
eoretical Computer Science 55 (1987) 1-45 1

David PELEG
Department of Applied themarks,

Communicated by E. Engeler
Received June 1986
Revised June 1987

Abstract. We define and investigate several classes of concurrent program schemes, including
goto schemes and two versions of structured schemes, based on extensions of the re
expressions to trees. The schemes are studied on the first-order, Boolean-variable and propositional
levels. We also define and study the dynamic logics based on these classes of schemes, including
issues of decidabrlity and axiomatization.

Contents

1.
2.

3.

4.

5.
6.

7.
8.

9.

Introduction
Tree languages
2.1. Tree terms
2.2. Regular tree grammars
2 3. Tree-regular languages
Sequential program . zheines
3.1. Goto schemes
3.2. Regular schemes
3.3. Semantics of sequential program schemes
Concurrent program schemes
4.1. Concurrent goto schemes
4.2. Sticky schemes
4.3. Concurrent regular schemes
4.4. The “kill” command
Interconnections
Dynamic logics of concurrent schemes
6.1. The logier and their semantics
6.2. Interconnections
6.3. Relationships with the p-calculus
Validity and axiomatization
Boolean schemes and logics
8.1. Boolean sequential schemes and logics
8.2. Boolean concurrent schemes and logics
8.3. Expressiveness results
First-order schemes and logics
Appendix A. Programming “kill” in c-reg-PDL
Appendix B. Completeness proof for sticky-PDL

Acknowledgment
References

2
7
7
7
8
9
9

10
10
11
11
16
19
19
20
23
23
25
26
29
30
30
33
34
36
38
40
44
44

* Present affiliation: Department of Computer Science, Stanford University, Stanford, CA 94305,
U.S.A.

0304-3975/87/33.50 @I 1987, Elsevier Science Publishers B.V. (North-Holland j

2 D. Meg

The theory of programs deals extensively with the issue of concurrency. Various
formalisms appear in the literature for defining and describing parallel computations
and programs. In particular, concurrent program schemata were introduced in [131

and then appeared (in different forms) in several other works. However, they have
not received a widely accepted structured format analogous to the sequential whike

schemes, and issues of semantics and logic are still under extensive research, in

numerous different models.
Most models for concurrent computation assume a situation in which there is

some kind of sharin in resources, e.g., memory. This corresponds to the concept

of multiprocessing in a single-processor environment, in which when two or more
processes work in parallel, they may affect the same memory locations or variables.

In this paper we follow a difIerent model of concurrency based on the notion of
and/or-trees, and concerning essentially separate, independent processes. This
model corresponds, far instance, to a network of processors. The model gives rise
to the concurrent goto schemes appearing in [2,14]. These programs may contain
s1 ii commancrs as got0 I, or 12, facilitating nondeterministic choice, as well as
commands like goto l1 and lz, causing a split into two parallel independent branches.

Ttis naturally reflects in the semantics of a concurrent program. Consider, for
instance, the two schemes described in Fig. 1, interpreted over the natural numbers.
In a usual shared environment, the interpretations of the two programs (a) and (b)
are equivalent, i.e., their input/output relation is {([i, j], !_i + 1, j + 11)] i, j 3 0}, where

[i, j] represents the initial values of x and y. Thus, there is a single set of variables,
affected by both branches. However, we view the concurrent program (a) differently,
and give it a semantics as follows: upon splitting into two branches, each of the

new processes receives a private copy of the variables, and proceeds on its own.
Therefore, the left process changes only X, while the right one changes only y.

64

Fig. 1.

(b)

Still, our semantics differs from that of [2,14] and is closer to that of the language
IND of [9]. The overall semantics given therein for the scheme as a whole interprets
it as an essentially sequential program, whose ‘start-end’ relation leads from a single
state to a single state. This is done by taking the following view. The processes are

Concurrent program schemes and their hgics 3

dependently with different and
nates, its final state, i.e., t

taken as the result of the whole pro 11 the other processes ace assume
once that first process halted. Thus parallelis

another form of nondeterminism. In contrast, we define the semantics so that a

program may lead us from a s!ggle state to a set of states, thus retaining the parallel
nature of the run. For example, the semantics of the above program (a) changes in
the interpretation of [2] to be

{([i jl, [i+ LA), (Ml, k_k+ WI ij 2 01,

while we interpret it as {([i,j],{[i+l,j],[i,j+~]})~i;j~~).
An important consequence is that in our formalism, aN processes are required to

halt for the program to converge. On the other hand, in the version of [2,MJ, a
program may halt successfully even if some branch of it contains a subpro
with an infinite loop in it; as long as one process of the progrlazrn may halt, its

interpretation is nonempty. In this respect, our formalism extends the sequential
schemes in the same sense thas alternating TM’s [3] extend the usual ones.

The next logical step is to define a structured version of concurre1.t program

schemes. The structured description of while programs was found to have several
advantages, both in practical aspects such as better programming and in theoretical
aspects such as simpler and better understood semantics, and cleaner methods for
verification and analysis. In particular, tools like dynamic logic, aimed to enable
reasoning about programs and their properties, owe their elegance and simple
axiomatization in part to the regular structure of their programs.

We propose two versions of structured schemes. Both approaches are based on
extensions of regular expressions to trees. The one is based on it simple extension
of regular expressions using a new concurrency connective A. This connective is the
dual of the union connective u in exactly the same sense as the duality between
the ‘and’ and ‘or’ steps of an ATM [3]. This version, calicd the concurrent regular
schemata, was defined and studied in [18] in the framework of dynamic logic. The
second version, which we call sticky schemata, is based on regular expressions on

trees (cf. [6,21]). These expressions are based on a concatenation and star operation,
in which one uses labels to mark leaves of the tree, and may ‘stick’ new subtrees

to these leaves in a controlled fashion, according to the labels.

The resulting classes of goto and structured schemes are denoted in this paper

by c-goto, c-reg and stic The ‘c’ prefix stands for concurrent, and is used to

distinguish these classes m the corresponding c?asses of sequential schemes,

denoted simply reg and goto.
The classes of schemes are defined and studied on three levels. The basic one is

the propositional level, where atomic programs are left unspecified. This level is

meant to provide an abstraction of the discussed notions, constructs and mechanisms,
so as to enable an analysis of their fundamental properties and behavior (cf. [7,
Section 1.33). Next comes the intermediate oolean-variable level, where

QF. Thus, for instance,
schemes with propmitional tests.

An additional feature we mmsidef is the
to terminate a process and dlsw
set of final stat

first-order levels, all three t
expressiveness. (This h&k

propositional level, the family of

dynamic loglcs).
We consider also the dynamic

schemes as the unde

schemes, denoted C-

p

Fig. 2. Expressiveness rekttiomhips between scheme cfasses.

(1) Ou the propositional level:

continuous

p-cakulcts = sticky- PDL = c-

(2) On the Boolean-variabie level:

BDL

/A

c-regK- BDL = c-reg- BDL = stic BDL = c-goto_BDL

sticky- PDL

(3) On tile first-order level:

QDL

c-N&~-QDL = c-reg- QDL = sticky- Q L = c-goto-QDL

Fig. 3. Expressiveness relationships between logics.

exponential lower bound set by Abrahamson for reg-BDL since the transla
auses an exponential blow-up in

Strong mecFanisms such as channels or shared variables were shown to
also considered

2. Tree languages

We need some concepts from the theory of finite tree la
adapted for our setting. In particular, we consider only bin
the sequel, the term binar~~ free refers to a tree with 0,1 or 2 sons for every node.)
We also define a slightly different system of r ular expressions than
literature. A good coverage of the general the can be found in, e.

The alphabet C = &-,u 2, u & consists of the foilowing: & contains a single
dyadic function symbol A, C, contains monadic functions & 1 s i s n, and &
contains constants $i, I S i 6 k, for some k, n 2 1.

The collection of taee terms (or simply terms) over C is the minimal collection
Tz of words over C u { (,)} such that

(I) &,c T,;
(2) if d E CI and t E TX, then d(t) E T,; and
(3) if t,, t2E TX, then (t,)n(t,)E TX.
Figs. 4(a)-(c) describe the trees represented by the terms $, d(t) and (t,) n (f2)

respectively, given that t, t, and t2 are represented by trees T, T, and T2, respectively.
tree language L is simply a subset of T,, i.e., a cotfection of tree terms over the

alphabet C.

2.2. Regular tree grammars

We will be needing the formalism of regular tree gra (cf. [6]). A regular

tree grammar over an alphabet C as in the previous section is a context-free

(a)

8 D. Pekg

G = (V, P, Z) (cf. [1 l]), where V is the collection b -f variables, 2 is a collection of
start symbols (Z c_ Vj, and P is a collect on of production rules of the following
forms:

A+UW(C), A-W),

where A,B,CE V, do& and$E&.
The grammar operates over C u {(,)} in the usual way so that the derived words

are terms from TX. A tree language LG TX is generable iff there exists a grammar
G generating prticisely the tree terms in L.

