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Abstract. We define and investigate several classes of concurrent program schemes, including 
goto schemes and two versions of structured schemes, based on extensions of the re 
expressions to trees. The schemes are studied on the first-order, Boolean-variable and propositional 
levels. We also define and study the dynamic logics based on these classes of schemes, including 
issues of decidabrlity and axiomatization. 
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2 D. Meg 

The theory of programs deals extensively with the issue of concurrency. Various 
formalisms appear in the literature for defining and describing parallel computations 
and programs. In particular, concurrent program schemata were introduced in [ 131 

and then appeared (in different forms) in several other works. However, they have 
not received a widely accepted structured format analogous to the sequential whike 

schemes, and issues of semantics and logic are still under extensive research, in 

numerous different models. 
Most models for concurrent computation assume a situation in which there is 

some kind of sharin in resources, e.g., memory. This corresponds to the concept 

of multiprocessing in a single-processor environment, in which when two or more 
processes work in parallel, they may affect the same memory locations or variables. 

In this paper we follow a difIerent model of concurrency based on the notion of 
and/or-trees, and concerning essentially separate, independent processes. This 
model corresponds, far instance, to a network of processors. The model gives rise 
to the concurrent goto schemes appearing in [2,14]. These programs may contain 
s1 ii commancrs as got0 I, or 12, facilitating nondeterministic choice, as well as 
commands like goto l1 and lz, causing a split into two parallel independent branches. 

Ttis naturally reflects in the semantics of a concurrent program. Consider, for 
instance, the two schemes described in Fig. 1, interpreted over the natural numbers. 
In a usual shared environment, the interpretations of the two programs (a) and (b) 
are equivalent, i.e., their input/output relation is {([i, j], !_i + 1, j + 11) ] i, j 3 0}, where 

[i, j] represents the initial values of x and y. Thus, there is a single set of variables, 
affected by both branches. However, we view the concurrent program (a) differently, 
and give it a semantics as follows: upon splitting into two branches, each of the 

new processes receives a private copy of the variables, and proceeds on its own. 
Therefore, the left process changes only X, while the right one changes only y. 

64 

Fig. 1. 

(b) 

Still, our semantics differs from that of [2,14] and is closer to that of the language 
IND of [9]. The overall semantics given therein for the scheme as a whole interprets 
it as an essentially sequential program, whose ‘start-end’ relation leads from a single 
state to a single state. This is done by taking the following view. The processes are 
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dependently with different and 
nates, its final state, i.e., t 

taken as the result of the whole pro 11 the other processes ace assume 
once that first process halted. Thus parallelis 

another form of nondeterminism. In contrast, we define the semantics so that a 

program may lead us from a s!ggle state to a set of states, thus retaining the parallel 
nature of the run. For example, the semantics of the above program (a) changes in 
the interpretation of [2] to be 

{([i jl, [i+ LA), (Ml, k_k+ WI ij 2 01, 

while we interpret it as {([i,j],{[i+l,j],[i,j+~]})~i;j~~). 
An important consequence is that in our formalism, aN processes are required to 

halt for the program to converge. On the other hand, in the version of [2,MJ, a 
program may halt successfully even if some branch of it contains a subpro 
with an infinite loop in it; as long as one process of the progrlazrn may halt, its 

interpretation is nonempty. In this respect, our formalism extends the sequential 
schemes in the same sense thas alternating TM’s [3] extend the usual ones. 

The next logical step is to define a structured version of concurre1.t program 

schemes. The structured description of while programs was found to have several 
advantages, both in practical aspects such as better programming and in theoretical 
aspects such as simpler and better understood semantics, and cleaner methods for 
verification and analysis. In particular, tools like dynamic logic, aimed to enable 
reasoning about programs and their properties, owe their elegance and simple 
axiomatization in part to the regular structure of their programs. 

We propose two versions of structured schemes. Both approaches are based on 
extensions of regular expressions to trees. The one is based on it simple extension 
of regular expressions using a new concurrency connective A. This connective is the 
dual of the union connective u in exactly the same sense as the duality between 
the ‘and’ and ‘or’ steps of an ATM [3]. This version, calicd the concurrent regular 
schemata, was defined and studied in [18] in the framework of dynamic logic. The 
second version, which we call sticky schemata, is based on regular expressions on 

trees (cf. [6,21]). These expressions are based on a concatenation and star operation, 
in which one uses labels to mark leaves of the tree, and may ‘stick’ new subtrees 

to these leaves in a controlled fashion, according to the labels. 

The resulting classes of goto and structured schemes are denoted in this paper 

by c-goto, c-reg and stic The ‘c’ prefix stands for concurrent, and is used to 

distinguish these classes m the corresponding c?asses of sequential schemes, 

denoted simply reg and goto. 
The classes of schemes are defined and studied on three levels. The basic one is 

the propositional level, where atomic programs are left unspecified. This level is 

meant to provide an abstraction of the discussed notions, constructs and mechanisms, 
so as to enable an analysis of their fundamental properties and behavior (cf. [7, 
Section 1.33). Next comes the intermediate oolean-variable level, where 



QF. Thus, for instance, 
schemes with propmitional tests. 

An additional feature we mmsidef is the 
to terminate a process and dlsw 
set of final stat 

first-order levels, all three t 
expressiveness. (This h&k 

propositional level, the family of 

dynamic loglcs). 
We consider also the dynamic 

schemes as the unde 

schemes, denoted C- 

p 



Fig. 2. Expressiveness rekttiomhips between scheme cfasses. 



(1) Ou the propositional level: 

continuous 

p-cakulcts = sticky- PDL = c- 

(2) On the Boolean-variabie level: 

BDL 

/A 

c-regK- BDL = c-reg- BDL = stic BDL = c-goto_BDL 

sticky- PDL 

(3) On tile first-order level: 

QDL 

c-N&~-QDL = c-reg- QDL = sticky- Q L = c-goto-QDL 

Fig. 3. Expressiveness relationships between logics. 

exponential lower bound set by Abrahamson for reg-BDL since the transla 
auses an exponential blow-up in 

Strong mecFanisms such as channels or shared variables were shown to 
also considered 



2. Tree languages 

We need some concepts from the theory of finite tree la 
adapted for our setting. In particular, we consider only bin 
the sequel, the term binar~~ free refers to a tree with 0,1 or 2 sons for every node.) 
We also define a slightly different system of r ular expressions than 
literature. A good coverage of the general the can be found in, e. 

The alphabet C = &-,u 2, u & consists of the foilowing: & contains a single 
dyadic function symbol A, C, contains monadic functions & 1 s i s n, and & 
contains constants $i, I S i 6 k, for some k, n 2 1. 

The collection of taee terms (or simply terms) over C is the minimal collection 
Tz of words over C u { ( , )} such that 

(I) &,c T,; 
(2) if d E CI and t E TX, then d(t) E T,; and 
(3) if t,, t2E TX, then (t,)n(t,)E TX. 
Figs. 4(a)-(c) describe the trees represented by the terms $, d(t) and (t,) n ( f2) 

respectively, given that t, t, and t2 are represented by trees T, T, and T2, respectively. 
tree language L is simply a subset of T,, i.e., a cotfection of tree terms over the 

alphabet C. 

2.2. Regular tree grammars 

We will be needing the formalism of regular tree gra (cf. [6]). A regular 

tree grammar over an alphabet C as in the previous section is a context-free 

(a) 
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G = ( V, P, Z) (cf. [ 1 l]), where V is the collection b -f variables, 2 is a collection of 
start symbols (Z c_ Vj, and P is a collect on of production rules of the following 
forms: 

A+UW(C), A-W), 

where A,B,CE V, do& and$E&. 
The grammar operates over C u {( , )} in the usual way so that the derived words 

are terms from TX. A tree language LG TX is generable iff there exists a grammar 
G generating prticisely the tree terms in L. 

2.3. Tree-regular languages 

Let us first define the operations of product and closure on tree languages.‘Given 
an alphabet C as above, and two languages U, VS TX, define, for every $i E &, 

U 8’ V={ t E T, 13 t’ E U (t is obtain *d by replacing every 
occurrence of $i in t” by some term of V)}. 

From a ‘tree-point-of-view’, we start with a tree T’ of Q and replace every leaf 
labeled $1 with some tree taken from K 

Similarly, for every $i E &, define a closure operation by 

u*t = min V(($i) E V and Vt, t,, t2 (\t, E V, t2 E U, 
t is obtained by replacing one occurrence of $i in t, by tJ 

*tf W), 

where the minimum is taken w.r.t. the usual subset ordering. 
An equivalent definition sets U*a zU,-,,~ Uj where U+ (%i} and Uj+l= Uj u 

US’ Ujm 
We define also the following two operations: 

d(U)={d(t)ltE U} forevery d&X,. 

We now give an inductive definition for the set of Z-tree-regular expressions (over 
an alphabet 2). 

(1) $i is a Z-tree-regular expression for every $i E X0; 
(2) if cyl, a2 are X-tree-regular expressions, then so are (a! ,) n ( a2), (a,) u (a& 

(a,) J(az), (q)*i and d(q), for every $i E & and d E 2,. 
The language L, represented by each Z-tree-regular expression cu is defined ar 

usual by the corresponding operations, with $i representing the language {%i} for 
every $i E & as a base step, and (al) u (cu,) representing L,I, u L,, . 

A tree language LG TX is Z-tree-regular iff there is a Z-tree-regular expression 
representing it. is tree-regular iff there is an a habet C” = 2 v Zt, such that L is 
Z’-tree-regular (i.e., constants to give it a regular 
description). 
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2.1. Theorem (Geese 
generable iff it is taee- 

Steinby [6, Theorems 3.6 and 5.31). A tree 1ap1 Q is 

2.2. Note. While the ‘Y’ symbol is used in its standard set-theoretic sense, the ‘n’ 
symbol represents here an operation symbol occurring in the syntax of tree terms 
and should not be confused with either the set-theoretic intersection operator, or 
the ‘relation-theoretic’ one appearing in 17, Section 2.551. 

2.3. Note. The conventional definition of the Z-tree-regular sets is slightly different, 
namely the closure of all finite subsets of TX under U*’ V, LPi and U v V. It is easy 
to see that the two resulting definitions of tree-regularity coincide. 

