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It is well known that in four dimensions, black hole solution of the Brans–Dicke–Maxwell equations is
just the Reissner–Nordstrom solution with a constant scalar field. However, in n � 4 dimensions, the
solution is not yet the (n + 1)-dimensional Reissner–Nordstrom solution and the scalar field is not a
constant in general. In this Letter, by applying a conformal transformation to the dilaton gravity theory,
we derive a class of black hole solutions in (n + 1)-dimensional (n � 4) Brans–Dicke–Maxwell theory
in the background of anti-de Sitter universe. We obtain the conserved and thermodynamic quantities
through the use of the Euclidean action method. We find a Smarr-type formula and perform a stability
analysis in the canonical ensemble. We find that the solution is thermally stable for small α, while for
large α the system has an unstable phase, where α is a coupling constant between the scalar and matter
field.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The pioneering study on scalar–tensor theories was done by
Brans and Dicke several decades ago who sought to incorporate
Mach’s principle into gravity [1]. According to Brans–Dicke (BD)
theory the phenomenon of inertia arises from accelerations with
respect to the general mass distribution of the universe. This the-
ory can be regarded as an economic modification of general rela-
tivity which accommodates both Mach’s principle and Dirac’s large
number hypothesis as new ingredients. There has been a renewed
interest in studying BD theory ever since it has been disclosed
that BD theory appears naturally in the low energy limit of su-
perstring theory. In string theory, gravity becomes scalar–tensor in
nature. The low-energy effective action of the string theory leads
to the Einstein gravity, coupled non-minimally to a scalar dila-
ton field. Besides, recent observations show that at the present
epoch, our Universe expands with acceleration instead of decel-
eration along the scheme of standard Friedmann models and since
general relativity could not describe such Universe correctly, cos-
mologists have attended to alternative theories of gravity such as
BD theory. Due to highly nonlinear character of BD theory, a de-
sirable pre-requisite for studying strong field situation is to have
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knowledge of exact explicit solutions of the field equations. Since
black holes are very important both in classical and quantum grav-
ity, many authors have investigated various aspects of them in BD
theory [2]. It turned out that the dynamic scalar field in the BD
theory plays an important role in the process of collapse and crit-
ical phenomenon. The first four-dimensional black hole solutions
of BD theory was obtained by Brans in four classes [3]. It has
been shown that among these four classes of the static spheri-
cally symmetric solutions of the vacuum BD theory of gravity only
two are really independent, and only one of them is permitted
for all values of ω. It has been proved that in four dimensions,
the stationary and vacuum BD solution is just the Kerr solution
with constant scalar field everywhere [4]. It has also been shown
that the charged black hole solution in four-dimensional Brans–
Dicke–Maxwell (BDM) theory is just the Reissner–Nordstrom solu-
tion with a constant scalar field, however, in higher dimensions,
one obtains the black hole solutions with a nontrivial scalar field
[5]. This is because the stress–energy tensor of Maxwell field is not
traceless in the higher dimensions and the action of Maxwell field
is not invariant under conformal transformations. Accordingly, the
Maxwell field can be regarded as the source of the scalar field in
the BD theory [5]. The properties of charged black hole solutions
in dilaton gravity [6–9] and BD theory [10] have been explored by
many authors. However, these solutions [6–10] are neither asymp-
totically flat nor (anti-)de Sitter [(A)dS]. Recently, the dilaton po-
tential leading to (A)dS-like solutions of dilaton gravity has been
found [11–13]. It was shown that the cosmological constant is cou-
pled to the dilaton in a very nontrivial way. Other studies on black
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hole solutions in BD theory have been carried out in [14–16]. In
this Letter, we would like to construct black hole solutions of BDM
theory in the background of (A)dS spaces in all higher dimensions
for an arbitrary value of coupling constant and investigate their
properties. We also want to perform a stability analysis and inves-
tigate the effect of the scalar field on the thermal stability of the
solutions.