2.3. Tree-regular languages

Let us first define the operations of product and closure on tree languages.‘Given
an alphabet C as above, and two languages U, VS TX, define, for every $i E &,

U 8’ V={ t E T, 13 t’ E U (t is obtain *d by replacing every
occurrence of $i in t” by some term of V)}.

From a ‘tree-point-of-view’, we start with a tree T’ of Q and replace every leaf
labeled $1 with some tree taken from K

Similarly, for every $i E &, define a closure operation by

u*t = min V(($i) E V and Vt, t,, t2 (\t, E V, t2 E U,
t is obtained by replacing one occurrence of $i in t, by tJ

*tf W),

where the minimum is taken w.r.t. the usual subset ordering.
An equivalent definition sets U*a zU,-,,~ Uj where U+ (%i} and Uj+l= Uj u

US’ Ujm
We define also the following two operations:

d(U)={d(t)ltE U} forevery d&X,.

We now give an inductive definition for the set of Z-tree-regular expressions (over
an alphabet 2).

(1) $i is a Z-tree-regular expression for every $i E X0;
(2) if cyl, a2 are X-tree-regular expressions, then so are (a! ,) n (a2), (a,) u (a&

(a,) J(az), (q)*i and d(q), for every $i E & and d E 2,.
The language L, represented by each Z-tree-regular expression cu is defined ar

usual by the corresponding operations, with $i representing the language {%i} for
every $i E & as a base step, and (al) u (cu,) representing L,I, u L,, .

A tree language LG TX is Z-tree-regular iff there is a Z-tree-regular expression
representing it. is tree-regular iff there is an a habet C” = 2 v Zt, such that L is
Z’-tree-regular (i.e., constants to give it a regular
description).

Concurrent program schemes and their logic9 9

2.1. Theorem (Geese
generable iff it is taee-

Steinby [6, Theorems 3.6 and 5.31). A tree 1ap1 Q is

2.2. Note. While the ‘Y’ symbol is used in its standard set-theoretic sense, the ‘n’
symbol represents here an operation symbol occurring in the syntax of tree terms
and should not be confused with either the set-theoretic intersection operator, or
the ‘relation-theoretic’ one appearing in 17, Section 2.551.

2.3. Note. The conventional definition of the Z-tree-regular sets is slightly different,
namely the closure of all finite subsets of TX under U*’ V, LPi and U v V. It is easy
to see that the two resulting definitions of tree-regularity coincide.

.4. Note. A third equivalent representation for the tree-regular languages is
obtained by means of tree automata. There ace several classes of deterministic and
nondeicrministic automata which recognize precisely these languages (cf. 161). In
fact, one may also define classes of alterwzting tree automata for this and other
families of languages [20]. In the sequel, we will use sets of tree terms for representing
alternating (and/or) program schemes. However, the notion of alternation in our
classes of program schemes is fully captured by the u and A operations discussed
above, and the syntax corresponds in a straightforward way to that of tree grammars
and regular expressions. Therefore, we do not need to introduce any class of
automata.

3. Sequential program schemes

In this section we briefly survey some classes of conventional sequential program
schemes. The schemes are presented on the propositional level, which gives a high
level of abstraction, by referring to the atomic operations as unspecified; all that
we know of a pro&Tam CL is that it takes us from some states in our state-space to
other states, according to its semantic interpretation. This approach appears, for
example, in [4], -#here the formalism of propositional dynamic logic (PDL) is
proposed for a propositional analysis of program schemes.

We begin with a general description, relying mainly on intuition as to the meaning
of the schemes, and then give a precise definition for the semantics of the schemes.
A general survey of (first-order) schemes can be found in [5].

.I. Goto schemes

A goto scheme is a linear representation for a
widely accepted formalisms of describing a simple sequential program. Formally, a
propositional nondeterministic goto scheme is a program composed of a sequence of

10 D. Peleg

labeled commands of the following types:

(ATOMK) I: ai,

(TEST) l:P?

(N-GOTO) I: goto I’ or I”3

where P is a formu!s in a given logic L, interpretable over models as described

below, and Q~ is an unspecified atomic command, taken from a ctillection AP of

atomic programs.
Throughout the paper we adopt the following notation for classes of schemes.

Each basic control structure of schemes is given a name. In addition, two parameters
are to be fixed, namely, the level, or the types of atomic operations allowed and the
Logic used for tests. For instance, the class just described will be denoted goto(P, L),
meaning that it is based on sequential goto schemes, defined in the propositional
level (i.e., uses atomic unspecified operations), and allows tests from a (proposi-
tional) logic L.

In the literature, schemes usually employ tests within the if-got0 command, I: if
P then goto I’ else goto I”. However, it is clear that the two mechanisms are equivalent
in the presence of nondeterminism. (We interpret an infinite loop as an aborted run
so that a test I : P? can be simulated by I : if P goto I + 1 else goto L) This particular
choice was made for reasons of compatibility with other classes of schemes to be
described later-

5.2. Regular schemes

A propositional nondeterministic regukw scheme is defined as a regular expression

over an alphabet C PR consisting of the set of atomic programs AP and the tests

{P?] P E L}. (The alphabet C PR is not necessarily finite, but every scheme defines a
finite subset of it.) Call this class reg(P, L), for any appropriate logic L. The symbol
zpR is used in the sequel to denote the set of basic propositional schemes, as defined
above. We 3se the symbol “;” for concatenation, to follow standard notation.

Again, it is conventional to consider the class of while schemes, defined in a
slightly different (but expressively equivalent) way, as the inductive closure of
assignment commands, viewed as atomic steps, under the constructs a[;/? and “if P
then Q else p” and “while P do a”, where (Y, B are schemes and P is a test as above.
(Nondeterminism may be added by the construct “ar orp”. j However, the form

based on regular expressions is useful in providing a clear representation and
suggesting connections with goto schemes and direct extensions to concurrent

schemes. For instance, the fact that reg(P, L) and goto(P, L) are equivalent in
computational power (assuming semantics as defined in the next paragraph for both
classes) is easily derived using standard techniques from automata theory.

3.3. Semantics of sequential program schemes

A model for our schemes is a triple J# = (S, ?r, p), where S is the state space,

7~ : L + 2’ is the interpretation function for formulas of L (i.e., for every EL, r(P)
is the set of states satisfying P), and p : A + 2sxs is the transition relation of atomic

Concurrent program schemes and their lq&.*._s

programs: for every Q E AP and s, S’E S, (s, s’) E p(a) means that a can be executed

in s to reach s’.
The interpretation p is extended to arbitrary (P, L) schemes as follows:

PUT = {(s, s) I s E e%

PkB) = {(s, s’) I W(s, s”) E pia) A w, s’)

p(a*)={(s,s’)13ks0,3so,. . . ,sk,WOs i<k((r,, q+.,)~p(

The situation is slightly mot-z involved for go&& L) sche es since in order to

identify the end-state of a computation of a goto scheme, we have to characterize
the whole sequence of intermediate states. For an atom c program or 9 test, the

definition of p is just as before. For an arbitrary goto(P, L) scheme LY =

(I:?’ 1,.•-9 m: ‘y,,,), we first define a compuratiQ~ sequence of a3 as a sequent

((II, Q, (4, s*), - l l , (IA, sk)) with the following properties:
(1) Z,=l and I,=m+l;
(2) For every lcisk- 1, exactly one of the following holds:

(a) 21, is an atomic Q or a test P?, li+i = ii + 1 and (s’, Si+l) E p(yt,), or
(b) JQ is goto f’or I”, l’+ 1 E {I’, I”} and Si+ 1 = si.

Now, p(cu’) contains a pair (s, s’) iff there exists a computation sequence of cy as

described such that s = s1 and s’ = sk.

4. Concurrent program schemes

In this section we define the different v erskns of (propositional) concurrent

program schemes to be discussed later. The first version is that of concurrent goto
schemes. Then we give some versions of structured concurrent program schemes.

We define two types of structured schemes. The first is the class of schemes with
sticky labels, or simply sticky schemes, based on tree-regular expressions. The second
is a subset of the first class, referred to as concurrent regular schemes, based on an

extension of the sequential regular schemes given in Section 3.2.

4.1. Concurrent goto schemes

A propositional concurrent goto scheme is a sequence of commands of the types

described in Section 3.1, i.e., (ATOMIC), (TEST), (N-GO O), and, in addition,

commands of the type

(PAR) 1: goto I’ and I”.

The class of such schemes is called in the sequel c- , L) for any appro

logic L.

Informally, when a process reaches a co mand of type (

llel processes which are in identical states. (Giving this ‘real life’ interpretation

52 I.2 Pekg

we may say that the memory locations held by the original process are duplicated,
and each of the two new processes receives an identical private copy.) NOW, one
of the processes proceeds to execute the command labeled I’, and the other proceeds
to I”, and from now on these two processes remain separate and independent, with
no connection whatsoever.

