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Abstract. We define and investigate several classes of concurrent program schemes, including
goto schemes and two versions of structured schemes, based on extensions of the regular
expressions to trees. The schemes are studied on the first-order, Boolean-variable and propositional
levels. We also define and study the dynamic logics based on these classes of schemes, including
issues of decidability and axiomatization.
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2 D. Peleg
1. Introduction

The theory of programs deals extensively with the issue of concurrency. Various
formalisms appear in the literature for defining and describing parallel computations
and programs. In particular, concurrent program schemata were introduced in [13]
and then appeared (ir different forms) in several other works. However, they have
not received a widely accepted structured format analogous to the sequential while
schemes, and issues of semantics and logic are still under extensive research, in
numerous different models.

Most models for concurrent computation assume a situation in which there is
some kind of sharing in resources, e.g., memory. This corresponds to the concept
of multiprocessing in a single-processor environment, in which when two or more
processes work in paraliel, they may affect the same memory locations or variables.

In this paper we follow a different model of concurrency based on the notion of
and/or-trees, and concerning essentially separate, independent processes. This
model corresponds, for instance, to a network of processors. The model gives rise
to the concurrent goto schemes appearing in [2, 14]. These programs may contain
st a1 commanas as gotol, orl,, facilitating nondeterministic choice, as well as
commarnds like goto I, and I, causing a split into two parallel independent branches.
This naturally reflects in the semantics of a concurrent program. Consider, for
instance, the two schemes described in Fig. 1, interpreted over the natural numbers.
In a usual shared envirenment, the interpretations of the two programs (a) and (b)
are equivalent, i.e., their input/output relation is {([i, j],Ti+1, j+1])|i, j = 0}, where
[i, j] represents the initial values of x and y. Thus, there is a single set of variables,
affected by both branches. However, we view the concurrent program (a) differently,
and give it a semaniics as follows: upon splitting into two branches, each of the
new processes receives a private copy of the variables, and proceeds on its own.
Therefore, the left process changes only x, while the right one changes only y.

r—gr+1
re—r+1 ye—y+1

y—y+1

(a) (b)
Fig. 1.

Still, our semantics differs from that of {2, 14] and is closer to that of the language
IND of [9]. The overall semantics given therein for the scheme as a whole interprets
it as an essentially sequential program, whose ‘start-end’ relation leads from a single
state to a single state. This is done by taking the following view. The processes are
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assumed to be running independently with different and unrelated speeds. When
one of the processes terminates, its final state, i.e., the result of its computation, is
taken as the result of the whole program. All the other processes are assumed to
abort once that first process ~alted. Thus parallelism is imerpreted as essentially
another form of nondeterminism. In conirast, we define the semantics so that a
program may lead us from a siagle state to a set of states, thus retaining the parallel
nature of the run. For example, the semantics of the above program (a) changes in
the interpretation of [2] to be

{044 [i+1,5D, (GL ), [i j+ 1D, j= 0},

while we interpret it as {([4,j], {[i+1,),[i,j+1]1})]i,j=0}.

An important consequence is that in our formalism, all processes are required to
halt for the program to converge. On the other hard, in the version of [2, 14], a
program may halt successfully even if some branch of it contains a subprogram
with an infinite loop in it; as long as one process of the progra:u may halt, its
interpretation is nonempty. In this respect, our formalism extends the sequential
schemes in the same sense thai alternating TM’s [3] extend the usual ones.

The next logical step is to define a structured version of concurrent program
schemes. The structured description of while programs was found to have several
advantages, both in practical aspects such as better programming and in theoretical
aspects such as simpler and better understood semantics, and cleaner methods for
verification and analysis. In particular, tools like dynamic logic, aimed to enable
reasoning about programs and their properties, owe their elegance and simple
axiomatization in part to the regular structure of their programs.

We propcse two versions of structured schemes. Both approaches are based on
extensions of regular expressions to trees. The one is based on a simple extension
of regular expressions using a new concurrency connective n. This connective is the
dual of the union connective U in exactly the same sense as the cduality between
the ‘and’ and ‘or’ steps of an ATM ([3]. This version, called the concurrent regular
schemata, was defined and studied in [18] in the framework of dynamic logic. The
second version, which we call sticky schemata, is based on regular expressions on
trees (cf. [6, 21]). These expressions are based on a concatenation and star operation,
in which one uses labels to mark leaves of the tree, and may ‘stick’ new subtrees
to these leaves in a controlled fashion, according to the labels.

The resulting classes of goto and structured schemes are denoted in this paper
by c-goto, c-reg and sticky. The ‘¢’ prefix stands for concurrent, and is used to
distinguish these classes from the corresponding classes of sequential schemes,
denoted simply reg and goto.

The classes of schemes are defined and studied on three levels. The bacic one is
the propositional level, where atomic programs are left unspecified. This level is
ineant to provide an abstraction of the discussed notions, constructs and mechanisms,
so as to enable an analysis of their fundamental prcperties and behavior (cf. [7,
Section 1.3]). Next comes the intermediate Boolean-variable level, where Boolean
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variables are available in addition o the basic propositional environment. Another,
equivalent, view wouid be to allow a program to change the truth value of preposi-
tional variables (cf. [22]). Finally, on the first-order ievel, the environmeit is that
of a first-order structure, and assignments are taken to be the basic operations. The
three levels are denoted by P, B and Q, respectively.

A second parameter in the classification of schemes is the formalism used for
tests in the schemes. Two particular formalisms we use are the propositional calcuius,
denoted PC, and the guantifier-free subsei of first-order logic with equality, denoted
QF. Thus, for instance, sticky(P, PC) denotes the class of propositic:al sticky
schemes with propositional tests.

An additional feature we consider is the kill command, which enables a program
to terminate a process and discard it completely, i.e., drop its end state from the
set of final states of the whole computation. Taroughout. we consider also versions
of schemes based on this additionai command. W= refer to these schemes as
K-schemes, and denote the classes with the superscript K, e.g., c-regX.

Our results regarding the schemes are as foilows. On the Boolean-variable and
first-order levels, all three types of concurrent schemes are shown to be equal in
expressiveness. (This hclds for both deterministic and nondeterministic schemes,
although we consider aimost exclusively only nondeterministic schemes.) On the
propositional level, the family of c-goto schemes is shown to be equivaient to the
sticky schemes, while c-reg schemes are strictly weaker.

We also compare propositional schemes to Boolean cnes, similar 0 *he com-
parison carried out in [1] for while schemes in the framework of PDL, and show
that propositional c-goto schemes are as powerful as Boolean schemes. This parzilels
the result of [1] for sequential while schemes (or actually for the corresponding
dynamic logics).

We consider aiso the dynamic logics obtained by taking classes of concurrent
schemes as the underlying sets of programs. On tlie Boolean-variable {respectively
first-order) level since the program schemes are equal, the three resulting vers:ons
of BDL (respectively QDL) turn out to be equivaient as well. On the propusitional
level we have twy classes of logics (versions of PDL). The first class contains the
logic obtained by considering c-reg schemes, denoted c-reg-PDL. Tkis logic was
defined and discussed in 18], and was given a complete axiomatization and an
elementary decision procedure. Its main advantages are its simple semantics and
its elegant axiom system.

It seems, however, that the logics of the second class, i.e., the one based on c-goto
schemes (c-goto-PDL), and particularly the one vtilizing sticky schemes (sticky-
FDL), possess several properties indicating that they might very well be the ‘right’
logics, on the propositional level, for this model of concurrency. For one thing,
sticky-PDL is equivalent to ¢-goto-PDL, which parallels the equivalence between
the versions of PDL based on sequential goto and reg schemes. in fact, we conjecture

that the two classes are different, i.e., that c-reg-PDL is strictly less expressive than
these logics.
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Also, Abrahamson's result [ 1], mentioned previously, has a natural ‘concurrent’
analogue in sticky-BDL, i.c., one can show that sticky-BDL = sticky-PDL.

Thirdly, on the first-order level, c-reg-QDL (with random assignments? is shown
in [18] to be equivalent v the continuous u-calculus, CQ,. The same holds also
for sticky-QDL. Analogously, on the propositional level, sticky-PDL is siitown here
to be equivalent to the continuous propositional u-calculus of [12], CL,.

Our results on expressiveness of the program classes and logics are summarized
in Figs. 2 and 3 respectively.

As an analogue t+ the issue of axiomatization in [ 18], we present here a complete
axiom system for sticky-P™L and provide it with a nondeterministic exponential
time decision procedure for validity. This is in no contradiction with the double

{1} Equivalences:

e-reg(PL;}) <)  c-goto(PL,)

iz (ex)
c-reg{B.L;} = c-gotoi{B,L:)

sticky (P.L;)

sticky (B.L;)

i

c-reg(Q.L:}) =¢us; c-goto(Q,L;) sticky (Q.L3)

{») for Ly = PC we have strict inequality.
{++} assuming L; =; La (ef. Section 8.1).

{+ =+ +) assuming L; contains at least QF.

(2) Inequivalen--es:

reg(X.L}
A
c-reg(X,L}
A

c-regh (X,L)

These resuits apply to all three levels, and hoid with either (P.PC) (B.PC) or ((Q.GF)
substituted for {X.L}.

Fig. 2. Expressiveness relationships between scheme classes.
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(1) On the propositional level:

PDL
A
c-regh-PDL = c-reg- PDL
In
continuous
p-caleulus = sticky-PDL = ¢-goto-PDL
(2) On the Boolean-variable level:
BDL
/A
c-reg"-BDL = c-reg- BDL = sticky- BDL = c-goto- BDL

s
sticky- PDL

{3) On the first-order level:

QDL
/A
c-reg"-QDL = c-reg- QDL = sticky- QDL = c-goto- QDL

Fig. 3. Expressiveness relationships between logics.

exponential lower bound set by Abrahamson for reg-BDL since the translation from
reg-BDL (or c-reg-BDL) into sticky-PDL itself causes an exponential blow-up in
the size of the formula.

In [19] we considered the introduction of some communication mechanisms into
c-reg-PDL. Strong mech ~nisms such as channels or shared variables were shown to
considerably increase the computational power of the schemes. We also considered
a weal message mechanism, and conje.ctured that the resulting language is more
expressive than c-reg-PDL. Similar mechanisms can also be incorporated in the
stronger types of program schemes studied in this paper, » ith similar behavior w.r.t.
expressiveness and decidability.
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The rest of the paper is arranged as follows. Section 2 reviews notions from the
theory of finite tree languages and automata. The major part of this paper concerns
the propesitional level: Section 3 reviews sequential schemes, and in Section 4 we
define several classes of concurrent schemes. Section S contains some relationships
between these classes. Section 6 contains definitions and comparisons of the dynamic
logics based on concurrent classes of schemes, and Section 7 concerns issues of
validity and axiomatization for these logics. Finally, in Sections 8 and 9 we consider
the Boolean-variable and first-order levels respectively.

2. Tree languages

We need some concepts from the theory of finite tree languages and automata,
adapted for our setting. In particular, we consider only binary trees. (Throughout
the sequel, the term binary tree refers to a tree with 0, 1 or 2 sons for every node.)
We also define a slightly different system of regular expressions than that in the
literature. A good coverage of the general theory can be found in, e.g., {6].

2.1. Tree terms

The alphabet 2 =3,u X,u 3, consists of the following: X, contains a single
dyadic function symbol N, X, contains monadic functions d;, 1<i<n, and 2,
contains constants $;,, 1 <i<k, for some k, n=1.