.4. Note. A third equivalent representation for the tree-regular languages is 
obtained by means of tree automata. There ace several classes of deterministic and 
nondeicrministic automata which recognize precisely these languages (cf. 161). In 
fact, one may also define classes of alterwzting tree automata for this and other 
families of languages [20]. In the sequel, we will use sets of tree terms for representing 
alternating (and/or) program schemes. However, the notion of alternation in our 
classes of program schemes is fully captured by the u and A operations discussed 
above, and the syntax corresponds in a straightforward way to that of tree grammars 
and regular expressions. Therefore, we do not need to introduce any class of 
automata. 

3. Sequential program schemes 

In this section we briefly survey some classes of conventional sequential program 
schemes. The schemes are presented on the propositional level, which gives a high 
level of abstraction, by referring to the atomic operations as unspecified; all that 
we know of a pro&Tam CL is that it takes us from some states in our state-space to 
other states, according to its semantic interpretation. This approach appears, for 
example, in [4], -#here the formalism of propositional dynamic logic (PDL) is 
proposed for a propositional analysis of program schemes. 

We begin with a general description, relying mainly on intuition as to the meaning 
of the schemes, and then give a precise definition for the semantics of the schemes. 
A general survey of (first-order) schemes can be found in [5]. 

.I. Goto schemes 

A goto scheme is a linear representation for a 
widely accepted formalisms of describing a simple sequential program. Formally, a 
propositional nondeterministic goto scheme is a program composed of a sequence of 
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labeled commands of the following types: 

(ATOMK) I: ai, 

(TEST) l:P? 

(N-GOTO) I: goto I’ or I”3 

where P is a formu!s in a given logic L, interpretable over models as described 

below, and Q~ is an unspecified atomic command, taken from a ctillection AP of 

atomic programs. 
Throughout the paper we adopt the following notation for classes of schemes. 

Each basic control structure of schemes is given a name. In addition, two parameters 
are to be fixed, namely, the level, or the types of atomic operations allowed and the 
Logic used for tests. For instance, the class just described will be denoted goto(P, L), 
meaning that it is based on sequential goto schemes, defined in the propositional 
level (i.e., uses atomic unspecified operations), and allows tests from a (proposi- 
tional) logic L. 

In the literature, schemes usually employ tests within the if-got0 command, I: if 
P then goto I’ else goto I”. However, it is clear that the two mechanisms are equivalent 
in the presence of nondeterminism. (We interpret an infinite loop as an aborted run 
so that a test I : P? can be simulated by I : if P goto I + 1 else goto L) This particular 
choice was made for reasons of compatibility with other classes of schemes to be 
described later- 

5.2. Regular schemes 

A propositional nondeterministic regukw scheme is defined as a regular expression 

over an alphabet C PR consisting of the set of atomic programs AP and the tests 

{P?] P E L}. (The alphabet C PR is not necessarily finite, but every scheme defines a 
finite subset of it.) Call this class reg(P, L), for any appropriate logic L. The symbol 
zpR is used in the sequel to denote the set of basic propositional schemes, as defined 
above. We 3se the symbol “;” for concatenation, to follow standard notation. 

Again, it is conventional to consider the class of while schemes, defined in a 
slightly different (but expressively equivalent) way, as the inductive closure of 
assignment commands, viewed as atomic steps, under the constructs a[;/? and “if P 
then Q else p” and “while P do a”, where (Y, B are schemes and P is a test as above. 
(Nondeterminism may be added by the construct “ar orp”. j However, the form 

based on regular expressions is useful in providing a clear representation and 
suggesting connections with goto schemes and direct extensions to concurrent 

schemes. For instance, the fact that reg( P, L) and goto( P, L) are equivalent in 
computational power (assuming semantics as defined in the next paragraph for both 
classes) is easily derived using standard techniques from automata theory. 

3.3. Semantics of sequential program schemes 

A model for our schemes is a triple J# = (S, ?r, p), where S is the state space, 

7~ : L + 2’ is the interpretation function for formulas of L (i.e., for every EL, r(P) 
is the set of states satisfying P), and p : A + 2sxs is the transition relation of atomic 
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programs: for every Q E AP and s, S’E S, (s, s’) E p(a) means that a can be executed 

in s to reach s’. 
The interpretation p is extended to arbitrary (P, L) schemes as follows: 

PUT = {(s, s) I s E e% 

PkB) = {(s, s’) I W(s, s”) E pia) A w, s’) 

p(a*)={(s,s’)13ks0,3so,. . . ,sk,WOs i<k((r,, q+.,)~p( 

The situation is slightly mot-z involved for go&& L) sche es since in order to 

identify the end-state of a computation of a goto scheme, we have to characterize 
the whole sequence of intermediate states. For an atom c program or 9 test, the 

definition of p is just as before. For an arbitrary goto(P, L) scheme LY = 

(I:?’ 1,.•-9 m: ‘y,,,), we first define a compuratiQ~ sequence of a3 as a sequent 

((II, Q, (4, s*), - l l , (IA, sk)) with the following properties: 
(1) Z,=l and I,=m+l; 
(2) For every lcisk- 1, exactly one of the following holds: 

(a) 21, is an atomic Q or a test P?, li+i = ii + 1 and (s’, Si+l) E p( yt,), or 
(b) JQ is goto f’or I”, l’+ 1 E {I’, I”} and Si+ 1 = si. 

Now, p(cu’) contains a pair (s, s’) iff there exists a computation sequence of cy as 

described such that s = s1 and s’ = sk. 

4. Concurrent program schemes 

In this section we define the different v erskns of (propositional) concurrent 

program schemes to be discussed later. The first version is that of concurrent goto 
schemes. Then we give some versions of structured concurrent program schemes. 

We define two types of structured schemes. The first is the class of schemes with 
sticky labels, or simply sticky schemes, based on tree-regular expressions. The second 
is a subset of the first class, referred to as concurrent regular schemes, based on an 

extension of the sequential regular schemes given in Section 3.2. 

4.1. Concurrent goto schemes 

A propositional concurrent goto scheme is a sequence of commands of the types 

described in Section 3.1, i.e., (ATOMIC), (TEST), (N-GO O), and, in addition, 

commands of the type 

(PAR) 1: goto I’ and I”. 

The class of such schemes is called in the sequel c- , L) for any appro 

logic L. 

Informally, when a process reaches a co mand of type ( 

llel processes which are in identical states. (Giving this ‘real life’ interpretation 
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we may say that the memory locations held by the original process are duplicated, 
and each of the two new processes receives an identical private copy.) NOW, one 
of the processes proceeds to execute the command labeled I’, and the other proceeds 
to I”, and from now on these two processes remain separate and independent, with 
no connection whatsoever. 

The semantics of a concurrent scheme is still based on a model as described in 
Se&on 3.3, i.e., JBC = (S, rr, p), where p(a) G S x S for an atomic program U. 
atomic operations remain essentially sequential. How 
~1, we assign a concurrent interpretation p(a) s S x 

collection of multisets of elements of S. Thus (s, V) E p(a) for s E S, setj V) G S 
(where set( V) denotes the set containing precisely the elements of V) means that 
CY can be executed from state s to reach precisely all states of K In this view, a pair 
(s, s’) E p(a) for an atomic program Q is handled as (s, {se}). (In [ 181 we followed 
the game logic of [ 161 and defined a version in which e let atomic programs have 
a (possibly) concurrent interpretation too.) 

The relation p describes the ‘input-output’ behavior of a program or, more 
precisely, its ‘start-end’ relation. However, in order to define it we have to describe 
the whole computation. This description can no longer consist of a sequence; rather, 
it has to take the form of a tree. 

Let us first describe a simple, direct semantics for the c-goto schemes, similar to 
that given in Section 3.3 for the goto schemes. 

A trace of a concurrent goto scheme ac = (1: yl,. . . , PPZ : ‘ym) is a binary tree with 
a set (1,. . . , k) of vertices, where 1 is the root, each vertex i is labeled by a pair 
(Ii, Si), where li is an integer, 1 s li s IYI + 1, and si is a state of Jdc, and the following 
properties hold: 

(0 4=1, 
(2) for every leaf i, ii = m + 1 9 
(3) for every internal (non-leaf) node i_ exactly one of the following hold: 

(a) ‘~4~ an atomic program a or a Lest P?, i has a single son j, 4 = li + 1 and 
(si, !j) E P(Y?,), 

(b) ~1 is goto I” or I”, i has a single son j, 4 E {I’, I”} and sj = si, 
(c) ytl is goto I’ and f”, i has two sons j, , j,, Ii, = C’, 4, = I” and Sj, = sj2 = s. 

Now, p(a) contains a pair (s, V) for s E S, set( V) E S iff there exists a trace of a) 
as described suck that s, = s and the multiset of all markings on its leaves is precisely 
((nr+ 1, S’)IS% V). 

Note. The usual notion of a computation tree (for a sequential nondeterministic 
program) refers to a tree describing different possibilities of a run. An actual run is 
described by a single path from the root to one of the leaves. Here, the trace describes 
an actual, deterministic run, i.e., after making all nondeterministic choices. 

nition of the semantics directly captures th,c be avior of runs of 
and traces its control changes in full, for later purposes we need also 
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a slightly different semantical definition, 
tree grammars. 

It is well-known that the sem 
a can be defined on the basis o 

n ts of tree terms an 

eterministic) sequential pro 

seq’s (cf. [15]) describing the possible runs of 
semantics of a (nondeterministi 

based on a co1 n of deterministic t 

a tree term from 

i 2 1. (In fat*. the c-got0 schemes can be defined using a single constant $; the more 
general tree’s are required for the sticky SC emes, to be defined in Section 4. 

In order to define the semantics of tree’ e first introduce the notion of 
sets. A labeled set is a pair (i : Ui) where I - * > 1 and Ui is a multiset of states such 
that set( Ui) c S. Intuitively, (i: Ui) describes the set of states of the trace which 
are labeled by $i. A tuple of labeled sets is a set U = {( ij : Vi,) 11 s j G k} where 
l<i,<* l ‘<ik. 