The semantics of a concurrent scheme is still based on a model as described in
Se&on 3.3, i.e., JBC = (S, rr, p), where p(a) G S x S for an atomic program U.
atomic operations remain essentially sequential. How
~1, we assign a concurrent interpretation p(a) s S x

collection of multisets of elements of S. Thus (s, V) E p(a) for s E S, setj V) G S
(where set(V) denotes the set containing precisely the elements of V) means that
CY can be executed from state s to reach precisely all states of K In this view, a pair
(s, s’) E p(a) for an atomic program Q is handled as (s, {se}). (In [181 we followed
the game logic of [161 and defined a version in which e let atomic programs have
a (possibly) concurrent interpretation too.)

The relation p describes the ‘input-output’ behavior of a program or, more
precisely, its ‘start-end’ relation. However, in order to define it we have to describe
the whole computation. This description can no longer consist of a sequence; rather,
it has to take the form of a tree.

Let us first describe a simple, direct semantics for the c-goto schemes, similar to
that given in Section 3.3 for the goto schemes.

A trace of a concurrent goto scheme ac = (1: yl,. . . , PPZ : ‘ym) is a binary tree with
a set (1,. . . , k) of vertices, where 1 is the root, each vertex i is labeled by a pair
(Ii, Si), where li is an integer, 1 s li s IYI + 1, and si is a state of Jdc, and the following
properties hold:

(0 4=1,
(2) for every leaf i, ii = m + 1 9
(3) for every internal (non-leaf) node i_ exactly one of the following hold:

(a) ‘~4~ an atomic program a or a Lest P?, i has a single son j, 4 = li + 1 and
(si, !j) E P(Y?,),

(b) ~1 is goto I” or I”, i has a single son j, 4 E {I’, I”} and sj = si,
(c) ytl is goto I’ and f”, i has two sons j, , j,, Ii, = C’, 4, = I” and Sj, = sj2 = s.

Now, p(a) contains a pair (s, V) for s E S, set(V) E S iff there exists a trace of a)
as described suck that s, = s and the multiset of all markings on its leaves is precisely
((nr+ 1, S’)IS% V).

Note. The usual notion of a computation tree (for a sequential nondeterministic
program) refers to a tree describing different possibilities of a run. An actual run is
described by a single path from the root to one of the leaves. Here, the trace describes
an actual, deterministic run, i.e., after making all nondeterministic choices.

nition of the semantics directly captures th,c be avior of runs of
and traces its control changes in full, for later purposes we need also

Concurrent program schemes and their its

a slightly different semantical definition,
tree grammars.

It is well-known that the sem
a can be defined on the basis o

n ts of tree terms an

eterministic) sequential pro

seq’s (cf. [15]) describing the possible runs of
semantics of a (nondeterministi

based on a co1 n of deterministic t

a tree term from

i 2 1. (In fat*. the c-got0 schemes can be defined using a single constant $; the more
general tree’s are required for the sticky SC emes, to be defined in Section 4.

In order to define the semantics of tree’ e first introduce the notion of
sets. A labeled set is a pair (i : Ui) where I - * > 1 and Ui is a multiset of states such
that set(Ui) c S. Intuitively, (i: Ui) describes the set of states of the trace which
are labeled by $i. A tuple of labeled sets is a set U = {(ij : Vi,) 11 s j G k} where
l<i,<* l ‘<ik.

We write i E U as a shorthand for 3 Ui((i : Ui) E U). Similarly, we may write $i
meaning “$i occurs in cy”. For every tree cy, p’(a) will be defined as a collection of
semantic pairs (s, U) where s E S and U is a tuple of labeled sets with a labeled set
(i: Ui) for every label $i in a! (if U does not contain (i: Ui) for some %;E a, then it
is interpreted as containing (i:@)).

Given = (S, ?r, p) we first define p’(a) inductively as follows:

pS($i)=((s,((i:{s})})lsE s19

psbWl = {(s, W 1 W(s, s’) E fsId n W, U E P~W)I,

p”WW) = Ifs, WI (s, U) E psW A s E a(A)),

pS(anp)={(s, U)13V, W((s, V)EPS((Y)A(S, W)Ep%(P)I\ u= v* w,

where the (multiset) union ti is taken componentwise.
Finally, for the whole tree cy, we combine all separate subsets of leaves, and let

Pw={k vwf(s UkPSW

The c-got0 schemes are given a semantics by regarding a concurrent goto scheme
ar as a regular tree grammar Ga over the alphabet &.

The tree grammar G, is obtained by taking the command labels to be variables,
and translating the commands into production rules in the following manner: Any
command I : a (where a E AP) yields a production rule I + a(I + 1). Similarly for a
test P?. Any command Z ; goto I’ or I” yields I -* 2’1 Z” and any command I : goto I’ and
I” yields I* (I’) A (Z”). Finally, we add the rule (Ott + 1) + $, where cy contains m
commands.

14 Ll PeZeg

Now we attach to ac the tree language S(C,) c TX generated by , and set

p(a)= u P(B)-
BEG

le. The and/or graph in Fig. 5 is a pictorial descripti
e prog, described below (we w ourselves a more compre

control commands, for the sake of
otation for

Pvh
Lgoto2or4or6
=!;a
3:goto 1
4: P?
5 : got0 14
&got07 or 9
7:Q?

8:goto 14

l&b

1l:goto 1
12:c

13:goto6.

The re+ OL:3ar tree grammar G, obtained from prog, is listed below. A possible tree
of this SF Leme is 7 = b(P?($)) n c(Q?(S)). Fig. 6 gives a full description (a trace)
of a posk:rble run of prog, which corresponds to r in a model in which (sl , s2) E p(b),

(s1 3 ~3) c pl.c), s2 E m(P) and s3 E m(Q). Note that, in every run of the program, all
leaves must satisfy P or Q.

Fig. 5. The graph description of prog, . Labeled arrows denote the execution of an atomic program plus

transfer of control and unlabeled arrows denote transfer of control alone.

P?

Fig. 6. A possible trace of prog, corresponding to T.

The grammar G,

xa e. (leaf counting mod 2). Considering models in the form of full binary

a/b trees, the scheme even,, run from the root st alts successfully

iff there is an even number of leaves satisfying e existence of a

predicate leaf to be true in exactly the leaves of the tree.)
We say that a state s is ewn if the subtree r

leaves satisfying and similarly for odd states.

graph (Fig. 7) has to verify that the current state is even, while the node labeled 6

has to verify that the current state is odd. For instance, node 1 cperates by checking

16 D. Pefeg

Fig. 7. 7’he graph description of even,.

whether the current state is a leaf satisfying TP and if
parallel processes which have to verify that its a and b
both odd.

even,
l:goto2or4orS
2: (leaf n TP)?

3:goto 19
4:goto 11 and 15
5:goto 13 and 17

6:gotu7or9orlO
7:(leafh P)?
8:goto 19
9:goto 11 and 17

10:goto 13 and 15
1l:a
12:goto 1
13:a
14 : goto 6
15:b
M:goto 1
17:b
18 l 2oto 6.

not, by splitting into two
children are both even or

We will return to these exapnles in subsequent sections, and consider them in
other types of schemes.

4.2. Sticky schemes

We now turn to defining a structured version of concurrent schemes, based on

tree regular expressions. Compared to the class of sequential regular SC
ain additional connective is the concurrency connective n. InformaGy, Q! n i

Concurrent program schemes and their bgics ra

is to be read as ‘split into two parallel processes, one performin QI! and the other
performing 6‘. Thus, here too, a specific run takes the form of a tree. We use srick~p

labels $i to identify the end-points of any run of a scheme, and enable controlled
concatenation, by means of the connectives ;‘.

Formally, prop~sitionalsticky schemes are tree-regular expressions over an alphabet
C whose CI component is &, and whose O component inctudes constants $i for
ia 1. We use ;j instead of l i, to follow convention. Denote the resultin
schemes by sticky(P, L), for any

A trace of a sticky scheme QI is 1, . . . , k} of vertices,
where 1 is the root, each vertex i is labeled by a state si and each of the leaves (and

possibly some of the internal nodes) is labeled also by a sticky label, i.e., a letter
of CO (different leaves k. ;: 0 allowed to be labeled by dieferent sticky labels, even when

their states are the same). Each such tree corresponds to some run of Q. The set of

traces of a program a! in a given model can be defined by induction on the structure
of cy. For instance, for a letter $i, a trace is a single node labeled by some state s

and the label $i. For a program a(P), traces are obtained by taking a trace TB of
ly whose root is labeled s2, where (s, , s2) E p(a), creating a new root labeled sI and

attaching T, by an edge to the new root. Traces for a subprogram /3 n y are

constructed by starting with a trace TP of p and a trace Ty of y whose roots are
labeled with the same state s, introducing a new root node labeled s and connecting
the roots of Ts and Ty as children of the new root. Traces for a subprogram p ;j y
are obtained by starting with a trace Tp of /3 and attaching, to each leaf u iabeled
by a state s and a sticky label $i, some trace Ty of y whose root is labeled by the
state s (by identifying the root of TY with v). The repetition connective in sticky

schemes ar *I is interpreted with a similar meaning.
We omit a more formal definition of the traces, since the semantics of C-reg

schemes can again be defined directly, by interpreting them as tree languages,
without having to define the whole trace.