The collection of tree terms (or simply terms) over X is the minimal coliection
Ts of words over X U {(,)} such that

(1) 20cTs;

(2) ifde X, and te Ts, then d(t)e Tx; and

(3) if t,, t;€ Ts, then (t,) N (1,) € Ts.

Figs. 4(a)-(c) describe the trees represented by the terms $, d(t) and (#,) N (1)
respectively, given that ¢, t, and 1, are represented by trees T, T, and T, respectively.
A tree language L is simply a subset of T, i.e., a collection of tree terms over the
alphabet 2.

2.2. Regular tree grammars

We will be needing the formalism of regular tree grar:mars (cf. [6]). A regular
tree grammar over an alphabet X as in the previous section is a context-free grammar

®

i VANV
(a) (b) (c)
Fig. 4.
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G =(V, P, Z) (cf. [11]), where V is the collection cf variables, Z is a collection of
start symbols (Z< V), and P is a collection of production rules of the following

forms:
A->(B)n(C), A-d(B),
A-8, A->B,

where A, B,CeV de X, and $€ 3,.

The grammar operates over X U {(,)} in the usual way so that the derived words
are terms from Tx. A tree language L< Ts is generable iff there exists a grammar
G generaiing precisely the tree terms in L.

2.3. Tree-regular languages

Let us first define the operations of product and closure on tree languages. Given
an alphabet X as above, and two languages U, V ¢ T, define, for every $;€ 3,,

U-' V={te T= |3t e U (t is obtain °d by replacing every
occurrence of $; in ¢’ by some term of V)}.

From a ‘tree-point-of-view’, we start with a tree T’ of U, and replace every leaf
labeled $; with some tree taken from V.
Similarly, for every $, € 2,, define a closure operation by

U* =min V({$;}e Vand V1, 1,, t, ({t,e V, ,e U,
t is obtained by replacing one occurrence of $§; in ¢, by 1,)
=>teV)),

where the minimum is taken w.r.t. the usual subset ordering.

An equivalent definition sets U* ={J,_; U; where Up={$;} and U;,,=U;u
U-'y,.

We define also the following two operations:

UnV={(t)n(t)|the U, e V},
d(U)={d(t)|te U} foreverydeX,.

We now give an inductive definition for the set of 3-tree-regular expressions (over
an alphabet 3).

(1) §; is a 2-tree-regular expression for every $,€ 3;

(2) if e,, a, are 2-tree-regular expressions, then so are (a,) N (@), (a;)u(a3),

(a;) (@), (@))* and d(a,), for every $;€ 3, and d € 3,.

The language L, represented by each 3-tree-regular expression a« is defined 2«
usual by the corresponding operations, with $; representing the language {$,} for
every §; € 2, as a base step, and (a,) U (a,) representing L,VL,.

A tree language L< Tx is 3-tree-regular iff there is a 3-tree-regular expression
representing it. L is tree-regular iff there is an alphabet £’'= 3 U 3| such that L is

2'-tree-regular (i.e., it might take some extra constants to give it a regular
description).
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2.1. Theorem (Gecseg and Steinby [6, Theorems 3.6 and 5.3]). A tree language is
generable iff it is tree-regular.

2.2. Note. While the ‘L’ symbol is used in its standard set-theoretic sense, the ‘~’
symbol represents here an operation symbol occurring in the syntax of tree terms
and should not be confused with either the set-theoretic intersection operator, or
the ‘relation-theoretic’ one appearing in [7, Section 2.5.5].

23. Note. The conventional definition of the 2-tree-regular sets is slightly different,
namely the closure of all finite subsets of Tx under U-'V, U* and Uu V. It is easy
to see that the two resulting definitions of tree-regularity coincide.

24. Note. A third equivalent representatior for the tree-regular languages is
obtained by means of tree automata. There are several classes of deterministic and
nondeiciministic automata which recognize precisely these languages (cf. [6]). In
fact, one may also define classes of alteriating tree automata for this and other
families of languages [20]. In the sequel, we will use sets of tree terms for representing
alternating (and/or) program schemes. However, the notion of alternation in our
classes of program schemes is fully captured by the U and N operations discussed
above, and the syntax corresponds in a straightforward way to that of trce grammars
and regular expressions. Therefore, we do not need to introduce any class of
automata.

3. Sequential program schemes

In this section we briefly survey some classes of conventional sequential program
schemes. The schemes are presented on the propositional level, which gives a high
level of abstraction, by referring to the atomic operations as unspecified; all that
we know of a prog,ram a is that it takes us from some states in our state-space io
other states, according to its semantic interpretation. This approach appears, for
example, in [4], where the formalism of propositional dynamic logic (PDL) is
proposed for a propositional analysis of program schemes.

We begin with a general description, relying mainly on intuition as to the meaning
of the schemes, and then give a precise definition for the semantics of the schemes.
A general survey of (first-order) schemes can be found in [5].

3.1. Goto schemes

A goto scheme is a linear representation for a flowchart, and is one of the most
widely accepted formalisms of describing a simple sequential program. Formally, a
propositional nondeterministic goto scheme is a program composed of a sequence of



(TEST) i:-pP?

(N-GOTC) I:goto l'or I,
where P is a formula in a given logic L, interpretable over models as described
below, and a; is an unspecified atomic command, taken from a collection AP of
atomic programs.

Throughout the paper we adopt the following notation for classes of schemes.

Each basic control structure of schemes is given a name. In addition, two parameters
are to be fixed, namely, the level, or the types of atomic operations allowed and the

logic used for tests. For instance, the class just described will be denoted goto(P, L),
meaning that it is based on seqne ial goto SChEﬁ‘eS defined in the propositional
ievel (i.e., uses atomic unspecified operations), and aliows tests irom a {proposi-

tional) logic L.

In the literature, schemes usually employ tesis within the if-goto command, I: if
P then goto !’ else goto I". However, it is clear that the two mechanisms are equivalent
in the presence of nondeterminism. (We interpret an infinite loop as an aborted run
so that a test I: P? can be simulated by [:if P goto I+ 1 elsc goto L) This particular
choice was made for reasons of compatibility with other classes of schemes to be
described later.

3.2. Regular schemes

A propositional nondeterministic regular scheme is defined as a regular expression
over an alphabet Xpg consisting of the set of atomic programs AP and the tests
{P? Pe L}. (The alphabet Zpy is not necessarily finite, but every scheme defines a
finite subset of it.) Call this class reg(P, L), for any appropriate logic L. The symbol
2pr 1s used in the sequel to denote the set of basic propositional schemes, as defined
above. We use the symbol ““;” for concatenation, to follow standard notaiion.

Again, it is conventional to consider the class of while schemes, defined in a
slightly different (but expressively equivalent) way, as the inductive closure of
assignment commands, viewed as aiomic steps, under the constructs ;8 and “if P
then a else 8 and “while Pdo a”, where a, § are schemes and P is a test as above.
(Nondeterminism may be added by the construct “a or 8”.) However, the form
based on regular expressions is useful in providing a clear representation and
suggesting connections with goto schemes and direct extensions to concurrent
schemes. For instance, the fact that reg(P,L) and goto(P, L) are equivalent in
computational power (assuming semantics as defined in the next paragraph for both
classesj is easily derived using standard techniques from automata theory.

3.3. Semantics of sequential program schemes

A model for our schemes is a triple J =(S, =, p), where S is the state space,
w:L->2%is the interpretation function for formulas of L (i.e., for every Pe L, w(P)
is the set of states satisfying P), and p: AP-2°"5 is the transition relation of atomic
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programs: for every a€ AP and s, s'€ S, (s, s') € p(a) means that a can be executed
in s to reach s’.
The interpretation p is extended to arbitrary reg(P, L) schemes as follows:

p(P)={(s,s)|se w(P)},

plavu B)=p(a)up(p),

pla;B)={(s,5s")|3s"((s, s") e pla) n (5", ') € p(B))},
p(a*)={(s,s")|3k=0,3s,, ..., 8, VO i<k((s, si.;) € pla))}.

The situation is slightly moic involved for gotz{#, L) scheines since in order to
identify the end-state of a computation of a goto scheme, we have to characterize
the whole sequence of intermediate states. For an atomic program or a test, the
definition of p is just as before. For an arbitrary goto(P,L) scheme a =
(1:y,...,m:y,), we first define a computation sequence of a as a sequence
((h, s1), (L1, 53), . .., (L, sx)) with the following properties:

(1) L=1and L =m+1;

(2) For every i<i<k—1, exactly one of the following holds:

() 7, is an atomic a or a test P?, I,,,=1;+1 and (s,, s;+,) € p(7y,), or
(b) v, is gotol'or!l”, I, e{l', 1"} and s,,,=s5;.

Now, p(a) contains a pair (s, s’) iff there exists a computation sequence of a as

described such that s =s, and s'=s5,.

4. Concurrent program schemes

In this section we define the different versions of (propositional) concurrent
program schemes to be discussed later. The first version is that of concurrent goto
schemes. Then we give some versions of structured concurrent program schemes.
We define two types of structured schemes. The first is the class of schemes with
sticky labels, or simply sticky schemes, based on tree-regular expressions. The second
is a subset of the first class, referred to as concurrent regular schemes, based on an
extension of the sequential regular schemes given in Section 3.2.

4.1. Concurrent goto schemes

A propositional concurrent goto scheme is a sequence of commands of the types
described in Section 3.1, i.e., (ATOMIC), (TEST), (N-GOTO), and, in addition,
commands of the type

(PAR) I:goto!l and I".
The class of such schemes is called in the sequel c-goto(P, L) for any appropiiate
logic L.
Informally, when a process reaches a command of type (PAR), it splits into two
parallel processes which are in identicai states. (Giving this ‘real life’ interpretation
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no connection whatsoever.

The semantics of a concurrent scheme is still based on a model as described in
Section 3.3, i.e., /M =(S, m, p), where p(a)< Sx S for an atomic program a. Thus,
atomic operations remain essentially sequential. However, for an arbitrary scheme
a, we assign a concurrent interpretation p(a)c SXx M(S), where M(S) is the
collection of multisets of elements of S. Thus (s, V)€ p(a) for s€ S, set(V)c S
(where set( V) denotes the set containing precisely the elements of V) means that
a can be executed from state s to reach precisely all states of V. In this view, a pair

(s, s') € p(a) for an atomic program a is handled as (s, {s"}). (In [18] we followed
the game logic of [16] and defined a version in which we let atomic programs have
a (possibly) concurrent interpretation t0o.)

The relation p describes the ‘input-output’ behavior of a program or, more
precisely, its ‘start-end’ relation. However, in order to define it we have to describe
the whole computation. This description can no longer consist of a sequence; rather,
it has to take the form of a tree.

Let us first describe a simple, direct semantics for the c-goto schemes, similar to
that given in Section 3.3 for the goto schemes.

A trace of a concurrent goto scheme a =(1:y,,..., m:vy,,) is a binary tree with
a set {1,..., k} of vertices, where 1 is the root, each vertex i is labeled by a pair
(L, s;), where [; is an integer, 1<l;<m+1, and s; is a state of ./, and the following
properties hold:

(D =1,

{2) for every leaf i, ,=m+1,

(3) for every internal (non-leaf) node i exactly one of the following hold:

(a) v, an atomic program a or a est P?, i has a single son j, ;=1 +1 and
(s, 5)€p(m,),

(b) v, is goto I’ or I", i has a single son j, e {l',1"} and s; =5,

(c) 7, is goto I' and I, i has two sons ji, jo, I, =, [, =1"and s;, =5, =s.