The outline of this Letter is as follows: In Section 2, we present
the basic equations and the conformal transformation between the
action of the dilaton gravity theory and the BD theory. In Section 3,
we construct black hole solutions in BDM theory and investigate
their properties. In Section 4, we study the thermodynamical prop-
erties of the solutions and calculate the conserved and thermody-
namic quantities of BD black holes. We also investigate the effect
of the scalar field on the thermal stability of the solutions in this
section. The last section is devoted to summary and discussion.

2. Field equations and conformal transformations

The action of the (n + 1)-dimensional Brans–Dicke–Maxwell
theory with one scalar field Φ and a self-interacting potential
V (Φ) can be written as

IG = − 1

16π

∫
M

dn+1x
√−g

×
(

ΦR − ω

Φ
(∇Φ)2 − V (Φ) − Fμν F μν

)

− 1

8π

∫
∂M

dnx
√

−hΦK , (1)

where R is the scalar curvature, V (Φ) is a potential for the scalar
field Φ , Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic field tensor,
and Aμ is the electromagnetic potential. The factor ω is the cou-
pling constant. The last term in Eq. (1) is the Gibbons–Hawking
boundary term which is chosen such that the variational princi-
ple is well-defined. The manifold M has metric gμν and covariant
derivative ∇μ . K is the trace of the extrinsic curvature K ab of the
boundary ∂M of the manifold M, with induced metric hab . The
equations of motion can be obtained by varying the action (1) with
respect to the gravitational field gμν , the scalar field Φ and the
gauge field Aμ which yields the following field equations

Gμν = ω

Φ2

(
∇μΦ∇νΦ − 1

2
gμν(∇Φ)2

)

− V (Φ)

2Φ
gμν + 1

Φ

(∇μ∇νΦ − gμν∇2Φ
)

+ 2

Φ

(
Fμλ Fν

λ − 1

4
Fρσ F ρσ gμν

)
, (2)

∇2Φ = − n − 3

2(n − 1)ω + 2n
F 2 + 1

2(n − 1)ω + 2n

×
(

(n − 1)Φ
dV (Φ)

dΦ
− (n + 1)V (Φ)

)
, (3)

∇μF μν = 0, (4)

where Gμν and ∇ are, respectively, the Einstein tensor and covari-
ant differentiation in the spacetime metric gμν . It is apparent that
the right-hand side of Eq. (2) includes the second derivatives of
the scalar field, so it is hard to solve the field equations (2)–(4)
directly. We can remove this difficulty by a conformal transfor-
mation. Indeed, the BDM theory (1) can be transformed into the
Einstein–Maxwell theory with a minimally coupled scalar dilaton
field, Φ̄ , via the conformal transformation [5]
ḡμν = Ω−2 gμν, (5)

with

Ω−2 = Φ
2

n−1 , (6)

and

α = n − 3√
4(n − 1)ω + 4n

, Φ̄ = n − 3

4α
lnΦ. (7)

Using this conformal transformation, the action (1) transforms to

ĪG = − 1

16π

∫
M

dn+1x
√−ḡ

×
(

R̄ − 4

n − 1
(∇̄Φ̄)2 − V̄ (Φ̄) − e− 4αΦ̄

n−1 F̄μν F̄ μν

)

− 1

8π

∫
∂M

dnx

√
−h̄ K̄ , (8)

where R̄ and ∇̄ are, respectively, the Ricci scalar and covariant dif-
ferentiation in the spacetime metric ḡμν , and V̄ (Φ̄) is

V̄ (Φ̄) = Φ− n+1
n−1 V (Φ). (9)

This action is just the action of the (n + 1)-dimensional Einstein–
Maxwell-dilaton gravity, where Φ̄ is the dilaton field and V̄ (Φ̄) is
a potential for Φ̄ . α is an arbitrary constant governing the strength
of the coupling between the dilaton and the Maxwell field. Varying
action (8), we obtain the equations of motion