We write i E U as a shorthand for 3 Ui( (i : Ui) E U). Similarly, we may write $i 
meaning “$i occurs in cy”. For every tree cy, p’(a) will be defined as a collection of 
semantic pairs (s, U) where s E S and U is a tuple of labeled sets with a labeled set 
(i: Ui) for every label $i in a! (if U does not contain (i: Ui) for some %;E a, then it 
is interpreted as containing (i:@)). 

Given = (S, ?r, p) we first define p’(a) inductively as follows: 

pS($i)=((s,((i:{s})})lsE s19 

psbWl = {(s, W 1 W(s, s’) E fsId n W, U E P~W)I, 

p”WW) = Ifs, WI (s, U) E psW A s E a(A)), 

pS(anp)={(s, U)13V, W((s, V)EPS((Y)A(S, W)Ep%(P)I\ u= v* w, 

where the (multiset) union ti is taken componentwise. 
Finally, for the whole tree cy, we combine all separate subsets of leaves, and let 

Pw={k vwf(s UkPSW 

The c-got0 schemes are given a semantics by regarding a concurrent goto scheme 
ar as a regular tree grammar Ga over the alphabet &. 

The tree grammar G, is obtained by taking the command labels to be variables, 
and translating the commands into production rules in the following manner: Any 
command I : a (where a E AP) yields a production rule I + a( I + 1). Similarly for a 
test P?. Any command Z ; goto I’ or I” yields I -* 2’1 Z” and any command I : goto I’ and 
I” yields I* (I’) A (Z”). Finally, we add the rule (Ott + 1) + $, where cy contains m 
commands. 
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Now we attach to ac the tree language S( C,) c TX generated by , and set 

p(a)= u P(B)- 
BEG 

le. The and/or graph in Fig. 5 is a pictorial descripti 
e prog, described below (we w ourselves a more compre 

control commands, for the sake of 
otation for 

Pvh 
Lgoto2or4or6 
=!;a 
3:goto 1 
4: P? 
5 : got0 14 
&got07 or 9 
7:Q? 

8:goto 14 

l&b 

1l:goto 1 
12:c 

13:goto6. 

The re+ OL:3ar tree grammar G, obtained from prog, is listed below. A possible tree 
of this SF Leme is 7 = b( P?($)) n c( Q?(S)). Fig. 6 gives a full description (a trace) 
of a posk:rble run of prog, which corresponds to r in a model in which (sl , s2) E p(b), 

( s1 3 ~3) c pl.c), s2 E m(P) and s3 E m(Q). Note that, in every run of the program, all 
leaves must satisfy P or Q. 

Fig. 5. The graph description of prog, . Labeled arrows denote the execution of an atomic program plus 

transfer of control and unlabeled arrows denote transfer of control alone. 



P? 

Fig. 6. A possible trace of prog, corresponding to T. 

The grammar G, 

xa e. (leaf counting mod 2). Considering models in the form of full binary 

a/b trees, the scheme even,, run from the root st alts successfully 

iff there is an even number of leaves satisfying e existence of a 

predicate leaf to be true in exactly the leaves of the tree.) 
We say that a state s is ewn if the subtree r 

leaves satisfying and similarly for odd states. 

graph (Fig. 7) has to verify that the current state is even, while the node labeled 6 

has to verify that the current state is odd. For instance, node 1 cperates by checking 
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Fig. 7. 7’he graph description of even,. 

whether the current state is a leaf satisfying TP and if 
parallel processes which have to verify that its a and b 
both odd. 

even, 
l:goto2or4orS 
2: (leaf n TP)? 

3:goto 19 
4:goto 11 and 15 
5:goto 13 and 17 

6:gotu7or9orlO 
7:(leafh P)? 
8:goto 19 
9:goto 11 and 17 

10:goto 13 and 15 
1l:a 
12:goto 1 
13:a 
14 : goto 6 
15:b 
M:goto 1 
17:b 
18 l 2oto 6. 

not, by splitting into two 
children are both even or 

We will return to these exapnles in subsequent sections, and consider them in 
other types of schemes. 

4.2. Sticky schemes 

We now turn to defining a structured version of concurrent schemes, based on 

tree regular expressions. Compared to the class of sequential regular SC 
ain additional connective is the concurrency connective n. InformaGy, Q! n i 
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is to be read as ‘split into two parallel processes, one performin QI! and the other 
performing 6‘. Thus, here too, a specific run takes the form of a tree. We use srick~p 

labels $i to identify the end-points of any run of a scheme, and enable controlled 
concatenation, by means of the connectives ;‘. 

Formally, prop~sitionalsticky schemes are tree-regular expressions over an alphabet 
C whose CI component is &, and whose O component inctudes constants $i for 
ia 1. We use ;j instead of l i, to follow convention. Denote the resultin 
schemes by sticky(P, L), for any 

A trace of a sticky scheme QI is 1, . . . , k} of vertices, 
where 1 is the root, each vertex i is labeled by a state si and each of the leaves (and 

possibly some of the internal nodes) is labeled also by a sticky label, i.e., a letter 
of CO (different leaves k. ;: 0 allowed to be labeled by dieferent sticky labels, even when 

their states are the same). Each such tree corresponds to some run of Q. The set of 

traces of a program a! in a given model can be defined by induction on the structure 
of cy. For instance, for a letter $i, a trace is a single node labeled by some state s 

and the label $i. For a program a(P), traces are obtained by taking a trace TB of 
ly whose root is labeled s2, where (s, , s2) E p(a), creating a new root labeled sI and 

attaching T, by an edge to the new root. Traces for a subprogram /3 n y are 

constructed by starting with a trace TP of p and a trace Ty of y whose roots are 
labeled with the same state s, introducing a new root node labeled s and connecting 
the roots of Ts and Ty as children of the new root. Traces for a subprogram p ;j y 
are obtained by starting with a trace Tp of /3 and attaching, to each leaf u iabeled 
by a state s and a sticky label $i, some trace Ty of y whose root is labeled by the 
state s (by identifying the root of TY with v). The repetition connective in sticky 

schemes ar *I is interpreted with a similar meaning. 
We omit a more formal definition of the traces, since the semantics of C-reg 

schemes can again be defined directly, by interpreting them as tree languages, 
without having to define the whole trace. 

For every sticky scheme CY, let F(Q)) be the tree language U E Tr associated with 

IY as a tree-regular expression. Given At =(S, T, p) we define p(a) =&c3~aI p(S), 
where the interpretation of tree’s p(p) remains as before. 

4.3. Example. Consider the following stic y scheme LY = p ;‘Q?(W, where P = 
(a($,) n b($,))*l. A possible tree of 3 is a(&~($,) n b($,)) n b&)) n b&). The 
corresponding tree of cy is 

T = a(a(a($,) n b(Q?(&))) n b(Q?&))) n b(Q?(W)~ 

Figure 8 gives a full description {a trace) of a possible run of cy which corresponds 
to r, in a model in which 

pCa) = {isi, Si+l) I i a Ol9 p(b)={(si, Si+*)(iBol 

) = (Si 18 2 t a 2). The input/output pair contributed by this particular run 



to p’(cy) is (SO, 

uted to the final p(a ) is 
semantic definitions we get, tenotiag Ski = 

In general, by the 

wing scheme is equivalent to (i.e., has the same inte 
of Example 4.1. 

.?:(a($,)w P?($~)u(Q?($,)w(b($,)nc 2)*a ;’ false? ;’ false?. 

Muitively, the sticky Mels $, , $i2 corres and to the labels 1.6 resgxtively in 
ches reach a nonexistent 



tively.) 
We note that c-reg schemes might not be flex ram QI ;/ii? means 

that p is to be executed from every end-poi IS may cause difficulties in 
some 62~s in hich we might want to distinguish between two (or more) types of 
end-states, and procee erently from each type. L 
a rsm similar to 53 ut so that cy is allowed to 
0 end-states. The I of these capabilities in the c-r 
why both programs of Examples 4.1 and 4.2 are co 
C- (P 9 (where stan r propositional ch: 
tion for introducing the mechanism; of concurrent goto schemes and sticky schemes 
described before. 

4.4. The kill command 

It is sometimes 
processes of a co 
processes of a pro 

end-state of e@e 

program, so that further subprograms, an the final evaluation of the scheme, 
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not refer to these branches. For example, consider the program 

cy =(an(b; kill)); ((c; kill)nd); A?. 

Figure 9 presents a possible trace corresponding to a run of ar in a model in which 
($1, 4 E P(Q), 01, s.9 E p(b), ( ~2,s~) E P(C), (s2,sd E p(d) and SSE dA)- 

The semantics of the kill command may be defined by p&ill) = {(s, 0) 1 s E S}. 
Thus, the input-output pair contributed y the trace of Fig. 9 to p(a) is (sI , (s5}). 

Note that if (s, 0) E p(a), then (s, 0) E p( a ;/3) for every program Is_ 
The resulting classes of schemes are denoted by the superscript K, e.g., c-regK. 

This section contains some comparisons between the different scheme types 
defined in the previous sections. Throughout, we use the ilowing uninterpreted 
(schematic) notions of equivalence. Two formulas cp, # are equivalent (V = #) if 
T(P) = n(q) in every model For two logics L1, L2 interpretable over models as 
above, we say that L, s 1 ._2 if! for every formula (p E L, there is an equivalent formula 
i/E !+ L1 = L2 iff L, s L2 and L2 s L1. L, < L2 iff L1 s L2 and not L2s L1. Similarly, 
two schemes cy, /3 are equivalent (a, = 8) if p(a) = p(p) in every model A. For two 

es of schemes C,, Cz interpretable over models as above, we say that C, s C2 
C, there is an e chemep&,2.Cl=C2iff C&Z2 
C+C, and n 

never showing equi o classes of schemes, we assume 
t the logics used by the two classes for tests are equivalent in expressiveness. 
t is, if schemes in C, use formulas of L1 in tests and C2 uses L2, then we assume 



L, = L2. No other constraints are imposed on the tests. On the other hand, strict 
inequality results will be shown only with tests in restricted lo 
the propositional level and QF (the quantifier-free subset of first-order logic with 
equality) on the first-order level. For instance, the followin is obvious, due to the 
fact that the concurrent semantics naturally extends the 
concurrent scheme like cy = a n b may have a pair (q , { s2, s3}) in its int 
p(a), .which no sequential scheme has. 

