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a b s t r a c t

The generating series of the Bass numbers µi
R = rankkExtiR(k, R) of local rings R with

residue field k are computed in closed rational form, in case the embedding dimension
e of R and its depth d satisfy e − d ≤ 3. For each such R it is proved that there is a real
number γ > 1, such that µd+i

R ≥ γµd+i−1
R holds for all i ≥ 0, except for i = 2 in two

explicitly described cases, where µd+2
R = µd+1

R = 2. New restrictions are obtained on the
multiplicative structures of minimal free resolutions of length 3 over regular local rings.

© 2012 Elsevier B.V. All rights reserved.

0. Introduction

The paper concerns cohomological invariants of commutative noetherian local rings. Let R be such a ring, m its maximal
ideal, and let d denote the depth of R and e theminimal number of generators ofm. The number e−d is called the embedding
codepth of R. It is equal to the length of a minimal free resolution F ofR over P , whereR is the m-adic completion of R and P
a regular local ring of dimension e, for which there is an isomorphismR ∼= P/I; such an isomorphism always exists, due to
Cohen’s Structure Theorem. For c ≤ 2 the structure of F , and hence that ofR, is determined by the Hilbert–Burch Theorem.

This paper is mostly concerned with rings of codepth 3, so we assume c = 3 for the rest of the introduction. There exist
then integers l ≥ 2 and n ≥ 1, such that

F = 0 −→ Pn ∂3
−→ Pn+l ∂2

−→ P l+1 ∂1
−→ P −→ 0. (1)

The maps ∂i are known in a few cases only. Buchsbaum and Eisenbud described them in [14] for l = 2, and in [15] when R
is Cohen–Macaulay with l = 3 or n = 1. Brown determined ∂i for certain Cohen–Macaulay rings with n = 2; see [13].

The proofs of those theorems use the fact that F can be turned into a graded-commutative DG (that is, differential graded)
algebra; see [15]. Such a structure is not unique in general, but the isomorphism class of the graded k-algebra

A = F ⊗P k, where k = R/m, (2)

is an invariant of R. The possible isomorphism classes were determined by Weyman [33] in characteristic zero and by
Avramov et al. [11] in general. The remarkable fact is that for fixed l and n there exist only finitely many possibilities for A,
described explicitly by simple multiplication tables. These are reviewed in Section 1, along with other backgroundmaterial.

We are interested in classifying non-Gorenstein rings. A natural tool for the task is provided by the Bass numbers
µi

R = rankk ExtiR(k, R), which are positive for all i > d when R is not Gorenstein, but vanish when it is. The Bass series
IRR (t) =


i>0 µi

R t
i offers a useful format for recording the Bass numbers of R.

As our first result, Theorem 2.1, we obtain in closed form expressions

IRR (t) =
f (t)
g(t)

and PR
k (t) =

(1+ t)e−1

g(t)
with f (t), g(t) ∈ Z[t], (3)
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where PR
k (t) =


i>0 rankk Tor

R
i (k, k) t

i is the Poincaré series of k. That such expressions exist follows from [11], via [18], and
g(t) was computed in [4].

For the goals of this paper we need the precise form of f (t) as well. In Section 2 the series IRR (t) and PR
k (t) are computed

in parallel. Work in [6,2] reduces the problem to finding IAA (t) and PA
k (t) for the algebra A in (2). To compute these series we

use a battery of change-of-rings results, which are analogs of known theorems over local rings. Translation to the context
of graded-commutative k-algebras requires changes in statements and proofs; these are discussed in Appendix.

It has long been known that for Gorenstein rings l is even, see [32], and that R is Gorenstein if and only if A has Poincaré
duality, see [8], so n = 1. Furthermore, R is complete intersection if and only if A is an exterior algebra, see [1], and then
l = c − 1. In Theorem 3.1 we prove that membership in each one of the remaining classes imposes new restrictions on the
numbers l and n. The arguments introduce ideas that have not been applied earlier in this context, such as utilizing the DG
module structure of HomP(F , P) over the DG algebra F from (1), and analyzing the growth of the Betti numbers ofR over
complete intersection quotient rings of P .

In the first three sections the focus is on the structure of rings of codepth 3. The last section ismotivated by open problems
on the behavior of Bass sequences of local rings in general. In the introduction of [17], Christensen, Striuli, and Veliche collect
precise questions and give a comprehensive survey of earlier results.

Theorem 4.1 gives complete answers in codepth 3: When R is not Gorenstein

µd+i
R ≥ γµd+i−1

R (4)

holds for some real number γ > 1 and every integer i ≥ 1, with a single exception:

µd+2
R = µd+1

R = 2 whenR ∼= P/(wx, wy, z) (5)

and w is P-regular, x, y is a P-regular sequence, and z is P/(wx, wy)-regular. In particular, we recover the asymptotic
information known from earlier work: the Bass sequence of R eventually is either constant or grows exponentially, see
[4]; it is unbounded when R is Cohen–Macaulay, but not Gorenstein, see Jorgensen and Leuschke [23]; if it is unbounded,
then (4) holds for i≫ 0, see Sun [30].

Neither the inequalities in (4), nor the description of the exceptions in (5), are formal consequences of the rational
expressions in (3). In fact, extracting information on the Taylor coefficients of a rational function from expressions for its
numerator and denominator is classically known to be a very hard problem.

Our approach is to prove first thatµd+i
R > µd+i−1

R holds, with the exceptions in (5), by drawing on three distinct sources—
the expressions of the coefficients of f (t) and g(t) from Theorem 2.1, the relations between those coefficients implied
by Theorem 3.1, and certain growth properties of the Betti numbers of k that are satisfied whenever R is not complete
intersection. Once the growth of the Bass sequence is established, Theorem 4.1 easily follows from results in [4,30].

Since no additional effort is involved, all the results in the paper are stated and proved for local rings of embedding
codepth at most 3.

1. Background

In this paper we say that (R, m, k) is a local ring if R is a commutative noetherian ring, m its unique maximal ideal, and
k = R/m. Recall the invariants

edimR = rankk(m/m2) and depthR = inf{i ∈ Z | µi
R ≠ 0}.

1.1. The following notation is fixed for the rest of the paper:

e = edimR, d = depthR, c = e− d, and h = dim R− d.

We write K for the Koszul complex on a minimal set of generators of m. It is a DG algebra over R, so its homology is a
graded algebra with H0(K) = k. We set

A = H(K)

and fix notation for the ranks of some k-vector spaces associated with A:

l = rankkA1 − 1 p = rankk(A2
1)

m = rankkA2 q = rankk(A1 · A2)

n = rankkA3 r = rankk(δ2)

where δ2 : A2 → Homk(A1, A3) is defined by δ2(x)(y) = xy for x ∈ A2 and y ∈ A1.

1.2. LetR denote the m-adic completion of R. Cohen’s Structure Theorem yieldsR ∼= P/I for some regular local ring (P, p, k)
with dim P = e; that is, I ⊆ p2.

When I can be generated by a regular sequence R is said to be complete intersection; this property is independent of the
choice of presentation, see [16, 2.3.4(a)].
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Let F be a minimal free resolution ofR over P and L be the Koszul complex on a minimal generating set of the maximal
ideal of P . There are natural maps

K = R⊗R K
≃
−→R⊗R K

∼=
−→R⊗P L

≃
←− F ⊗P L

≃
−→ F ⊗P k; (1.2.1)

the symbol≃ denotes a quasi-isomorphism. In particular, an equality

rankkAi = rankPFi (1.2.2)

holds for every integer i. The Auslander–Buchsbaum Equality now yields

max{i | Ai ≠ 0} = c = pdP
R. (1.2.3)

Krull’s Principal Ideal Theorem gives the inequalities below; the first equality is (1.2.2) for i = 1; the third one comes
from the catenarity of the regular ring P:

l+ 1 = rankk(I/pI) ≥ heightP(I) = e− dim R = c − h ≥ 0. (1.2.4)

By definition, the second inequality becomes an equality if and only if R is regular. Since P is Cohen–Macaulay, the first
inequality becomes an equality preciselywhen I is generated by a regular sequence; that is, when R is complete intersection.

When c ≤ 3, the equality


i>0(−1)
irankPFi = 0, (1.2.2) and (1.2.3) give

m = l+ n. (1.2.5)

The following classification is the starting point for our work and is used throughout the paper. As always,


k denotes
the exterior algebra functor. The functors Σ and Homk(−, Σ3k) and the construction n are defined below, in 1.5.