For every sticky scheme CY, let F(Q)) be the tree language U E Tr associated with

IY as a tree-regular expression. Given At =(S, T, p) we define p(a) =&c3~aI p(S),
where the interpretation of tree’s p(p) remains as before.

4.3. Example. Consider the following stic y scheme LY = p ;‘Q?(W, where P =
(a($,) n b($,))*l. A possible tree of 3 is a(&~($,) n b($,)) n b&)) n b&). The
corresponding tree of cy is

T = a(a(a($,) n b(Q?(&))) n b(Q?&))) n b(Q?(W)~

Figure 8 gives a full description {a trace) of a possible run of cy which corresponds
to r, in a model in which

pCa) = {isi, Si+l) I i a Ol9 p(b)={(si, Si+*)(iBol

) = (Si 18 2 t a 2). The input/output pair contributed by this particular run

to p’(cy) is (SO,

uted to the final p(a) is
semantic definitions we get, tenotiag Ski =

In general, by the

wing scheme is equivalent to (i.e., has the same inte
of Example 4.1.

.?:(a($,)w P?($~)u(Q?($,)w(b($,)nc 2)*a ;’ false? ;’ false?.

Muitively, the sticky Mels $, , $i2 corres and to the labels 1.6 resgxtively in
ches reach a nonexistent

tively.)
We note that c-reg schemes might not be flex ram QI ;/ii? means

that p is to be executed from every end-poi IS may cause difficulties in
some 62~s in hich we might want to distinguish between two (or more) types of
end-states, and procee erently from each type. L
a rsm similar to 53 ut so that cy is allowed to
0 end-states. The I of these capabilities in the c-r
why both programs of Examples 4.1 and 4.2 are co
C- (P 9 (where stan r propositional ch:
tion for introducing the mechanism; of concurrent goto schemes and sticky schemes
described before.

4.4. The kill command

It is sometimes
processes of a co
processes of a pro

end-state of e@e

program, so that further subprograms, an the final evaluation of the scheme,

20 D. P&g

not refer to these branches. For example, consider the program

cy =(an(b; kill)); ((c; kill)nd); A?.

Figure 9 presents a possible trace corresponding to a run of ar in a model in which
($1, 4 E P(Q), 01, s.9 E p(b), (~2,s~) E P(C), (s2,sd E p(d) and SSE dA)-

The semantics of the kill command may be defined by p&ill) = {(s, 0) 1 s E S}.
Thus, the input-output pair contributed y the trace of Fig. 9 to p(a) is (sI , (s5}).

Note that if (s, 0) E p(a), then (s, 0) E p(a ;/3) for every program Is_
The resulting classes of schemes are denoted by the superscript K, e.g., c-regK.

This section contains some comparisons between the different scheme types
defined in the previous sections. Throughout, we use the ilowing uninterpreted
(schematic) notions of equivalence. Two formulas cp, # are equivalent (V = #) if
T(P) = n(q) in every model For two logics L1, L2 interpretable over models as
above, we say that L, s 1 ._2 if! for every formula (p E L, there is an equivalent formula
i/E !+ L1 = L2 iff L, s L2 and L2 s L1. L, < L2 iff L1 s L2 and not L2s L1. Similarly,
two schemes cy, /3 are equivalent (a, = 8) if p(a) = p(p) in every model A. For two

es of schemes C,, Cz interpretable over models as above, we say that C, s C2
C, there is an e chemep&,2.Cl=C2iff C&Z2
C+C, and n

never showing equi o classes of schemes, we assume
t the logics used by the two classes for tests are equivalent in expressiveness.
t is, if schemes in C, use formulas of L1 in tests and C2 uses L2, then we assume

L, = L2. No other constraints are imposed on the tests. On the other hand, strict
inequality results will be shown only with tests in restricted lo
the propositional level and QF (the quantifier-free subset of first-order logic with
equality) on the first-order level. For instance, the followin is obvious, due to the
fact that the concurrent semantics naturally extends the
concurrent scheme like cy = a n b may have a pair (q , { s2, s3}) in its int
p(a), .which no sequential scheme has.

5.1. eorem. reg(P, PC) c c-reg(P, PC).

It is also clear from the definitions that the following theorem holds.

5.2. Theorem. c-peg! P, L,) s sticky! P, L,), assumhg L1 s L2.

Furthermore, when the logics are not too powerful (e.g., PC), the class is
strictly stronger.

53. Theorem. c-n&P, PC) < sticky! P, PC j.

Proof. Consider the sticky(P, PC) scheme

seg = (a($,) n b&))*l :’ a(%,).

Consider a model in which S = N (the integers), p(a) = {(i, i+ l)i i a 0}, p(h) = 0
for every atomic program b # a and 7r(0) = 0 for every atomic proposition Q. In
this model

p(seg)={(i,{i+l,...,j})(j>i30}.

We show that in this model, no c-n&P, PC) scheme has the same interpretation as
seg. This is done as follows. Observe that the interpretation of seg has two interesting
properties: it has unbounded concurrency, in the sense that the sets of end-states
are of arbitrary (countable) cardinality, yet in each such set all states occur with
multiplicity 1 (so we actually have sets of end-states, rather than multisets). We

show that every c-n&P, PC) scheme vi lates at least one of the
Note that in the model at hand, the interpretation of every c-

a! can be fully described by a collection R(a) = {A,, . . .}, where e
of integers, Ai c Iv, so that

p(a!)={(i,{ii-jIjEA})(iaO,Ae

The collections R(a) are defined inductively. The definition is similar in nature to
that of the interpretation p; R(a) can in fact
p(a) to pairs whose start-state is 0. The formal definition is left to the reader. The
fact that R(a) completely characterizes P!(Y) in the above sense can bc shown by
induction on the structure of the schemes and is omitted too.

22 D. PeZeg

Using this characterization, we say that a scheme a has bounded concurrency,
or BC, if 3K, E N such that VA E R(a)(fA(s K,). We say that a is multiple, or

ULT, if 36 E R(a)(A # set(A)).
It remains to prove that every scheme in c-r&P, PC) is either BC or

is again proved by induction on the structure of schemes. Atomic programs and
tests are clearly all BC. Consider the case a = /3 w ‘y. If either /3 or y are

then so is a. Otherwise both are BC, so a must be BC too, with & = max(
The ca,ses of a = p n y and a = /3 ; y are proved similarly, with the new bound K&
(when applicable) being K, + and K, l K, respectively. Finally, consider the

case a = j3*. If every A E R(p) is a singleton, then the same holds for R(a), so a

is BC. Otherwise there exists some A E R(#I) with at least two elements 4 j E A. Now,

if i ==j, then j3 is MULT, so a is MULT too. Otherwise, there is an execution of a
corresponding to two consecutive executions of /3 in which A is used in all applica-
tions of /3. This execution yields a multiset A” E R(a) in which the number i + j
appears at least twice. (The first execution of A fro‘.& a state k leads to the states
k + i and k + j, and the second execution leads to the states (k + i) + j and (k + j) + i

(among others).) Thus again a is MULT. El

Next we prove the equivalence of c-goto and sticky schemes.

5.4. Theorem. c-goto(P, L,) = sticky(P, L,), assuming L, = Lz.

f. Let a be a scheme in sticky(P, L,). By Theorem 2.1, there exists a regular
tree grammar G* equivalent to a (i.e., generating the same set of trees). G, can be
translated into a c-goto(P, L,) scheme @ with the same tree’s (modulo substitution
of symbols $i E &). This is done in three stages. In the first stage, for each variable
A with production rules A + tppl 10 l l [(P&, we introduce new variables Al,. . . , Ak and
replace these rules by the rules

A+A& l l IAk and A1+rp ,,.. .,Ak+qk.

This obviously yields an equivalent grammar.
In the second stage we attach a unique (even) command label IA to each variable

A, and change production rules into rogram segments in the following way. Any
production rule A + A, I l l l I Ak is transformed into IA : goto lA, or l l l or I,+. Similarly,
any production rule A + (B) n (C) transforms into lA : goto lD and Ic. Production
rules of the form A + d(B) transform into the two consecutive commands IA: d;

lB, and any production rule A -, $ is transformed into l* : goto iend.
inally, in the third stage we organize the resulting program segments sequentially

bitrary order, except that the segment belonging to th
appears first (we assume, w.l.o.g., that the start symbol is unique).

y in a consistent way, and lend is replaced by m + 1,
er of command lines in the final program.

Concwrent progrff m sche ic.s 23

It is easy to see that the resultin (or actually, the corres
grammar Gp described in Section 4.1) has the same set of tree’s as G_ except that
G, uses a single symbol $ while C, use several such symbols.
has no influence on the semantics si fter deriving the tree’s of
sticky labels are erased from the semantical interpretation p. The
Finally, obtain an equivalent scheme y in otof P, Lz) by re
in /3 with an equivalent test Q’? from La.