Now, p(a) contains a pair (s, V) for s€ S, set( V)< S iff there exists a trace of «
as described such that s, = s and the multiset of all markings on its leaves is precisely
{(m+1,s")|s'e V}.

Note. The usual notion of a computation tree (for a sequential nondeterministic
program) refers to a tree describing different possibilities of a run. An actual run is
described by a single path from the root to one of the leaves. Here, the trace describes
an actual, deterministic run, i.e., after making all nondeterministic choices.

While this definition of the semantics directly captures the behavior of runs of
the program and traces its control changes in full, for later purposes we need also
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a slightly different semantical definition, based on the concepts of tree terms and
tree grammars.

It is well-known that the semantics of a (nondeterministic) sequential program
a can be defined on the basis of a set T (a) of deterministic s;equence programs, or
seq’s (cf. [15]) describing the possible runs of a so that p(a)=|Jsc;ia) P(B).
Analogously, the semantics of a (nondeterministic) concurrent program « can be
based on a collection of deterministic tree programs, or trec’s (cf. [18]).

A trec is actually a tree term from T for an alphabet 3 whose X, component is
3pr (defined in Section 3.2), and whose X, component includes constants §; for
i=1. (In fac*. the c-goto schemes can be defined using a single constant $; the more
general trec’s are required for the sticky schiemes, to be defined in Section 4.2.)

In order to define the semantics of trec’s we first introduce the notion of /abeled
sets. A labeled set is a pair (i: U;) where i=1 and U, is a multiset of states such
that set(U;) < S. Intuitively, (i: U;) describes the set of states of the trace which
are labeled by $,. A tuple of labeled sets is a set U={(j;: U )|1=<j=<k} where
1<i,<---<i.

We write i € U as a shorthand for 3U,((i: U;) € U). Similarly, we may write §, € a
meaning “S$; occurs in a”. For every trec a, p*(a) will be defined as a collection of
semantic pairs (s, U) where s€ S and U is a tuple of labeled sets with a labeled set
(i: U;) for every label 8, in « (if U does not contain (i: U;) for some $; € a, then it
is interpreted as containing (i:0)).

Given U = (S, m, p) we first define p*(a) inductively as follows:

p*(8) ={(s, {(i: {sHD|se S},

p¥(a(a))={(s, U)|3s'((s,s) e p(a) a (s’, U) € p¥(a))},

P (ANa))={(s, U)|(s, U) € p*(a) r s€ w(A)},

pSanB)={(s, U)|3V, W((s, V)ep*(a)a(s, W) ep*(B)AU=Vw W)},

where the (multiset) union @ is taken componentwise.
Finally, for the whole trec @, we combine all separate subsets of leaves, and let

P(a)={(s, V)I3U((S, U)ep*(a)

AU={(i:U)|1sj<skirV= ¥ U)}

1<j=k

The c-goto schemes are given a semantics by regarding a concurrent goto scheme
a as a regular tree grammar G, over the alphabet 3pg.

The tree grammar G, is obtained by taking the command labels to be variables,
and translating the commands into production rules in the following manner: Any
command I:a (where a € AP) yields a production rule /> a(I/+1). Similarly for a
test P?. Any command [:goto I’ or I” yields I-> I'| I and any command /: goto I and
I" yields I (I')~(I"). Finally, we add the rule (m+1)->8, where a contains m
commands.
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Now we attach to a the tree language J(G,) < Ts generated by G.,, and set

pla)= U p(B).

BeT(G,)

4.1. Example. The and/or graph in Fig. 5 is a pictorial description of the c-goto
scheme prog, described below (we allow ourselves a more compressed notation for
control commands, for the sake of brevity).

prog,
l:goto2or4oré
2:a

3:goto 1

4:P?

5:goto 14
6:goto7 or 9
7:Q?

8:goto 14
9:goto 10 and 12
10:b

11:goto 1

12:c

13:goto 6.

The reg:iar tree grammar G, obtained from prog, is listed below. A possible trec
of this scteme is 7= b(PX(8)) N c(QAS)). Fig. 6 gives a full description (a trace}
of a pos=:ble run of prog; which corresponds to = in a model in which (51, $2) € p(b3,
(51, 83) € olc), s2€ w(P) and s;€ w(Q). Note that, in every run of the program, all
leaves must satisfy P or Q.

Fig. 5. The graph description of prog, . Labeled arrows denote the execution of an atomic program plus
transfer of control and unlabeled arrows denote transfer of control alone.
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Fig. 6. A possible trace of prog, corresponding to 7.

The grammar G,

A~ A)AlAg, Az Ay,
A;->a(Aj), Ay (Ap) N (Ap),
A3;> Ay, A~ b(Ay),

A, PUAy), A=A,

As> Ay, A c(A),

Ag—> As] Ao, Az~ A,,

A;-> QAg), A8

4.2. Example. (leaf counting mod 2). Considering madels in the form of full binary
a/b trees, the scheme even,, run from the root state of the model, halts successfully
iff there is an even number of leaves satisfying P. (We assume the existence of a
predicate leaf to be true in exactly the leaves of the tree.)

We say that a state s is even if the subtree rooted at s has an even number of
leaves satisfying P, and similarly for odd states. The node labeled 1 in the program
graph (Fig. 7) has to verify that the current state is even, while the node labeled 6
has to verify that the current state is odd. For instance, node 1 cperates by checking
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(leafaP) 2

Fig. 7. The graph description of even,.

whether the current state is a leaf satisfying —P and if not, by splitting into two
parallel processes which have to verify that its a and b children are both even or
both odd.

even,
l:goto2or4or$

:(leaf A P)?

:goto 19

:goto 11 and 15

:goto 13 and 17

:goto7 or 9 or 10

:(leafa P)?

:goto 19

:goto 11 and 17

:goto 13 and 15

‘a

rgoto 1

‘a

:goto 6

:b

:goto 1

b

*30t0 6.

O 0 N bW

P e pame b pmed et pumb b b
O NN LV bW =D

We will return to these examoles in subsequent sections, and consider them in
other types of schemes.

4.2. Sticky schemes

We now turn to defining a structured version of concurrent schemes, based on
tree regular expressions. Compared to the class of sequential regular schemes reg,
the main additional connective is the concurrency connective N. Informally, a n
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concatenation, by means of the connectives ;'

Formally, propositional sticky schemes are tree-regular expressions over an alphabet
2 whose X, component is 2pr, and whose 2, component inciudes constants $; for
i=1. We use ;' instead of ', to follow convention. Denote the resulting class of
schemes by sticky(P, L), for any appropriate logic L.

A trace of a sticky scheme « is a binary tree with a set V={1,..., k} of vertices,
where 1 is the root, each vertex i is labeled by a state s; and each of the leaves (and
possibly some of the internal nodes) is labeled alsc by a sticky label, i.e., a letter

.. allowed to be labeled by different stick

«

r labels, even when
s c ds to

traces of a program « in a given model can be defined by induction on the structure
of a. For instance, for a letter $,, a trace is a single node labeled by some state s
and the label $,. For a program a(B), traces are obtained by taking a trace T of
B whose root is labeled s,, where (s,, 5,) € p(a), creating a new root labeled s, and
attaching Tz by an edge to the new root. Traces for a subprogram By are
constructed by starting with a trace T, of 8 and a trace T, of y whose roots are
labeled with the same state s, introducing a new root node lzbeled s and connecting
the roots of T, and T, as children of the new root. Traces for a subprogram B ;'y
are obtained by starting with a trace Tz of B8 and attaching, to each leaf v iabeled
by a state s and a sticky label $;, some trace T, of y whose root is labeled by the
state s (by identifying the root of 7, with v). The repetition connective in sticky
schemes a* is interpreted with a similar meaning.

We omit a more formal definition of the traces, since the semantics of c-reg
schemes can again be defined directly, by interpreting them as tree languages,
without having to define the whole trace.

For every sticky scheme a, let 7(a) be the tree language U < Ts associated with
@ as a tree-regular expression. Given = (S, &, p) we define p(a) = BeT(a) p(B),
where the interpretation of trec’s p(8) remains as before.

4.3. Example. Consider the following sticky scheme a =g;’QX($,), where B =
(a($,) n b($,))*1. A possible trec of 8 is a(a(a($;) N b(8,)) N b(8,)) N b($,). The
corresponding trec of a is

r=a(a(a($,) N b(Q$,))) N b(QS,))) N b(QAS)).

Figure 8 gives a full description {(a tracc) of a possible run of « which corresponds
to 7, in a model in which

p(a)={{s;, si+) 120}, p(b)={(s;, Si+2)|i=0}

and 7(Q) = {s;|8=i=2}. The input/output pair contributed by this particular run
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to p3(a) is (so, U) where
U ={(0: Up), (1: Uy}, Uo= 152, 53,84 and U, ={s;}.

The pair contributed to the final p(a) is (o, {s-, 53, 53, S4}). In general, by the
semantic definitions we get, cenoting S, ; ={S,42,..., §+1} for j=i=0,

P (B)=1{(s, U)|j=i=0},
where U, ; ={(i:{s;}),(2:8S,,)}, and

p¥a)={(s, U},)I8=j=i=0u{(s, {(1:{sHh]i=9},
where U;;={(0:S,,), (1:{s;})}, and finally,

pla)={(s; {5;}w S;,)|8=j=i=0] L{(s;, {s}]|i=9}.

4.4. Example. The following scheme is equivalent to (i.e., has the same interpretation
p as) prog, of Example 4.1.

prog-:(a($,) u PAS,) U (QASe) U (B(S,) N ¢(S,)))*2)* ;! false?;* false?.

Intuitively, the sticky 'abels $,,$, correspond to the labels 1.6 res,:=ctively in
prog,. While the semantics of c-goto ensures that ail branches reach a nonexistent
label in order to hait, and thus all leaves have to satisfy P or Q, this requirement
has to be forced in the sticky scheme by the last two tests, which ensure that all
ieaves in the final trace are labeled by $,. Without these tests we might have also
legal traces with leaves not satisfying P v Q and labeled $, or $,.
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4.5, Examp!>, Let
a, =8, u(a($,)nb(8,)))u(a(S) nb(S,)),
Syu(a(8,) N b(8,)) u(a(S:) N b(S,)),

@y
and
even, = (a;  ad?)* ;> (leaf n P)XS,);' (leaf A 1 P)AS,).

This last schem: is equivalent to even, of Example 4.2. (The labels §, and §,
correspond to the labels 1 and 6 therein.)

4.3. Concurrent regular schemes

Propositional concurrent regular schemes were introduced in [18] within the
framework of concurrent propositional dynamic logic. The class of such schemes,
which we denote here by c-reg, can be viewed as the class of sticky schemes which
use only a single sticky label $,. (The semantics as defined there is slightly diff :rent
but the changes bear no influence on the results described ti.crein.) Taking this
view, no special definition is necessary for this language. (We simplify the syntax
somewhat by using the conventional “; and “*” instead of *“;** and “*" respec-
tively.)