1.3. If c ≤ 3, then up to isomorphism A is described by the following table, where B, C , and D are graded k-algebras, andW
a graded B-module with (B+)W = 0:

Class [range] c A B C D

C(c) [c ≥ 0] c B


kΣkc
S 2 B n W k
T 3 B n W C n Σ(C/C>2)


kΣk2

B 3 B n W C n ΣC+


kΣk2

G(r) [r ≥ 2] 3 B n W C n Homk(C, Σ3k) k n Σkr

H(p, q) [p, q ≥ 0] 3 B n W C ⊗k D k n (Σkp ⊕Σ2kq) k n Σk

No two algebras A in the table are isomorphic, and neither are any two algebras B.
The table is compiled as follows. If c ≤ 1, then Ai = 0 for i > c and A1 ∼= kc , by (1.2.2) and (1.2.3), whence A ∼=


kΣkc .

If c = 2, then F is given by the Hilbert–Burch Theorem; an explicit multiplication on F , see [5, 2.1.2], yields A ∼=


kΣk2 or
A ∼= knW . When c = 3 the possible isomorphism classes of A are determined in [33, Proof of 4.1] when k has characteristic
0, and in [11, 2.1] in general.

In some cases, the class of a ring and its structure determine each other:

1.4. Let R be a local ring with edimR− depthR = c ≤ 3.

1.4.1. The ring R is complete intersection of codimension c if and only if it is in C(c), as proved by Assmus [1, 2.7], see also
[16, 2.3.11]; for such rings l = c − 1.

1.4.2. The ring R is Gorenstein, but not complete intersection, if and only if it is in G(r) with l = r − 1 and n = 1; for such
rings l is even and l ≥ 4.

Indeed, R is Gorenstein if and only if A has Poincaré duality, by Avramov and Golod [8], and then l is even, by Watanabe
[32, Theorem]; alternatively, see [15, 2.1] or [16, 3.4.1].

1.4.3. The ring R is Golod if and only if it is in S or in H(0, 0).
By definition, R is Golod if and only if all Massey products of elements of A+ are trivial. The binary ones are just ordinary

products. Massey products of three or more elements have degree at least 4, and Ai = 0 for i ≥ 4. Thus, R is Golod if and
only if A2

+
= 0. By 1.3, this occurs precisely for the rings in S or H(0, 0).

We recall a modicum of notation and facts concerning DG modules.
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1.5. Let E be aDG algebra over a commutative ring S.We assume Ei = 0 for i < 0 and that E is graded-commutative, meaning
that xy = (−1)ijyx holds for all x ∈ Ei and y ∈ Ej and x2 = 0 when i is odd. The DG algebra E acts on its module M from
the left. All differentials have degree−1. A morphism of DG modules is a degree zero E-linear map that commutes with the
differentials; if it induces isomorphisms in homology in all degrees, it is called a quasi-isomorphism.

For every s ∈ Z, set (Σ sM)j = Mj−s for j ∈ Z. The identity maps onMj define a bijective map ς s
: M → Σ sM of degree s.

Setting ∂ΣsM(ς(m)) = (−1)sς s(∂M(m)) and xς s(m) = (−1)isς(xm) for every x ∈ Ei turns Σ sM into a DG E-module.
Recall that HomS(M, Σ sS) denotes the DG E-module with HomS(M, Σ sS)j = HomS(Ms−j, S), differential ∂(µ)(m) =

(−1)j+1µ∂(m) for µ ∈ HomS(M, Σ sS)j, and E acting by (xµ)(m) = (−1)ijµ(xm) for x ∈ Ei. SetM∗ = HomS(M, S).
The trivial extension E n M is the DG algebra with underlying complex E ⊕ M and product (x,m)(x′,m′) = (xx′, xm′ +

(−1)ji
′

x′m) for x′ ∈ Ei′ andm ∈ Mj.

1.6. Let E be a DG algebra over S, and let M and N be DG E-modules
Modules TorEi (M,N) and ExtiE(M,N) over the ring S are defined for every integer i, see [9, Section 1]. If E is a ring,

considered as a DG algebra concentrated in degree 0, and M and N are E-modules, treated as DG modules in a similar way,
then these derived functors coincide with the classical ones. When k is a field E → k is a homomorphism of DG algebras,
and the k-vector spaces TorEi (M, k) and ExtiE(k,N) have finite rank for each i and vanish for i≪ 0, we set

PE
N(t) =


i∈Z

rankk TorEi (M, k) t i ∈ Z[[t]][t−1]. (1.6.1)

INE =

i∈Z

rankk ExtiE(k,N) t i ∈ Z[[t]][t−1]. (1.6.2)

Every morphism of DG algebras ε : E ′ → E induces natural homomorphisms of S-modules TorE
′

i (M,N) → TorEi (M,N)

and ExtiE(M,N)→ ExtiE′(M,N) for each i ∈ Z. These maps are bijective when ε is a quasi-isomorphism.
A graded algebra over S is a DG algebra with zero differential; a graded module over a graded algebra is a DGmodule with

zero differential.

1.7. Let K be the Koszul complex K described in 1.1. The natural map K → k turns k into a DG K -module. From [2, 3.2] and
[6, 4.1], respectively, we get

PR
k (t) = (1+ t)e · PK

k (t) and IRR (t) = te · IKK (t).

If the resolution F in 1.2 has a structure of DG algebra over P , then the natural surjection F0 = P → k turns k into a DG
F-module. The maps in (1.2.1) then are morphisms of DG algebras, so we get isomorphisms of DG algebras

F ⊗P k = H(F ⊗P k) ∼= A. (1.7.1)

The invariance under quasi-isomorphisms of the DG derived functors in 1.6 gives

PK
k (t) = PA

k (t) and IKK (t) = IAA (t).

When c ≤ 3 we have Fi = 0 for i > 3, see (1.2.3), so F supports a structure of DG algebra over P by Buchsbaum and
Eisenbud [15, 1.3]; see also [5, 2.1.4]. Thus, in this case we have

PR
k (t) = (1+ t)e · PA

k (t). (1.7.2)

IRR (t) = te · IAA (t). (1.7.3)

Techniques for computing Poincaré series and Bass series over graded algebras are presented in Appendix, along with a
number of examples.

2. Bass series

Our goal in this is section is to prove the following result.

Theorem 2.1. Let (R, m, k) be a local ring, set d = depthR and e = edimR, and let l, n, p, q, and r be the numbers defined in 1.1.
When e− d = c ≤ 3 there are equalities

PR
k (t) =

(1+ t)e−1

g(t)
and IRR (t) = td ·

f (t)
g(t)

where f (t) and g(t) are polynomials in Z[t], listed in the following table:
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Class g(t) f (t)

C(c) (1− t)c(1+ t)c−1 (1− t)c(1+ t)c−1

S 1− t − lt2 l+ t − t2

T 1− t − lt2 − (n− 3)t3 − t5 n+ lt − 2t2 − t3 + t4

B 1− t − lt2 − (n− 1)t3 + t4 n+ (l− 2)t − t2 + t4

G(r) 1− t − lt2 − nt3 + t4 n+ (l− r)t − (r − 1)t2 − t3 + t4

H(0, 0) 1− t − lt2 − nt3 n+ lt + t2 − t3

H(p, q) 1− t − lt2 − (n− p)t3 + qt4 n+ (l− q)t − pt2 − t3 + t4
p+ q ≥ 1

All of the Poincaré series and a smattering of the Bass series above are known:

Remark 2.2. Since rings in C(c) are complete intersection, see 1.4.1, the formula for PR
k (t) is due to Tate [31, Theorem 6];

we have IRR (t) = td because R is Gorenstein.
When R is in G(r) with r = l + 1 and n = 1, it is Gorenstein by 1.4.2. The formula for PR

k (t) then is due to Wiebe [35,
Satz 9]; the other formula gives IRR (t) = td.

When R is Golod, PR
k (t) is given by Golod [19] and IRR (t) by Avramov and Lescot [12]. In view of 1.4.3, this covers the rings

R in S and H(0, 0); for R in S, Scheja [28, Satz 9] computed PR
k (t) and Wiebe [35, Satz 8] calculated IRR (t).

The formulas for PR
k (t) in the remaining cases were obtained in [4, 3.5].

In the proof that follows the series PR
k (t) and IRR (t) are computed simultaneously and in a uniform manner. A separate

calculation is needed for each class.

Proof of Theorem 2.1. By (1.7.2) and (1.7.3), it suffices to establish the equalities

1
PA
k (t)
= (1+ t) · g(t) and

IAA (t)
PA
k (t)
= t−c · (1+ t) · f (t).