The converse direction is shown in a similar (somewh

. The underlying translation algorithm from c-got0 to stie , based on the proof
of Theorem 2.1 (see [6, Lemma X7]), might yield a stic scheme (at most)
exponentially larger than the original c scheme. This fact bears influence on

plexity issues discussed later.

Finally, note that the program kill itself is not programmable in any of the classes
since p&ill) = {(s, 0) 1 s E S}, and, for every program u in the above classes, in every
pair (s, U) E p(a), U # 8. Therefore, it is obvious that the classes with kill are proper
extensions of the original ones. For instance, we have the following theorem.

55. Theorem. 0reg(P, PC) c c-regK(P, PC).

6. Dynamic bgics of concurrent schemes

6.1. ilhe logks and their semantics

Dynamic logic (DL) is a logical framework for reasoning about programs (cf.
[7]). Most research in this field has concentrated on sequential programs, i.e.,
flowcharts and while schemes, as well as certain higher-level versions such as
context-free and recursively enumerable programs (cf. [7]). In [181 we proposed an
extension of DL, named CDL, which is capable of dealing with concurrent regular
schemes of the kind described in Section 4.3. The logic was discussed both on the
propositional and first-order level. In the sequel we will refer to this logic (on the
propositional level) as c-reg-PDL, in order to distinguish it from other versions.
The schemes were allowed to inductively use ‘rich tests’, i.e., the logic defining the
class of allowed tests was c-reg-PDL itself.

his section we disc
schemes, namely c-

rich tests), in addition to
We first give a precise definition of c

collection of atomic prop
Every P E AP is a formu
subset of c- L) and cu is a c-
are formulas too.

obtained by admitting c-

24 D. Peleg

Formuh of c-gob-PDL are interpreted over models as described earlier, which
contain a 3asic interpretation tr for the atomic propositions of AP alone: ~f(P) is
the set of states satisfying P for every P E AP. This in erpretation is extended as
follows.

n(AvB)==?r(A)u=(B), w(TA) = S-v(A),

rr((dA) = 1s t 3 Ws, W E p(a), set(V) c_ -4 A))},
where p(a) is the interpretation of the scheme a as defined earlier. Note that the
definitions of p and ?r are interleaved inductively since formulas involve schemes
and schemes involve formulas (in tests).

Next we define sticky-PDL. This logic is based on the full interpretation relation
of sticky schemes p%. It combines formulas and programs by admitting a formula
(a)A, where A = ((ij : A,,) f 1 <j s k} is a tuple of labeledformulas, and 1 s i, < 9 . l < ik.
The semantics attached to such a formula is

a((a)A)=(s)3U((s, U)E~‘(LT)AV~((~EAA~E U)+set(U,)c v(Ai)))}.

Thus, the states of Ui, interpreted as the leaf states labeled by $i, are required to
satisfy Aj. If there are no leaves labeled $i, then the formula Ai is ignored. Conversely,
if there is ho formula Ai I&& A, then no requirement is made of the leaves labeled
$i (or, put another way, we take Ai to be true).

The logic c-reg-PDL is defined in a similar way, on the basis of the class c-r@ P, L).
It is also possible to define a version of sticky-PDL based on the restricted relation

p, i.e., interpreting all leaves in the same way and ignoring the iticky labels. In such
a version, the connection between programs and formulas is achieved in the usual
way, by a formula (a)A, where a single formula A is required to hold at all leaves,
regardless of their labels. This version is equivalent in expressive power to the
present one since (cr)A can always be written as (a ;il Ai,?($0) ;s l l c ;ik Ai, ?($*) > true.
However, the logic in our definition lends itself better to axiomatization, as programs
may be conveniently decomposed.

The logics obtained by allowing the kill command are denoted by the superscript
K, as for the classes of schemes. Note that (kill)A is valid for every formula A.
Hence, (cu n (p ; kill))A for example is equivalent to (a)A A (p)true.

mple. Let us consider Examples 4.1 and 4.4 once again. The formulas
(prog,)true of c-goto=PDL aad (prog2)true of sticky-PDL are satisfiable in a state s
iff prog,/prog* are executable successfully from s. An equivalent formula is express-
ible in c- K-PDL:

form,:(a*;((Pv Q)?;killu

(c;(Q?;killu e?)n b;a*;((Pv Q)?; ill u true?))*) ; Mse?)true.

to force aPI branches to terminate, satisfying the

Concurrent program schemes iCS 25

Moreover, we show in the next section that the kill command a ds no power to

-PDL (due to the presence of ‘rich tests’). Indeed, an equivalent formula
is:

form,:(a*;(P?u(((b;a*)P)?;cu(b;a*nc))*;Q?))true.

Intuitively, * in this formula of the node 6
can be executed to reach a state satisfying P, then only e

; ti*n c is executed. All branches must end with 1~ .ves
I

The rest of this section contains some expressiveness results concerning the
dynamic logics defined above.

6.2. Znterconnectians

Our first claim is that c-goto-PDL and stic -PDL are equivalent in expressiveness.
Define the following sequences of classes of schemes GPi and logics

ia0: Let GPL be t e language of propositional calculus involvin
propositions AP = { 41 0). For every i 2 0,

(1) let GP,- be c-goto(P, GPLi), and
(2) let GPLi+, be the subset of c-goto-PDL based 0-1 the schemes of f ‘Pi alone

(i.e., the collection of formulas containing atomic propositions an closed under
9 v +,l(p and (cu)true for a scheme cy E GPi)=

Define the sequences SPi and SPLi similarIy, based on sticky schemes. Then
C~Oto-PDL=Ui~~ GLi and sticky-PDL = Ui~o SLi.

6.2. Lemma. For every i 2 0,
(1) SPLi = GPLi, and
(2) SPi = GPi.

of. By induction on i. For i = 0, statement (1) is trivial and statement (2) follows
from Theorem 5.4 together with the first statement. For i> 0, each of the two
directions of statement (1) is proved by induction on the structure of formulas,
where formulas of the form (cw)true are resolved by part (2) of the inductive
hypothesis for i - 1, and statement (2) follows as in the case of i = 0. q

6.3. Theorem. c-goto-PDL = stic

Proof. First we have to overcome the differences in the format of formulas involving
the ‘diamond’ connective. To this end, we assume that every formula <a)A in
c-goto-PDL satisfies A = true. This causes no loss of generality since every formula
(cu)A has an equivalent formula ((oy, 1~ + d l Q contains M

where here any

is sirmulated y the formula

l l ii*Ai, ?($i,))tme.

Now the proof is completed using Lemma 6.2. El

26 D. Pekg

Note that Theorem 6.3 holds also for the same logics with ‘poor’ tests, e.g.,
confined to propositional tests.

Following a remark made in the previous section, we note also that formulas in
c-goto=PDL may be exponentially more succinct than the equivalent ones in sticky-

PDL. This is in accordance with a similar observation made in [IO] regarding the
relationships between regular PDL and PDL of flowcharts.

Finally, we observe that, in contrast with the situation for schemes, the kill
command does not strengthen the corresponding logics, not even c- -PDL as

expressed in the following theorem.

6.4. Theorem. c-regK-PDL = c-reg=PDL.

Proof. See Appendix A. D

A major problem left open by this paper is proving (or disproving) the following
CNljXtU~c?,

6.5. Conjecture. c-repPDL < sticky-PDL.

6.3. Relationsh@s with the pcalculus

In this section we discuss relationships with the p-calculus. The propositional
p-calculus L,, defined by Kozen in [12], can be viewed as another extension of
PDL. Its syntax contains atomic formulas Pi, atomic programs ai, and the following
construction rules:

(I) each Pi is a formula;
(2) if A, B are formulas, a is an atomic program and F(R) is a formula with

positive appearances of a new atomic symbol R (i.e., such that F contains no
subformulas of the form pR.F’), then A A B, A v B, TA, (a)A and pR.F(R) are
formulas.

The semantics interprets formulas over models (S, n; p), where S is a set of states,
T attaches a subset r(P) of S to every atomic formula P, and p attaches a subset
p(a) of SxS t o every atomic program a. We extend ?r to every formula by the
following rules:

n(A v B) = n(A) v R(B), ?r(A A B) = r(A) n r(B),

and

r(lA) = S- r(A), m((a)A) = {s I Mb, 0 E p(a) n t E dA))h

n(pR.F(R)) = min{ U 1 U E S A U = F(U)},

where F(U) stands for T(F(R)) with n() = u, 2nd the minimum is taken w-r-t.

the subset ordering.
or example, the P L formula (cu*)A can be expresse in L, as pR.(Av (a)

Concuwent program schemes and their logics 27

Consider the continua of L,, named CL,, obtain
tional requirement that, in each ula pR.F(R), appearances of
negations at all. (This definition parallels that of Park [17] for the first-order
continuous p-calculus.)

6.6. Theorem. CL, =c-goto-PDL.

Proof. (G): Let A be a formula in CL, involvin only k p-subformulas, p&fi(
1 s i ss k A can be described as being constructed from occurrences of the symbols
Ri, 16 is S and M maximal R-free formulas GI, . . . , G,,,, combined by the con-
nectives B A C, B v C, (a)B and pRi.Fi(R,). Negation may appear only within the
subformulas G, , . . . , G,, due to the continuity requirement.