5.1. eorem. reg( P, PC) c c-reg( P, PC). 

It is also clear from the definitions that the following theorem holds. 

5.2. Theorem. c-peg! P, L,) s sticky! P, L,), assumhg L1 s L2. 

Furthermore, when the logics are not too powerful (e.g., PC), the class is 
strictly stronger. 

53. Theorem. c-n&P, PC) < sticky! P, PC j. 

Proof. Consider the sticky(P, PC) scheme 

seg = (a($,) n b&))*l :’ a(%,). 

Consider a model in which S = N (the integers), p(a) = {(i, i+ l)i i a 0}, p(h) = 0 
for every atomic program b # a and 7r( 0) = 0 for every atomic proposition Q. In 
this model 

p(seg)={(i,{i+l,...,j})(j>i30}. 

We show that in this model, no c-n&P, PC) scheme has the same interpretation as 
seg. This is done as follows. Observe that the interpretation of seg has two interesting 
properties: it has unbounded concurrency, in the sense that the sets of end-states 
are of arbitrary (countable) cardinality, yet in each such set all states occur with 
multiplicity 1 (so we actually have sets of end-states, rather than multisets). We 

show that every c-n&P, PC) scheme vi lates at least one of the 
Note that in the model at hand, the interpretation of every c- 

a! can be fully described by a collection R(a) = {A,, . . .}, where e 
of integers, Ai c Iv, so that 

p(a!)={(i,{ii-jIjEA})(iaO,Ae 

The collections R(a) are defined inductively. The definition is similar in nature to 
that of the interpretation p; R(a) can in fact 
p(a) to pairs whose start-state is 0. The formal definition is left to the reader. The 
fact that R(a) completely characterizes P!(Y) in the above sense can bc shown by 
induction on the structure of the schemes and is omitted too. 
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Using this characterization, we say that a scheme a has bounded concurrency, 
or BC, if 3K, E N such that VA E R(a)(fA( s K,). We say that a is multiple, or 

ULT, if 36 E R(a)(A # set(A)). 
It remains to prove that every scheme in c-r&P, PC) is either BC or 

is again proved by induction on the structure of schemes. Atomic programs and 
tests are clearly all BC. Consider the case a = /3 w ‘y. If either /3 or y are 

then so is a. Otherwise both are BC, so a must be BC too, with & = max( 
The ca,ses of a = p n y and a = /3 ; y are proved similarly, with the new bound K& 
(when applicable) being K, + and K, l K, respectively. Finally, consider the 

case a = j3*. If every A E R(p) is a singleton, then the same holds for R(a), so a 

is BC. Otherwise there exists some A E R(#I) with at least two elements 4 j E A. Now, 

if i ==j, then j3 is MULT, so a is MULT too. Otherwise, there is an execution of a 
corresponding to two consecutive executions of /3 in which A is used in all applica- 
tions of /3. This execution yields a multiset A” E R(a) in which the number i + j 
appears at least twice. (The first execution of A fro‘.& a state k leads to the states 
k + i and k + j, and the second execution leads to the states (k + i) + j and (k + j) + i 

(among others).) Thus again a is MULT. El 

Next we prove the equivalence of c-goto and sticky schemes. 

5.4. Theorem. c-goto( P, L,) = sticky(P, L,), assuming L, = Lz. 

f. Let a be a scheme in sticky( P, L, ). By Theorem 2.1, there exists a regular 
tree grammar G* equivalent to a (i.e., generating the same set of trees). G, can be 
translated into a c-goto( P, L,) scheme @ with the same tree’s (modulo substitution 
of symbols $i E &). This is done in three stages. In the first stage, for each variable 
A with production rules A + tppl 10 l l [ (P&, we introduce new variables Al,. . . , Ak and 
replace these rules by the rules 

A+A& l l IAk and A1+rp ,,.. .,Ak+qk. 

This obviously yields an equivalent grammar. 
In the second stage we attach a unique (even) command label IA to each variable 

A, and change production rules into rogram segments in the following way. Any 
production rule A + A, I l l l I Ak is transformed into IA : goto lA, or l l l or I,+. Similarly, 
any production rule A + (B) n (C) transforms into lA : goto lD and Ic. Production 
rules of the form A + d(B) transform into the two consecutive commands IA: d; 

lB, and any production rule A -, $ is transformed into l* : goto iend. 
inally, in the third stage we organize the resulting program segments sequentially 

bitrary order, except that the segment belonging to th 
appears first (we assume, w.l.o.g., that the start symbol is unique). 

y in a consistent way, and lend is replaced by m + 1, 
er of command lines in the final program. 
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It is easy to see that the resultin (or actually, the corres 
grammar Gp described in Section 4.1) has the same set of tree’s as G_ except that 
G, uses a single symbol $ while C, use several such symbols. 
has no influence on the semantics si fter deriving the tree’s of 
sticky labels are erased from the semantical interpretation p. The 
Finally, obtain an equivalent scheme y in otof P, Lz) by re 
in /3 with an equivalent test Q’? from La. 

The converse direction is shown in a similar (somewh 

. The underlying translation algorithm from c-got0 to stie , based on the proof 
of Theorem 2.1 (see [ 6, Lemma X7]), might yield a stic scheme (at most) 
exponentially larger than the original c scheme. This fact bears influence on 

plexity issues discussed later. 

Finally, note that the program kill itself is not programmable in any of the classes 
since p&ill) = {(s, 0) 1 s E S}, and, for every program u in the above classes, in every 
pair (s, U) E p(a), U # 8. Therefore, it is obvious that the classes with kill are proper 
extensions of the original ones. For instance, we have the following theorem. 

55. Theorem. 0reg( P, PC) c c-regK( P, PC). 

6. Dynamic bgics of concurrent schemes 

6.1. ilhe logks and their semantics 

Dynamic logic (DL) is a logical framework for reasoning about programs (cf. 
[7]). Most research in this field has concentrated on sequential programs, i.e., 
flowcharts and while schemes, as well as certain higher-level versions such as 
context-free and recursively enumerable programs (cf. [7]). In [ 181 we proposed an 
extension of DL, named CDL, which is capable of dealing with concurrent regular 
schemes of the kind described in Section 4.3. The logic was discussed both on the 
propositional and first-order level. In the sequel we will refer to this logic (on the 
propositional level) as c-reg-PDL, in order to distinguish it from other versions. 
The schemes were allowed to inductively use ‘rich tests’, i.e., the logic defining the 
class of allowed tests was c-reg-PDL itself. 

his section we disc 
schemes, namely c- 

rich tests), in addition to 
We first give a precise definition of c 

collection of atomic prop 
Every P E AP is a formu 
subset of c- L) and cu is a c- 
are formulas too. 

obtained by admitting c- 
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Formuh of c-gob-PDL are interpreted over models as described earlier, which 
contain a 3asic interpretation tr for the atomic propositions of AP alone: ~f( P) is 
the set of states satisfying P for every P E AP. This in erpretation is extended as 
follows. 

n(AvB)==?r(A)u=(B), w(TA) = S-v(A), 

rr((dA) = 1s t 3 Ws, W E p(a), set( V) c_ -4 A))}, 
where p(a) is the interpretation of the scheme a as defined earlier. Note that the 
definitions of p and ?r are interleaved inductively since formulas involve schemes 
and schemes involve formulas (in tests). 

Next we define sticky-PDL. This logic is based on the full interpretation relation 
of sticky schemes p%. It combines formulas and programs by admitting a formula 
(a)A, where A = (( ij : A,,) f 1 <j s k} is a tuple of labeledformulas, and 1 s i, < 9 . l < ik. 
The semantics attached to such a formula is 

a((a)A)=(s)3U((s, U)E~‘(LT)AV~((~EAA~E U)+set(U,)c v(Ai)))}. 

Thus, the states of Ui, interpreted as the leaf states labeled by $i, are required to 
satisfy Aj. If there are no leaves labeled $i, then the formula Ai is ignored. Conversely, 
if there is ho formula Ai I&& A, then no requirement is made of the leaves labeled 
$i (or, put another way, we take Ai to be true). 

The logic c-reg-PDL is defined in a similar way, on the basis of the class c-r@ P, L). 
It is also possible to define a version of sticky-PDL based on the restricted relation 

p, i.e., interpreting all leaves in the same way and ignoring the iticky labels. In such 
a version, the connection between programs and formulas is achieved in the usual 
way, by a formula (a)A, where a single formula A is required to hold at all leaves, 
regardless of their labels. This version is equivalent in expressive power to the 
present one since (cr )A can always be written as (a ;il Ai,?( $0) ;s l l c ;ik Ai, ?( $*) > true. 
However, the logic in our definition lends itself better to axiomatization, as programs 
may be conveniently decomposed. 

The logics obtained by allowing the kill command are denoted by the superscript 
K, as for the classes of schemes. Note that (kill)A is valid for every formula A. 
Hence, (cu n (p ; kill))A for example is equivalent to (a)A A (p)true. 

mple. Let us consider Examples 4.1 and 4.4 once again. The formulas 
(prog,)true of c-goto=PDL aad (prog2)true of sticky-PDL are satisfiable in a state s 
iff prog,/prog* are executable successfully from s. An equivalent formula is express- 
ible in c- K-PDL: 

form,:(a*;((Pv Q)?;killu 

(c;(Q?;killu e?)n b;a*;((Pv Q)?; ill u true?))*) ; Mse?)true. 

to force aPI branches to terminate, satisfying the 
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Moreover, we show in the next section that the kill command a ds no power to 

-PDL (due to the presence of ‘rich tests’). Indeed, an equivalent formula 
is: 

form,:(a*;(P?u(((b;a*)P)?;cu(b;a*nc))*;Q?))true. 

Intuitively, * in this formula of the node 6 
can be executed to reach a state satisfying P, then only e 

; ti*n c is executed. All branches must end with 1~ .ves 
I 

The rest of this section contains some expressiveness results concerning the 
dynamic logics defined above. 