(Class C(c)). The formulas come from (A.3.1) and (A.4.1), respectively.

(Class S). The formulas come from (A.2.1) and (A.2.2), respectively.

(Class T). The exact sequence 0 → Σ2k → C → C/C>2 → 0 and formulas (A.1.1) and (A.1.3) give PC
Σ(C/C>2)

(t) =
t(1+ t3PC

k (t)). Now (A.3.1) and (A.5.1) yield

1
PB
k (t)
= (1− t2)2


1− t2


1+ t3

1
(1− t2)2


= 1− 3t2 + 3t4 − t5 − t6.

The isomorphism of k-algebras B ∼= E/E>3 with E =


kΣk3 and (A.9.1) give

IBB (t)
PB
k (t)
= t−4


1− (1− 3t2 + 3t4 − t5 − t6)


− t = 3t−2 − 3+ t2.

Using formulas (A.5.1) and (A.8.1) we now obtain:

1
PA
k (t)

= (1− 3t2 + 3t4 − t5 − t6)− t

(l− 2)t + (l+ n− 3)t2 + nt3


= (1+ t)


1− t − lt2 − (n− 3)t3 − t5


.

IAA (t)
PA
k (t)

= (3t−2 − 3+ t2)+

(l− 2)t−1 + (l+ n− 3)t−2 + nt−3


= t−3(1+ t)(n+ lt − 2t2 − t3 + t4).

(Class B). Using (A.1.1), (A.1.3) and (A.3.1) we obtain

PC
ΣC+(t) = t · PC

C+(t) = t · t−1 · (PC
k (t)− 1) =

1
(1− t2)2

− 1 =
2t2 − t4

(1− t2)2
.

From formulas (A.3.1) and (A.5.1) we now get

1
PB
k (t)
= (1− t2)2 − t(2t2 − t4) = 1− 2t2 − 2t3 + t4 + t5.
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Assume, for the moment, that there is an exact sequence of graded B-modules
0 −→ Σ−2B+ ⊕Σ−1k −→ Σ−2B⊕Σ−3B −→ B∗ −→ 0 (2.2.1)

where B∗ = Homk(B, k). We then have a string of equalities, where the first one comes from (A.1.2), and the second one
from (A.1.1) and (A.1.3) applied to (2.2.1):

IBB (t)
PB
k (t)
=

PB
B∗(t)
PB
k (t)

=
t(t−2 · t−1 · (PB

k (t)− 1)+ t−1 · PB
k (t))+ t−3 + t−2

PB
k (t)

= 1+ t−2 + t−3 ·
1

PB
k (t)

= t−3 + t−2 − 2t−1 − 1+ t + t2.

Formulas (A.5.1) and (A.8.1) now yield:

1
PA
k (t)

= (1− 2t2 − 2t3 + t4 + t5)− t

(l− 1)t + (l+ n− 3)t2 + (n− 1)t3


= (1+ t)


1− t − lt2 − (n− 1)t3 + t4


.

IAA (t)
PA
k (t)

= (t−3 + t−2 − 2t−1 − 1+ t + t2)+

(l− 1)t−1 + (l+ n− 3)t−2 + (n− 1)t−3


= t−3(1+ t)


n+ (l− 2)t − t2 + t4


.

It remains to construct the sequence (2.2.1). To do this we use the module structures on suspensions and dual modules,
described in 1.5. Recall from 1.3 that B = C n ΣC+, with C =


k Σk2. Choose a basis {a1, a2} for C2. With bi = (−1)iς(ai)

for i = 1, 2, a3 = a1a2 and b3 = a1b2 the set a = {1, ai, bi}16i63 is a k-basis for B. The non-zero products of elements of a
are listed below:

a1a2 = −a2a1 = a3 and a1b2 = a2b1 = b1a2 = b2a1 = b3. (2.2.2)
Let α ∈ (B∗)−2, respectively, β ∈ (B∗)−3 be the k-linear map that sends a3, respectively, b3 to 1, and the remaining

elements of a to 0. The map defined by
π


ς−2(x), ς−3(y)


= xα − (−1)iyβ

for x ∈ Bi and y ∈ Bi+1 is a morphism π : Σ−2B⊕Σ−3B→ B∗ of graded B-modules. Its image contains the basis of B∗ dual
to a, so π is surjective.

Set U = Ker(π). The surjectivity of π implies rankkU = 7. Set
uj =


ς−2(aj), (−1)jς−3(bj)


, vj =


ς−2(bj), 0


, w =


0, ς−3(a3)


,

and u = {uj, vj, w}j=1,2,3. It is easy to see that u is in U and is linearly independent over k. Thus, u is a k-basis of U , so there
is an isomorphism of vector spaces

υ : Σ−2B+ ⊕Σ−1k
∼=
−→ U

satisfying υ(aj) = uj and υ(bj) = vj for j = 1, 2, 3, and υ(1) = w. Simple calculations, using (2.2.2), yield υ(bu) = bυ(u)
for all b ∈ a and u ∈ u. This means that υ is B-linear, and so validates the exact sequence (2.2.1).
(Class G(r)). Formulas (A.6.1) and (A.6.2) give

1
PB
k (t)
= 1− rt2 − rt3 + t5.

IBB (t)
PB
k (t)
= t−3 − rt−1 − r + t2.

From formulas (A.5.1) and (A.8.1) we now obtain:
1

PA
k (t)
= (1− rt2 − rt3 + t5)− t


(l+ 1− r)t + (l+ n− r)t2 + (n− 1)t3


= (1+ t)(1− t − lt2 − nt3 + t4).

IAA (t)
PA
k (t)
= (t−3 − rt−1 − r + t2)+


(l+ 1− r)t−1 + (l+ n− r)t−2 + (n− 1)t−3


= t−3(1+ t)


n+ (l− r)t − (r − 1)t2 − t3 + t4


.
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(Class H(p, q)). When p = 0 = qwe have A = k n W , so (A.5.1) and (A.7.1) give
1

PA
k (t)
= 1− t


(l+ 1)t + (l+ n)t2 + nt3


= (1+ t)(1− t − lt2 − nt3).

IAA (t)
PA
k (t)
= (l+ 1)t−1 + (l+ n)t−2 + nt−3 − t = t−3(1+ t)(n+ lt + t2 − t3).

When (p, q) ≠ (0, 0), using (A.1.4), (A.2.1) and (A.2.2) we get
1

PB
k (t)
= (1− pt2 − qt3) · (1− t2).

IBB (t) =
qt−2 + pt−1 − t
1− pt2 − qt3

· t−1 =
qt−3 + pt−2 − 1
1− pt2 − qt3

.

From (A.5.1) and (A.8.1) we now obtain

1
PA
k (t)

= (1− pt2 − qt3)(1− t2)− t

(l− p)t + (l+ n− p− q)t2 + (n− q)t3


= (1+ t)


1− t − lt2 − (n− p)t3 + qt4


.

IAA (t)
PA
k (t)

= (qt−3 + pt−2 − 1

(1− t2)+


(l− p)t−1 + (l+ n− p− q)t−2 + (n− q)t−3


= t−3(1+ t)


n+ (l− q)t − pt2 − t3 + t4


.

These formulas gives the desired expressions for PA
k (t) and IAA (t). �

3. Classification

We significantly tighten the classification of rings R of embedding codepth 3, recalled in 1.3, by proving that membership
in each one of the classes described there imposes non-trivial restrictions on the numerical invariants of R. Comparisonwith
existing examples raises intriguing questions, discussed at the end of the section.

Theorem 3.1. Let (R, m, k) be a local ring with edimR− depthR = c ≤ 3.
When R is not Gorenstein the invariants from 1.1 satisfy the following relations.

Class c h≤ l≥ n≥ p q r

S 2 1 2− h 0 = n 0 0 0
T 3 1 3− h 2 3 0 0
B 3 1 4− h 2− h 1 1 2
G(r) 3 1 max{4− h, r + 1} 2− h 0 1 r
H(p, q) 3 2 max{3− h, p, q+ 1, 2} max{2− h, p− 1, q, 1} p q q

The notation used in the theorem remains in force for the rest of the section.

Remark 3.2. The entries in the columns for c , p, q, and r are read off directly from the description of the graded algebra A
in 1.3.

Some numerical equalities determine the structure of the ring R.

Corollary 3.3. Assume c = 3 and R is not complete intersection.
The following conditions then are equivalent.