We construct a c-goto(P, PC) program a 4 such that (aA)true= A. For every
subformula B of A as just described, add a program segment starting with the label
lB as follows:

B = Gi (R-free):

B= Ri:
B=CvD:
B=CnD:
B=(a)C:

B= pRi.F,(Wi):

IDSi?
- : halt
1B : got0 lFi
l* : got0 Ic or lD
le : got0 lc and lD
l@ : a
- :goto lc
ljg : got0 rF,.

The segment starting with lA has to come first, but otherwise the segments can
be combined in an arbitrary order to yield a,+

(a): A formula in egoto=PDL is translated into CL, by structural induction.
Consider the case of a subformula @)A. It is first transformed into ((cu, rn +
1: A?))true (assuming ar = (1: yl,. . . , m : ym)). By the inductive hy
assume the existence of an equivalent formula A’ in CL, for every formula A
appearing as a test A? in the program. Then we construct a formula A, in
CL, s.t. (a,)true= A,.

The idea is to associate a recursion symbol RI and a formula ~&F’(R~) with
every command 1:~ (l~l~m+l).

A “goto 1” is then interpreted as “R,“, or as “y,R,. Fl(R,)” if this is the first
occurrence of 1 in this subformula. A c-goto-PDL formula (au)true can be translated

directly into CL, if the graph description of ac is a tree with ‘backward edges’. That

is, its only goto arcs are either forward or to some predecessor (e.
prog, of Example 3.1 is in such form). In contrast, for a general
the resulting CL, formula may have several (not necessarily identi

ell I, wirinin dl%erent su ulas, ue to the process of unwinding it

D. Peleg

into the desired form. For example, if

a=l:goto2or3
2:goto3 or 4
3:goto2 or 4
4: A?,

then the described translation scheme for A, first yields @?J$(RI), and further
manipulation yields

Proceeding to construct & and F3 we see that each Fi has to call the Rj symbol
of the other:

This is not allowed in the formalism of CL,. Thus, for instance, F2 will have to
contain a copy of F3 in place of R3. This way we finally obtain

@I .(PRz.(PRJ(Rz v P&.~A’IJ v &.(A’)) v CLR~.(~~Z(R~ v /&-(A’)) v &.(A?)),

where A’ is the equivalent of A in CL,.
The formulas are constructed recursively, keeping, for each subformula FI(R,),

a set V, of labels i s.t. F1 is internal to a copy of Fi, SO Ri may be used to represent
“goto i”. The construction goes as follows: A, is set to be pR,. FI(R,), and VI = {l},
and then the formulas Fj are constructed according to the command ‘yI, by the
following rules:

Case yr = got0 l’or 1”: Let F, = B’ v B”, where B’ = R,- if 1% V,; otherwise B’ =
F RI*. FtS(RI+), where Fi+ is constructed recursively with Kg = V, v { 1’). B” is defined
analogously with respect to I”.

Case ‘ye = goto I’and I”: Let Fr = B’ A B”, where B’ and B” are defined as in the
previous case.

Case yI = a: Let FJ = (a) B, where B = RI+, if I :- 1, E V,; otherwise B =

PRI+J?+~(R~+~), where F 1+1 is constructed recursively with V,,, = V, u {I + 1).
Case yI = A?: A special case is when I = m + 1. In such a case we just let F, = A’,

the equivalent of A in CL, by the inductive hypothesis. Otherwise, let FI = A’ A B,
where is defined as in the previous case.

It is clear that the construction terminates, as the sets V, cannot grow larger than
size rpt, which bounds the depth of recursion. I*, is also clear tinat the resuiting formula
is equivalent in meaning to (ar)true. 0

pie. The CL, formula corresponding to (prog,)true of ogoto-PDL is

dWP v WR, v p&.(Q v W& A (c)R,))).

e CL, formula equivalent to (even&rue from Example 4.2, i.e., strntrng that
btree rooted at a state s as an even number of leaves, is

Concurrent program schemes and their logics 29

In both examples, the R, (R,) fixpoint corresponds to the node labeled 1 (6) in
the c-got0 graph, or to the stic y label $, ($*) respectively.

7. Validity and axiomatization

In [181, c-reg.1 ?DL was given a complete axiom system and an elementary decision
procedure. In fact, this was done for a monotone version of the logic, whit
subset of Parikh’s game logic [la]. The monotone version requires p(a)
monotone for every program cy, in the sense that if (s, U) E p(cu) and U c G
also (s, V) E p(a). This requirement may be expressed equivalently by

(1) defining p(P?)={(s, tJ)(s~(Un?r(P))}, and
(2) limiting the set of possible models to monotone tnodels, i.e., models in

every atomic program is monotone. The axiom system shown complete fc
version in [18] is an appropriate axiom system for PDL or the ‘dual-free’
logic 116) with the obvious extra axiom for n:

(An) (cu n p)A = (a)A A @)A.

This axiom
the following

system
axiom

can be augmented
scheme:

:h is a
to be

< then

which
jr this
game

to cover the nonmonotone version bY adding

(Av) (a)(A v B) = (a)Av(a)B for any atomic program a.

Completenerss of the nonmonotone system will not be shown here explicitiy.
Hnstead, we give a more general axiom system for (the nonmonotone version of)
sticky-PDL any! prove its completeness, in a way that extends the proof for c-reg-PDL.

Recall that labeled formulas are denoted by A = { (4 : A,,) (1 sj s k}. Let A[i/ B]
denote (A-((i:Ai)})u{(i: B)}, i.e., A with B replacing Aj. The axiom system for
sticky=PDL iis ihe following:

Axiom schemes

(Al) All tautologies of the propositional calculus,
(M) (%i){ (i : Ai)} z Ai,

(A3) (B?(P)jA=(B?($,);‘P)A,
(Ad) (B?(Si))((i: Ai)) E B I\ Aig
(AS) (a(P))A z (a($i) ;‘p) for an atomic program a,

)}=(a($,)){(i:A)}~(a($~)){(i: B)} for an atomic program a,

j : A)} for an atomic program a,

30 D. Peleg

(All) (a*l)A= Ai v (a)A[i/(a*i)A],
(A12) (a)A=(a)(Au{(i:Bi)}) for $iea, iEA,
(A13) (a)A=(a)(Au{(i:true)}) for $iEa, SA.

Inference rules

(MONO)

(IND) (for any 1 s is k)
‘,a)A 3 Ai

Axioms (Al2) and (A13) cover the cases where the set of sticky labels occurring
in CT does not coincide with the set of indices of the formulas; (A12) treats a formula
Bi with no label $i among the leaves of a, while (A13) treats a label $i in a with
no matching formula.

7.1. Theorem. l%e above axiom system is complete for sticky-PDL; moreover, the
validity problem for the logic can be decided in nondeterministic exponential time.

Proof. See Appendix B. El

By the remark following Theorem 5.4 we have the following theorem.

7.2. Theorem. 7%e validity problem for c-goto=PDL can be decided in nondeterministic
double exponential time.

lean schemes a

8.1. Boolean sequential schemes and logics

The introduction of Boolean variables to propositional schemes and logics was
proposed by Abrahamson [l] in the framework of propositional dynamic logic. The
language of the schemes is extended with a set (Xi} of Boolean variables. These
variables may appear in the atomic operations

(ASSIGN) 1:X+0 or 1:X+1,

and the formulas X = 0, X = 1 are allowed in the language, including within tests.
This gives rise to a new intermediate level between the propositional and the
first-order ones, namely, the Boolean-variable level. We may consider either the
goto schemes or the regular schemes of Section 3. The resulting classes of schemes
are denoted , L) and , L), and the corresponding llogics are denoted

Concurrent program schemes and their lo&s 3t

reg=BDL and go -BDL. The semantics has to be extendeti and based on th
of Boolean models. Such models employ extended states, which consist oft
a state s and an int ation 1: {Xi}+ (0, 1) for the Boolean variable
such a Boolean mod is of the form (S&, Q, P&, I&, wherccl
are as on the propositional level, and I& is the initial interpretation for the Boolean
variables. The definitions of v and p need to be extended accordingly, and to
address the extended states (s, I). Ani atomic formula X = 0 is interpreted as

ilarly for X = 1. The atomic operation X + 0 is interpreted as

P(X + 0) = MS, 0, (s, wxl)) I s E a,
where I[O/X] is an interpretation equivalent to I, except that X is interpreted
as 0. (Similar notation will be used in several different contexts in the sequel.) The
operation X + 1 is interpreted analogously.

The usual atomic propositions and programs do not affect t e interpretation I.
Thus,

and
P(P) = {(s, I) 1 I is a Boolean interpretation, s E Q(P)},

Pb-4 = m 0, b’, 0) II is a Boolean interpretation, (s, s’) E pA((a)}.

