，the projector $\mathbf{P}_{\mathcal{E}, \boldsymbol{\Lambda}}$ is identical with $\mathbf{P}_{\mathcal{Q} \mid \mathfrak{O}}$ ．

It can be noted that the results of Sec． 2 are applicable in calculating
 known for some $\boldsymbol{\Lambda}$ ．The results of Sec．3，however，provide an alternative method for computing $\mathbf{P}_{\text {ع｜}}$ ，viz．as a $\boldsymbol{\Lambda}$－orthogonal projector on $\mathcal{E}$ with a previously determined appropriate $\boldsymbol{\Lambda}$ ．

## 2．GENERALIZATION OF GREVILLE＇S RESULT

The theorem of Greville［2］，here quoted in（2），follows from the fact that the matrix $\mathbf{I}-\mathbf{P}_{9 \mathbb{R}} \mathbf{P}_{\mathfrak{E}}$ is nonsingular whenever the subspaces $\mathcal{E}$ and $\mathbb{R}$ are disjoint．This is in fact a simple corollary from the result of Lent（cf． Ben－Israel and Greville［1，p．200］）stating that the null space of $\mathbf{I}-\mathbf{P}_{\text {פR }} \mathbf{P}_{\mathcal{E}}$ is $\mathfrak{E} \cap \mathfrak{R}$ ．The lemma below shows that the statement is also true in a more general case where instead of orthogonal， $\boldsymbol{\Lambda}$－orthogonal projectors are used． It seems noteworthy that the lemma is proved without using explicitly the notion of the vector norm，which plays a critical role in the proof given by Lent．

Lemma．Let $\mathfrak{E}$ and $\mathfrak{M}$ be any subspaces of $\mathfrak{C}^{n}$ ，and $\Lambda$ be any $n \times n$ positive definite matrix．Then the null space of $\mathbf{I}-\mathbf{P}_{\mathscr{T} ; \mathbf{A}} \mathbf{P}_{\mathfrak{C} ; \mathbf{A}}$ is $\mathfrak{E} \cap \mathscr{R}$ ．

Proof．Let $\Re$ stand for the null space of $\mathbf{I}-\mathbf{P}_{\pi ; \mathbf{\Lambda}} \mathbf{P}_{\mathfrak{E} ; \mathbf{\Lambda}}$ ．If $\mathbf{x} \in \mathcal{E} \cap \mathscr{N}$ ， then $\mathbf{P}_{\mathcal{E} ; \boldsymbol{\Lambda}} \mathbf{x}=\mathbf{x}$ and $\mathbf{P}_{\boldsymbol{T} ; \mathbf{A}} \mathbf{x}=\mathbf{x}$ regardless of $\boldsymbol{\Lambda}$ ．Hence $\left(\mathbf{I}-\mathbf{P}_{\Re ; \mathbf{A}} \mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}\right) \mathbf{x}=\mathbf{0}$ or $\mathbf{x} \in \mathscr{O}$ ．Thus， $\mathscr{E} \cap \mathfrak{H} \subset \mathfrak{R}$ ．

Conversely，if $x \in \mathscr{\Re}$ ，then

$$
\begin{equation*}
\mathbf{x}=\mathbf{P}_{\sigma_{i} ; \mathbf{\Lambda}} \mathbf{P}_{\mathfrak{e}_{i}, \mathbf{\Lambda}} \mathbf{X}, \tag{3}
\end{equation*}
$$

and therefore $\mathbf{x} \in \mathscr{R}$. To prove that simultaneously $\mathbf{x} \in \mathcal{L}$, premultiply (3) by $\mathbf{x}^{*} \boldsymbol{\Lambda}$ and utilize the fact that $\Lambda \mathbf{P}_{\Re \pi ; \Lambda}$ is Hermitian, which follows immediately from (1). Hence

$$
\left(\boldsymbol{\Lambda} \mathbf{P}_{\mathscr{R} ; \boldsymbol{\Lambda}} \mathbf{x}\right)^{*} \mathbf{P}_{\mathcal{L}_{;} ; \boldsymbol{\Lambda}} \mathbf{x}=\mathbf{x} \boldsymbol{\Lambda} \mathbf{x}
$$