We note that c-reg schemes might not be flexible enough. The program a ; 8 means
that B is to be executed from every end-point of a. This may cause difficulties in
some .ases in which we might want to distinguish between two (or more) types of
end-states, and proceed differently from each type. Likewise, we might want to write
a program similar to «*, but so that « is allowed to be re-cxecuted only from some
of the end-states. The lack of these capabilities in the c-reg schemes is the reason
wily both programs of Examples 4.1 and 4.2 are conceivably inexpressible in
c-reg(P, PC) (where PC stands for propositional calculus), and explains the motiva-
tion for introducing the mechanism: of concurrent goto schemes and sticky schemes
described before.

4.4. The kill command

It is sometimes desirable to be able to terminate the execution of some of the
processes of a concurrent program. For example, we may want to run several
processes of a program « in parallel, and then terminate some of the processes and
proceed in executing a program f in the remaining ones. Recall that, in the present
situation (for c-reg schemes), a ;8 is interpreted so that B is executed from the
end-state of every branch of the executed program of a. Even in the sticky schemes,
it is possible to ‘bypass’ some branches in applying the next subprogram (by using
sticky labels), but their end-states will nevertheless appear in the final ‘start-end’
relation.

The kill command is meant to enable the termination of some branches of a
program, so that further subprograms, and the final evaluation of the scheme, will
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Fig. 9. A possible trace of a.

not refer to these branches. For example, consider the program
a =(an(b;kill)); ((c; kill)nd); A?.

Figure 9 presents a possible trace corresponding to a run of « in a model in which
(1, 52) € p(a), (s, 53) € p(b), (52, 54) € p(c), (52, 55) € p(d) and ss5€ 7(A).

The semantics of the kill command may be defined by p(kill) = {(s, @)|s € S}.
Thus, the input-output pair contributed by the trace of Fig. 9 to p(a) is (s,, {ss}).
Note that if (s,0) € p(a), then (s,0) € p(a;B) for every program B.

The resulting classes of schemes are denoted by the superscript X, e.g., c-reg®.

§. Interconnections

This section contains some comparisons between the different scheme types
defined in the previous sections. Throughout, we use the following uninterpreted
{schematic) notions of equivalence. Two formulas ¢, ¢ are equivalent (¢ =¢) if
w(¢) = w{(¢¥) in every model . For two logics L,, L, interpretable over models as
above, we say that L, <L, iff for every formula ¢ € L, there is an equivalent formula
el Li=Liff L,<L,and L,<L,.L,<L,iff L,<L, and not L,<L,. Similarly,
two schemes a, 8 are equivalent (a = 8) if p(a) =p(B) in every model /. For two
classes of schemes C,, C, interpretable over models as above, we say that C,<C,
iff for every scheme a € C, there is an equivalent scheme 8 C,. C,=C, iff C,<C,
and C,=<C,. C; <G, iff C,<C, and not C,=<C,.

Throughout, whenever showing equivalence of two classes of schemes, we assume
that the logics used by the two classes for tests are equivalent in expressiveness.
That is, if schemes in C, vse formulas of L, in tests and C, uses L,, then we assume
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L,=L,. No other constraints are imposed on the tests. On the other hand, strict
inequality results will be shown only with wests in restricted logics, typically PC on
the propositional level and QF (the quantifier-free subset of first-order logic with
equality) on the first-order level. For instance, the following is obvious, due to the
fact that the concurrent semantics naturally extends the sequential one, and a
concurrent scheme like &« = @ n b may have a pair (s,, {s,, s3}) in its interpretation
p(a), which no sequential scheme has.

5.]. Theorem. l’eg(P, PC) <c-l'eg(P, PC).
It is also clear from the definitions that the following theorem holds.
5.2. Theorem. c-reg(P, L,) <sticky(P, L,), assuming L,<L,.

Furthermore, when the logics are not too powerful (e.g., PC), the class sticky is
strictly stronger.

5.3. Theorem. c-reg(P, PC) <sticky(P, PC).

Proof. Consider the sticky(P, PC) scheme
seg =(a($,) N b(8,))*:' a($,).

Consider a model in which S= N (the integers), p(a)={(i,i+1)|i=0}, p(£)=0
for every atomic program b # a and #(Q) =0 for every atomic proposition Q. In
this model

p(seg)={(i,{i+1,...,j}lji>i=0}

We show that in this model, no c-reg(P, PC) scheme has the same interpretation as
seg. This is done as follows. Observe that the interpretaticii of seg has two interesting
properties: it has unbounded concurrency, in the sense that the sets of end-states
are of arbitrary (countable) cardinality, yet in each such set all states occur with
multiplicity 1 (so we actually have sets of end-states, rather than multisets). We
show that every c-reg(P, PC) scheme violates at least one of these properties.

Note that in the model at hand, the interpretation of every c-reg(P, PC) scheme
a can be fully described by a collection R(a)={4,, ...}, where each 4, is a multiset
of integers, 4, < N, so that

p(a)={(i{i+j|je A}|i=0,4 € R(a)}.

The collections R(a) are defined inductively. The definition is similar in nature to
that of the interpretation p; R(a) can in fact be though: of as the restriction of
p(a) to pairs whose start-state is 0. The formal definition is left to the reader. The
fact that R(a) completely characterizes p(a) in the above sense can be shown by
induction on the structure of the schemes and is omitted too.
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Using this characterization, we say that a scheme a has bounded concurrency,
or BC, if 3K, € N such that V4 € R(a)(|4]|< K, ). We say that a is multiple, or
MULT, if 34 € R(a)(A #set(4)).

It remains to prove that every scheme in c-reg(P, PC) is either BC or MULT. This
is again proved by inductior on the structure of schemes. Atomic programs and
tests are clearly all BC. Consider the case a =B u ¥. If either B or y are MULT,
then so is a. Otherwise both are BC, so « must be BC too, with K, = max{Kg, K,}.
The cases of a =B8Ny and a =B ;y are proved similarly, with the new bound K,
(when applicable) being Kz + K, and Kg- K, respectively. Finally, consider the
case a = B8*. If every A € R(B) is a singleton, then the same holds for R(a), so a
is BC. Otherwise there exists some 4 € R(B) with at ieast two elements i, j € 4. Now,
if i =§j, then B8 is MULT, so « is MULT too. Otherwise, there is an execution of a
corresponding to two consecutive executions of 8 in which 4 is used in all applica-
tions of B. This execution yields a multiset 4' € R(a) in which the number i+j
appears at least twice. (The first execution of 4 fro.. a state k leads to the states
k+i and k+j, and the second execution leads to the states (k+i)+j and (k+j)+i
(among others).) Thus again « is MULT. O

Next we prove the equivalence of c-gote and sticky schemes.
5.4. Theorem. c-goto(P, L,) =sticky(P, L,), assuming L,=L,.

Proof. Let a be a scheme in sticky(P, L,). By Theorem 2.1, there exists a regular
tree grammar G, equivalent to a (i.e., generating the same set of trees). G, can be
translated into a c-goto(P, L,) scheme B with the same trec’s (modulo substitution
of symbols $; € 3,). This is done in three stages. In the first stage, for each variable
A with production rules A- ¢,}" - -| ¢, we introduce new variables A,, ..., A, and
replace these rules by the rules

A=A -|A, and A>ey,..., A > .

This obviously yields an equivalent grammar.

In the second stage we attach a unique (even) command label /, to each variable
A, and change production rules into program segments in the following way. Any
production rule A- A, |- - -| A, is transformed into I, : goto I, or - - - or l,, . Similarly,
any production rule A~ (B)n(C) transforms into l,:goto Iz and I-. Production
rules of the form A- d(B) transform into the two consecutive commands /,:d;
l,+1:goto I, and any production rule A-$ is transformed into I, :goto /. ,q.

Finally, in the third stage we crganize the resulting program segments sequentially
in some arbitrary order, except that the segment belonging to the start symbol
appears first (we assume, w.l.o.g., that the start symbol is unique). The labels are
now renumbered consecutively in a consistent way, and [,,4 is replaced by m+1,
where m is the number of command lines in the final program.
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It is easy to see that the resulting scheme B (or actually, the corresponding
grammar Gg described in Section 4.1) has the same set of trec’s as G,, except that
G; uses a single symbol $ while G, may use several such symbols. However, this
has no influence on the semantics since after deriving the trec’s of a program, all
sticky labels are erased from the semantical interpretation p. Therefore, p(8) = p(a).
Finally, obtain an equivalent scheme ¥ in c-goto(P, L,) by replacing each test Q?
in B with an equivalent test Q'? from L,.

The converse direction is shown in a similar (somewhat simpler) manner. [

Note. The underlying translation algorithm from c-goto to sticky, based on the proof
of Theorem 2.1 (see [6, Lemma 5.7]), might yield a sticky scheme (at most)
exponentially larger than the original c-goto scheme. This fact bears influence on
complexity issues discussed iater.

Finally, note that the program kill itself is not programmable in any of the classes
since p(kill) = {(s, 0)|s € S}, and, for every program «a in the above classes, in every
pair (s, U) € p(a), U # 0. Therefore, it is obvious that the classes with kill are proper
extensions of the original ones. For instance, we have the following theorem.

5.5. Theorem. c-reg(P, PC) <c-reg®(P, PC).

6. Dynamic logics of concurrent schemes

6.1. The logics and their semantics

Dynamic logic (DL) is a logical framework for reasoning about programs (cf.
[7]1). Most research in this field has concentrated on sequential programs, i.e.,
flowcharts and while schemes, as well as certain higher-level versions such as
context-free and recursively enumerable programs (cf. [7]). In [18] we proposed an
extension of DL, named CDL, which is capable of dealing with concurrent regular
schemes of the kind described in Section 4.3. The logic was discussed both on the
propositional and first-order level. In the sequel we will refer to this logic (on the
propositional level) as c-reg-PDL, in order to distinguish it from other versions.
The schemes were allowed to inductively use ‘rich tests’, i.e., the logic defining the
class of allowed tests was c-reg-PDL itself.

In this section we discuss the dynamic logics obtained by admitting c-goto and
sticky schemes, namely ¢-goto-PDL and sticky-PDL respectively (both logics allow
rich tests), in addition to c-reg-PDL.

We first give a precise definition of c-goto-PDL. Let AP={P;|i=0} be our
collection of atomic propositions. The formulas of e-goto-PDL are defined as follows:
Every P< AP is a formula, and if A, B are formulas, L is a set of formulas (i.e., 2
subset of ¢-goto-PDL) and a is a c-gote(P, L) scheme, then Av B, 1A and (a)A
are formulas too.
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Formul~. of c-goto-PDL are interpreted over models as described earlier, which
contain a hasic interpretation 7 for the atomic propositions of AP alone: #(P) is
the set of states satisfying P for every P e AP. This interpretation is extended as
follows.

m(Av B)=w(A)u 7w (B), m(nA)=8S-7w(A),
7((a)A)={s|AV((s, V) e p(a),set(V)c 7(A))},

where p(a) is the interpretation of the scheme a as defined earlier. Note that the
definiiions of p and 7 are interleaved inductively since formuias involve schemes
and schemes involve formulas (in tests).

Next we define sticky-PDL. This logic is based on the full interpretation relation
of sticky schemes p®. It combines formulas and programs by admitting a formula
(a)A, where A ={(i;: A; )| 1 <j< k}is atuple of labeled formulas,and 1 < i, < - - <.
The semantics attached to such a formula is

7({a)A)={s|3U((s, U)e p*(a) aAVi((iec Anic U)=>set(U;)  m(A)))}

Thus, the states of U,, interpreted as the leaf states labeled by $;, are required to
satisfy A;. If there are no Jeaves labeled $,, then the formula A, is ignored. Conversely,
if there is no formula A; 1. A, then no requirement is made of the leaves labeled
$; (or, put another way, we take A, to be true).

