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The object of this note is to obtain two generalizations of the well-known
fixed point theorem of Fan [1]. A slight modification of Fan’s proof yields
one; the second is then an easy corollary, which, though interesting, seems
never to be mentioned in the literature. We conclude with a generalization
of the minimax theorem.

Recall that a multifunction F : X — Y is a subset of X X Y with domain
equal to X; equivalently, F is a point to set function assigning to each x € X
a nonempty subset F(x) of Y. F is upper semicontinuous (u.s.c.) if and only if
the set {xe X |F(x) " B = @} is closed for each closed subset B of Y.
Moreover, as is easily seen, if ¥ is a compact Hausdorff space, and if each
value of F is closed, then F is u.s.c. if and only if F has closed graph, i.e.,
F is a closed subset of X x Y.

We define a subset 4 of a locally convex space L to be abmost convex if for
any neighborhood V of 0, and for any finite set {w ,..., w,} of points of 4
there exist 2 ,..., 2, € 4 such that &; — w, € V for all 4, and

co{zy ,..., 2, C 4.

TraeOREM 1. Let K be a nonvoid compact subset of a separated locally
convex space L, and G : K — K be an wu.s.c. multifunction such that G(x) is
closed for all = in K and convex for all x in some dense almost convex subset
A of K. Then G has a fixed point.

Proof. Let ¥” be a local base of neighborhoods of 0 consisting of closed
convex symmetric sets. For each V € ¥ let

F,={xeK|xeGx)+ V}

To find a fixed point of G it is clearly sufficient (and necessary) to show
N{Fy | Ve?} #£¢. Since Fy NFy, DFynqyp for all U, Ve¥, it is sufficient,
by the compactness of K, to show that each F}, is closed and nonempty.
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So let V' e #". Define multifunctions Gy, : K— K, R, : K — K by

Gy(x) = (G(x) + V)N K,
Ry(*) =(x+ V)NK, if «xeKk.

Then Gy, = R, o G. Moreover, R, is a closed subset of K » K since
Ry ={(x,y)e K X K|y —xecV}and V is closed. Since K is compact, it
follows that both R, and G are u.s.c. Hence, Gy, is u.s.c. and, in particular,
is a closed subset of K X K. Let 4 be the diagonal in K » K. Then F,
is obtained by projecting the compact set 4 N G, onto the domain of G .
It follows that F, is closed.

Now choose 2 ,..., 2, €4 such that KCU{g, -+ V|1 <i<m), and
C = co{zy ,..., 2,,}) C 4. Define H,CC x C by H, = G, n (C x C). For
each xe C, Hy(x) is closed, convex (since C C A), and nonempty (since
G(x) -+ V' contains some z;). Moreover, H is a closed subset of C x C
since G is closed. Thus Hy has a fixed point by Kakutani’s fixed point
theorem [2]. It belongs to F;, , which is thus not empty.

THEOREM 2. Let T be a nonvoid convex subset of a separated locally convex
space L. Let F : T — T be an u.s.c. multifunction such that F(x) is closed and
convex for all x € T, and F(T) is contained in some compact subset C of T. Then F
has a fixed point.

Proof. Without loss of generality, suppose L is complete (for the condi-
tions on 7" and F remain unchanged in the completion of L). Let 4 = co C
and K = A. Then K is compact, AC 7T, and F(A)C CC A. Let
H=Fn {4 X 4). Then H is a relatively closed subset of 4 » A and has
the same values on A as F. Consider the relation H C K x K, with closure
relative to K X K. H is a multifunction from K to K, i.e., H-Y(K) = K,
since H{(K) is closed and contains 4. Moreover, H(K)C CC A and
H=HnN (4 x A); so H(x) = H(x) = F(x) for all x€ A. Thus, by Theo-
rem 1, H has a fixed point, say x, in K. But x € H(x) C C C A. So x € F(x).

We also conclude from Theorem 1 the following generalizations of Theo-
rems 2 and 3 in [1].

THEOREM 3. Let {L,|vel} be a family of separated locally convex spaces.
For eachv €1, let A, be a dense almost convex subset of a compact subset K, of L, ,
let A =II{A, | Ael, X £ v}, andlet K = II{K, | A, A < v}.If{E, |vel}
is a family of closed subsets of K =II{K,|vel} such that the section
Ex)={x,eK,|(x/, x) e E,} is convex for all x,' € A, and nonempty for all
x/ €K/, vel, then N{E,|vel} +# &.

Proof. Each E, is a multifunction from K,' to K, . Define F, : K — K,
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by F,(x) = E,(x,’), where x,’ is the projection of x on K,'. Then F, is u.s.c.
(being the composition of a continuous function and an u.s.c. multifunction),
and consequently has closed graph.

Define ' : K-> K by F(x) = II{F,(x)|vel}. It is easy to check that F
has closed graph, that 4 = II{4, | v € I} is almost convex, that F(x) is convex
for all x € A, and that F(x) = & for all x € K. Thus, by Theorem 1, F has a
fixed point. It belongs to each E, .

THEOREM 4. Let K, , K, be compact subsets of the separated locally convex
spaces Ly , Ly , respectively, let A, , A, be dense almost convex subsets of K, , K, ,
respectively, and let f be a continuous real-valued function on K; X K, . If for
any xy€ Ay, y,€ A, the sets

e Ky | f(x, y0) = max (£ 7o)}

and
ye Ky [ f(x0,y) = minf(z,, 7))

are convex, then

max min /(% y) = min max f( 5).

Proof. Using Theorem 3 with I = {l, 2}, the proof is the same as the
proof of Theorem 3 in [1].
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