But it has already been noted that $\mathbf{P}_{\mathfrak{R} ; \boldsymbol{\Lambda}} \mathbf{x}=\mathbf{x}$. Therefore

$$
\mathbf{x}^{*} \boldsymbol{\Lambda}\left(\mathbf{I}-\mathbf{P}_{\mathfrak{e} ; \boldsymbol{\Lambda}}\right) \mathbf{x}=\mathbf{0}
$$

and then, since $\mathbf{I}-\mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}$ is idempotent and $\boldsymbol{\Lambda}\left(\mathbf{I}-\mathbf{P}_{\mathcal{E} ; \boldsymbol{\Lambda}}\right)$ is Hermitian,

$$
\mathbf{x}^{*}\left(\mathbf{I}-\mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}\right)^{*} \boldsymbol{\Lambda}\left(\mathbf{I}-\mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}\right) \mathbf{x}=\mathbf{0}
$$

In view of the positive definiteness of $\boldsymbol{\Lambda}$, this is equivalent to $\left(\mathbf{I}-\mathbf{P}_{\mathcal{E} ; \boldsymbol{\Lambda}}\right) \mathbf{x}=\mathbf{0}$ or to $x \in \mathscr{L}$. Thus, $\mathfrak{K} \subset \mathcal{Z} \cap \mathfrak{R}$, and the proof is completed.

Repeating the arguments of Greville [2, p. 831], but now with reference to the lemma above, we get the following

Corollary. If $\mathfrak{E}$ and $\mathfrak{M}$ are disioint subspaces of $\complement^{n}$, then the matrix $\mathbf{I}-\mathbf{P}_{\pi ; \Lambda} \mathbf{P}_{\mathscr{E}_{; ~}}$ is nonsingular for any $n \times n$ positive definite $\boldsymbol{\Lambda}$.

It is natural to ask if the result of the corollary remains true when the projectors involved are related to two different inner products, i.e., when $\mathbf{P}_{\Re ; K}$, with $K \neq \Lambda$, is substituted for $\mathbf{P}_{\Re ; \Lambda}$. The following example disproves this conjecture.

Let $L^{*}=\left(\begin{array}{ll}1 & 1\end{array}\right)$ and $\mathbf{M}^{*}=\left(\begin{array}{ll}1 & 0\end{array}\right)$. It is obvious that the subspaces $\mathbb{L}$ and $\mathscr{R}$ are disjoint. However, choosing

$$
\boldsymbol{\Lambda}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{K}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

it follows from (1) that

$$
\mathbf{P}_{\mathfrak{R} ; \boldsymbol{\Lambda}}=\left(\begin{array}{rr}
1 & 0 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad \mathbf{P}_{\Re ; K}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and consequently,

$$
\mathbf{I}-\mathbf{P}_{\Re ; \mathbf{K}} \mathbf{P}_{\mathfrak{R} ; \boldsymbol{\Lambda}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

a singular matrix.

Now we are in a position to establish an extension of the theorem of Greville [2] quoted in (2).

Theorem 1. If $\sum$ and $\mathfrak{M}$ are complementary subspaces of $\mathfrak{C}^{n}$, then

$$
\begin{align*}
\mathbf{P}_{\mathbb{Q} \mid \Re} & =\left(\mathbf{I}-\mathbf{P}_{\Re ; \boldsymbol{\Lambda}} \mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}\right)^{-1}\left(\mathbf{I}-\mathbf{P}_{\Re ; \boldsymbol{\Lambda}}\right)  \tag{4}\\
& =\mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}\left(\mathbf{P}_{\mathfrak{R} ; \boldsymbol{\Lambda}}+\mathbf{P}_{\Re ; \boldsymbol{\Lambda}}-\mathbf{P}_{\Re ; \boldsymbol{\Lambda}} \mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}\right)^{-1} \tag{5}
\end{align*}
$$

for any $n \times n$ positive definite matrix $\boldsymbol{\Lambda}$.
Proof. Let $\mathcal{L}^{\perp}$ denote the orthogonal complement of $£$. It is obvious that

$$
\begin{equation*}
\mathbf{P}_{\mathscr{R}^{+} \mid \mathbb{L}^{-}} \mathbf{P}_{\mathscr{R}^{\perp} ; \boldsymbol{\Lambda}^{-1}}=\mathbf{P}_{\Re^{+} ; \boldsymbol{\Lambda}^{-1}} \tag{6}
\end{equation*}
$$

Also, it can be verified that

$$
\mathbf{P}_{\pi \perp \mid \mathbb{R}^{\perp}}=\mathbf{P}_{\mathbb{R} \mid \Re \pi}^{*} \quad \text { and } \quad \mathbf{P}_{\pi^{\perp} ; \boldsymbol{\Lambda}^{-1}}=\left(\mathbf{I}-\mathbf{P}_{\Re ; \Lambda}\right)^{*} .
$$