(i) l = q+ 1.
(ii) l = p and n = q.
(iii) R is in H(p, q) with n = p− 1.
(iv) R ∼= P/(J + zR), where (P, p, k) is a regular local ring, J an ideal of P with J ⊆ p2 and rankk(J/pJ) = l ≥ 2, and z a

P/J-regular element in p2.

When l or n is small the theorem is complemented by more precise results.

3.4. Let R be a local ring with c = 3.
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3.4.1. If l = 2, then by Avramov [2, Proof of 7.2] one of the following cases occurs:

(a) h = 0 and R is in C(3).
(b) h = 1 and R is in H(2, 1) with n = 1, or in H(0, 0) or H(1, 0) with n ≥ 1, or in H(2, 0) or T with n ≥ 2.
(c) h = 2 and R is in H(0, 0) with n ≥ 1.

3.4.2. If l = 3 and h = 0, then by Avramov [3, Proof of Thm. 2] R is in one of the classes:

(a) H(3, 2) with n = 2.
(b) T with odd n ≥ 3.
(c) H(3, 0) with even n ≥ 4.

3.4.3. If l ≥ 4, h = 0, n = 2, and p > 0, then by Brown [13, 4.5] R is in one of the classes:

(a) B with even l.
(b) H(1, 2) with odd l.

We start the proof of the theorem with some general considerations.

Lemma 3.5. WriteR in the form P/I , with P regular and dim P = e; see 1.2.
When R is not complete intersection the following assertions hold.

(1) l ≥ c − h = e− dim R ≥ 1 hold.
(2) l = 1 implies c = 2 and h = 1; furthermore, I = (wx, wy) where w is anR-regular element and x, y is anR-regular

sequence.
(3) h ≤ 2 holds; furthermore, h = 2 implies that R is in H(0, 0).
(4) If R is not Gorenstein and c = 3, then n ≥ 2− h.

Proof. (1) Formula (1.2.4) gives l+ 1 > c − h = e− dim R ≥ 1.
(2) When l = 1 the ideal I is minimally generated by two elements, see (1.2.4); say, I = (u, v). As the regular local ring

P is factorial, we have u = wx and v = wy with relatively prime x, y. The sequence x, y is regular, so pdP
R = 2. AsR is not

complete intersection, the element w is non-zero and not invertible, so h = 1.
(3) From (1) we see that h ≤ c − 1 ≤ 2 holds, and equality implies e− dim R = 1. The ring R then is Golod by Avramov

[5, 5.2.5], and so it is in H(0, 0) by 1.4.3.
(4) For any maximal R-regular sequence x standard results, see [16, 1.6.16], give

A3 ∼= ((x) : m)/(x) ∼= HomR/(x)(k, R/(x)) ∼= ExtdR(k, R) ≠ 0,

so n = µd
R ≥ 1. Now recall that R is Gorenstein if and only if h = 0 and µd

R = 1. �

It is proved in [11] that for several classes of local rings R, including those of embedding codepth at most 3, there is a
complete intersection ring Q and a Golod homomorphism Q → R. This was used to show that for every finite module M
over such a ring, PR

M(t) represents a rational function with fixed denominator.
In the proof of the next lemma we turn the tables: By applying the formulas for PQ

k (t) and PR
k (t) from Theorem 2.1 we

express the Betti numbers β
Q
i (R) in terms of the numerical invariants of R, defined in 1.1, then use information on the

asymptotic behavior of Betti numbers over complete intersections, obtained in [7].

Lemma 3.6. Set τR = 1 for R in T and τR = 0 otherwise.
If c = 3 and R is not complete intersection, then the following dichotomy holds:

(a) l ≥ q+ 2 and n ≥ p− τR, or
(b) l = q+ 1 and n = p− 1− τR.

Proof. Parts (1) and (2) of Lemma 3.5 imply l ≥ 2 and h ≤ 2. If h = 2, then Lemma 3.5(3) shows that R is in H(0, 0). When
R is in H(0, 0) the first pair holds and the second fails. Until the end of the proof we assume h ≤ 1 and p+ q ≥ 1.

We choose an isomorphismR ∼= P/I , as in 1.2. By taking a close look at some arguments in [11], we set out to show next
that I contains a regular sequence x, y, such that for Q = P/(x, y) the induced map Q →R is a Golod homomorphism.

For R in T such a sequence is found in the proof of [11, 6.1]. It is also shown there that if R is in G(r), B, or H(p, q) with
p+ q ≥ 1, then for some x ∈ I and P = P/xP the map P → R is Golod. As the ideal I = I/xP of P has positive height, we can
choose a minimal generator y of I so that its image in R is regular. The natural map from Q = P/yP to R is Golod by Avramov
et al. [11, 5.13]. By the definition of Golod homomorphisms, see Levin [25], the following equality then holds:

PQR (t) =
1
t
·


1+ t − PQ

k (t) ·
1

PR
k (t)


. (3.6.1)
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Inspecting the tabulated values of p and q, see Remark 3.2, we note that the various forms of PR
k (t) listed in Theorem 2.1

admit an uniform expression, namely,

PR
k (t) =

(1+ t)e−1

1− t − lt2 − (n− p)t3 + qt4 − τRt5
. (3.6.2)

Now Q is in C(2), so PQ
k (t) is given by Theorem 2.1, hence (3.6.1) and (3.6.2) yield

(1− t) · PQR (t) =
1− t
t


1+ t −

(1+ t)e−2

(1− t)2
·
1− t − lt2 − (n− p)t3 + qt4 − τRt5

(1+ t)e−1


=

1− t
t(1− t)2(1+ t)


(1− t2)2 − (1− t − lt2 − (n− p)t3 + qt4 − τRt5)


=

1
t(1− t2)


t + (l− 2)t2 + (n− p)t3 − (q− 1)t4 + τRt5)


=

1+ (n− p)t2 + τRt4

1− t2
+

(l− 2)t − (q− 1)t3

1− t2

= 1+ (l− 2)t + (n+ 1− p)t2 +
∞
i=1

(l− 1− q)t2i+1 +
∞
i=1

(n+ 1− p+ τR)t2i+2.

The composite equality of formal power produces numerical equalities

l− 1− q = β
Q
2i+1(

R)− β
Q
2i(

R) for all i ≥ 1,

n+ 1− p+ τR = β
Q
2i+2(

R)− β
Q
2i+1(

R) for all i ≥ 1.
(3.6.3)

The ringQ being complete intersection, the sequence of Betti numbers of each finiteQ -module is eventually either strictly
increasing or constant, see [7, 8.1] or [5, 9.2.1(5)]. Thus, the left-hand sides of the equalities in (3.6.3) are either both positive
or both equal to zero. This is just a rewording of the desired conclusion. �

The proof of the next result, with its use of a DGmodule structure on a minimal P-free resolution of a dualizing complex
forR, presents independent interest.
Lemma 3.7. If c = 3 and R is not Gorenstein, then l ≥ r + 1 holds.

Proof. There is nothing to prove for R in T, as then r = 0; see Remark 3.2.
By the same remark, rings in B have p = q = 1 and r = 2. Case (b) in Lemma 3.6 then cannot hold, as it implies n = 0,

and case (a) gives l ≥ 3 = r + 1.
Rings R in H(p, q) have r = q, see Remark 3.2, and Lemma 3.6 gives l ≥ q+ 1.
For the rest of the proof we assume that R is in G(r). Thus, its Koszul homology algebra A has the form A = BnW , where

B is a Poincaré duality k-algebra with

rankkB1 = r = rankkB2, rankkB3 = 1, B1 · B1 = 0

andW is a graded B-module with B+W = 0. For every graded B-module N , set N ′ = Homk(N, Σ3k) and endow this graded
vector space with the natural B-module structure described in 1.5.