R̄μν = 4

n − 1

(
∇̄μΦ̄∇̄νΦ̄ + 1

4
V̄ (Φ̄)ḡμν

)

+ 2e
−4αΦ̄

n−1

(
F̄μλ F̄ λ

ν − 1

2(n − 1)
F̄ρσ F̄ ρσ ḡμν

)
, (10)

∇̄2Φ̄ = n − 1

8

∂ V̄

∂Φ̄
− α

2
e

−4αΦ̄
n−1 F̄ρσ F̄ ρσ , (11)

∇̄μ

(
e

−4αΦ̄
n−1 F̄ μν

) = 0. (12)

Comparing Eqs. (2)–(4) with Eqs. (10)–(12), we find that if
(ḡμν, F̄μν, Φ̄) is the solution of Eqs. (10)–(12) with potential
V̄ (Φ̄), then

[gμν, Fμν,Φ]
=

[
exp

( −8αΦ̄

(n − 1)(n − 3)

)
ḡμν, F̄μν,exp

(
4αΦ̄

n − 3

)]
, (13)

is the solution of Eqs. (2)–(4) with potential V (Φ).

3. Brans–Dicke black holes in AdS spaces

Asymptotically (A)dS-like solutions of the dilaton field equa-
tions (10)–(12) have been constructed in [11–13,17–19]. Here we
would like to obtain black hole solutions of the Brans–Dicke field
equations (2)–(4) in the background of AdS universe. Our strategy
for constructing these solutions is applying the conformal transfor-
mation (13) to black hole solutions of Eqs. (10)–(12) in the dilaton
gravity theory. The dilaton potential leading to (A)dS-like solutions
of dilaton gravity has been found recently in [12]. For an arbitrary
value of α in (A)dS spaces the form of the dilaton potential V̄ (Φ̄)

in n + 1 dimensions is chosen as
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V̄ (Φ̄) = Λ(n − 1)

3(n − 2 + α2)2

× {−α2[(n + 1)2 − (n + 1)α2 − 6(n + 1)

+ α2 + 9
]
e

−4(n−2)Φ̄
(n−1)α + (n − 2)2(n − α2)e

4αΦ̄
n−1

+ 4α2(n − 1)(n − 2)e
−2Φ̄(n−2−α2)

(n−1)α
}
. (14)

Here Λ is the cosmological constant. It is clear the cosmologi-
cal constant is coupled to the dilaton in a very nontrivial way.
This type of dilaton potential can be obtained when a higher-
dimensional theory is compactified to four dimensions, including
various supergravity models [20]. In the absence of the dilaton
field the action (8) reduces to the action of Einstein–Maxwell grav-
ity with cosmological constant. Asymptotically AdS black hole so-
lutions of the field equations (10)–(12) have been obtained in [12]
and we review it briefly here. Assuming the (n + 1)-dimensional
metric has the following form

ds̄2 = − f (r)dt2 + dr2

g(r)
+ r2 R2(r)dΩ2

n−1, (15)

where dΩ2
n−1 denotes the metric of an unit (n − 1)-sphere and

f (r), g(r) and R(r) are functions of r which should be determined.
First of all, the Maxwell equations (12) can be integrated immedi-
ately, where all the components of F̄μν are zero except F̄tr :

F̄tr =
√

f (r)

g(r)

qe
4αΦ̄
n−1

(rR)n−1
, (16)

where q, an integration constant, is the charge parameter of the
black hole. According to the Gauss theorem, the electric charge is

Q = 1

4π

∫
r→∞

F̄tr

√−ḡ dn−1x = Ωn−1

4π
q, (17)

where Ωn−1 is the volume of the unit (n − 1)-sphere. Notice that
Q is invariant under the conformal transformation (13). Using
metric (15) and the Maxwell field (16), one can show that the sys-
tem of equations (10)–(11) have solutions of the form [12]

f (r) =
[

1 −
(

r+
r

)n−2][
1 −

(
r−
r

)n−2]1−γ (n−2)