Extending 7~ and p to arbitrary schemes and formulas is done exactly as on the
propositional level, regarding extended states (s, I) as states. Finally, a formula A
is satisfied in the model .4t iff there exists a state s E S s.t. (s, I_& E r(A). Thus,
although our state space contains all possible pairs (s, I) (i.e., for any s E S and any
interpretatio., I), only the special pairs (s, I&) are considered when defining the
notion of satiafiability.

Hereafter, schemes and logics of this kind (i.e., equipped with Bcolean variables
and interpreted over Boolean models) will be referred to as Boolean schemes and
Boolean log&.

Note. The Boolean-variable level forms a certain synthesis between the propositional
level and a version of the first-order level (discussed in the next section) restricted
to the fixed domain D = {0,1). There are several plausible ways of defining the
precise notions of model, interpretation and satisfiability on such intermediate level.
For instance, we could define the set of states as a collection of pairs (s, I), or
alternatively discard Id completely and cocsider the whole of {(s, I) 1 s E S, I is some
interpretation} as the model’s state space. We chose to follow the version described
originally in [l]. Similar results apply for other definitions as well, usin
general methods.

As noted by Abrahamson [I], schemes and logics equipped wi
are really incomparable with propositional schemes (and lo

s in the propositional level cannot re

Boolean variables. Thus, every Boolean SC
propositional schemes, one scheme for each possible
to the variables. The interpretation of any of the p
to the ‘state part’ of the ginal scheme, assumr

Let L1 be a Boolean

simulated by a set

schemes and C2 be a class of propositional schemes.
For a formula AE L, involvin
B E L2 and a Boolean tuple b =

for every state s and every interpretation

s E w(B) e (s, I[bf X]) e r(A).

L1 G I L2 iff, for every formula A E L1 (involving X) and fsr every Boolean tuple b,
there is a formula As E L2 s.t. A =Q Aa. I+ =I L2 (I- * knee) iff L, s, L2 and
L,G LI. Similarly, for a scheme Boolean variables X =

(X ,,...,Xm), a scheme /3HZ2 and a ,r.. ., b,), we say that
cy = b @ (b equivalence) i& for every state sI) s2 and interpretation II s X2, in every
Boolean model,

C1 6 l C2 8, for every scheme a E C, (involving X) and for every Boolean tuple b,
there is a scheme ah E C2 s.t. a sb a&. C, = f Cz (I-equivalence) iff C, s-r Ctp and
c+c,.

These definitions give rise to two possibilities for full comparison of a Booiegan
system with an I-equivalent propositional one. Each of these possibilities requires
a change in one of the logics to form a common basis.

The first alternative is to consider Boolean models. This requires extending the
semantics of the propositional system so as to allow it to recognize Boolean variables
as mic predicates (thou h it cannot act upon them).

e other possibility is consider propositional models. ese models do not
cW&k UI & co~pQW%I~, so eke iT&<& iIM!!~W&Q~ fQT tk!z BQ&z&~ Vati&& is
undefined (I(X) = f). This requires us to restrict the Boolean system in such a way
that to Boolean variables values must be assigned before they are tested.
semantic rules for the resulting system wiI1 construct the interpretation I fo
variables gradually, defining I(Xi) only after Xi is assigned to for the first time,

nstance, (X + 1; a)(X = 1 A P) is a legal formula in the language, but (b; X =
is not, as it has no interpretation in a proposition21 modeI.

1 9 Lz, C1 and C2 be as above. Denote by L& CF the systems obtained by
g to the dirst alternative, and denote by Lp, Cp the systems

ave t
lemma.

f. Similar.

Abrahamson [I] shows th
ith Boolean v

section we extend our concurrent schem
and study the resultin
extending Abrahamson’s observation to the concurrent case.

8.2. Boolean concurrent schemes and logics

It is possible to add Boolean variables to the concurrent schemes and togics, just
as for sequential pro +ms. This requires extending the semantics accordingly, and
including an interpretation I : {Xi) + (0, I) for the Bootean variables in every
‘instantaneous description’ of the process. In the case of the c- schemes, for
instance, the semantics p(a) of a scheme a becomes a set of s of the form
((s, I), U), where U is a set of pairs U = {(sip IJ). For such a set we denote by U”
the set {sj 131i((si, Ii) E U)}. The interpretation of the operations X + 0 (X +- 1) and
the tests X = O? (X = l?) is the same as in the sequential case, retaining the sequential
nature of these primitives.

Similar semantics can be defined for Booiean varia
The resulting lasses of schemes are denoted
goto(B, L), an the corresponding lo
c-goto=BDL.

Note that we use variables only as local ones; any distinct proce
its own copy of the variables, and has no knowledge of or influe
of other processes. This is in contrast with a version define
variables (alon set operation) were used as sha
in a much more powerful system, in which communication is
processes.

These logics can also be defined as the uni
done before for positional logics.

j for iM:

D. Peleg

Let GB he language of propositional calculus involving atomic propositions

AP=(qJj‘S~:~,~{Xi=O,Xi=lIi~1). Forevery ia0,

(11 let GBi be c-g@ B, G
BDL based on the schemes of GBi alone
g atomic propositions and closed under

9 v #, 1~ and (a)true for a scheme a E GBi).
z Ui~~ GBLi.

e is equivalent to even1 of Example 4.2, or to even, of Example 4.5.
nd ts the labels $, and Sz there.)

ressivenesq resuh

!Most of the basic results from the propositional level carry over to the Boolean-
variable Iwc!. n particular we have, analogous to Theorems 5.1, 5.5, 5.4, 6.3 and
6.4, the fC!owing theorem.

0, PC) < c-reg(B, PC) < c-reg”(B, PC).
) = sticky(B, L,), asmming L, -= L2.
== c-goto-BDL.
= c=reg-BDL.

One significant difference is that, unlike the propositional case, on the Boolean-
le level ‘one sticky label suffices’, i.e., c-reg schemes are as powerful as sticky

ones.

, Li) = c-got@ B, L,), assuming Ll= L2.
-BDL = c-goto-B

(1): The s-direction is trivial. The proof of the 2 -direction goes along the
f the proof that sequential schemes can be translated into w

using propositional
Eetar=(ky,,...,

ables whose values

Concurrent program schemes and their 35

For every line I in nly construct a subprogram clyl as s:
Case 1: a: Let QI~ be = /?;a; + I + 1, where a is an atomic pro

Boolean assignment.
Case 1: P?: Let (Y/ be where P’ is the equivalent of P in L, .
Case kgoto I’ or I”: Let atI be X=Z?;(

Case I; goto 1’ and I”: Let cyI be
Finally, the entire program is replaced by

()
*

&=X*-l; u Qf ; X=m+l?.
lskrn

Note
scheme

scheme.

that, contrary to the situation on the propositional level, the c-r Y
simulating a c-got0 scheme is only polynomially larger than the original

(2): Shown by using the technique of Theorem 6.3, and relying on part (1) of
Theorem 8.5. III

The main result of this section concerns establishing Abrahamson’s result in the
concurrent setting. Comparisons of Boolean and propositional concurrent schemes
are based on the same notions as for sequential schemes. The only definition which

requires some change is that of b-equivalence of schemes. For a scheme QI E C1
using Boolean variables X = (X, , . . . , AT,,), a scheme p E C2 and a Boolean tuple
b=(b 1,. . . . b,,), we say that ~1 s6 p (b equivalence) iff, for every state s, every set

U = {(Si, Zi)‘ll s r’ G k} and every interpretation Z, in every Boolean model,

((s, mQm), WE PM e=, (s, U”k PW

We show the following theorem.

8.6. Theorem. c-goto(P, L,) = l c-goto(B, L,), assuming L, = I Lz.

Proof. We only have to show that whenever L, s I Lz, c-goto(B, L,) s I c-goto(P, L,).
Let Q! be a given c-goto(B, L,) scheme, and let 6 be a given Boolean tuple. Construct
2” identical copies of cy, denoted cy’, . . . , LY*“~ with the labels of CT~ being lj, . . . , m’.
The idea is that a run of the new program will reach label Zj just when the original
Q! had to reach label I with X evaluating to j when read as the binary representation

of a number, X, . . . X,. Now replace any Boolean assignment 1’ : Xi c- 0 by Z’ : goto(Z +

l)“, where jr is identical in binary representation to j except that its ith digit is 0.

Similarly for Xi + 1. A test lj : A? is replaced by I’ : Ap, the -equivalent of A in

L2, where ti is the binary representatioq of j. Finally, concate e ah the 2” schemes

into one (consistently renaming labels) starting with the scheme ai6, where jb is the
number whose binary representation is 6. 0

By Theorem 8.1 we get the following theore

36 D. Peleg

Statements similar to Theorems 8.6 and 8.7 hold for siic
Turning to the logics and comparing Boolean logics with their propositional

counterparts, we have the next result.

mma. For every i 2 0,
(1) GBL, =$ GPLi, and
(2) GBi s 1 GPi.