The logic c-reg-PDL is defined in a similar way, on the basis of the class c-reg(P, Lj.

It is also possible to define a version of sticky-PDL based on the restricted relation
p, i.e., interpreting all leaves in the same way and ignoring the sticky labels. In such
a version, the connecticn between programs and formulas is achieved in the usual
way, by a formula {a)A, where a single formula A is required to hold at all leaves,
regardless of their labels. This version is equivalent in expressive power to the
present one since (@) A can always be written as (& ;" A, 2($o);2- - ;% A;, A($o) > true.
However, the logic in our definition lends itself better to axiomatization, as programs
may be conveniently decomposed.

The logics obtained by allowing the kill command are denoted by the superscript
K, as for the classes of schemes. Note that (kill)A is valid for every formula A.
Hence, {a n(B;kill))A for example is equivalent to (a)A A (8)true.

6.}. Example. Let us consider Examples 4.1 and 4.4 once again. The formulas
(prog,)true of c-goto-PDL and (prog,)true of sticky-PDL are satisfiable in a state s

iff prog,/prog;, are executable successfully from s. An equivalent formula is express-
ible in c-reg®-PDL:

form;:{a*;((Pv Q)?;killu
(c;(Q%killuirue?) nb;a*; ((Pv Q)?;killu true?))*) ; false Ntrue.

The final false is intended to force all branches to terminate, satisfying the Q or
(Pv Q) tests.
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Moreover, we show in the next section that the kill command adds no power to
c-reg-PDL (due to the presence of ‘rich tests’). Indeed, an equivalent formula
in c-reg-PDL is:

form,:(a*;(P?u (({(b;a*)P)?;cu (b;a* N c))*; QMN)true.

Intuitively, the main * in this formula computes the task of the node labeled 6
in prog,. If b;e* can be executed to reach a state satisfying P, then only c is
executed. Otherwise, &;7* N ¢ is executed. All branches must end with le ves
satisfying Q. ‘

The rest of this sectioin contains sorme expressiveness results concerning the
dynamic logics defined above.

6.2. Interconnections

Our first claim is that c-goto-PDL and sticky-PDL are equivalent in expressiveness.

Define the following sequences of classes of schemes GP; and logics GPL; for
i=0: Let GPL, be tne language of propositional calculus involving atomic
propositions AP={F;|j = 0}. For every i=0,

(1) let GP; be c-goto(P, GPL;), and

(2) let GPL,,, be the subset of c-goto-PDL based cn the schemes of * P; alone
(i.e., the collection of formulas containing atcmic propositions and closed under
¢ v, ¢ and (a)true for a scheme a € GP;).

Define the sequences SP; and SPL; similarly, based on sticky schemes. Then
c-goto-PDL =|_J,., GL; and sticky-PDL=J,_, SL..

6.2. Lemma. For every i=0,
(1) SPL,=GPL,, and
(2) SP,=GP;.

Proof. By induction on i. For i =0, statement (1) is trivial and statement (2) follows
from Theorem 5.4 together with the first statement. For i>0, each of the two
directions of statement (1) is proved by induction on the structure of formulas,
where formulas of the form (a)true are resolved by part (2) of the inductive
hypothesis for i —1, and statement (2) follows as in the case of i=0. [

6.3. Theorem. c-goto-PDL = sticky-PDL.

Proof. First we have to overcome the differences in the format of formulas involving
the ‘diamond’ connective. To this end, we assume that every formula ‘a)A in
c-goto-PDL satisfies A = true. This causes no loss of generality since every formula
(a)A has an equivalent formula ((a, m+1-A?))true, where a contains m
commands. We make a similar assumotion regarding sticky-PDL, where here any
formula (a)A where A={(jj:A)|1<j<k} is simulated¢ by the formula
(a;h Ai|?($il);iz' ©r ;ikAik 2($;, )true.
Now the proof is completed using Lemma 6.2. (1
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Note that Theorem 6.3 holds also for the same logics with ‘poor’ tests, e.g.,
confined to propositional tests.

Following a remark made in the previous section, we note also that formulas in
c-goto-PDL may be exponentially more succinct than the equivalent ones in sticky-
PDL. This is in accordance with a similar observation made in [10] regarding the
relationships between regular PDL and PDL of flowcharts.

Finally, we observe that, in contrast with the situation for schemes, the Kkill
command does not strengthen the corresponding logics, not even c-reg-PDL as
expressed in the following theorem.

6.4. Theorem. c-reg-PDL = c-reg-PDL.
Proof. See Appendix A. OO

A major problem left open by this paper is proving (or disproving) the following
conjecture.

g

6.5. Conjecture. c-reg-PDL <sticky-PDL.

6.3. Relationships with the p-calculus

In this section we discuss relationships with the u-calculus. The propositional
p-calculus L, defined by Kozen in [12], can be viewed as another extension of
PDL. Its syntax contains atomic formulas P;, atomic programs a;, and the following
construction rules:

(1) each P, is a formula;

(2) if A, B are formulas, a is an atomic program and F(R) is a formula with
positive appearances of a new atomic symbol R (i.e., such that F contains no
subformulas of the form uR.F’), then AA B, Av B, 1A, (a)A and uR.F(R) are
formulas.

The semantics interprets formulas over models (S, m, p), where S is a set of states,
7 attaches a subset #(P) of S to every atomic formula P, and g attaches a subset

p(a) of Sx S to every atomic program a. We extend 7 to every formula by the
following rules:

w(Av B)=a(A)u w(B), 7(AAB)=7(A)n w(B),

m(MA)=S-7w(A), w((a)A)={s|3t((s, 1) e p(a) rnte w(A))},
and

T(LR.F(R))=min{U|U< SA U=F(U)},

where F(U) stands for #(F(R)) with #(R) = U, and the minimum is taken w.r.t.
the subset ordering.

For example, the PDL formula (a*)A can be expressed in L, as uR.(Av (a)R).
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6.6. Theorem. CL, =c-goto-PDL.

Proof. (<): Let A be a formula in CL,, involving only k u-subformulas, uR;.F,(R)),
1=<is<k. A can be described as being constructed from occurrences of the symbols

R;, 1<i<k, and m maximal R-free formulas G,,..., G, combined by the con-
1ectives BA C, Bv C, (a)B and uR, F,(R,). Negati
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We constmct a c-goto(P PC) program a, such that {(as)true= A. For every
subformula B of A as just described, add a program segment starting with the label

Iz as follows:

B = G; (R-free): Ig:G;?

- :halt
B=R;: I:goto I,
B=CvD: lg:goto I~ or Ip
B=CnAD: lg:goto I~ and ip
=(a)C: Ig:a
- :goto I~

B=puR;.F(R;): lg:goto Ig.

The segment starting with I, has to come first, but otherwisc the segments can
be combined in an arbitrary order to yield a,4.

(=): A formula in c-goto-PDL is translated into CL, by structural induction.
Consider the case of a subformula (a)A. It is first transformed into {(a, m+
1: A?))true (assuming a=(1:vy,,...,m:yy)). By the inductive hypothesis we
assume the existence of an equivalent formula A’ in CL, for every formula A
appearing as a test A? in the program. Then we construct a formula A, in
CL, s.t. {(a)true=A,.

The idea is to associate a recursion symbo! R, and a formula uR,.F(R;) with
every command /:y, (1<l<sm+1).

A “goto I” is then interpreted as “R,”, or as “pR.F(R,)” if this is the first
occurrence of [ in this subformula. A c-goto-PDL formula (a)true can be translated
directly into CL,, if the graph description of a is a tree with ‘backward edges’. That
is, its only goto arcs are either forward or to some predecessor (e.g., the program
prog, of Example 3.1 is in such form). In contrast, for a general c-goto scheme «
the resulting CL,, formula may have several (not necessarily identical) subformulas
F, for a label I, within d'Ferent subformulas, due to the process of unwinding it



28 D. Peleg

into the desired form. For example, if

a=1:goto2 or 3
2:goto3 or 4
3:goto2 or 4
4:A?,

then the described translation scheme for A, first yields uR,.Fi(R,), and further
manipulation yields

pRi{(uR2.Fy(Ry) v uR;.F5(R3)).

Proceeding to construct F, and F; we see that each F; has to call the R; symbol
of the other:

pR.(R>.(Ryv Ry) v uR3.(R, v Ry)).

This is not allowed in the formalism of CL,. Thus, for instance, F, will have to
contain a copy of F; in place of R;. This way we finally obtain

BR (uRy.(pR3(Ryv pR4(A))V uR4(A')) v uR; (R R3v uR4.(A")) v uR,.(A"))),

where A’ is the ecuivalent of A in CL,,.

The formulas are constructed recursively, keeping, for each subformula F(R,),
a set V, of labels i s.t. F; is internal to a copy of F;, so R; may be used to represent
“‘goto i”. The construction goes as follows: A, is set to be uR,.F,(R,), and V, ={1},
and then the formulas F; are constructed according to the command v,, by the
following rules:

Case y,=gotol'orl": Let F,=B’'v B", where B'=R; if l'e V;; otherwise B'=
uRy .F.(R;), where F; is constructed recursively with V.= V,u{l'}. B" is defined
analogously with respect to 1",

Case y,=goto l'and I": Let F,= B'A B", where B' and B” are defined as in the
previous case.

Case vy,=a: Let Fy=(a)B, where B=R,,, if l+1cV; otherwise B=
#Ry . Fiii(Ri4,y), where Fp,, is constructed recursively with V., = V,u{l+1}.

Case y;= AY: A special case is when | = m+ 1. In such a case we just let F;= A,
the equivalent of A in CL, by the inductive hypothesis. Otherwise, let F;=A’'A B,
where B is defined as in the previous case.

It is clear that the construction terminates, as the sets V, cannot grow larger than
size m, which bounds the depth of recursion. It is also clear ihai the resuliing formula
is equivalent in meaning to (a)true. O

6.7. Example. The CL, formula corresponding to (prog,)true of c-gote-PDL is
rR.(PVv(a)R, Vv uR,.(QV ({b)R, A {C)R,))).

The CL, formula equivalent to (even,)true from Example 4.2, i.e., stating that
the subtree rooted at a state s has an even number of leaves, is

#R.((leaf A P) v ((@)R, A (B)R,) v ({@)y A (b)),
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where
¥ =uR,.((leaf A P) v ({a)R, A{b)R;) v ({@)R, A (D)R))).

In both examples, the R, (R,) fixpoint corresponds to the node labeled 1 (6) in
the c-goto graph, or to the sticky label $, ($.) respectively.

7. Validity and axiomatization

In[18], c-reg-PDL was given a complete axiom system and an elementary decision
procedure. In fact, this was done for a monotone version of the logic, which is a
subset of Parikh’s game logic [16]). The monotone version requires p(a) to be
monotone for every program a, in the sense that if (s, U)e p(a) and U< V, then
also (s, V) € p(a). This requirement may be expressed equivalently by

(1) defining p(P?) ={(s, U)|se (U n w(P))}, and

(2) limiting the set of possible models to monotone models, i.e., models in which
every atomic program is monotone. The axiom system shown complete for this
version in [18] is an appropriate axiom system for PDL or the ‘dual-free’ game
logic [16] with the obvious extra axiom for N:

(An) (anB)A=(a)Ar(B)A.