− 1

3
Λr2

[
1 −

(
r−
r

)n−2]γ

, (18)

g(r) =
{[

1 −
(

r+
r

)n−2][
1 −

(
r−
r

)n−2]1−γ (n−2)

− 1

3
Λr2

[
1 −

(
r−
r

)n−2]γ }[
1 −

(
r−
r

)n−2]γ (n−3)

, (19)

Φ̄(r) = n − 1

4

√
γ (2 + 2γ − nγ ) ln

[
1 −

(
r−
r

)n−2]
, (20)

R(r) =
[

1 −
(

r−
r

)n−2]γ /2

. (21)

Here r+ and r− are, respectively, the event horizon and Cauchy
horizon of the black hole, and the constant γ is

γ = 2α2

(n − 2)(n − 2 + α2)
. (22)

The charge parameter q is related to r+ and r− by

q2 = (n − 1)(n − 2)2

2
rn−2+ rn−2− . (23)
2(n − 2 + α )
The quasilocal mass the dilaton AdS black hole can be calculated
through the use of the subtraction method of Brown and York
[21]. Such a procedure causes the resulting physical quantities to
depend on the choice of reference background. According to this
formalism if we write the metric of spherically symmetric space-
time in the form

ds2 = −W (r)dt2 + dr2

V (r)
+ r2 dΩ2

n−1, (24)

and the matter action contains no derivatives of the metric, then
the quasilocal mass is given by [22]

M = n − 1

2
rn−2W 1/2(r)

(
V 1/2

0 (r) − V 1/2(r)
)
. (25)

Here V 0(r) is an arbitrary function which determines the zero of
the energy for a background spacetime and r is the radius of the
spacelike hypersurface boundary. When the spacetime is asymptot-
ically (A)dS, the Arnowitt–Deser–Misner (ADM) mass M is the M
determined in (25) in the limit r → ∞. If no cosmological horizon
is present, the large r limit of (25), is used to determine the mass.
If a cosmological horizon is present one cannot take the large r
limit to identify the quasilocal mass. However, one can still iden-
tify the small mass parameter in the solution [21]. For the solution
under consideration, there is no cosmological horizon and if we
transform the metric (15) in the form (24) by using the transfor-
mation

r2 R2(r) → r2, (26)

then we obtain the mass of the dilaton black hole as

M̄ = Ωn−1

16π
(n − 1)

[
rn−2+ + n − 2 − α2

n − 2 + α2
rn−2−

]
. (27)

In the absence of the dilaton field (α = 0) this expression for the
mass reduces to the mass of the (n + 1)-dimensional Reissner–
Nordstrom–AdS black holes. It is worth noting that our result for
ADM mass coincides with ones found in [23] for asymptotically flat
dilaton black holes. Next we calculate the entropy of the dilatonic
black hole. Black hole entropy typically satisfies the so-called area
law of the entropy, which states that the entropy of the black hole
is a quarter of the event horizon area [24]. This near-universal law
applies to almost all kinds of black holes, including dilaton black
holes, in Einstein gravity [25]. It is easy to show that the entropy
of the black hole is

S̄ = Ωn−1rn−1+
4

[
1 −

(
r−
r+

)n−2]γ (n−1)/2

. (28)

The Hawking temperature of the black hole on the outer horizon
r+ , in dilaton gravity, can be calculated using the relation

T̄+ =
(

f ′

4π
√

f /g

)
r=r+

, (29)

where a prime denotes derivative with respect to r. It is a matter
of calculation to show that

T̄+ = (n − 2)

4πr+

[
1 −

(
r−
r+

)n−2]1−γ (n−1)/2

. (30)

It is apparent that the metric corresponding to (18)–(21) is asymp-
totically (A)dS. Using the conformal transformation (13), the (n +
1)-dimensional black hole solutions of BDM theory in the back-
ground of AdS universe can be obtained as

ds2 = −U (r)dt2 + dr2

+ r2 H2(r)dΩ2
n−1, (31)
V (r)
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where U (r), V (r), H(r) and Φ(r) are