Choose β ∈ (B′)0 with Ker(β) = B62. As B has Poincaré duality, the homomorphism of left graded B-modules α : B→ B′
with α(1) = β is bijective; thus,

A′ = Bβ ⊕W ′ and α : B ∼= Bβ (3.7.1)

as graded B-modules, where B act on A-modules through the inclusion B ⊆ A.
As we may assume that R is complete, we fix a Cohen presentation R ∼= P/I , a minimal resolution F of R as a P-module,

a DG P-algebra structures on F ; see 1.2. Set F ′ = HomP(F , Σ3P) and turn F ′ into a DG F-module, as in 1.5.
Using (1.7.1) to identify the graded algebras F ⊗P k and A, we get isomorphisms

F ′ ⊗P k ∼= HomP(F , k⊗P Σ3P) ∼= Homk(F ⊗P k, Σ3k) = A′

of graded A-modules. Choose ξ ∈ F ′0, so that these maps send ξ ⊗ 1 to (β, 0) ∈ A′; see (3.7.1). The morphism φ : F → F ′ of
left DG F-modules with φ(1) = ξ satisfies

(φ ⊗P k)|B = α and (φ ⊗P k)|W = 0. (3.7.2)

Let Y denote the mapping cone of φ. We have Hi(F) = 0 for i ≥ 1 by choice, and Hi(F ′) = Ext3−iP (R, P) = 0 for i ≥ 2
because h ≤ 1 holds by Lemma 3.5(3). The exact sequences Hi−1(F)→ Hi(Y )→ Hi(F ′) now yield Hi(Y ) = 0 for i ≥ 2.
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Note that Y is a bounded complex of finite free P-modules. If y ∈ Yi is an element with ∂(y) = z /∈ pYi−1, then form a
subcomplex of Y as follows:

Z = 0→ Py
∂|Py
−−→ Pz → 0.

Since Z is contractible and splits off as a direct summand of Y , the natural morphism Y → Y/Z is a homotopy equivalence.
Iteration produces a homotopy equivalence Y → X , where X is a bounded complex of finite free P-modules satisfying

∂(X) ⊆ pX, (3.7.3)
Hi(X) ∼= Hi(Y ) = 0 for i ≥ 2, (3.7.4)

Xi ⊗P k ∼= Hi(Y ⊗P k) for i ∈ Z. (3.7.5)

The construction of Y gives an isomorphism of complexes of k-vector spaces

Y ⊗P k ∼=



0 W3 W2 W1
⊕ ⊕ ⊕

B3 α3

''PPPPPPP B2 α2

''PPPPPPP B1 α1

''PPPPPPP B0 α0

''PPPPPPP
⊕ ⊕

B3β B2β B1β B0β

⊕ ⊕ ⊕

W ′2 W ′1 W ′0 0

where in view of (3.7.1) and (3.7.2) all maps not represented by arrows are equal to zero and each αi is bijective. Now (3.7.5)
yields isomorphisms of vector spaces

Xi ⊗P k ∼=


W ′i for i = 0, 1,
W ′2 ⊕W1 for i = 2,
Wi−1 for i = 3, 4.

(3.7.6)

The following equalities come from the definitions ofW ′ and W , (1.2.2) and (1.2.5):

rankkW ′0 = rankkW3 = rankkA3 − rankkB3 = n− 1,

rankkW ′1 = rankkW2 = rankkA2 − rankkB2 = l+ n− r,

rankkW ′2 = rankkW1 = rankkA1 − rankkB1 = l+ 1− r.

As a result, we now know that the complex X has the following form:

X = 0 −→ Pn−1 ∂4
−→ P l+n−r ∂3

−→ P2(l+1−r) ∂2
−→ P l+n−r ∂1

−→ Pn−1
−→ 0.

The inclusion B1 ⊆ A1 yield r ≤ l + 1. We finish the proof by showing that if r = l + 1, then R is Gorenstein, and that
r = l is not possible.

If r = l + 1, then X2 = 0, so the map ∂4 : Pn−1
→ Pn−1 is bijective. In view of (3.7.3), this forces n = 1, hence X = 0.

From (3.7.6) we get W = 0, so A has Poincaré duality, and hence R is Gorenstein by Avramov and Golod [8, Thm.]; see also
[16, 3.4.5].

Assume now r = l. By (3.7.3) and (3.7.4), ∂2(X2) has a minimal free resolution

0→ Pn−1
→ Pn

→ P2
→ 0.

Since ∂2(X2) is torsion-free, it is isomorphic to an ideal of P minimally generated by two elements. Such ideals have projective
dimension one, see Lemma 3.5(2), hence n = 1. AsW1 ≠ 0, the algebra A does not have Poincaré duality, so the ring R is not
Gorenstein; see 1.4.2. Thus, parts (3) and (4) of Lemma 3.5 imply h = 1; that is, dim R = d + 1. A result of Foxby [18, 3.7]
(for equicharacteristic R) and Roberts [27] (in general) now gives µd+1

R ≥ 2. This inequality, the exact sequence

0→ Extd+1R (k, R)→ A2
δ2
−→ Homk(A1, A3)

of [8, Prop. 1], see also [16, 3.4.6], the equality (1.2.5), and our assumption yield

2 ≤ µd+1
R = l+ n− r = 1.

We have obtained a contradiction, and this finishes the proof of the lemma. �

Proof of Theorem 3.1. For the values of c , p, q, and r , see Remark 3.2.
Lemma 3.5(3) yields h ≤ 2, with strict inequality when R is not in H(0, 0).
For l and nwe argue one class at a time.

(Class S). We have l ≥ 2− h by Lemma 3.5(1) and n = 0 by (1.2.3).
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(Class T). Lemma 3.5(1) gives l ≥ 3− h. Rings in T have q = 0, so case (b) in Lemma 3.6 implies l = 1; since c = 3, this is
ruled out by Lemma 3.5(2). Thus, the inequalities (a) of Lemma 3.6 hold, and they give n ≥ 2.

(Class B). Lemma 3.5(4) gives n ≥ 2− h ≥ 1, while Lemma 3.7 yields l ≥ r + 1 = 3. By 3.4.2, the class B contains no ring
with h = 0 and l = 3, so l ≥ 4− h holds.

(Class G(r)). Here p = 0, so case (b) in Lemma 3.6 gives n = −1, which is absurd. Thus, case (a) holds, whence l ≥ 3. By
3.4.2, in G(r) there are no rings with h = 0 and l = 3, hence l ≥ 4− h holds. So does l ≥ r + 1, by Lemma 3.7.

(Class H(p, q)). Parts (1) and (3) of Lemma 3.5 give l ≥ max{3− h, 2}.
By definition, A = (C ⊗k D) n W with C = k n (Σkp ⊕ Σ2kq), D = k n Σk, and C+W = 0 = D+W . The relations

A1 ) C1 ∼= C1 ⊗k D1 = A1 · A1 imply l ≥ p, while A3 ⊇ A1 · A2 = C2 ⊗k D1 ∼= C2 yield n ≥ q. On the other hand, from
Lemma 3.6 we obtain the inequalities l ≥ q+ 1 and n ≥ p− 1. �

Proof of Corollary 3.3. When l = q+1 the values of q and bounds for l in Theorem 3.1 show that R is inH(p, q). Lemma 3.6
now gives n = p− 1, so (i) implies (iii).

If (iii) holds, then we have a string l ≥ p = n+ 1 ≥ q+ 1 = l, where the inequalities come from Theorem 3.1, the first
equality is given by Lemma 3.6, and the second one holds by hypothesis. We get l = p and n = q, which is (ii).

Assuming that (ii) holds, we see from Theorem 3.1 that R is in H(p, q). The description of A in 1.3 then yields A ∼= C ⊗k D
with D = k n Σk. In particular, if a is a non-zero element in 1⊗k D1, then A is free as a graded module over its subalgebra
generated by a. Now [4, 3.4] shows that (iv) holds.

When (iv) holds TorPi (P/J, P/zP) = 0 for i ≥ 1, so we have isomorphisms

A ∼= TorP(P/(J + zP), k)
∼= TorP(P/J, k)⊗k TorP(P/zP, k)
∼= TorP(P/J, k)⊗k (k n Σk)

of graded k-algebras. They imply TorP2(P/J, k) ⊗k Σk ∼= A3 and pdP(P/J) = 2 the latter because Ai = 0 holds for i > 3 by
(1.2.3). We get a string of equalities

q = rankkA3 = rankk TorP2(P/J, k) = rankk(J/pJ)− 1 = l− 1,

where the third one comes from (1.2.4) and (1.2.5). Thus, (iv) implies (i). �

To complete the classification of rings R with dim R − depthR = 3 along the lines of 1.3 and the results in this section,
one needs to determine for those rings all the restrictions satisfied by the invariants in 1.1. This leads to:

Question 3.8. Which sextuples (h, l, n, p, q, r), allowed by Theorem 3.1, Corollary 3.3, or the results cited in 3.4, are realized by
some local ring R with c = 3?

The list of available answers is not long and runs as follows.

3.9. Let (P, p, k) be a regular local with dim P = e ≥ 3 and x1, . . . , xe a minimal set of generators of p. We describe rings
R = P/I with c = 3 by specifying I .