6.2. Znterconnectians 

Our first claim is that c-goto-PDL and stic -PDL are equivalent in expressiveness. 
Define the following sequences of classes of schemes GPi and logics 

ia0: Let GPL be t e language of propositional calculus involvin 
propositions AP = { 41 0). For every i 2 0, 

(1) let GP,- be c-goto(P, GPLi), and 
(2) let GPLi+, be the subset of c-goto-PDL based 0-1 the schemes of f ‘Pi alone 

(i.e., the collection of formulas containing atomic propositions an closed under 
9 v +,l(p and (cu)true for a scheme cy E GPi)= 

Define the sequences SPi and SPLi similarIy, based on sticky schemes. Then 
C~Oto-PDL=Ui~~ GLi and sticky-PDL = Ui~o SLi. 

6.2. Lemma. For every i 2 0, 
(1) SPLi = GPLi, and 
(2) SPi = GPi. 

of. By induction on i. For i = 0, statement (1) is trivial and statement (2) follows 
from Theorem 5.4 together with the first statement. For i> 0, each of the two 
directions of statement (1) is proved by induction on the structure of formulas, 
where formulas of the form (cw)true are resolved by part (2) of the inductive 
hypothesis for i - 1, and statement (2) follows as in the case of i = 0. q 

6.3. Theorem. c-goto-PDL = stic 

Proof. First we have to overcome the differences in the format of formulas involving 
the ‘diamond’ connective. To this end, we assume that every formula <a)A in 
c-goto-PDL satisfies A = true. This causes no loss of generality since every formula 
(cu)A has an equivalent formula (( oy, 1~ + d l Q contains M 

where here any 

is sirmulated y the formula 

l l ii*Ai, ?($i,))tme. 

Now the proof is completed using Lemma 6.2. El 
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Note that Theorem 6.3 holds also for the same logics with ‘poor’ tests, e.g., 
confined to propositional tests. 

Following a remark made in the previous section, we note also that formulas in 
c-goto=PDL may be exponentially more succinct than the equivalent ones in sticky- 

PDL. This is in accordance with a similar observation made in [IO] regarding the 
relationships between regular PDL and PDL of flowcharts. 

Finally, we observe that, in contrast with the situation for schemes, the kill 
command does not strengthen the corresponding logics, not even c- -PDL as 

expressed in the following theorem. 

6.4. Theorem. c-regK-PDL = c-reg=PDL. 

Proof. See Appendix A. D 

A major problem left open by this paper is proving (or disproving) the following 
CNljXtU~c?, 

6.5. Conjecture. c-repPDL < sticky-PDL. 

6.3. Relationsh@s with the pcalculus 

In this section we discuss relationships with the p-calculus. The propositional 
p-calculus L,, defined by Kozen in [12], can be viewed as another extension of 
PDL. Its syntax contains atomic formulas Pi, atomic programs ai, and the following 
construction rules: 

(I) each Pi is a formula; 
(2) if A, B are formulas, a is an atomic program and F(R) is a formula with 

positive appearances of a new atomic symbol R (i.e., such that F contains no 
subformulas of the form pR.F’), then A A B, A v B, TA, (a)A and pR.F(R) are 
formulas. 

The semantics interprets formulas over models (S, n; p), where S is a set of states, 
T attaches a subset r(P) of S to every atomic formula P, and p attaches a subset 
p(a) of SxS t o every atomic program a. We extend ?r to every formula by the 
following rules: 

n(A v B) = n(A) v R(B), ?r(A A B) = r(A) n r(B), 

and 

r(lA) = S- r(A), m((a)A) = {s I Mb, 0 E p(a) n t E dA))h 

n(pR.F( R)) = min{ U 1 U E S A U = F(U)}, 

where F(U) stands for T( F( R)) with n( ) = u, 2nd the minimum is taken w-r-t. 

the subset ordering. 
or example, the P L formula (cu*)A can be expresse in L, as pR.(Av (a) 
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Consider the continua of L,, named CL,, obtain 
tional requirement that, in each ula pR.F(R), appearances of 
negations at all. (This definition parallels that of Park [17] for the first-order 
continuous p-calculus.) 

6.6. Theorem. CL, =c-goto-PDL. 

Proof. (G): Let A be a formula in CL, involvin only k p-subformulas, p&fi( 
1 s i ss k A can be described as being constructed from occurrences of the symbols 
Ri, 16 is S and M maximal R-free formulas GI, . . . , G,,,, combined by the con- 
nectives B A C, B v C, (a)B and pRi.Fi(R,). Negation may appear only within the 
subformulas G, , . . . , G,, due to the continuity requirement. 

We construct a c-goto(P, PC) program a 4 such that (aA)true= A. For every 
subformula B of A as just described, add a program segment starting with the label 
lB as follows: 

B = Gi (R-free): 

B= Ri: 
B=CvD: 
B=CnD: 
B=(a)C: 

B= pRi.F,(Wi): 

IDSi? 
- : halt 
1B : got0 lFi 
l* : got0 Ic or lD 
le : got0 lc and lD 
l@ : a 
- :goto lc 
ljg : got0 rF,. 

The segment starting with lA has to come first, but otherwise the segments can 
be combined in an arbitrary order to yield a,+ 

(a): A formula in egoto=PDL is translated into CL, by structural induction. 
Consider the case of a subformula @)A. It is first transformed into ((cu, rn + 
1: A?))true (assuming ar = (1: yl,. . . , m : ym)). By the inductive hy 
assume the existence of an equivalent formula A’ in CL, for every formula A 
appearing as a test A? in the program. Then we construct a formula A, in 
CL, s.t. (a,)true= A,. 

The idea is to associate a recursion symbol RI and a formula ~&F’(R~) with 
every command 1:~ (l~l~m+l). 

A “goto 1” is then interpreted as “R,“, or as “y,R,. Fl( R,)” if this is the first 
occurrence of 1 in this subformula. A c-goto-PDL formula (au)true can be translated 

directly into CL, if the graph description of ac is a tree with ‘backward edges’. That 

is, its only goto arcs are either forward or to some predecessor (e. 
prog, of Example 3.1 is in such form). In contrast, for a general 
the resulting CL, formula may have several (not necessarily identi 

ell I, wirinin dl%erent su ulas, ue to the process of unwinding it 
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into the desired form. For example, if 

a=l:goto2or3 
2:goto3 or 4 
3:goto2 or 4 
4: A?, 

then the described translation scheme for A, first yields @?J$(RI), and further 
manipulation yields 

Proceeding to construct & and F3 we see that each Fi has to call the Rj symbol 
of the other: 

This is not allowed in the formalism of CL,. Thus, for instance, F2 will have to 
contain a copy of F3 in place of R3. This way we finally obtain 

@I .(PRz.(PRJ(Rz v P&.~A’IJ v &.(A’)) v CLR~.(~~Z(R~ v /&-(A’)) v &.(A?)), 

where A’ is the equivalent of A in CL,. 
The formulas are constructed recursively, keeping, for each subformula FI(R,), 

a set V, of labels i s.t. F1 is internal to a copy of Fi, SO Ri may be used to represent 
“goto i”. The construction goes as follows: A, is set to be pR,. FI( R,), and VI = {l}, 
and then the formulas Fj are constructed according to the command ‘yI, by the 
following rules: 

Case yr = got0 l’or 1”: Let F, = B’ v B”, where B’ = R,- if 1% V,; otherwise B’ = 
F RI*. FtS( RI+), where Fi+ is constructed recursively with Kg = V, v { 1’). B” is defined 
analogously with respect to I”. 

Case ‘ye = goto I’and I”: Let Fr = B’ A B”, where B’ and B” are defined as in the 
previous case. 

Case yI = a: Let FJ = (a) B, where B = RI+, if I :- 1, E V,; otherwise B = 

PRI+J?+~(R~+~), where F 1+1 is constructed recursively with V,,, = V, u {I + 1). 
Case yI = A?: A special case is when I = m + 1. In such a case we just let F, = A’, 

the equivalent of A in CL, by the inductive hypothesis. Otherwise, let FI = A’ A B, 
where is defined as in the previous case. 

It is clear that the construction terminates, as the sets V, cannot grow larger than 
size rpt, which bounds the depth of recursion. I*, is also clear tinat the resuiting formula 
is equivalent in meaning to (ar)true. 0 

pie. The CL, formula corresponding to (prog,)true of ogoto-PDL is 

dWP v WR, v p&.(Q v W& A (c)R,))). 

e CL, formula equivalent to (even&rue from Example 4.2, i.e., strntrng that 
btree rooted at a state s as an even number of leaves, is 



Concurrent program schemes and their logics 29 

In both examples, the R, (R,) fixpoint corresponds to the node labeled 1 (6) in 
the c-got0 graph, or to the stic y label $, ($*) respectively. 

7. Validity and axiomatization 

In [ 181, c-reg.1 ?DL was given a complete axiom system and an elementary decision 
procedure. In fact, this was done for a monotone version of the logic, whit 
subset of Parikh’s game logic [la]. The monotone version requires p(a) 
monotone for every program cy, in the sense that if (s, U) E p( cu) and U c G 
also (s, V) E p(a). This requirement may be expressed equivalently by 

(1) defining p(P?)={(s, tJ)(s~(Un?r(P))}, and 
(2) limiting the set of possible models to monotone tnodels, i.e., models in 

every atomic program is monotone. The axiom system shown complete fc 
version in [18] is an appropriate axiom system for PDL or the ‘dual-free’ 
logic 116) with the obvious extra axiom for n: 

(An) (cu n p)A = (a)A A @)A. 

This axiom 
the following 

system 
axiom 

can be augmented 
scheme: 

:h is a 
to be 

< then 

which 
jr this 
game 

to cover the nonmonotone version bY adding 

(Av) (a)(A v B) = (a)Av(a)B for any atomic program a. 

Completenerss of the nonmonotone system will not be shown here explicitiy. 
Hnstead, we give a more general axiom system for (the nonmonotone version of) 
sticky-PDL any! prove its completeness, in a way that extends the proof for c-reg-PDL. 