U (r) =
[

1 −
(

r−
r

)n−2]−2(n−2)γ
n−3

f (r), (32)

V (r) =
[

1 −
(

r−
r

)n−2] 2(n−2)γ
n−3

g(r), (33)

H(r) =
[

1 −
(

r−
r

)n−2]−(n−1)γ
2(n−3)

, (34)

Φ(r) =
[

1 −
(

r−
r

)n−2] (n−1)(n−2)γ
(n−3)

. (35)

Applying the conformal transformation (13), the electromagnetic
field in BDM theory can be written as

Ftr = F̄tr = q

rn−1
, (36)

while the scalar potential in BDM theory becomes

V (Φ) = Λ(n − 1)

3(n − 2 + α2)2

{
4α2(n − 1)(n − 2)Φ

(3n−1)α2−(n−2)(n−3)

2α2(n−1)

+ (n − 2)2(n − α2)Φ2

+ α2[nα2 − (n − 2)2]Φ (n+1)α2−(n−2)(n−3)

α2(n−1)

}
. (37)

As one can see from Eq. (36), in the background of (A)dS universe,
the scalar field in BD theory does not exert any direct influence on
the matter field Ftr , however, the scalar field modifies the geom-
etry of the spacetime as it participate in the field equations. This
is in contrast to the solutions presented in [10,15]. The solutions
in [10,15] are neither asymptotically flat nor (A)dS and the gauge
field crucially depends on the scalar BD field. It is worth noting
that the scalar field Φ(r) and the electromagnetic field Ftr become
zero as r → ∞. It is also notable to mention that these solutions
are valid for all values of ω. When ω → ∞ (α = 0 = γ ), these so-
lutions reduce to

U (r) = V (r) =
[

1 −
(

r+
r

)n−2][
1 −

(
r−
r

)n−2]
− 1

3
Λr2, (38)

which describes an (n + 1)-dimensional asymptotically (A)dS
Reissner–Nordstrom black hole.

4. Thermodynamics of BD black holes

We now turn to the investigation of the thermodynamics of
charged BD black holes we have just found. The Hawking temper-
ature of BD black holes on the outer horizon r+ can be calculated
using the relation

T+ = κ

2π
=

(
U ′

4π
√

U/V

)
r=r+

, (39)

where κ is the surface gravity. We obtain

T+ = (n − 2)

4πr+

[
1 −

(
r−
r+

)n−2]1−γ (n−1)/2

. (40)

If we compare Eq. (40) with the temperature obtained in the dila-
ton gravity theory in Eq. (30), we find that the temperature is
invariant under the conformal transformation (13). This is due to
the fact that the conformal parameter Ω2 is regular at the horizon.
Therefore, the Hawking temperature is an invariant quantity under
conformal transformations only if the transformations are regular
at event horizon.
The ADM mass M , the entropy S and the electric potential U
of the BD black hole can be calculated through the use of the Eu-
clidean action method [26,27]. In this approach, first the electric
potential and the temperature are fixed on a boundary with a fixed
radius r+ . The Euclidean action has two parts; bulk and surface.
The first step to make the Euclidean action is to substitute t with
iτ . This makes the metric positive definite:

ds2 = U (r)dτ 2 + 1

V (r)
dr2 + r2 H2(r)dΩ2

n−1. (41)

There is a conical singularity at the horizon r = r+ in the Eu-
clidean metric [27]. To eliminate it, the Euclidian time τ is made
periodic with period β , where β is the inverse of Hawking temper-
ature. Now we obtain the Euclidean action of (n + 1)-dimensional
Brans–Dicke–Maxwell theory. The Euclidean action can be calcu-
lated analytically and continuously changing of action (1) to Eu-
clidean time τ , i.e.,