3.9.1. The rings admitted by 1.4.2, 3.4.1, 3.4.2, 3.4.3 are realized by ideals I constructed in [15, 6.2], [2, 7.7], [3, Rem. (1),
p. 171], and [13, 3.4, 3.6], respectively.

3.9.2. The following sextuples (h, l, n, p, q, r) with l = q+ 1 are realized:

(a) (0, 2, 1, 3, 1, 3) by I = (x21, x
2
2, x

2
3).

(b) (0, l, l− 1, l, l− 1, l− 1) by I = (x1, x2)l−1 + (x23) for each l ≥ 3.
(c) (1, l, l− 1, l, l− 1, l− 1) by x1(x1, x2)l−1 + (x23) for each l ≥ 2.

There are no other sextuples with l = q+ 1, by Corollary 3.3 and Lemma 3.5(3).

3.9.3. Every sextuple (2, l, n, 0, 0, 0) with l ≥ 2 and n ≥ 1 is realized when k = C.
Indeed, for each such pair (l, n)Weyman [34] shows that P = C[[x1, . . . , xe]] contains an ideal J with rankk TorP1(P/J, k) =

l+ 1 and rankk TorP3(P/J, k) = n. On the other hand, if w is a P-regular element, then P/J with J = wI realizes the sextuple
(2, l, n, 0, 0, 0), since for each i ≥ 1 there are isomorphisms of vector spaces

TorPi (P/I, k) ∼= TorPi−1(I, k) ∼= TorPi−1(wI, k) ∼= TorPi (P/J, k),

and Shamash [29, Thm. (3), p. 467] shows that P/wI is Golod; see also [5, 5.2.5].
There are no other sextuples with h = 2, by Lemma 3.5(3).

The only known examples in G(r) are the Gorenstein rings. We propose:

Conjecture 3.10. If R is in G(r) for some r ≥ 2, then R is Gorenstein.
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Lemma 3.7 is a first step towards a verification of this statement. If proved in full, it will eliminate an entire family from
the classification in Theorem 3.1.

Another elusive class is B, for which the only examples are those in [13]. Rings in T appear in several situations, and the
families H(p, q) seem to be ubiquitous.

4. Bass numbers

The following theorem is the third main result of this paper.

Theorem 4.1. Let (R, m, k) be a local ring, and set e = edimR and d = depthR.
When e− d ≤ 3 and R is not Gorenstein there is real number γ R > 1, such that

µd+i
R ≥ γ R µd+i−1

R holds for every i ≥ 1, (4.1.1)

with two exceptions for i = 2: If there exists an isomorphismR ∼= P/(wx, wy) or (4.1.2)R ∼= P/(wx, wy, z), (4.1.3)

where (P, p, k) is an e-dimensional regular local ring, w a P-regular element, x, y a P-regular sequence, and z a P/(wx, wy)-
regular element in p2, then

µd+2
R = µd+1

R = 2.

In particular, when R is Cohen–Macaulay the inequalities (4.1.1) hold for all i.

The theorem should be viewed in the context of a number of problems raised in recent publications, sometimes under
the hypothesis that R is Cohen–Macaulay. We say that a sequence (ai) of real numbers is said to have strongly exponential
growth if β i

≥ ai ≥ αi hold for all i≫ 0 for some real numbers β ≥ α > 1.

Questions 4.2. Assume that (R, m, k) is a non-Gorenstein local ring.

(1) Determine the number inf{j ∈ Z | µd+i
R > µd+i−1

R for all i ≥ j}. (See [17, 1.3].)
(2) Does µd+1

R > µd
R always hold? (See [23, 2.6].)

(3) Does µi
R ≥ 2 hold for all i > dim R? (See [17, 1.7].)

(4) Does the sequence (µi
R) have strongly exponential growth? (See [23, p. 647].)

All of these questions are open in general. Here is a list of the known answers:

Remark 4.3. Assume that (R, m, k) is not Gorenstein.

(1) An inequality µd+i
R > µd+i−1

R holds for i ≥ 1 in the following cases:
(a) m3

= 0; see [17, 5.1].
(b) R ∼= Q/(0 : q) for some Gorenstein local ring (Q , q, k); see [17, 6.2].
(c) R ∼= S ×k T with S ≠ k ≠ T , except when S is a discrete valuation ring, and either edimT = 1 > dim T or

edimT = 2 = dim T ; see [17, 3.3].
(d) R is Golod, except when e− d = 2 and µd

R = 1; see [17, 2.4].
In addition, µd+i

R > µd+i−1
R is known to hold in the following cases:

(e) for i ≥ 3 if R is among the exceptions in (c) and (d); see [17, 2.5, 3.2].
(f) for i≫ 0 if R is Cohen–Macaulay with e− d ≤ 3; see [23, 1.1].

(2) holds when R is Cohen–Macaulay and is generically Gorenstein; see [23, 2.3].
(3) holds when R is a domain, see [26, p. 67], or is Cohen–Macaulay; see [17, 1.6].
(4) holds in cases (a) through (f) of (1); see the references given above.

For rings with e − d ≤ 3, Theorem 4.1 provides sharp answers to all the questions in 4.2. The next remark shows that
the theorem also implies 4.3(1)(e).

Remark 4.4. Let S be a discrete valuation ring and (T , t, k) a local ring.
If edimT = 1 and ts = 0 ≠ ts−1, then R = S ×k T satisfiesR ∼= P/(wx, ws), where (P, p, k) is a regular local ring and

{w, x} is a minimal generating set for p.
If T is regular of dimension 2, then R = S×kT satisfiesR ∼= P/(wx, wy), where (P, p, k) is a regular local ring and {w, x, y}

is a minimal generating set for p.

In preparation for the proof of Theorem 4.1, we establish a technical result where the hypotheses are made on the Bass
series of R and the Poincaré series of k, not on the ring R itself. The argument relies on general properties of PR

k (t).
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Lemma 4.5. Let (R, m, k) be a local ring and let d, e, l, m, and p be as in 1.1.
Assume there exist polynomials f (t) and g(t) in Z[t], such that

PR
k (t) =

(1+ t)e−1

g(t)
and IRR (t) = td ·

f (t)
g(t)

. (4.5.1)

(1) If

∞

i=0 ait
i is the Taylor expansion of (f (t)− g(t))/(1− t2), then

µd
R = a0 + 1,

µd+1
R − µd

R = a1 − 1,

µd+2
R − µd+1

R = a2 + (l− 1)a0.

In case l ≥ 1 and ai is non-negative for i ≥ 1 the following inequalities hold:

µd+i
R − µd+i−1

R ≥ ai + (l− 1)ai−2 ≥ ai for i ≥ 2.

(2) If

∞

i=0 bit
i is the Taylor expansion of f (t)(1+ t3)s/(1− t2)2, where s is an integer satisfying 0 ≤ s ≤ m− p, then

µd
R = b0,

µd+1
R − µd

R = b1,

µd+2
R − µd+1

R = b2 + (l− 2)b0.

In case l ≥ 2 and bi is non-negative for i ≥ 1 the following inequalities hold:

µd+i
R − µd+i−1

R ≥ bi + (l− 2)bi−2 ≥ bi for i ≥ 2.

Remark. One has m− p = rankkA2 − rankk(A1)
2
= rankk(A2/(A1)

2) ≥ 0.

Proof. Recall that the Poincaré series of k can be written as a product

PR
k (t) =

(1+ t)e(1+ t3)m−p

(1− t2)l+1
·


∞

i=2(1+ t2i+1)ε2i+1
∞

i=1(1− t2i+2)ε2i+2
(4.5.2)

with non-negative integers εj ≥ 0; see [21, 3.1.2(ii), 3.1.3] or [5, 7.1.4, 7.1.5].
To compare consecutive Bass numbers, we will use the identity

i∈Z

(µd+i
R − µd+i−1

R ) t i = (1− t)
IRR (t)
td

. (4.5.3)

(1) In view of (4.5.2), for j ≥ 0 there exist non-negative integers cj, such that

PR
k (t) =

(1+ t)e

(1− t2)l+1


1+

∞
j=3

cjt j


.