Recall that labeled formulas are denoted by A = { ( 4 : A,,) ( 1 sj s k}. Let A[ i/ B] 
denote (A-((i:Ai)})u{(i: B)}, i.e., A with B replacing Aj. The axiom system for 
sticky=PDL iis ihe following: 

Axiom schemes 

(Al) All tautologies of the propositional calculus, 
(M) (%i){ (i : Ai)} z Ai, 

(A3) (B?(P)jA=(B?($,);‘P)A, 
(Ad) (B?(Si))((i: Ai)) E B I\ Aig 
(AS) (a(P))A z (a($i) ;‘p) for an atomic program a, 

)}=(a($,)){(i:A)}~(a($~)){(i: B)} for an atomic program a, 

j : A)} for an atomic program a, 
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(All) (a*l)A= Ai v (a)A[i/(a*i)A], 
(A12) (a)A=(a)(Au{(i:Bi)}) for $iea, iEA, 
(A13) (a)A=(a)(Au{(i:true)}) for $iEa, SA. 

Inference rules 

(MONO) 

(IND) (for any 1 s is k) 
‘,a)A 3 Ai 

Axioms (Al2) and (A13) cover the cases where the set of sticky labels occurring 
in CT does not coincide with the set of indices of the formulas; (A12) treats a formula 
Bi with no label $i among the leaves of a, while (A13) treats a label $i in a with 
no matching formula. 

7.1. Theorem. l%e above axiom system is complete for sticky-PDL; moreover, the 
validity problem for the logic can be decided in nondeterministic exponential time. 

Proof. See Appendix B. El 

By the remark following Theorem 5.4 we have the following theorem. 

7.2. Theorem. 7%e validity problem for c-goto=PDL can be decided in nondeterministic 
double exponential time. 

lean schemes a 

8.1. Boolean sequential schemes and logics 

The introduction of Boolean variables to propositional schemes and logics was 
proposed by Abrahamson [l] in the framework of propositional dynamic logic. The 
language of the schemes is extended with a set (Xi} of Boolean variables. These 
variables may appear in the atomic operations 

(ASSIGN) 1:X+0 or 1:X+1, 

and the formulas X = 0, X = 1 are allowed in the language, including within tests. 
This gives rise to a new intermediate level between the propositional and the 
first-order ones, namely, the Boolean-variable level. We may consider either the 
goto schemes or the regular schemes of Section 3. The resulting classes of schemes 
are denoted , L) and , L), and the corresponding llogics are denoted 
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reg=BDL and go -BDL. The semantics has to be extendeti and based on th 
of Boolean models. Such models employ extended states, which consist oft 
a state s and an int ation 1: {Xi}+ (0, 1) for the Boolean variable 
such a Boolean mod is of the form (S&, Q, P&, I&, wherccl 
are as on the propositional level, and I& is the initial interpretation for the Boolean 
variables. The definitions of v and p need to be extended accordingly, and to 
address the extended states (s, I). Ani atomic formula X = 0 is interpreted as 

ilarly for X = 1. The atomic operation X + 0 is interpreted as 

P(X + 0) = MS, 0, (s, wxl)) I s E a, 
where I[O/X] is an interpretation equivalent to I, except that X is interpreted 
as 0. (Similar notation will be used in several different contexts in the sequel.) The 
operation X + 1 is interpreted analogously. 

The usual atomic propositions and programs do not affect t e interpretation I. 
Thus, 

and 
P(P) = {(s, I) 1 I is a Boolean interpretation, s E Q(P)}, 

Pb-4 = m 0, b’, 0) II is a Boolean interpretation, (s, s’) E pA( (a)}. 

Extending 7~ and p to arbitrary schemes and formulas is done exactly as on the 
propositional level, regarding extended states (s, I) as states. Finally, a formula A 
is satisfied in the model .4t iff there exists a state s E S s.t. (s, I_& E r(A). Thus, 
although our state space contains all possible pairs (s, I) (i.e., for any s E S and any 
interpretatio., I), only the special pairs (s, I&) are considered when defining the 
notion of satiafiability. 

Hereafter, schemes and logics of this kind (i.e., equipped with Bcolean variables 
and interpreted over Boolean models) will be referred to as Boolean schemes and 
Boolean log&. 

Note. The Boolean-variable level forms a certain synthesis between the propositional 
level and a version of the first-order level (discussed in the next section) restricted 
to the fixed domain D = {0,1). There are several plausible ways of defining the 
precise notions of model, interpretation and satisfiability on such intermediate level. 
For instance, we could define the set of states as a collection of pairs (s, I), or 
alternatively discard Id completely and cocsider the whole of {(s, I) 1 s E S, I is some 
interpretation} as the model’s state space. We chose to follow the version described 
originally in [l]. Similar results apply for other definitions as well, usin 
general methods. 

As noted by Abrahamson [I], schemes and logics equipped wi 
are really incomparable with propositional schemes (and lo 



s in the propositional level cannot re 

Boolean variables. Thus, every Boolean SC 
propositional schemes, one scheme for each possible 
to the variables. The interpretation of any of the p 
to the ‘state part’ of the ginal scheme, assumr 

Let L1 be a Boolean 

simulated by a set 

schemes and C2 be a class of propositional schemes. 
For a formula AE L, involvin 
B E L2 and a Boolean tuple b = 

for every state s and every interpretation 

s E w(B) e (s, I[bf X]) e r(A). 

L1 G I L2 iff, for every formula A E L1 (involving X) and fsr every Boolean tuple b, 
there is a formula As E L2 s.t. A =Q Aa. I+ =I L2 (I- * knee) iff L, s, L2 and 
L,G LI. Similarly, for a scheme Boolean variables X = 

(X ,,...,Xm), a scheme /3HZ2 and a ,r.. ., b,), we say that 
cy = b @ (b equivalence) i& for every state sI ) s2 and interpretation II s X2, in every 
Boolean model, 

C1 6 l C2 8, for every scheme a E C, (involving X) and for every Boolean tuple b, 
there is a scheme ah E C2 s.t. a sb a&. C, = f Cz (I-equivalence) iff C, s-r Ctp and 
c+c,. 

These definitions give rise to two possibilities for full comparison of a Booiegan 
system with an I-equivalent propositional one. Each of these possibilities requires 
a change in one of the logics to form a common basis. 

The first alternative is to consider Boolean models. This requires extending the 
semantics of the propositional system so as to allow it to recognize Boolean variables 
as mic predicates (thou h it cannot act upon them). 

e other possibility is consider propositional models. ese models do not 
cW&k UI & co~pQW%I~, so eke iT&<& iIM!!~W&Q~ fQT tk!z BQ&z&~ Vati&& is 
undefined (I(X) = f ). This requires us to restrict the Boolean system in such a way 
that to Boolean variables values must be assigned before they are tested. 
semantic rules for the resulting system wiI1 construct the interpretation I fo 
variables gradually, defining I(Xi) only after Xi is assigned to for the first time, 

nstance, (X + 1; a)(X = 1 A P) is a legal formula in the language, but (b; X = 
is not, as it has no interpretation in a proposition21 modeI. 

1 9 Lz, C1 and C2 be as above. Denote by L& CF the systems obtained by 
g to the dirst alternative, and denote by Lp, Cp the systems 

ave t 
lemma. 



f. Similar. 

Abrahamson [I] shows th 
ith Boolean v 

section we extend our concurrent schem 
and study the resultin 
extending Abrahamson’s observation to the concurrent case. 

8.2. Boolean concurrent schemes and logics 

It is possible to add Boolean variables to the concurrent schemes and togics, just 
as for sequential pro +ms. This requires extending the semantics accordingly, and 
including an interpretation I : {Xi) + (0, I) for the Bootean variables in every 
‘instantaneous description’ of the process. In the case of the c- schemes, for 
instance, the semantics p(a) of a scheme a becomes a set of s of the form 
((s, I), U), where U is a set of pairs U = {(sip IJ). For such a set we denote by U” 
the set {sj 131i((si, Ii) E U)}. The interpretation of the operations X + 0 (X +- 1) and 
the tests X = O? (X = l?) is the same as in the sequential case, retaining the sequential 
nature of these primitives. 

Similar semantics can be defined for Booiean varia 
The resulting lasses of schemes are denoted 
goto(B, L), an the corresponding lo 
c-goto=BDL. 

Note that we use variables only as local ones; any distinct proce 
its own copy of the variables, and has no knowledge of or influe 
of other processes. This is in contrast with a version define 
variables (alon set operation) were used as sha 
in a much more powerful system, in which communication is 
processes. 

These logics can also be defined as the uni 
done before for positional logics. 

j for iM: 
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Let GB he language of propositional calculus involving atomic propositions 

AP=(qJj‘S~:~,~{Xi=O,Xi=lIi~1). Forevery ia0, 

(11 let GBi be c-g@ B, G 
BDL based on the schemes of GBi alone 
g atomic propositions and closed under 

9 v #, 1~ and (a)true for a scheme a E GBi). 
z Ui~~ GBLi. 

e is equivalent to even1 of Example 4.2, or to even, of Example 4.5. 
nd ts the labels $, and Sz there.) 

ressivenesq resuh 

!Most of the basic results from the propositional level carry over to the Boolean- 
variable Iwc!. n particular we have, analogous to Theorems 5.1, 5.5, 5.4, 6.3 and 
6.4, the fC!owing theorem. 

0, PC) < c-reg( B, PC) < c-reg”( B, PC). 
) = sticky( B, L,), asmming L, -= L2. 
== c-goto-BDL. 
= c=reg-BDL. 

One significant difference is that, unlike the propositional case, on the Boolean- 
le level ‘one sticky label suffices’, i.e., c-reg schemes are as powerful as sticky 

ones. 