IGE = − 1

16π

∫
M

dn+1x
√

g

(
ΦR − ω

Φ
(∇Φ)2 − V (Φ) − Fμν F μν

)

− 1

8π

∫
∂M

dnx
√

hΦ(K − K0), (42)

where K0 is the trace of the extrinsic curvature of the vacuum
metric background (here it is the (n + 1)-dimensional AdS space-
time). This term must be added so that it can normalize the Eu-
clidean action to zero in this spacetime [28]. Using metric (41), we
find

R = −g−1/2(g1/2U ′V /U
)′ − 2G0

0, (43)

K = −
√

V [rHU ′ + 2(n − 1)(U H + rU H ′)]
2rHU

, (44)

where G0
0 is the (00) component of the Einstein tensor, and again

the prime denotes derivative with respect to r. Inserting U (r), V (r)
and H(r) from (32)–(34) with r+ = 0 = r− in Eq. (44) we obtain
the extrinsic curvature for the metric background

K0 = 1 − n(1 − Λr2/3)

r
√

1 − Λr2/3
. (45)

For Λ = 0, we get K0 = −(n − 1)/r which is the trace of the ex-
trinsic curvature of the metric background for asymptotically flat
spacetimes [27]. Substituting Eqs. (43)–(45) in action (42) and us-
ing Eqs. (32)–(37), after a long calculation, we obtain the Euclidean
action as

IGE = β
Ωn−1

16π
(n − 1)

[
rn−2+ + n − 2 − α2

n − 2 + α2
rn−2−

]

− Ωn−1rn−1+
4

[
1 −

(
r−
r+

)n−2]γ (n−1)/2

− β
Ωn−1q2

4π(n − 2)rn−2+
. (46)

According to Refs. [28–30], the thermodynamical potential can be
given by IGE, we get

IGE = βM − S − βU Q , (47)

where M is the ADM mass, S and U are the entropy and the elec-
tric potential, respectively. Comparing Eq. (46) with Eq. (47), we
find
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M = Ωn−1

16π
(n − 1)

[
rn−2+ + n − 2 − α2

n − 2 + α2
rn−2−

]
, (48)

S = Ωn−1rn−1+
4

[
1 −

(
r−
r+

)n−2]γ (n−1)/2

, (49)

U = q

(n − 2)rn−2+
. (50)

Comparing the conserved and thermodynamic quantities calcu-
lated in this section with those obtained in the previous section,
we find that they are invariant under the conformal transforma-
tion (13). This is because the Euclidean action is invariant under
the conformal transformation (up to a surface term associated with
the scalar field). It is worth emphasizing that in BD theory, where
we have the additional gravitational scalar degree of freedom, the
entropy of the black hole does not follow the area law [31]. This
is due to the fact that the black hole entropy comes from the
boundary term in the Euclidean action formalism. Nevertheless,
the entropy remains unchanged under the conformal transforma-
tions. The advantage of the Euclidean action method is that, in
principle, we can find all the thermodynamic quantities because
in this method the characteristic thermodynamic function, i.e., the
thermodynamical potential, is found.

Then, we consider the first law of thermodynamics for the black
hole. In order to check the first law, we obtain the mass M as a
function of extensive quantities S and Q . Using the expression for
the charge, the mass and the entropy given in Eqs. (17), (48) and
(49), we can obtain a Smarr-type formula as

M(S, Q ) = Ωn−1

16π
(n − 1)

[
Z + 32Q 2(n − 2 − α2)π2

Z(n − 1)(n − 2)2

]
, (51)

where Z = rn−2+ is the positive real root of the following equation:

Z
n−1
n−2

[
1 − 32Q 2(n − 2 + α2)π2

Z 2(n − 1)(n − 2)2

]γ (n−1)/2

− 4S = 0. (52)

One may then regard the parameters S and Q as a complete set
of extensive parameters for the mass M(S, Q ) and define the in-
tensive parameters conjugate to S and Q . These quantities are the
temperature and the electric potential

