JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 38, 205-207 (1972)

Fixed Points of Compact Multifunctions

C. J. HIMMELBERG*

Department of Mathematics, University of Kansas, Lawrence, Kansas 66044 Submitted by Ky Fan Received November 13, 1970

The object of this note is to obtain two generalizations of the well-known fixed point theorem of Fan [1]. A slight modification of Fan's proof yields one; the second is then an easy corollary, which, though interesting, seems never to be mentioned in the literature. We conclude with a generalization of the minimax theorem.

Recall that a multifunction $F: X \to Y$ is a subset of $X \times Y$ with domain equal to X; equivalently, F is a point to set function assigning to each $x \in X$ a nonempty subset F(x) of Y. F is upper semicontinuous (u.s.c.) if and only if the set $\{x \in X | F(x) \cap B \neq \emptyset\}$ is closed for each closed subset B of Y. Moreover, as is easily seen, if Y is a compact Hausdorff space, and if each value of F is closed, then F is u.s.c. if and only if F has closed graph, i.e., F is a closed subset of $X \times Y$.

We define a subset A of a locally convex space L to be almost convex if for any neighborhood V of 0, and for any finite set $\{w_1, ..., w_n\}$ of points of A there exist $z_1, ..., z_n \in A$ such that $z_i - w_i \in V$ for all *i*, and

$$\operatorname{co}\{z_1,...,z_n\} \subset A.$$

THEOREM 1. Let K be a nonvoid compact subset of a separated locally convex space L, and $G: K \to K$ be an u.s.c. multifunction such that G(x) is closed for all z in K and convex for all x in some dense almost convex subset A of K. Then G has a fixed point.

Proof. Let \mathscr{V} be a local base of neighborhoods of 0 consisting of closed convex symmetric sets. For each $V \in \mathscr{V}$ let

$$F_V = \{ x \in K \mid x \in G(x) + V \}.$$

To find a fixed point of G it is clearly sufficient (and necessary) to show $\cap \{F_V \mid V \in \mathscr{V}\} \neq \phi$. Since $F_U \cap F_V \supset F_{U \cap V}$ for all U, $V \in \mathscr{V}$, it is sufficient, by the compactness of K, to show that each F_V is closed and nonempty.

* This research was supported in part by the National Science Foundation (GY-7296).

205

© 1972 by Academic Press, Inc.

HIMMELBERG

So let $V \in \mathscr{V}$. Define multifunctions $G_V : K \to K, R_V : K \to K$ by

$$G_{V}(x) = (G(x) + V) \cap K,$$

$$R_{V}(x) = (x + V) \cap K, \quad \text{if} \quad x \in K.$$

Then $G_V = R_V \circ G$. Moreover, R_V is a closed subset of $K \times K$ since $R_V = \{(x, y) \in K \times K \mid y - x \in V\}$ and V is closed. Since K is compact, it follows that both R_V and G are u.s.c. Hence, G_V is u.s.c. and, in particular, is a closed subset of $K \times K$. Let Δ be the diagonal in $K \times K$. Then F_V is obtained by projecting the compact set $\Delta \cap G_V$ onto the domain of G_V . It follows that F_V is closed.

Now choose $z_1, ..., z_m \in A$ such that $K \subset \bigcup \{z_i + V \mid 1 \leq i \leq m\}$, and $C = \operatorname{co}\{z_1, ..., z_m\} \subset A$. Define $H_{\nu} \subset C \times C$ by $H_{\nu} = G_{\nu} \cap (C \times C)$. For each $x \in C$, $H_{\nu}(x)$ is closed, convex (since $C \subset A$), and nonempty (since G(x) + V contains some z_i). Moreover, H_{ν} is a closed subset of $C \times C$ since G_{ν} is closed. Thus H_{ν} has a fixed point by Kakutani's fixed point theorem [2]. It belongs to F_{ν} , which is thus not empty.

THEOREM 2. Let T be a nonvoid convex subset of a separated locally convex space L. Let $F: T \rightarrow T$ be an u.s.c. multifunction such that F(x) is closed and convex for all $x \in T$, and F(T) is contained in some compact subset C of T. Then F has a fixed point.