, Li) = c-got@ B, L,), assuming Ll= L2. 
-BDL = c-goto-B 

(1): The s-direction is trivial. The proof of the 2 -direction goes along the 
f the proof that sequential schemes can be translated into w 

using propositional 
Eetar=(ky,,..., 

ables whose values 
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For every line I in nly construct a subprogram clyl as s: 
Case 1: a: Let QI~ be = /?;a; + I + 1, where a is an atomic pro 

Boolean assignment. 
Case 1: P?: Let (Y/ be where P’ is the equivalent of P in L, . 
Case kgoto I’ or I”: Let atI be X=Z?;( 

Case I; goto 1’ and I”: Let cyI be 
Finally, the entire program is replaced by 

( ) 
* 

&=X*-l; u Qf ; X=m+l?. 
lskrn 

Note 
scheme 

scheme. 

that, contrary to the situation on the propositional level, the c-r Y 
simulating a c-got0 scheme is only polynomially larger than the original 

(2): Shown by using the technique of Theorem 6.3, and relying on part (1) of 
Theorem 8.5. III 

The main result of this section concerns establishing Abrahamson’s result in the 
concurrent setting. Comparisons of Boolean and propositional concurrent schemes 
are based on the same notions as for sequential schemes. The only definition which 

requires some change is that of b-equivalence of schemes. For a scheme QI E C1 
using Boolean variables X = (X, , . . . , AT,,), a scheme p E C2 and a Boolean tuple 
b=(b 1,. . . . b,,), we say that ~1 s6 p (b equivalence) iff, for every state s, every set 

U = {( Si, Zi)‘ll s r’ G k} and every interpretation Z, in every Boolean model, 

((s, mQm), WE PM e=, (s, U”k PW 

We show the following theorem. 

8.6. Theorem. c-goto(P, L,) = l c-goto( B, L,), assuming L, = I Lz. 

Proof. We only have to show that whenever L, s I Lz, c-goto( B, L,) s I c-goto( P, L,). 
Let Q! be a given c-goto( B, L,) scheme, and let 6 be a given Boolean tuple. Construct 
2” identical copies of cy, denoted cy’, . . . , LY*“~ with the labels of CT~ being lj, . . . , m’. 
The idea is that a run of the new program will reach label Zj just when the original 
Q! had to reach label I with X evaluating to j when read as the binary representation 

of a number, X, . . . X,. Now replace any Boolean assignment 1’ : Xi c- 0 by Z’ : goto( Z + 

l)“, where jr is identical in binary representation to j except that its ith digit is 0. 

Similarly for Xi + 1. A test lj : A? is replaced by I’ : Ap, the -equivalent of A in 

L2, where ti is the binary representatioq of j. Finally, concate e ah the 2” schemes 

into one (consistently renaming labels) starting with the scheme ai6, where jb is the 
number whose binary representation is 6. 0 

By Theorem 8.1 we get the following theore 
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Statements similar to Theorems 8.6 and 8.7 hold for siic 
Turning to the logics and comparing Boolean logics with their propositional 

counterparts, we have the next result. 

mma. For every i 2 0, 
(1) GBL, =$ GPLi, and 
(2) GBi s 1 GPi. 

By induction on i. For i = 0, part (1) is straightforward. For instance, for the 
formula A = (Xi = 0) and for a Boolean tuple b, let AL = true if bi = 0, and false 
otherwise. Part (2) follows from Theorem 8.6 together with the first part. The i>O 
case is handled as in Lemma 6.2. El 

Consequently, we have the following theorems. 

.9. eorem. c-goto_BDL = I c-goto-PDL. 

8.10. Theorem 
(1) c-goto-PDLB = c-goto_BDL, and 
(2) cogoto=PDL = c-goto-BDLf. 

As for the size of schemes and formulas, the Boolean-variable level is in general 
exponentially more succinct, in both the cases of sticky and c-goto. This is in 
accordance with 5;. similar observation of [I] with regard to regular (sequeiltial) 
PDL vs. BDL. 

Due to the exponential blow-b p in the translations from sticky(B, L), c-r&B, L) 
and c-goto( B, Ll t 3 sticky( P, L j schemes, we get, by Theorem 7.1, the following 
theorem. 

.11. eorem. 7%~ validity problems for sticky-BDL, c-reg-BDL and c-goto=BDL 
can be solved in nondeterministic double exponential time. 

emes and logics 

First-order sequential goto schemes are defined just like their propositional 
counterparts, except that the,atomic operations are shown to be simple assignments: 

(ASSIGN) 1: Xi + Ue 

rogram uses a tu le of variables x = {x, , . . . , x,,}, and the assignments and 
tests refer to some fixed signature; (T is a term over t re involving variables 

riate language 
e variables in X, a tes* P is simply a 



conventional definitions restrict tests to be either predicates or quantifier- 
mulas with equality (QF) over the iven signature and x, i.e., ‘poor tests’, but our 
equivalence results hold also in a ich test’ environment.) The resultin 
schemes is denoted 

First-order sequential (nondeterministic) regular schemes are regular expressions 

over an alphabet &, consisting of the assignment cornman 

P? for Ptz L, similar to definition on the propositional lev 
of schemes is de=noted 

The semantics is based on a first-oi*der structure PI,.. . ,_fi, . . .) with a 
domain D and a collection of predicates Pi and functions A. This structure induces 
an interpretation v of the formulas of the logic L, according to its specific semantics, 
and also an interpretation for terms c appearing in the assignment commands. The 
set of states S associated with such structure is the set of possible interpretations 

for the variable set x used in the scheme; every possible assignment of values from 
D to variables in x corresponds to a state. The semantics of an assignment operation 

is defined as 

where S[Us/Xi] represents a state s’ similar to s except that xi is interpreted in s’ as 
o,, the evaluation of the term o in s. 

Extending p to arbitrary schemes is done just as on the propositional level, relying 
on the interpretation of assignments as atomic programs, and formulas of L appear- 
ing in tests. 

The associated dynamic logics are denoted reg=QDL and goto-QDL, and they are 
defined analogously to the propositional logics, on the basis of first-order logic with 

equality (cf. [7]). Thus, the atomic formulas are predicates P(u) where a is a 
tuple of terms. Their truth value in a state is determined by the value of P(a,) in 
the structure. Here we use rich tests, i.e., the language of tests is reg=QDL (or 
goto_QDL) itself. 

The classes of concldrrent goto and structured schemes, and the corresponding 

logics, are obtained on the first-order level just as was done on the propositional 

level. The resulting classes of schemes are denoted c-goto(Q, L), 
sticky(Q, L), for any appropriate logic L. The extension of the se 
parallels what was done in S&ion 4 for propositional concurrent schemes. The 

corresponding logics are denoted c-goto-QDL, c-reg-QDL and stfcky-QD 
Again, the resu’rts of the Boolean-variable level carry over to the first-order level, 

and we have the following theorem. 

9.1. Theorem. 

(4) s-goto_QDL = stic 
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The proof of part (3) is identical to that of Theorem 8.5, except that the basic 
operations are assignments, rather than just unspecified atomic letters. The require- 
ment that the logics used for tests con ain at least QF is newssaT in order to enable 
tests to keep track of the labels. One problematic point is that the use of variables 
as Booleans implicitly assumes the existence of at least two distinct elements in the 

erbrand universe based on the structure plus the input values of the variables. 
However, it is easy to test this directly, and handle the exceptional case of a singleton 
(or empty) universe separately. 

A final remark concerns relationships with the ~-calculus. A result analogous to 
Theorem 6.6 holds also on the first-order level, as is shown in 1181 (with CQ, 
denoting the continuous p-calculus of [IT]). 

9.2. eorem (Peleg [ 181). c- 

AP ix A. g “kill” in c-reg-PD 

In this appendix we prove Theorem 6.3. The described algorithm for the elimina- 
tion of the kill command from c-reg schemes is based on the following simple 
observation. A program a! n /3 ; kill can be viewed as the execution of a plus a ‘test’ 
for the feasibility of executing #3. Thus, such a program should, in principle, be 
replaced by ((@)true)?; (Y. 

In order to overcome technical difficulties, we need the following definitions and 
lemmas. 

For every program ar and every formula A in c-reg=PDL define a program 69: in 
C- -PDL by induction on Q! as fo” 

qky = i sAn814);)i(~))A)?;gt\ui(~)A)?;8gA, 

. For every prog m CY and every firmula A in c-reg.PDL, 

t)={(s, U’)~XJ(~C U’S UA(S, UjEp(a)Aset(U-U’)s?r(A))}. 

By induction on the structure of cy. We present the s-direction of the case 
(Y = /3 ; y. Assume is, U’) E p( St). Then (s, U’) E p( OpjA; 0;) and, by the inductive 

y, there exist V v, s, , ul,, u, , ss, u;, II,, . . . s.t. fk V’s v, 

1, is, Vk p(B), ‘={Sl, $, l - J, U’=lfJi Ui, and 

k PiY)). 
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V-V’=(q,,q2,~a.} and a of m(( y) 
that for every qi there exists a )E p(y) and set( 
Fig. 10). Choosing W: = 0 for every i, we get that 

Denoting U=u, UiI;t;lui Wi, we get that 0~ U’S U, (s, U)~p(@;y) and 

set( U - U’) 
( ( 

=Set ~(Ui-Uf)t!lll$J 
i i )> 

A.2. Lemma. For every program ar and every formula A in c- 

p( a ; (true? u A?; kill)) = p( 63,” u ((a)A)?; kill). 

Proof. Assume (s, U) E p( cy ; (true?u A?; kill)). Then there exist V, st ) U, , s2, 

u2, . ..s.t.(s. V)E~(~Y), U=~i U,, V={SI,S~,. . .j, and 

Wi((Si, UiJ E p(true?u A?; kill)), 
or 

Vi( Ui = {Si} V (Si E W(A) A Ui = 0)). 

Let us divide the discussion into two cases, according to whether U is em 
not. If U is empty, then Ui is empty and Si E tr( A) for every i, hence (s, V) E p( ( 
and for every i, (Si, U) E p&ill), SO (s, U) E p((cu)A?;kiil). 

In the other case, clearly 0~ U E V, set( V- U) C_ w(A) and (s, V) E p( at), so, by 
Lemma A.l, (s, U) E p(@t). 

The other direction is proved along similar lines. q 

For every program a) of c-regK-PDL define a program (Y’ and a formula 4pcI in 
c-reg=PDL by induction on Q! as follows as shown in ‘I’able 1. 

- - 
A A 

Fig. 10. 
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Table 1. 

a false 

P? P? false 

kill false? true 

WY S’ur’ %“G 
P& Y’U a,?$’ 90% 

9#3 ” WhPy 

~~‘*~~~ 

roof. By induction on the structure of cy. We present the case o (~=/3;y. By the 
inductive hypotheses, 

= P(@‘;(Y’uQ ,,?; kill)) w p(rp,o?; kill). 