T =
(

∂M

∂ S

)
Q

=
(

∂M

∂ Z

)
Q

(
∂ Z

∂ S

)
Q

, (53)

U =
(

∂M

∂ Q

)
S
=

(
∂M

∂ Q

)
Z

+
(

∂M

∂ Z

)
Q

(
∂ Z

∂ Q

)
S
. (54)

Straightforward calculations show that the intensive quantities cal-
culated by Eqs. (53) and (54) coincide with Eqs. (40) and (50).
Thus, these thermodynamic quantities satisfy the first law of black
hole thermodynamics,

dM = T dS + U dQ . (55)

Finally, we study the thermal stability of the solutions in the
canonical ensemble. The stability of a thermodynamic system
with respect to small variations of the thermodynamic coordi-
nates is usually performed by analyzing the behavior of the en-
tropy S(M, Q ) around the equilibrium. The local stability in any
ensemble requires that S(M, Q ) be a convex function of the ex-
tensive variables or its Legendre transformation must be a concave
function of the intensive variables. The stability can also be stud-
ied by the behavior of the energy M(S, Q ) which should be a
convex function of its extensive variable. Thus, the local stabil-
ity can in principle be carried out by finding the determinant of
the Hessian matrix of M(S, Q ) with respect to its extensive vari-
ables Xi , HM = [∂2M/∂ Xi∂ X j] [32,33]. In our case the mass M is
Xi X j
Fig. 1. (∂2 M/∂ S2)Q versus α for r− = 0.2 and r+ = 0.3, n = 4 (bold line), n = 5
(continuous line), and n = 6 (dashed line).

a function of entropy and charge. The number of thermodynamic
variables depends on the ensemble that is used. In the canonical
ensemble, the charge is a fixed parameter and therefore the posi-
tivity of the (∂2 M/∂ S2)Q is sufficient to ensure local stability. We
have shown in Fig. 1 the behavior of (∂2M/∂ S2)Q versus α in vari-
ous dimensions. This figure shows that for fixed value of the other
parameters, the solution is thermally stable for small value of α
in any dimension, while it has an unstable phase for large values
of α. This shows that the scalar field makes the solution unstable.

5. Summary and discussion

The construction and analysis of the black hole solutions in
anti-de Sitter (AdS) spaces is a subject of much recent interest. This
interest is motivated by the correspondence between the gravitat-
ing fields in an AdS spacetime and conformal field theory on the
boundary of the AdS spacetime. In this Letter, with an appropriate
combination of three Liouville-type dilaton potentials and applying
a conformal transformation to the dilatonic black hole solutions,
we construct a class of (n + 1)-dimensional (n � 4) black hole
solutions in BDM theory for arbitrary values of the coupling con-
stant ω. These solutions are asymptotically anti-de Sitter. We found
the scalar potential leading to AdS-like solutions in BDM theory.
The cosmological constant couples to the scalar field in a very
nontrivial way, and the scalar potential has a complicated form
(see Eq. (37)). This scalar potential plays a crucial role in the exis-
tence of these black holes, as the negative cosmological constant
does in the Einstein–Maxwell theory. We found that the scalar
field in BD theory does not exert any direct influence on the gauge
field Ftr , however, the scalar field modifies the geometry of the
spacetime as it participates in the field equations. We obtained the
conserved and thermodynamic quantities through the use of the
Euclidean action method, and verified that the conserved and ther-
modynamic quantities of the solutions satisfy the first law of black
hole thermodynamics. We found that the conserved and thermo-
dynamic quantities are invariant under the conformal transforma-
tion. We also analyzed the thermal stability of the solutions in the
canonical ensemble by finding a Smarr-type formula and consider-
ing (∂2M/∂ S2)Q for the charged BD black hole solutions in (n + 1)

dimensions. We found that there is no Hawking–Page phase tran-
sition in spite of charge of the BD black hole provided α � αmax,
while the solutions have an unstable phase for α > αmax.
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