This axiom system can be augmented to cover the nonmonotone version by adding
the foilowing axiom scheme:

(Av) (a)(Av B)=(a)Av(a)B for any atomic program a.

Completeness of the nonmonotone system will not be shown here explicitly.
Instead, we give a more general axiom system for (the nonmonotone version of)
sticky-PDL and prove its completeness, in a way that extends the proof for c-reg-PDL.

Recall that labeled formulas are denoted by A={(i;: A;)|1<j=<k}. Let A[i/B]
denote (A—{(i:A;))})u{(i: B)}, i.e., A with B replacing A;. The axiom system for
sticky-PDL is the following:

Axiom schemes

(A1) All tautologies of the propositional calculus,
(A2) (SNM(i:A)}=A,
(A3) (BABNA={BS:);'B)A,
(A2) (BAS)M(i: AN} = BAA,,
(AS) (a(B))A=(a(8,);'B)A for an atomic program a,
(A6 {a($:)){(i:Av B)}={(a($:){(i: A)}v(a($;)){(i: B)} for an atomic program a,
(A7) (a($:){(i: A)}=(a($,}{(j: A)} for an atomic program a,
(A8) (au B)A=(a)Av(B)A,
(A9) (anB)A=(a)Ar(B)A,
(A10) (a;'BYA=(a)A[i/(B)A],
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(A11) (a*)A= A, v(a)AlLi/(a*)A],
(A12) (@)A=(a)Au{(i:B;)}) for $;£a, i£ A,
(A13) (@)A=(a)lAu{(i:true)}) for §;€ a, i€ A.

Inference rules

A,A>B
(MP) — 5
{Ai 2 Bi}lsisk
(MONO) {a)A>(a)B’
{a)AD A,
(IND) (forany 1<i<k) Zﬁ%—)ﬁx.

Axioms (A12) and {A13) cover the cases where the set of sticky labels occurring
in a does not coincide with the set of indices of the formulas; (A12) treats a formula
B, with no label $; among the leaves of a, while (A13) treats a label §; in a with
no matching formula.

7.1. Theorem. The above axiom system is complete for sticky-PDL; moreover, the
vaiidity problem for the logic can be decided in nondeterministic exponential time.

Proof. See Appendix B. 0O
By the remark following Theorem 5.4 we have the following theorem.

7.2. Theorem. The validity problem for c-goto-PDL can be decided in nondeterministic
double exponential time.

8. Boolean schemes and logics

8.1. Boolean sequential schemes and logics

The introduction of Boolean variables to propositional schemes and logics was
proposed by Abrahamson [1] in the framework of propositionai dynamic logic. The
language of the schemes is extended with a set {X;} of Boolean variables. These
variables may appear in the atomic operations

(ASSIGN) I:X<0 or 1 Xe1,

and the formulas X =0, X =1 are allowed in the language, including within tests.
This gives rise to a new intermediate level between the propositional and the
first-order ones, namely, the Boolean-variable level. We may consider either the
goto schemes or the regular schemes of Section 3. The resulting classes of schemes
are denoted reg(B, L) and goto(B, L), and the corresponding logics are denoted
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reg-BDL and goto-BDL. The semantics has to be extended and based on the notion
of Boolean models. Such models employ extended states, which consist of two parts:
a state s and an interpretation [:{X;}->{0, 1} for the Boolean variables. Hence,
such a Boolean model # is of the form (Sy, 74, p.u, L«), Where Sy, 7 and py
are as on the propositional level, and I, is the initial interpretation for the Boolean
variables. The definitions of 7 and p need to be extended accordingly, and to
address the extended states (s, /). An atomic formula X =0 is interpreted as

m(X=0)={(s, I)|se SA I(X)=0},
and similarly for X = 1. The atomic operation X « 0 is interpreted as
p(X <0)={((s, I), (s, I[0/ X]))|s € S},

where I[0/X] is an interpretation equivalent to I, except that X is interpreted
as 0. (Similar notation will be used in several different contexts in the sequel.) The
operation X <« 1 is interpreted analogously.

The usual atomic propositions and programs do not affect the interpretation I
Thus,

@ (P)={(s, I)|I is a Boolean interpretation, s € m4(P)},
and
p(a)={((s, I),(s’, I))|I is a Boolean interpretation, (s, s') € p«(a)}.

Extending 7 and p to arbitrary schemes and formulas is done exactly as on the
propositional level, regarding extended states (s, I) as states. Finally, a fermula A
is satisfied in the model # iff there exists a state s€ S s.t. (s, I,)€ w(A). Thus,
although our state space contains all possible pairs (s, I) (i.e., for any s € S and any
interpretatio. I), only the special pairs (s, I4) are considered when defining the
notion of satisfiability.

Hereafter, schemes and logics of this kind (i.e., equipped with Beolean variables
and interpreted over Boolean models) will be referred to as Boolean schemes and
Boolean logics.

Note. The Boolean-variable level forms a certain synthesis between the propositional
level and a version of the first-order level (discussed in the next section) restricted
to the fixed domain D = {0, 1}. There are several plausible ways of defining the
precise notions of model, interpretation and satisfiability on such intermediate level.
For instance, we could define the set of states as a collection of pairs (s, I ), or
alternatively discard I, completely and consider the whole of {(s, I)|s € S, I is some
interpretation} as the model’s state space. We chose to follow the version described
originally in [1]. Similar results apply for other definitions as well, using the same
general methods.

As noted by Abrahamson [ 1], schemes and logics equipped with Boolean variables
are really incomparable with propositional schemes (and logics) since schemes and
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formulas in the propositional level cannot refer to the variables. However, com-
parisons car. be made by ignoring the ‘Boolean’ part of the semantics, and considering
the ‘state’ part alone. Such comparisons are dependent on the initial values of the
Boolean variables. Thus, every Boolean scheme can be simulated by a set of
propositional schemes, one scheme for each possible assignment I of initial values
to the variables. The interpretation of any of the propositional schemes is identical
to the ‘state part’ of the original scheme, assuming that initial interpretation.

Let L, be a Boolean logic, L, be a propositional logic, C, be a class of Boolean
schemes and C, be a class of propositional schemes. We define the following notions.
For a formula A€ L, involving Boolean variables X =(X,,..., X,), a formula
BeL, and a Boolean tuple b=(b,,...,b,), we say that A =, B (b equivalence) iff,
for every state s and every interpretation I, in every Boolean model,

sew(B) & (s, I[b/X])e w(A).

L, =, L, iff, for every formula A€ L, (involving X) and for every Boolean tuple b,
there is a formula A €L, sit. A=,A,. L, =, L, (I-equivalence) iff L, <, L, and
L,<L,. Similarly, for a scheme aeC, involving Boolean variables X =
(X1,...5,X,), a scheme BeC, and a Boolean tuple b=(b,,...,b,), we say that
a =, B (b equivalence) iff, for every state s,, s, and interpretation I,, I,, in every
Boolean model,

(s, L[b/ X)), 52, L)€ p(@) & (54, 5,) €p(B).

C, =, C: iff, for every scheme a € C, (involving X) and for every Boolean tuple b,
there is a scheme a, €C,s.t. a =, a;. C, =; C, (I-equivalence) iff C, <, C, and
C,=<(,.

These definitions give rise to two possibilities for full comparison of a Boolean
system with an I-equivalent propositional one. Each of these possibilities requires
a change in one of the logics to form a common basis.

The first alternative is to consider Boolean models. This requires extending the
semantics of the propositional system so as to allow it to recognize Boolean variables
as atomic predicates (though it cannot act upon them).

The other possibility is to consider propositional models. These models do not
contain an {y campanent, sa the fnial interpretation or the Boolean vasiables is
undefined (1(X) =1). This requires us to restrict the Boolean system in such a way
that to Boolean variables values must be assigned before they are tested. Then the
semantic rules for the resulting system will construct the interpretation I for Boolean
variables gradually, defining I(X;) only after X; is assigned to for the first time.
For instance, (X «1;a)(X =14 P) is a legal formula in the language, but (b; X =
07 Q is not, as it has ne interpretation in a propositional model.

Let L,, L,, C, and C, be as above. Denote by L3, C? the systems obtained by
changing L,, C, according to the first alternative, and denote by LY, C! the systems

obtained by changing L, C, according to the second one. Then we have the following
lemma.
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8.1. Lemma. If C, <, C,, then
(l) CISCZB1
(2) CT=<C,.

Proof. Let the equivalentof @€ C,belJ, (X =5)?;a,)inC 8 andlet the equivalent

of a € C} be a, for an arbitrary b, where the scheme «, is the b-equivalent of « in
C,. O

8.2. Lemma. If L, <, L,, then
(l) Ll£“§a
(2) LT<L,.

Proof. Similar. O

Abrahamson [1] shows that reg-BDL =reg-PDL, i.e., that extending reg(P, L)
with Boolean variables adds no computational power. In the remainder of this
section we extend our concurrent schemes with Boolean variables ir a similar manner
and study the resulting scheme classes and logics. The main result of this section is
extending Abrahamson’s observation to the concurrent case.

8.2. Boolean concurrent schemes and logics

It is possible to add Boolean variables to the concurrent schemes and logics, just
as for sequential prog:..ms. This requires extending the semantics accordingly, and
including an interpretation I:{X;}->{0,1} for the Boolean variables in every
‘instantaneous description’ of the process. In the case of the c-reg schemes, for
instance, the semantics p(a) of a scheme a becomes a set of pairs of the form
((s, I, U), where U is a set of pairs U = {(s;, I;)}. For such a set we denote by U o
the set {s;|31,((s;, I,) € U)}. The interpretation of the operations X « 0 (X « 1) and
the tests X =07 (X = 1?) is the same as in the sequential case, retaining the sequential
nature of these primitives.

Similar semantics can be defined for Boolean variables in sticky or c-goto schemes.
The resulting classes of schemes are denoted c-reg(B,L), sticky(B,L) and c-
goto(B, L), and the corresponding logics are denoted c-reg-BDL, sticky-BDL and
c-goto-BDL.

Note that we use variables only as local ones; any distinct process (branch) has
its own copy of the variables, and has no knowledge of or influence on the variables
of other processes. This is in contrast with a version defined in [19], where Boolean
variables (along with a test & set operation) were used as shared variables, resulting
in a much more powerful system, in which communication is available between
processes.

These logics can also be defined as the unions of sequences of partial logics, as
done before for propositional logics. Define the following sequences of classes of
schemes GB,; and logics GBL,; for i=0:
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(1) let GB; be c-goto(B, GBL ), and

(2) iet GBL,,, be the subset o c-goto-BDL based on the schemes of GB; alone
(i.e., the collect:cn: of formuias containing atomic propositions and ciosed under

¢ v, "¢ and {a)true for a scheme a € GB,).
Then c-goto-RDL =_J,., GBL..

8.3. Example. Let

a;={(a;) «0nb; Xe0)u(a; X«inb; X «1),
a,=a, Al Xelula; Xelnb; X «0),
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(1) reg(B, PC) <c-reg(B, PC) <c-reg (B, PC).

{2V c-goto(B, L,) =sticky(B, L,), assuming L, =L,.

(3) sticky-BPL = ¢-goto-BDL.