Proof. Without loss of generality, suppose L is complete (for the conditions on T and F remain unchanged in the completion of L). Let $A = \operatorname{co} C$ and $K = \overline{A}$. Then K is compact, $A \subset T$, and $F(A) \subset C \subset A$. Let $H = F \cap (A \times A)$. Then H is a relatively closed subset of $A \times A$ and has the same values on A as F. Consider the relation $\overline{H} \subset K \times K$, with closure relative to $K \times K$. \overline{H} is a multifunction from K to K, i.e., $\overline{H}^{-1}(K) = K$, since $\overline{H}^{-1}(K)$ is closed and contains A. Moreover, $\overline{H}(K) \subset C \subset A$ and $H = \overline{H} \cap (A \times A)$; so $\overline{H}(x) = H(x) = F(x)$ for all $x \in A$. Thus, by Theorem 1, \overline{H} has a fixed point, say x, in K. But $x \in \overline{H}(x) \subset C \subset A$. So $x \in F(x)$.

We also conclude from Theorem 1 the following generalizations of Theorems 2 and 3 in [1].

THEOREM 3. Let $\{L_{\nu} \mid \nu \in I\}$ be a family of separated locally convex spaces. For each $\nu \in I$, let A_{ν} be a dense almost convex subset of a compact subset K_{ν} of L_{ν} , let $A_{\nu}' = \Pi\{A_{\lambda} \mid \lambda \in I, \lambda \neq \nu\}$, and let $K_{\nu}' = \Pi\{K_{\lambda} \mid \lambda \in I, \lambda \neq \nu\}$. If $\{E_{\nu} \mid \nu \in I\}$ is a family of closed subsets of $K = \Pi\{K_{\nu} \mid \nu \in I\}$ such that the section $E_{\nu}(x_{\nu}') = \{x_{\nu} \in K_{\nu} \mid (x_{\nu}', x_{\nu}) \in E_{\nu}\}$ is convex for all $x_{\nu}' \in A_{\nu}'$ and nonempty for all $x_{\nu}' \in K_{\nu}', \nu \in I$, then $\cap \{E_{\nu} \mid \nu \in I\} \neq \emptyset$.

Proof. Each E_{ν} is a multifunction from K_{ν}' to K_{ν} . Define $F_{\nu}: K \to K_{\nu}$

by $F_{\nu}(x) = E_{\nu}(x_{\nu}')$, where x_{ν}' is the projection of x on K_{ν}' . Then F_{ν} is u.s.c. (being the composition of a continuous function and an u.s.c. multifunction), and consequently has closed graph.

Define $F: K \to K$ by $F(x) = \prod\{F_{\nu}(x) \mid \nu \in I\}$. It is easy to check that F has closed graph, that $A = \prod\{A_{\nu} \mid \nu \in I\}$ is almost convex, that F(x) is convex for all $x \in A$, and that $F(x) \neq \emptyset$ for all $x \in K$. Thus, by Theorem 1, F has a fixed point. It belongs to each E_{ν} .

THEOREM 4. Let K_1 , K_2 be compact subsets of the separated locally convex spaces L_1 , L_2 , respectively, let A_1 , A_2 be dense almost convex subsets of K_1 , K_2 , respectively, and let f be a continuous real-valued function on $K_1 \times K_2$. If for any $x_0 \in A_1$, $y_0 \in A_2$ the sets

$$\{x \in K_1 \mid f(x, y_0) = \max_{\xi \in K_1} f(\xi, y_0)\}$$

and

$$\{y \in K_2 \mid f(x_0, y) = \min_{\eta \in K_2} f(x_0, \eta)\}$$

are convex, then

$$\max_{x\in K_1}\min_{y\in K_2}f(x,y)=\min_{y\in K_2}\max_{x\in K_1}f(x,y).$$

Proof. Using Theorem 3 with $I = \{1, 2\}$, the proof is the same as the proof of Theorem 3 in [1].

References

- K. FAN, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126.
- 2. S. KAKUTANI, A generalization of Brouwer's fixed point theorem, *Duke Math. J.* 8 (1941), 457-459.