The first term equals p(j3’; (true% Q~?; kill) ; f), or p(j3’; (true 

which, by Lemma A.2, equals p( @z? u ((p’)cp,)?; kill) l p( 
((p’)Q,)?; kill). Together, we get p(a)=p($Y; y’u 
p(dw cp,?;kill). q 

Finally, the desired result follows immediately from the last lemma. 

Lemma. For every formula A in c-tegK-PDL, there is an equivalent formula A* 
-PDL. 

By induction on the structure of A. The case of A =(/3)B is handled by 
choosing A’ = (8’) where B’ is the equivalent of B from the inductive 
hypothesis. EI 

leteness proof for sticky-P 

We show that the axiom system proposed for stic -PDL is complete. For this 
purpose we need to define an alternative semantics (p”, d) fo 
is obtained in two stages. In the first stage we redefine p(a) d 
tree language in retation. This is done inductively as follo e definition of 

?( (u)) and p( a! n p) is similar to that of ps for tree’s, given in 
ion, 



where RI l iR, is defined (for an 
in Section 4.1) as 

0 sets 

A Vj, 1 S jS l((sj, 
bsjr,l 

and finally, for the whole program cy, we let 

This definition is e uivalent to our original one. In the next stage we modify this 
definition by replaci g the multisets and the w-operations with simple sets and 
u-operations throughout the definition. The resulting interpretation function ps is 
not identical to our original one, even if we modify the original semantics by 
shrinking each multiset in the final interpretation of a program into a set. This 
incompatibility can be seen by looking at the following example. Consider the 
schemear=~;oc($,),where~=(a($o)~iF($oj),andassumeamodeIinwhichp(a)= 

P(b) = {(SI 9 %)I and P(C) = f(s 2, Yj), ( s2, sg)). Then, in the original interpretation, r 
has a single tree a( c($~)) n b( c($o)), so that 

Pb) = I(& 9 b3, sd), (s, 9 b3, d), (s*, bar SqDl, 

and the sets of states reachable from sr are {sJ), {Q} and {So, sq}. On the other 
hand, by the set semantics p* we have p”(p) = {(s,, {s2})}, and hence p’(a) = 

{(sl, {s3}), (s, , {s4})}, so that the set {So, sq) is not reachabte from sI . 

However, we should observe that this choice of semantics for schemes does not 
-affect the interpretation of formulas in the logics. The reason is that, as can be easily 
shown, 

(1) p”(a) c p(a) for every program cy (identifying a multiset U with the set 
set( U) consisting preciseIy of its elements), and 

(2) (s, U) E p(~)*3 U’( U* c set(U), (s, Up) E p”(a)) for every program cc. 
These two observations serve to prove that, for any formula A, 

This holds on both the propositional and first-order levels, an 
c-reg, c-goio and sticky. Therefore the vaIidity/satisfiability properties 
formulas are the same under T and $, and we may assu e the (p”, ~“7 se 
in what follows. 

ssume we are given a consistent formula 0, for w 
ce of a satis el. rst for formulas A0 using only atomic 
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tests la? in programs. Further, we assume that all occurrences of subprograms a(p) 
0 T(B) in A0 are such that /3 is $i for some i. Clearly, any A0 may be transformed 
into an equivalent formula in this form, using Axioms (A3) and (A5). The model 

constructed on the basis of the Fischer-Ladner closure of A*, FL, defined 

(1) A& FL, 
(2) A v BE FL+A, BE FL, 
(3) RAE FL~AE FL, 
(4) (a)A E FLaAi, 9 l l l 9 Ai, E FL, 

(5) (B?($i)){(i:Ai)}E FL+Ai h BE FL, 
(6) (cy u /3)A E FL =j (a)A v (@)A E FL, 
(7) (a n /3)A E FL * (a)A h @)A E FL, 
(8) (~;‘/~)AEFL+~)A[~~(/~)A]EFL, 
(9) (a*QA E FL+(cu)A, (ru)A[ij(cu’i)A]~ FL, 

(10) (cr)AcFL*(a)(A-{(i:A,)})rFLif $&Y. 
Throughout, we identify TTA with A and A A B with T(TA v 1B). 
LetFL={A,,... ) Ap}. An atorn is a consistent conjunction X = /\ I~i~.p Bi, where 

Bi E {Ai, 1Ai) for every 1 s i s p. (Here consistency is w.r.t. the axiom system of 
Section 7.) Let ‘WI = {X 1 X atom} be our world (or ‘state space’). 

Following conventions set in [23], we write AS B to denote +A 2 B, and let 
A+ = {X f X E W, X A A is consistent}. For a set of atoms U E let QU =vxEU X 

We now collect some well-known properties concerning these notions. 

.I. Lemma. For every atom X E and formula A E FL, the following conditions are 
equi0izlent: 

(1) XsA (ort_X~A); 
(2) X E A+ (or X h A is consistent); 
(3 ) A uppeurs posititrely in X. 

.2, Lemm 

(1) For every two distinct atoms X and Y, X A Y is inconsistent. 

(2) IV& X)=true. 

da A, t-A 2 QA+. Furthermore, ifA E FL, then I-A E (PA+. 

for any set of atoms 
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.6. Lemma. For all formulas A, 

Now the model we construct is 7t, p”) where rr and ps are defined 

?I( P) = p+, 

p”(a) = KX { YH I x E ((a(%*))W : Y)W~, 

for every atomic propositi program a app 
Throughcut the sequel we shall write of p”(a), for s 
every labeled set U={($ C.$)/l~j~n {(ii:pu,,)llSjSn}. 

The following lemma is proved by simple structural induction. 

B.7. Lemma. If FA = B and D is obtained from C by replacing some occurrences of 
A by B, then !-C = D. 

B.8. Lemma. For every XE 
in AO, 

Ui, 3 l l l 9 Uir S and every program QI appearing 

X A (at)pu is consistent 1 3 U’( (X, U’) E pt .& ) h %/’ 2 

Proof. By induction on (Y. We give the most involved cas %,&ta;h is ct = p*l. Assume 
X A (/~*J)P~ is consistent. Denote B = (Ig*Qpu. Let V be the smallest ,et of atoms 
s.t. Ut G V and for every atom Y, YE ((B)sU[r/p,])‘* YE K An alternative, 
equivalent definition is V = V$ , where V0 = U, and Vi+ I= Vi v ((/3)4pu [I/ QV, 1)’ for 
every i 3 0. Denote A, = ~~ and A, = pu,,, for every 1 s j =S n, 4 # 1. We need the 
following easy claims: 

B.&l. Claim. ( fl)A A l(pv is inconsistent. 

B.8.2. Claim. t-(/3 */)A 3 tpv. 

B.8.3. Claim. B+c K 

We also need the following claim. 

B.8.4. Claim. For every i > 0 and every atom Z E Vi there exists a U’E U s. t. 

(z, U’) E P(B”). 

Proof. By induction on i. 
Basis (i =0): If Z E U,, then (2, U,) E p($t), so (2, U) E p(fi*l). 

Induction (i+l): ZE vI:+1 means ZE V;: or ZE((P)~~[~/~~,])+. In the first case 

the result is immediate by inductive hypothesis on i. Now assume Z A (p> 
is consistent. By the main inductive hypothesis on p there exists a Uij c Ui, (for 
1 s js n, 4 # 1) and U; c V;: s.t. (Z, U’) E p(p). Let U; the 
inductive hypothesis on i, for every 1 s m G k there exists a mk 
p(j3*1). Choose & =UlsmSk W;” and T, = U+UISmSk r 1 s js n, 4 # 0, 

) E p(p; p*q E p(p*‘). q 

Now the proof of the pan case is completed; since 
by Claim 



D. Meg 

For every (a)A E FL and every X E ‘W, 

Xh(a)A is consistent e ~U(UEA+~(X, 

Proof. The (=+)-direction follows immedliately from Lemma B.8, viewing 
The other direction is proved by induction on cy. Here we give the following cqs. 

Case CY = /3 n y: Recall that both (8) , (y)A E FL. Assuming 3 

(X, U) E P(1B n Y)) we get that there are V, W s.t. U = Vu 
(X, W)Ep(y). Since x WE U&F, by inductive hypothesis, both X A (/3)A and 
X A (y)A are consistent, hence both (/3)A and (y)A appear positively in X, so 
X h (j#)A h (y)A is consistent, and by Axiom (A9) X A (#I A y)A is consistent too. 

Case ar = /3 ;’ y: Denote I3 = (y)A. Both B and (/3)A[ljB] are in FL. Assume 
3 U( U c A+ h (X, U) E p(p ;‘y)). Then there are & = { Y,, . . . , Yk}, Kj G Uij (for 
lsjsn, &#l), WI,..., Wk such that (X, V)E p(p), for every 16 m s k, 
(Y,, W”) E p( y), and UI =Ulsrnsk WY and Qj = Fj uU,~,,,~~ WY for 1 s js n, 
ij # Z. Hence, W” C_ U for every 1 s 111 s k By the inductive hypothesis on y, for 
every 1 s m e k, Ym A (y)A is consistent, SO Ym E B+. Hence, Vi G B+, and V c 
z[ I/ B+] and by the inductive hypothesis on p, X A (@)A[ 1/ B] is consistent. By 
Axiom (AIO), X A (fl ;‘y)A is consistent too. 0 

B.10. Lemma. For aery AE FL, m(A) = A+. 

Proof. By induction on the structure of &4. The claim is immediate for atomic 
propositions by the definition of ?r, the B v C, 1B cases follow from Lemma B.4(2), 
( 1) respectively, and the cease of (a)B follows from Lemma B.9. Cl 

Now the satisfiabiiity *)f A0 follows from the fact that since A0 is consistent, AZ 
is nonempty, as PA; = kk) $ fake. 

Generalization of the proof to formulas with rich tests, and not only propositional, 
is obtained by defining a seq;lence of sets of formulas Li, where Lo allows only 
atomic tests, and Li+1 allows formulas of Li as tests. Then the result is proved by 
induction on i, using the described proof process in each level, and the previous 
inductive step to account for the test case in Lemmas B.8 and B.9 of the current level. 

I would like to thank David are1 for many stimulating discussions and valuable 
suggcstior -r, and an anonymous referee for his helpful comments. 
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