Thus, taking conjugate transposes on both sides of (6) and utilizing the obvious equality $\mathbf{P}_{\mathfrak{Q} ; \Lambda} \mathbf{P}_{\mathcal{E} \mid \mathscr{R}}=\mathbf{P}_{\mathcal{E} \mid \pi,}$, we get

$$
\left(\mathbf{I}-\mathbf{P}_{厅 \pi ; \mathbf{\Lambda}} \mathbf{P}_{\mathbb{E} ; \mathbf{\Lambda}}\right) \mathbf{P}_{\mathrm{E} \mid \pi}=\mathbf{I}-\mathbf{P}_{\mathscr{T} ; \mathbf{\Lambda}}
$$

From this (4) follows immediately, since the matrix I- $\mathbf{P}_{\mathscr{M} ; \Lambda} \mathbf{P}_{\mathfrak{E} ; \Lambda}$ is invertible due to the corollary given above.

Now, replace $\mathcal{E}, \mathscr{R}$ and $\Lambda$ in (4) by $\mathscr{R}^{\perp}, \mathfrak{L}^{\perp}$ and $\Lambda^{-1}$, respectively, and take conjugate transposes on both sides. Then

$$
\mathbf{P}_{\mathcal{E} \mid \Re \mathbb{R}}=\mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}\left\{\mathbf{I}-\left(\mathbf{I}-\mathbf{P}_{\Re \pi ;}\right)\left(\mathbf{I}-\mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}}\right)\right\}^{-1},
$$

from which (5) results by elementary calculations.

## 3. DERIVATION OF $\boldsymbol{\Lambda}$ 'S FOR WHICH $\mathbf{P}_{\mathfrak{E} ; \Lambda}=\mathbf{P}_{\mathfrak{E} \mid \Re}$

In this section, two representations of a positive definite matrix $\boldsymbol{\Lambda}$ are found such that, given $\mathcal{E}$ and $\mathfrak{R}$, the $\Lambda$-orthogonal projector on $\mathcal{E}$ coincides with the projector on $\mathcal{E}$ along $\mathscr{R}$.

Theorem 2. Let $\mathcal{E}$ and $\mathfrak{N}$ be any complementary subspaces of $\mathcal{C}^{n}$. Then, for any positive numbers $\lambda$ and $\mu$,
and

$$
\begin{equation*}
\boldsymbol{\Lambda}_{\mathbf{2}}=\lambda \mathbf{P}_{\mathfrak{R}^{ \pm}}+\mu \mathbf{P}_{\mathbf{R}^{\perp}} \tag{8}
\end{equation*}
$$

are positive definite matrices such that $\mathbf{P}_{\mathfrak{E} ; \boldsymbol{\Lambda}_{1}}=\mathbf{P}_{\mathfrak{E} \mid \pi}=\mathbf{P}_{\mathcal{E} ; \boldsymbol{\Lambda}_{2}}$.

Proof. It is easily seen from (1) that $\mathbf{P}_{\mathfrak{E} ; \Lambda}$ is the projector on $\mathcal{E}$ along $\Re^{\perp}$, where $\mathbf{N}=\boldsymbol{\Lambda L}$. Hence it follows that $\mathbf{P}_{\mathcal{E}, \Lambda}=\mathbf{P}_{\mathfrak{E} \mid \Re \mathbb{R}}$ if and only if $\mathfrak{K}^{\perp}=\mathfrak{R}$, i.e., if $\boldsymbol{\Lambda}$ is a positive definite solution of the equation

$$
\begin{equation*}
\mathbf{M}^{*} \Lambda \mathbf{L}=\mathbf{0} . \tag{9}
\end{equation*}
$$

It is a direct consequence of the properties of the projectors involved that $\boldsymbol{\Lambda}_{1}$ and $\Lambda_{2}$, defined in (7) and (8), satisfy (9). Therefore, since they are obviously nonnegative definite matrices, it only remains to establish their nonsingular-
 larity follows from the fact that $\mathcal{E}$ and $\mathfrak{R}$ are complementary subspaces of $\varrho^{n}$.

The authors wish to thank Professor M. Warmus for suggesting the problem considered in Sec. 3. Thanks are also due to the referee for his very helpful comments.

## REFERENCES

1 A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
2 T. N. E. Greville, Solutions of the matrix equation $X A X=X$ and relations between oblique and orthogonal projectors, SLAM J. Appl. Math. 26:828-832 (1974).

