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The object of this note is to obtain two generalizations of the well-known 
fixed point theorem of Fan [l]. A slight modification of Fan’s proof yields 
one; the second is then an easy corollary, which, though interesting, seems 
never to be mentioned in the literature. We conclude with a generalization 
of the minimax theorem. 

Recall that a multifunction F : X + Y is a subset of X x Y with domain 
equal to X; equivalently, F is a point to set function assigning to each x E X 
a nonempty subset F(x) of Y. F is upper semicontinuous (u.s.c.) if and only if 
the set {XE X 1 F(x) n B # @} is closed for each closed subset B of Y. 
Moreover, as is easily seen, if Y is a compact Hausdorff space, and if each 
value of F is closed, then F is U.S.C. if and only if F has closed graph, i.e., 
F is a closed subset of X x Y. 

We define a subset A of a locally convex space L to be almost convex if for 
any neighborhood V of 0, and for any finite set (wr ,..., We} of points of A 
there exist zr ,..., Z, E A such that zi - wi E V for all i, and 

co{zl ,..., x,} CA. 

THEOREM I. Let K be a nonvoid compact subset of a separated locally 
convex space L, and G : K + K be an U.S.C. multifunction such that G(x) is 
closed for all z in K and convex for all x in some dense almost convex subset 
A of k’. Then G has a Jixed point. 

Proof. Let V be a local base of neighborhoods of 0 consisting of closed 
convex symmetric sets. For each V E llr let 

F,={xEKIxEG(~)+ V}. 

To find a fixed point of G it is clearly sufficient (and necessary) to show 
n{F, / V E V”} # 4. Since F, n F, 3 Fun” for all U, V E V, it is sufficient, 
by the compactness of K, to show that each F, is closed and nonempty. 
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So let I; E 9’“. Define multifunctions G, : K -+ K, R, : K--f K by 

G,(x) = (G(x) + v) n K 

RR,(x) = (x + V) n K, if XEK. 

Then G, = R, 0 G. Moreover, R, is a closed subset of K x K since 
R, = {(x, y) E K x K [ y - x E V} and V is closed. Since K is compact, it 
follows that both R, and G are U.S.C. Hence, G, is U.S.C. and, in particular, 
is a closed subset of K x K. Let A be the diagonal in K x K. Then F, 
is obtained by projecting the compact set d n G, onto the domain of G, . 
It follows that F, is closed. 

Now choose a1 ,..., X,EA such that KCu(.q+ I/l 1 <;::<m}, and 
c = co{xl )...) z,}CA. Define H,CC x C by H,=G,n(C x C). For 
each x E C, H,(x) is closed, convex (since CC A), and nonempty (since 
G(x) + V contains some q). Moreover, H, is a closed subset of C x C 
since G, is closed. Thus H, has a fixed point by Kakutani’s fixed point 
theorem [2]. It belongs to F, , which is thus not empty. 

THEOREM 2. Let T be a nonvoid convex subset of a separated locally convex 
space L. Let F : T -+ T be an U.S.C. multifunction such that F(x) is closed and 
convex for all x E T, and F( T) is contained in some compact subset C of T. Then F 
has a Jixed point. 

Proof. Without loss of generality, suppose L is complete (for the condi- 
tions on T and F remain unchanged in the completion of L). Let .4 = co C 
and K = 2. Then K is compact, A C T, and F(A) C C C ‘4. Let 
H = F n (A x A). Then H is a relatively closed subset of A x &4 and has 
the same values on A as F. Consider the relation i7 C K x K, with closure 
relative to K x K. 17 is a multifunction from K to K, i.e., H-t(K) -7 K, 
since p-l(K) is closed and contains A. Moreover, H(K) C CC A and 
H=i7n(A x A); so R(x) = H(x) = F(x) for all x E A. Thus, by Theo- 
rem 1, f7 has a fixed point, say x, in K. But x E H(x) C C C A. So x E F(x). 

We also conclude from Theorem 1 the following generalizations of Theo- 
rems 2 and 3 in [l]. 

THEOREM 3. Let {Ly 1 v E I} be a family of separated locally convex spaces. 
For each v E I, let A, be a dense almost convex subset of a compact subset K, of L, , 
let A,,’ = II{A, 1 X E I, X # v}, and let K,,’ = II{K, 1 X E I, h # v}. If {E,, 1 v E I} 
is a family of closed subsets of K = II{K, 1 v E I} such that the section 
Ey(xy’) = {xy E K, 1 (x,‘, x,) E Ey} is convex for all x,’ E A,’ and nonempty for all 
x,‘EK,‘, vrzl, then n{E,lvEI}# ,a’. 

Proof. Each EV is a multifunction from K,’ to K, . Define F, : K - K, 
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by F,(x) = E&v’), w h ere x,’ is the projection of x on K,‘. Then F, is U.S.C. 
(being the composition of a continuous function and an U.S.C. multifunction), 
and consequently has closed graph. 

Define F : K - K by F(x) = IT{F”(x) / v E I}. It is easy to check that F 
has closed graph, that A = II{A, / v EI} is almost convex, that F(x) is convex 
for all x E A, and that F(x) # ,@ for all x E K. Thus, by Theorem 1, F has a 
fixed point. It belongs to each E, . 

THEOREM 4. Let K1 , K, be compact subsets of the separated locally convex 
spaces L, , L, , respectively, let A, , A, be dense almost convex subsets of K1 , KS , 
respectively, and let f be a continuous real-valued function on K1 x K, . If for 
any x,, E A, , y,, E A, the sets 

and 

are convex, then 

Proof. Using Theorem 3 with I = {I, 2}, the proof is the same as the 
proof of Theorem 3 in [I]. 
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