"
(4) c-reg -BDL =c-reg-BDL.
One significant difference is that, unlike the propositional case, on the Boolean-

8.5. Theorem
(1) c-reg(B, L;) =c-goto(B, L,), assuming L,=L,.
(2) c-reg-BDL =c¢-goto-BDL.

Proof. (1): The <-direction is trivial. The proof of the =-direction goes along the
lines of the proof that sequential goto schemes can be translated into whilc schemes
( .. [8]) using propositional variables. The proof involves, in fact, only a sin
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Casel:P?. Letaybe X =17, P'?; X «I+1, where P'is the equivalent of P in L,.
Casel:gotol' or I": Leta;be X=I1;(X«l'UuX "),
Casel;goto ' and I": Let ¢y be X =12(X - I'n X «1I").
Finally, the entire program is replaced by

*
a'=X<—1;( U a,) ; X=m+12

Islsm

Note that, contrary to the situation on the propositional level, the c-reg/sticky
scheme simulating a c-goto scheme is only polynomially larger than the original
scheme.

(2): Shown by using the technique of Theorem 6.3, and relying on part (1) of
Theorem 8.5. []

The main result of this section concerns establishing Abrahamson’s result in the
concurrent setting. Comparisons of Boolean and propositional concurrent schemes
are based on the same notions as for sequential schemes. The only definition which
requires some change is that of b-equivalence of schemes. For a scheme a € C,
using Boolean variables X =(X,,..., X,), a scheme Be€C, and a Boolean tuple
b=(b,,....b,), we say that « =, 8 (b equivalence) iff, for every state s, every set
U ={(s;, I,)]1 < i<k} and every interpretation J, in every Boolean model,

((s, I[b/X1), U)e p(a) & (s, U*)ep(B).
We show the following theorem.

8.6. Theorem. c-goto(P, L,) =, c-goto(B, L,), assuming L, =, L,.

Proof. We only have to show that whenever L, <, L,, c-goto(B, L,) <, c-goto(P, L,).

Let a be a given c-geto(B, L,) scheme and let b be a given Boolean tuple. Construct
2" identical copies of a, denoted o', " with the labels of &’ being ¥/, ..., m’.
The idea is that a run of the new program w1ll reach label V just when the ongmal
a had to reach label [ with X evaluating to j when read as the binary representation
of anumber, X ... X,. Now replace any Boolean assignment V' : X; < 0 by V' : goto(I+
1Y, where j’ is identical in binary representation to j except that its ith digit is 0.
Similarly for X;< 1. A test F: A? is replaced by V: Ay, the b’-equivalent of A in
L,, where b’ is the binary representatio~ of j. Finally, concatenate all the 2" schemes
into one (consistently renaming labels) starting with the scheme o’s, where j, is the
number whose binary representation is b. [

By Theorem 8.1 we get the following theorem.

8.7. Theorem. Assuming L,=1L,,
(1) c-goto(P, L,)® =c-goto(B, L,), and
(2) c-goto(P, L,)=c-goto(B, L,)".
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Statements similar to Theorems 8.6 and 8.7 hold for siicky schemes too.
Turning to the logics and comparing Boolean logics with their propositional
counterparts, we have the next result.

8.8. Lemma. For every i=0,
(1) GBL; <, GPL,, and
(2) GB,; =,; GP..

Proof. By induction on i. For i =0, part (1) is straightforward. For instance, for the
formula A= (X;=0) and for a Boolean tuple b, let A, =true if b, =0, and false
otherwise. Part (2) follows from Theorem 8.6 together with the first part. Th= i>0
case is handled as in Lemma 6.2. O

Consequently, we have the following theorems.
8.9. Theorem. c-goto-BDL =, c-goto-PDL.

8.10. Theorem
(1) c-goto-PDL® = c-goto-BDL, and
(2) c-goto-PDL =¢-goto-BDL".

As for the size of schemes and formulas, the Boclean-variable level is in general
exponentially more succinct, in both the cases of sticky and c-goto. This is in
accordance with & similar observation of [1] with regard to regular (sequeitial)
PDL vs. BDL.

Due to the exponential blow-up in the translations from sticky(B, L), c-reg(B, L)
and c-goto(B, L\ to sticky(P, L) schemes, we get, by Theorem 7.1, the follswing
theorem.

8.11. Theorem. The validity problems for sticky-BDL, c-reg-BDL and c-goto-BDL
can be solved in nondeterministic double exponential time.

9. First-order schemes and logics

First-order sequential goto schemes are defined just like their propositional
counterparts, except that the atomic operations are shown to be simple assignments:

(ASSIGN) l:x;«o0.

The program uses a tuple of variables x={x,,..., x,}, and the assignments and
tests refer to some fixed signature; o is a term over the signature involving variables
from x. Given an appropriate language L, interpretable in firsi-order structures over
the signature and the variables in x, a tes* P is simply a formula of L. (Most
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conventional definitions restrict tests to be either predicates or quantifier-free for-
mulas with equality (QF) over the given signature and x, i.e., ‘poor tests’, but our
equivalence results hold also in a ‘rich test’ environment.) The resulting class of
schemes is denoted goto(Q, L).

First-order sequential (nondeterministic) regular schemes are regular expressions
over an alphabet 2o consisting of the assignment commands x; « o and the tests
P? for P € L, similar to the definition on the propositional level. The resulting class
of schemes is denoted reg(Q, L).

The semantics is based on a first-order structure & ={(D, P,,...,f;,...) with a
domain D and a collection of predicates P, and functions f;. This structure induces
an interpretation = of the formulas of the logic L, according to its specific semantics,
and also an interpretation for terms o appearing in the assignment commands. The
set of states § associated with such structure is the set of possible interpretations
for the variable set x used in the scheme; every possible assignment of values from
D to variables in x corresponds to a state. The semantics of an assignment operation
is defined as

p(xi « 0') = {(S, S[o.s/xi])lse S},

where s[o,/x;] represents a state s’ similar to s except that x; is interpreted in s’ as
o, the evaluation of the term o in s.

Extending p to arbitrary schemes is Gone just as on the propositional level, relying
on the interpretation of assignments as atomic programs, and formulas of L appear-
ing in tests.

The associated dynamic logics are denoted reg-QDL and goto-QDL, and they are
defined analogously to the propositional logics, on the basis of first-order logic with
equality (cf. [7]). Thus, the atomic formulas are predicates P(co) where o is a
tuple of terms. Their truth value in a state is determined by the value of P(o,) in
the structure. Here we use rich tests, i.e., the language of tests is reg-QDL (or
goto-QDL) itself.

The classes of concurrent goto and structured schemes, and the corresponding
logics, are obtained on the first-order level just as was done on the propositional
level. Tke resulting classes of schemes are denoted c-goto(Q, L), ¢-reg(Q, L) and
sticky(Q, L), for any appropriate logic L. The extension of the semantics again
parallels what was done in Section 4 for propositional concurrent schemes. The
corresponding logics are denoied c-goto-QDL, c-reg-QDL and sticky-QDL.

Again, the resuits of the Boolean-variable level carry over to the first-order level,
and we have the following theorem.

9.1. Theorem.
(1) reg(Q, QF) < ¢-rog(Q, QF) <c-reg“(Q, QF).
(2) c-goto(Q, L,) =sticky(Q, L), assuming L, =L,.
(3) c-gote(Q, L,) =c-reg(Q, L), assuming L, =L, and both contain QF.
(4) e-goto-QDL = sticky-QDL = ¢c-reg-QDL = c-reg“-QDL.



38 D. Peleg

The proof of part (3) is identical to that of Theorem 8.5, except that the basic
operations are assignments, rather than just unspecified atomic letters. The require-
ment that the logics used for tests contain at least QF is necessary in order to enable
tests to keep track of the labels. One problematic point is that the use of variables
as Booleans implicitly assumes the existence of at least iwo distinct elements in the
Herbrand universe based on the structurc plus the input values of the variables.
However, it is easy to test this directly, and handle the exceptional case of a singleton
(or empty) universe separately.

A final remark concerns relationships with the u-calculus. A result analogous to
Theorem 6.6 holds also on the first-order level, as is shown in [18] (with CQ,
denoting the contiqtuous u-calculus of [17]).

9.2. Theorem (Peleg [18]). c-reg-QDL=CQ,,.

Appendix A. Programming “kill” in c-reg-PDL

In this appendix we prove Theorem 6.3. The described algorithm for the elimina-
tion of the kill command from c-reg schemes is based on the following simple
observation. A program a N 8 ;kill can be viewed as the execution of a plus a ‘test’
for the feasibility of executing B. Thus, such a program should, in principle, be
replaced by ({B8)true)?; a.

In order to overcome technical difficulties, we need the following definitions and
lemmas.

For every program a and every formula A in c-reg-PDL define a program 02 in
c-reg-PDL by induction on a as fo'lows:

@=a, 6p,=P? 05,,=050U0%,
62~ =(05n 02U ((BA)?; 04U ((1)A)?; 04,

A _ {MA, A A A
03.,=694, 67, 05 = (OF)*,

A.l. Lemma. For every program a and every formula A in c-reg-PDL,

p(@)={(s, UN|AU@< U'c U (s, U)e p(a) rset(U - U') < m(A))}.

Proof. By induction on the structure of a. We present the -direction of the case
a=p;y. Assume (s, U') € p(02). Then (s, U') € p(OF*; ©42) and, by the inductive
hypotheses on B and 1y, there exist V', V, s,, U}, Uy, s,, U%, U,,...st.0c V'CV,
set(V-V')c 7((y)A), (s, V)ep(B), V'={sy, 55,...}, U' =), U, and

Vi(dc Uic U, set(U,— U}) < w(A) and (s;, U)) € p(v)).
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Denoting V-V'={q,, q>,...} and applying the definition of #({y)A), we get
that for every g; there exists a W, s.t. (q;, W;)ep(y) and set(W,) < w(A) (see
Fig. 10). Choosing W; =0 for every i, we get that

Vi[@=Wic W, set(W,— W))c 7(A) and (q;, W) e p(7)).
Denoting U =\t), U;w ), W,, we get that < U'c U, (s, U)e p(B;v) and

set(U-U") (=set(b*)(U,- - US)wQJ W.)) c w(A). O

A.2. Lemma. For every program a and every formula A in c-reg-PDL,
p(a;(true?u A?;kill)) = p(02 L ((a)A)?;kill).

Proof. Assume (s, U)ep(a; (true?u A?;kill)). Then there exist V,s,, U, s.,
U,, ...st. (s, V)ep(a), U=H, U, V={s,,s,,...}, and

Vi((si, U;) € p(true?u A?;kill)),
or
Vi(U;={si}v (s;e m{A) A U;=0)).

Let us divide the discussion into two cases, according to whether U is empty or
not. If U is empty, then U, is empty and s; € w(A) for every i, hence (s, V) € p((a)A?)
and for every i, (s;, U) € p(kill), so (s, U) € p({a)A?;kill).

In the other case, clearly fc Uc V, set(V—U)< w(A) and (s, V) € p(a), so, by
Lemma A.1, (s, U)e p(02).

The other direction is proved along similar lines. [

For cvery program a of c-reg"-PDL define a program a’ and a formula ¢, in
c-reg-PDL by induction on a as follows as shown in Table 1.
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Table 1.
24 a' Pa
a a false
P? P? false
kill false? true
Buy B'uy , PV &y
By (B;n Yivegl;Yue,2iB Pan @,
By 8537 ¢ viBYe,
B* 6;"’- B8 '*)‘Pg

A.3. Lemma. For every program a of c-regX-PDi , p(a) =p(a’U ¢, ?;kill).