Formulas (4.5.1) and (4.5.3) give equalities
i∈Z

(µd+i
R − µd+i−1

R ) t i =

1+

f (t)− g(t)
g(t)


(1− t)

= 1− t +
f (t)− g(t)

1− t2
1

(1− t2)l−1


1+

∞
j=3

cjt j


= 1− t +
 ∞

i=0

ait i


1+ (l− 1)t2 +
∞
j=3

djt j


with dj ≥ 0 for j ≥ 3. They yield µd
R = a0+ 1 and the expressions for µd+i

R −µd+i−1
R when i = 1, 2. In case l ≥ 1, and ai ≥ 0

holds for i ≥ 1, we get the following relations, where < denotes a coefficient-wise inequality of formal power series
i∈Z

(µd+i
R − µd+i−1

R ) t i < 1− t +
 ∞

i=0

ait i


1+ (l− 1)t2


= a0 + (a1 − 1)t +
∞
i=2


ai + (l− 1)ai−2


t i.

They imply the desired lower bounds for µd+i
R − µd+i−1

R when i ≥ 2.
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(2) In view of (4.5.2), we can write PR
k (t) in the form

PR
k (t) =

(1+ t)e(1+ t3)s

(1− t2)l+1


1+

∞
j=3

cjt j


with non-negative integers cj. Formulas (4.5.1) and (4.5.3) give equalities
i∈Z

(µd+i
R − µd+i−1

R ) t i =
f (t)(1+ t3)s

(1− t2)2
1

(1− t2)l−2


1+

∞
j=3

cjt j


=

 ∞
j=0

bjt j


1+ (l− 2)t2 +
∞
j=3

djt j


with dj ≥ 0 for j ≥ 3. They yield µd
= b0, and the expressions for µd+i

R − µd+i−1
R when i = 1, 2. When l ≥ 2, and bi ≥ 0

holds for i ≥ 1, we also have
i∈Z

(µd+i
R − µd+i−1

R ) t i <

 ∞
i=0

bit i


1+ (l− 2)t2


= b0 + b1t +
∞
i=2


bi + (l− 2)bi−2


t i.

The desired lower bounds for µd+i
R − µd+i−1

R when i ≥ 2 follow from here. �

The next lemma is the major step towards the proof of Theorem 4.1.

Lemma 4.6. If (R, m, k) is a non-Gorenstein local ring with e− d ≤ 3, then

µd+i
R ≥ µd+i−1

R + 1 holds for i ≥ 1,

unless i = 2 andR is described by (4.1.2) or (4.1.3), and then

µd+2
R = µd+1

R = 2.

Proof. Once again, there are several different cases to consider.

(Class S). Theorem 2.1 gives (1− t − lt2)IRR (t) = td(l+ t − t2), hence

µd
R = l,

µd+1
R − µd

R = 1,

µd+2
R − µd+1

R = l2 − 1,

µd+i
R − µd+i−1

R = lµd+i−2
R ≥ 2 for i ≥ 3.

We get µd+i
R ≥ µd+i−1

R + 1 for all i ≥ 1, except when i = 1 and l = 1, and then µd+2
R = µd+1

R = 2. Furthermore, l = 1
implies (4.1.2) by Lemma 3.5(2).

For the rest of the proof we assume c = 3 and let f (t) and g(t) be the polynomials from Theorem 2.1, satisfying
PR
k (t) = (1+ t)e−1/f (t) and ISS (t) = tdf (t)/g(t).

(Class T). The value of f (t) from Theorem 2.1 provides the first equality below:

f (t)
(1− t2)2

=
n+ lt − 2t2 − t3 + t4

(1− t2)2

= (n− 2t2 + t4)
∞
j=0

(j+ 1)t2j + (lt − t3)
∞
j=0

(j+ 1)t2j

= n+
∞
j=0


(l− 1)j+ l


t2j+1 +

∞
j=1

(n− 1)(j+ 1)t2j

Theorem 3.1 gives l, n ≥ 2, so Lemma 4.5(2) applies with s = 0 and yields

µd+1
R − µd

R = l− 1 ≥ 1,

µ
d+2j
R − µ

d+2j−1
R ≥ (n− 1)(j+ 1) ≥ 2 for j ≥ 1,

µ
d+2j+1
R − µ

d+2j
R ≥ (l− 1)j+ l ≥ 2 for j ≥ 1.
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(Classes B,G(r), and H(0, 0)). Theorem 3.1 provides uniform expressions,

f (t) = n+ (l− r)t − (r − 1)t2 + (p− 1)t3 + qt4 and

g(t) = 1− t − lt2 − (n− p)t3 + qt4,

for the polynomials that appear in Theorem 2.1. Using them, we obtain

f (t)− g(t)
1− t2

=
(n− 1)(1+ t3)+ (l+ 1− r)(t + t2)

1− t2

= (n− 1)+ (l+ 1− r)t + (l+ n− r)
 ∞

j=2

t j


.

Lemma 3.7 gives l+ n− r ≥ l+ 1− r ≥ 2, so the series above has non-negative coefficients. Thus, Lemma 4.5(1) applies
and yields

µd+1
R − µd

R = l− r ≥ 1,

µd+i
R − µd+i−1

R ≥ l+ n− r ≥ 2 for i ≥ 2.

(Class H(p, q) with p+ q ≥ 1). Theorem 2.1 gives

f (t)(1+ t3)
(1− t2)2

=
n+ (l− q)t − pt2 − t3 + t4

(1− t2)2
(1+ t3)

= n+ (l− q)t + (2n− p)t2 +
∞
i=3

bit i,

where for i ≥ 3 the numbers bi are defined by the formulas

b2j+1 = (l− q+ n− p)j+ l+ p− q− 2 for j ≥ 1,
b2j = (l+ n− p− q)j− l+ n+ q+ 1 for j ≥ 2.

By Theorem 3.1, we have l− q ≥ 1, n− p ≥ −1, and n ≥ 1, hence

2n− p = n+ (n− p) ≥ n− 1 ≥ 0,
b2j+1 ≥ b3 = n− 2+ 2(l− q) ≥ n ≥ 1 for j ≥ 1,

b2j ≥ b4 = n+ 2(n− p)+ (l− q) ≥ n ≥ 1 for j ≥ 2.

Thus, Lemma 4.5(2) applies with s = 1. With the preceding inequalities, it gives

µd+1
R − µd

R = l− q ≥ 1,

µd+2
R − µd+1

R = 2n− p+ (l− 2)n = ln− p ≥ l(n− 1) ≥ 0,

µd+i
R − µd+i−1

R ≥ bi ≥ 1 for i ≥ 3.

We conclude that µd+i
R ≥ µd+i−1

R + 1 holds for all i ≥ 1, except when i = 2 and ln− p = l(n− 1) = 0. To finish the proof,
we unravel this special case.

The last two equalities force n = 1 and l = p. Now Theorem3.1 gives the inequalities in the string 2 = n+1 ≥ p = l ≥ 2,
whence l = p = n + 1 = 2. Thus, we have shown that condition (iii) in Corollary 3.3 holds with n = p − 1 = 1. From
condition (ii) in that corollary we get q = n = 1, so the formulas above yield

µd+2
R = µd+1

R = µd
R + l− q = n+ l− q = 2.

On the other hand condition (iv) gives an isomorphismR ∼= P/(J + zR), where (P, p, k) is a regular local ring, J is an ideal
of P contained in p2 and minimally generated by 2 elements, and z is an element of p2 that is regular on P/J . Since R is not
complete intersection, neither is P/J , which means that J = (wx, wy) for some non-zero element w in p and P-regular
sequence x, y. Thus, (4.1.3) holds. �

Proof of Theorem 4.1. We may assume that R is complete. A construction of Foxby, see [18, 3.10], then yields a finite
R-module N , such that

µd+i
R = βR

i (N) for all i ≥ dim R− d. (4.7.1)

By [4, 1.4 and 1.6], when c ≤ 3 the Betti sequence of every finite R-module either has strongly exponential growth or
is eventually constant. Since R is not Gorenstein, Lemma 4.6 rules out the second case for the module N in (4.7.1). Thus,
βR
i (N) ≥ αi holds for some real number α > 1 and all i≫ 0.
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The series PR
N(t) converges in a circle of radius ρ > 0, see [5, 4.1.5]. As ρ is equal to lim supi{1/

i


β i
R(N) } we get

0 < ρ ≤ 1/α < 1. Fix a real number β satisfying

1/ρ > β > 1. (4.7.2)

Sun [30, 1.2(c)] proved that there is an integer f , such that

βR
i (N) ≥ ββR

i−1(N) holds for all i ≥ f + 1. (4.7.3)

Set j = max{3, dim R− d, f } and define real numbers γ ′ and γ ′′ by the formulas

γ ′ = min

β, µd+1

R /µd
R,min{µd+i

R /µd+i−1
R }36i6j


,

γ ′′ = min

γ ′, µd+2

R /µd+1
R


.