Proof. By induction on the structure of a. We present the case of a =8 y. By the
inductive hypotheses,

p(a)=p(B;y)=p((B'Ues?2:kill); (y'U @, 2;kill))
=p(B';(v'v ¢, 2;kill)) U p( g 2; kill).
The first term equals p(B’; (true? L ¢, ?;kill) ; '), or p(B'; (true? L ¢, 2;kill)) - p(y'),
which, by Lemma A.2, equals p(05 u((B’¢,)%kill) - p(y), or p(O5;7'U

((B)¢,)2:kill). Together, we get p(a)=p(05 ;7 U(B)e,Vee)?;kill) =
pla'u e, 2:kill). O

Finally, the desired result follows immediately from the last lemma.

Ad4. Lemma. For every formula A in c-reg®-PDL, there is an equivalent formula A’
in c-reg-PDL.

Preof. By induction on the structure of A. The case of A=(B)B is handled by

choosing A'=(B")B’v ¢z, where B' is the equivalent of B from the inductive
hypothesis. L[]

Appendix B. Completeness proof for sticky-PDL

We show that the axiom system proposed for sticky-PDL is complete. For this
purpose we need to define an alternative semantics (p°, #°) for sticky-PDL, which
is obtained in two stages. In the first stage we redefine p(a) directly, bypassing the
tree language interpretation. This is done inductively as follows. The definition of

p(8), p(a(a)), p(ANa)) and p(a N B) is similar to that of p° for trec’s, given in
Section 4.1. In addition,

plauB)=p(a)up(B), pla;B)=p(a)'p(B),
pla™)=min R(R=p(8,)up(a)-'R),
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where R,-'R, is defined (for any two sets R,, R, of semantic pairs as described
in Section 4.1) as

Rl'iRz-—‘{(S, U)EaV((s, V)e R:A((Vs'—'ﬂA U=v)

v(Bs,, W' ....s, W'(V;-——-{s,,...,s;}

AV, 1<j< (s, W)eR)AUi= U W

1=jsl

AVk,lsksI,k¢i(Uk=ka ) Wﬁ)))))},
tsj=i

and finally, for the whole program a, we let

p(a)={(s, V)|3U((s, Ulep(a)aU={(j;: U)|1<sjsk}a V= L*Jk U'})}'
Isj=

This definition is equivalent to our original one. In the next stage we modify this
definition by replacing the multisets and the w-operations with simple sets and
u-operations throughout the definition. The resulting interpretation function p° is
not identical to our original one, even if we modify the uriginal semantics by
shrinking each multiset in the final interpretation of a program into a set. This
incompatibility can be seen by looking at the following example. Consider the
scheme a = B8;°¢($,), where B = (a($,) N P($,)), and assume a model in which p(a) =
p(b)={(s,, 5,)} and p(c) ={(s>, 53), (52, 5s)}. Then, in the original interpretation, a
has a single trec a(c($,)) N b(c($,)), so that

P(a) = {(sl ’ {S3, 33}), (SI s {S3, S4}), (S| ’ {S4, S4})},

and the sets of states reachable from s, are {s;}, {s;} and {s;, s;}. On the other
hand, by the set semantics p° we have p*(B)={(s,, {s.})}, and hence p’(a)=
{(sy, {s3}), (81, {54})}, so that the set {s;, s,} is not reachable from s,.

However, we should observe that this choice of semantics for schemes does not
affect the interpretation of formulas in the logics. The reason is that, as can be easily
shown,

(1) p*(a)<s p(a) for every program a (identifying a multiset U with the set

set(U) consisting precisely of its elements), and

(2) (s, U)ep(a)=3U'(U cset(U), (s, U')e p*(a)) for every program «.

These two observations serve to prove that, for any formula A, #*(A) = 7w(A).
This holds on both the propositional and iirst-order levels, and within either of
c-reg, c-goto and sticky. Therefore the validity/satisfiability properties of sticky-PDL
formulas are the same under 7 and #°, and we may assume the (p°, =) semantics
in what follows.

Assume we are given a consistent formula Ao, for which we have to show the
existence of a satisfying model. We show this first for formulas A, using only atomic
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tests P? in programs. Further, we assume that all occurrences of subprograms a(g)
st BY(B) in A, are such that B is $; for some i. Clearly, any A, may be transformed
into an equivalent formula in this form, using Axioms (A3) and (AS). The model
is constructed on the basis of the Fischer-Ladner closure of A,, FL, defined
inductively by

(1) AgeFL,

(2) AvBeFL=>A,BeFL,

(3) "AeFL=>A€FL,

(4) (a)AecFL=>A,,..., A, €FL,

(5) (BAS)M(i:A)}cFL=>A,ABeFL,

(6) (auB)AeFL=>(a)AVv{B)A€FL,

(7) (anB)Ae FL=>(a)AA(B)A€FL,

(8) {(a;'BYAe FL=>(a)A[i/(B)A]e FL,

(9) (a*)Ae FL=>(a)A, (a)Ali/{a*)A]eFL,
(10) (a)Ae FL=>(a)(A—-{(i:A)}DeFLIif S, 2 a.

Throughout, we identify = A with A and A A B with (1A v —B).

Let FL={A,,..., A,}. An atom is a consistent conjunction X = A ,_ i<p Bi» Where
B;e{A;, 1A;} for every 1<i<p. (Here consistency is w.r.t. the axiom system of
Section 7.) Let % ={X|X atom} be our world (or ‘state space’).

Following conventions set in [23], we write A< B to denote A > B, and let
A" ={X|X e W, X A Ais consistent}. For a set of atoms U< ¥, let oy =V ., X.

We now collect some well-known properties concerning these notions.

B.1. Lemma. For every atom X € W and formula A € FL, the following conditions are
equivalent:

(1) X<A (or-X > A)

(2) Xe A" (er X A A is consistent);

(3) A appears positively in X.

B.2. Lemma

(1) For every two distinct atoms X and Y, X A Y is inconsistent.
(2) (Vxcw X)=true.

B.3. Lemma. Forevery formula A,—A > @,+. Furthermore, if Ac FL, then —A= ¢ ,+.

B.4. Lemma. For every formula A€ FL,
(1) (A ' =(A"), and
(2) (AvB)'=A"UB",
where U denotes W — U, for any set of atoms U.

B.S. Lemma. For every set of atoms U< W,
(1) Feo="¢y, and
(2) (o)™ =U.



Concurrent prooram schoemes and their lneice a
T TELISITS IS pUUHTIAIIE OLITLIIELU Wi slEr SULILO .

@(P)=P",
p’(@)={(X,{YD|X e (a(B)A(1: )"},

for every atomic proposition P and every atomic program a appearing in A,.
Throughcut the sequel we shall write p(a) instead of p*(a), for simplicity. For
every labeled set U={(i;: U;)|1<j<n} denote ¢, ={(i;: ¢y, )[l<1< n}.

The following lemma is proved by simple structural induction.

B.7. Lemma. If —~A= B and D is obtained from C by replacing some occurrences of
A by B, then -C= D.

B8. Lemma. For every Xe W, U,,..., U, €W and every program a appearing
in Ao,

X A {a)epy is consistent = JU'((X, U')zp(-)al’'=U)

Proof. By induction on a. We give the most involved case «vhich is « = B*. Assume
X A (B*)¢y is consistent. Denote B =(B*")¢,. Let V be the smallest .et of atqms
st. Uyc V and for every atom Y, Ye((Beoull/ev])'=Ye V. An alternative,
equivalent definition is V = V,», where V= U, and V., = V,u({B)oull/¢v,])" for
every i=0. Denote A,=¢y and A, =gy, » for every 1<j=<n,i;# . We need the
following easy claims:

B.8.1. Claim. (B)A A @y is inconsistent.
B.8.2. Claim. —{B8*")A > ¢,.
B.8.3. Claim. B*c V.

We also need the following claim.

B.8.4. Claim. For every i=0 and every atom Z¢€ V; there exists a U'c U s.t.
(Z, U")ep(B*).

Proof. By induction on i.

Basis (i=0): If Ze U, then (Z, U)) € p(8,)), so (Z, U)e p(B*).

Induction (i+1): Ze V,,, means Ze V, or Ze ((B)¢u[l/®v])". In the first case
the result is immediate by inductive hypothesis on i. Now assume Z A {B)e@u[l/¢v,]
is consistent. By the main inductive hypothesis on B there exists a U; < U, (for
1sj<n, i;#1) and UjcV, st. (Z,U')ep(B). Let Uj={Y,,..., Yi}. By the
inductive hypothesis on i, for every 1 < m <k there existsa W" c U s.t. (Y,,, W)€
p(B*). Choose Ty=\,_,<x Wi"and T, = U} U, ey W1 (for 1<j<m, ij#1),
and then Tc U and (Z, T)e p(B; B*) < p(B*). O

Now the proof of the B*! case is completed; since X € B*, by Claim B.8.3, X € V,
s0 X € V,», and, by Claim B.8.4, 3U'(U'c U (X, U)ep(B*)). O
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B.9. Lemma. For every (a)A€ FL and every X € W,
X A {a)A is consistent & JU(Uc A" A (X, U)ep(a)).

Proof. The (=>)-direction follows immediately from Lemma B.8, viewing A as ¢,*.
The other direction is proved by induction on a. Here we give the following cases.

Case a=pBnNy: Recall that both (B)A,(y)A€eFL. Assuming 3U(Uc A"
(X, U)e p(Bny)) we get that there are V, W s.t. U=VU W, (X, V)ep(B) and
(X, W)e p(y). Since V, Ws U< A", by inductive hypothesis, both X A (B)A and
X An(y)A are consistent, hence both (8)A and (y)A appear positively in X, so
X A(B)A A(Y)A is consistent, and by Axiom (A9) X A (B y)A is consistent too.

Case a=f;'y: Denote B=(y)A. Both B and (B)A[!/B] are in FL. Assume
IU(U<c A" A (X, U)ep(B;'y)). Then there are V,={Y,,..., Yi}, V,c U, (for
1<js<n, =D, W', ...,W* such that (X, V)ep(B), for every 1s=m<k,
(Y, WM ep(y), and U=, i Wi" and U, =V, VU, i Wi for 1<j<n,
i;# 1 Hence, W™ c U for every 1<m=<k. By the inductive hypothesis on 7, for
every 1sm<k, Y, A(y)A is consistent, so Y, € B*. Hence, V,c B, and V¢
A*[l/B*] and by the inductive hypothesis on B, X A{B)A[l/ B] is consistent. By
Axiom (A10), X A{B;'y)A is consistent too. [

B.10. Lemma. For every AcFL, w(A)=A".

Proof. By induction on the structure of A. The claim is immediate for atomic
propositions by the definition of 7, the B v C, 1B cases follow from Lemma B.4(2),
(1) respectively, and the case of (a)B follows from Lemma B.9. [

Now the satisfiabiiity of A, follows from the fact that since A, is consistent, Ay
is nonempty, as @, = A, # false.

Generalization of the proof to formulas with rich tests, and not only propositional,
is obtained by defining a sequence of sets of formulas L;, where L, allows only
atomic tests, and L,., allows formuias of L; as tesis. Then the result is proved by
induction on i, using the described proof process in each level, and the previous
inductive step to account for1 the test case in Lemmas B.8 and B.9 of the current level.
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