In view of (4.7.1) and (4.7.3), the following inequalities then hold:

µd+i
R ≥


γ ′µd+i−1 for i = 1 and i ≥ 3,
γ ′′µd+i−1 for i ≥ 1.

From (4.7.2) and Lemma 4.6 we see that γ ′′ > 1 holds unless R satisfies (4.1.2) or (4.1.3), else γ ′ > 1 holds and
µd+2

R = µd+1
R = 2. This is the desired result. �
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Appendix. Graded algebras

Here k denotes a field and B a graded k-algebra that is graded-commutative, has B0 = k and Bi = 0 for i < 0, and rankkB
is finite; set B+ = B>1.

In addition,M and N denote finitely generated graded B-modules; we set

HM(t) =

i∈Z

rankkMi t i.

We treat B as a DG algebra and M , N as DG B-modules, all with zero differentials. As a consequence, TorBi (M,N) and
ExtiB(M,N) are formed as in 1.6. The k-spaces TorBi (M,N) and ExtiB(M,N) are finite for each i ∈ Z and zero for i ≪ 0, so
Poincaré series PB

M(t) and Bass series INB are defined; see (1.6.1) and (1.6.2).
Here we assemble a collection of such series, used in the body of the paper. Their computations rely on analogs of results

concerning finite modules over local rings.

A.1. For the graded B-modules Σ sN and N∗ = Homk(N, k), see 1.5, one has

PB
ΣsN(t) = ts · PB

N(t) and IΣ
sN

B (t) = t−s · INB . (A.1.1)

PB
N∗(t) = INB (t) and IN

∗

B (t) = PB
N(t). (A.1.2)

An exact sequence 0→ N → G→ M → 0 with G free and N ⊆ B+G yields

PB
N(t) = t−1 · (PB

M(t)− HM/B+M(t)). (A.1.3)

If B = C ⊗k D and M = T ⊗k U , where T is a graded C-module and U a graded D-module, then the Künneth Formula
gives

PB
M(t) = PC

T (t) · PD
U (t) and IMB = ITC · I

U
D . (A.1.4)

The formulas above suffice to compute PB
k (t) and/or I

B
B (t) in some simple cases.

Example A.2. If B = k n W for some graded k-vector spaceW ≠ 0, then:

PB
k (t) =

1
1− t · HW (t)

. (A.2.1)

IBB (t)
PB
k (t)
= HW (t−1)− t. (A.2.2)
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Indeed, B2
+
= 0 implies PB

B+(t) = HW (t) · PB
k (t), so (A.2.1) follows from (A.1.3). As B+(B∗) = (B∗)>0, any lifting to B∗ of

some basis of the k-space (B+)∗ minimally generates B∗ over B. Thus, there is an exact sequence of graded B-modules

0→ U → B⊗k (B+)∗ → B∗ → 0

with U ⊆ B+ ⊗k (B+)∗, hence B+U = 0. From this and (A.1.2) we obtain

IBB (t) = PB
B∗(t) = HU(t) · t · PB

k (t)+ HW (t−1),

because H(B+)∗(t) = HW (t−1). Since HB(t) = HW (t)+ 1, the sequence also gives

HU(t) = (HW (t)+ 1) · HW (t−1)− (HW (t−1)+ 1) = HW (t) · HW (t−1)− 1,

because HB∗(t) = HB(t−1). From the last two formulas and (A.2.1), we get

IBB (t)
PB
k (t)
= t ·


HW (t) · HW (t−1)− 1


+ HW (t−1) ·


1− t · HW (t)


= HW (t−1)− t.

Example A.3. If B =


k V , where Vi = 0 for all even i, then there is an equality

PB
k (t) =


i∈Z

1
(1− t i+1)rankkVi

. (A.3.1)

Indeed, set c = rankkV . When c = 1 the isomorphism


k Σ ik ∼= k n Σ ik and (A.2.1) give the desired expression. For
c ≥ 2 it is obtained by induction, using the isomorphism


k(V
′
⊕ V ′′) ∼=


k V
′
⊗k


k V
′′ and (A.1.4).

Example A.4. When B has Poincaré duality in degree s there is an equality

IBB (t) = t−s. (A.4.1)

Indeed, the condition on Bmeans that the Bi → Homk(Bs−i, Bs), induced by the products Bi× Bs−i → Bs, are bijective for
all i ∈ Z. This implies an isomorphism B∗ ∼= Σ−sB of graded B-modules, so (A.1.1) and (A.1.2) give

IBB (t) = PB
B∗(t) = PB

Σ−sB(t) = t−s · PB
B (t) = t−s.

The next result is an analog of a theorem of Gulliksen; see [20, Thm. 2]. The original proof, or the one for [22, Cor. 2],
carries over essentially without changes.

A.5. If B = C n W for some graded k-algebra C and graded C-moduleW , then

1
PB
k (t)
=

1
PC
k (t)
− t ·

PC
W (t)
PC
k (t)

. (A.5.1)

Example A.6. If B = C n Σ s(C∗) with C = k n W , then the following hold:

PB
k (t) =

1
1− t · HW (t)− ts+1 · HW (t−1)+ ts+2

. (A.6.1)

IBB (t)
PB
k (t)
=

1− t · HW (t)− ts+1 · HW (t−1)+ ts+2

ts
. (A.6.2)

Indeed, the isomorphism of graded B-modules Σ s(C∗) ∼= (Σ−sC)∗ and (A.1.2) give PC
Σs(C∗)(t) = IΣ

−sC
C (t) = ts · ICC (t).

Now (A.5.1), (A.2.1) and (A.2.2) yield

1
PB
k (t)
=

1
PC
k (t)
− t · ts ·

ICC (t)
PC
k (t)
= 1− t · HW (t)− ts+1 · HW (t−1)+ ts+2.

Since B has Poincaré duality in degree s, (A.4.1) and (A.6.1) imply (A.6.2).

The following analog of a result of Lescot, see [24, 1.8(2)], can be proved along the lines of the original argument, but
subtle changes are needed. Instead of going into those details, we refer to [10] for a direct proof covering both cases.

A.7. If B+ ≠ 0, then the following equality holds:

IBB (t)
PB
k (t)
=

IB+B (t)
PB
k (t)
− t. (A.7.1)

In the last two examples we adapt the arguments for [24, 3.2(1) and 1.9].
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Example A.8. If B = C n W for some graded k-algebra C with C+ ≠ 0 and graded C-module W with C+W = 0, then the
following equality holds:

IBB (t)
PB
k (t)
=

ICC (t)
PC
k (t)
+ HW (t−1). (A.8.1)

Indeed, C is an algebra retract of B. The proof of [22, Thm. 1] transfers verbatim and gives PB
N(t)/PB

k (t) = PC
N (t)/PC

k (t)
for each graded C-module N , viewed as a B-module via the natural homomorphism B → C . By (A.1.2), this implies that
INB (t)/PB

k (t) = INC (t)/PC
k (t) holds as well. Since B+ = C+⊕W as graded B-modules, using the preceding equality and (A.7.1)

(twice) we obtain

IBB (t)
PB
k (t)
=

IC+B (t)
PB
k (t)
+

IWB (t)
PB
k (t)
− t =

IC+C (t)
PC
k (t)
+ HW (t−1)− t =

ICC (t)
PC
k (t)
+ HW (t−1).

Example A.9. If B = E/E>s, where E is a graded k-algebra that has Poincaré duality in degree s, then the following equality
holds:

IBB (t)
PB
k (t)
= t−s−1 ·


1−

1
PB
k (t)


− t. (A.9.1)

Indeed, set (−)′ = Homk(−, Σ sk). Applying the functor (−)′ to the exact sequence 0 → B+ → B → k → 0 we get
(B+)′ ∼= B′/B′>s as graded B-modules. Since E ∼= E ′ as graded E-modules, (−)′ applied to 0 → Σ sk → E → B → 0 gives
B′ ∼= E+, hence B′/B′>s

∼= E+/E>s ∼= B+, and thus B+ ∼= (B+)′ ∼= (Σ−sB+)∗.
Now from formulas (A.1.2), (A.1.3) and (A.7.1) we obtain

IBB (t)
PB
k (t)
+ t =

I(Σ
−sB+)∗

B

PB
k (t)

=

PB
Σ−sB+

(t)

PB
k (t)

= t−s · t−1 ·
PB
k (t)− 1
PB
k (t)

.

All the labeled formulas in this appendix are used in computations in Section 2.
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