By induction on i. For i = 0, part (1) is straightforward. For instance, for the
formula A = (Xi = 0) and for a Boolean tuple b, let AL = true if bi = 0, and false
otherwise. Part (2) follows from Theorem 8.6 together with the first part. The i>O
case is handled as in Lemma 6.2. El

Consequently, we have the following theorems.

.9. eorem. c-goto_BDL = I c-goto-PDL.

8.10. Theorem
(1) c-goto-PDLB = c-goto_BDL, and
(2) cogoto=PDL = c-goto-BDLf.

As for the size of schemes and formulas, the Boolean-variable level is in general
exponentially more succinct, in both the cases of sticky and c-goto. This is in
accordance with 5;. similar observation of [I] with regard to regular (sequeiltial)
PDL vs. BDL.

Due to the exponential blow-b p in the translations from sticky(B, L), c-r&B, L)
and c-goto(B, Ll t 3 sticky(P, L j schemes, we get, by Theorem 7.1, the following
theorem.

.11. eorem. 7%~ validity problems for sticky-BDL, c-reg-BDL and c-goto=BDL
can be solved in nondeterministic double exponential time.

emes and logics

First-order sequential goto schemes are defined just like their propositional
counterparts, except that the,atomic operations are shown to be simple assignments:

(ASSIGN) 1: Xi + Ue

rogram uses a tu le of variables x = {x, , . . . , x,,}, and the assignments and
tests refer to some fixed signature; (T is a term over t re involving variables

riate language
e variables in X, a tes* P is simply a

conventional definitions restrict tests to be either predicates or quantifier-
mulas with equality (QF) over the iven signature and x, i.e., ‘poor tests’, but our
equivalence results hold also in a ich test’ environment.) The resultin
schemes is denoted

First-order sequential (nondeterministic) regular schemes are regular expressions

over an alphabet &, consisting of the assignment cornman

P? for Ptz L, similar to definition on the propositional lev
of schemes is de=noted

The semantics is based on a first-oi*der structure PI,.. . ,_fi, . . .) with a
domain D and a collection of predicates Pi and functions A. This structure induces
an interpretation v of the formulas of the logic L, according to its specific semantics,
and also an interpretation for terms c appearing in the assignment commands. The
set of states S associated with such structure is the set of possible interpretations

for the variable set x used in the scheme; every possible assignment of values from
D to variables in x corresponds to a state. The semantics of an assignment operation

is defined as

where S[Us/Xi] represents a state s’ similar to s except that xi is interpreted in s’ as
o,, the evaluation of the term o in s.

Extending p to arbitrary schemes is done just as on the propositional level, relying
on the interpretation of assignments as atomic programs, and formulas of L appear-
ing in tests.

The associated dynamic logics are denoted reg=QDL and goto-QDL, and they are
defined analogously to the propositional logics, on the basis of first-order logic with

equality (cf. [7]). Thus, the atomic formulas are predicates P(u) where a is a
tuple of terms. Their truth value in a state is determined by the value of P(a,) in
the structure. Here we use rich tests, i.e., the language of tests is reg=QDL (or
goto_QDL) itself.

The classes of concldrrent goto and structured schemes, and the corresponding

logics, are obtained on the first-order level just as was done on the propositional

level. The resulting classes of schemes are denoted c-goto(Q, L),
sticky(Q, L), for any appropriate logic L. The extension of the se
parallels what was done in S&ion 4 for propositional concurrent schemes. The

corresponding logics are denoted c-goto-QDL, c-reg-QDL and stfcky-QD
Again, the resu’rts of the Boolean-variable level carry over to the first-order level,

and we have the following theorem.

9.1. Theorem.

(4) s-goto_QDL = stic

3% D. Peleg

The proof of part (3) is identical to that of Theorem 8.5, except that the basic
operations are assignments, rather than just unspecified atomic letters. The require-
ment that the logics used for tests con ain at least QF is newssaT in order to enable
tests to keep track of the labels. One problematic point is that the use of variables
as Booleans implicitly assumes the existence of at least two distinct elements in the

erbrand universe based on the structure plus the input values of the variables.
However, it is easy to test this directly, and handle the exceptional case of a singleton
(or empty) universe separately.

A final remark concerns relationships with the ~-calculus. A result analogous to
Theorem 6.6 holds also on the first-order level, as is shown in 1181 (with CQ,
denoting the continuous p-calculus of [IT]).

9.2. eorem (Peleg [181). c-

AP ix A. g “kill” in c-reg-PD

In this appendix we prove Theorem 6.3. The described algorithm for the elimina-
tion of the kill command from c-reg schemes is based on the following simple
observation. A program a! n /3 ; kill can be viewed as the execution of a plus a ‘test’
for the feasibility of executing #3. Thus, such a program should, in principle, be
replaced by ((@)true)?; (Y.

In order to overcome technical difficulties, we need the following definitions and
lemmas.

For every program ar and every formula A in c-reg=PDL define a program 69: in
C- -PDL by induction on Q! as fo”

qky = i sAn814);)i(~))A)?;gt\ui(~)A)?;8gA,

. For every prog m CY and every firmula A in c-reg.PDL,

t)={(s, U’)~XJ(~C U’S UA(S, UjEp(a)Aset(U-U’)s?r(A))}.

By induction on the structure of cy. We present the s-direction of the case
(Y = /3 ; y. Assume is, U’) E p(St). Then (s, U’) E p(OpjA; 0;) and, by the inductive

y, there exist V v, s, , ul,, u, , ss, u;, II,, . . . s.t. fk V’s v,

1, is, Vk p(B), ‘={Sl, $, l - J, U’=lfJi Ui, and

k PiY)).

Concurrent progtam schtimes and

V-V’=(q,,q2,~a.} and a of m((y)
that for every qi there exists a)E p(y) and set(
Fig. 10). Choosing W: = 0 for every i, we get that

Denoting U=u, UiI;t;lui Wi, we get that 0~ U’S U, (s, U)~p(@;y) and

set(U - U’)
((

=Set ~(Ui-Uf)t!lll$J
i i)>

A.2. Lemma. For every program ar and every formula A in c-

p(a ; (true? u A?; kill)) = p(63,” u ((a)A)?; kill).

Proof. Assume (s, U) E p(cy ; (true?u A?; kill)). Then there exist V, st) U, , s2,

u2, . ..s.t.(s. V)E~(~Y), U=~i U,, V={SI,S~,. . .j, and

Wi((Si, UiJ E p(true?u A?; kill)),
or

Vi(Ui = {Si} V (Si E W(A) A Ui = 0)).

Let us divide the discussion into two cases, according to whether U is em
not. If U is empty, then Ui is empty and Si E tr(A) for every i, hence (s, V) E p((
and for every i, (Si, U) E p&ill), SO (s, U) E p((cu)A?;kiil).

In the other case, clearly 0~ U E V, set(V- U) C_ w(A) and (s, V) E p(at), so, by
Lemma A.l, (s, U) E p(@t).

The other direction is proved along similar lines. q

For every program a) of c-regK-PDL define a program (Y’ and a formula 4pcI in
c-reg=PDL by induction on Q! as follows as shown in ‘I’able 1.

- -
A A

Fig. 10.

D. Peleg

Table 1.

a false

P? P? false

kill false? true

WY S’ur’ %“G
P& Y’U a,?$’ 90%

9#3 ” WhPy

~~‘*~~~

roof. By induction on the structure of cy. We present the case o (~=/3;y. By the
inductive hypotheses,

= P(@‘;(Y’uQ ,,?; kill)) w p(rp,o?; kill).

The first term equals p(j3’; (true% Q~?; kill) ; f), or p(j3’; (true

which, by Lemma A.2, equals p(@z? u ((p’)cp,)?; kill) l p(
((p’)Q,)?; kill). Together, we get p(a)=p($Y; y’u
p(dw cp,?;kill). q

Finally, the desired result follows immediately from the last lemma.

Lemma. For every formula A in c-tegK-PDL, there is an equivalent formula A*
-PDL.

By induction on the structure of A. The case of A =(/3)B is handled by
choosing A’ = (8’) where B’ is the equivalent of B from the inductive
hypothesis. EI

leteness proof for sticky-P

We show that the axiom system proposed for stic -PDL is complete. For this
purpose we need to define an alternative semantics (p”, d) fo
is obtained in two stages. In the first stage we redefine p(a) d
tree language in retation. This is done inductively as follo e definition of

?((u)) and p(a! n p) is similar to that of ps for tree’s, given in
ion,

where RI l iR, is defined (for an
in Section 4.1) as

0 sets

A Vj, 1 S jS l((sj,
bsjr,l

and finally, for the whole program cy, we let

This definition is e uivalent to our original one. In the next stage we modify this
definition by replaci g the multisets and the w-operations with simple sets and
u-operations throughout the definition. The resulting interpretation function ps is
not identical to our original one, even if we modify the original semantics by
shrinking each multiset in the final interpretation of a program into a set. This
incompatibility can be seen by looking at the following example. Consider the
schemear=~;oc($,),where~=(a($o)~iF($oj),andassumeamodeIinwhichp(a)=

P(b) = {(SI 9 %)I and P(C) = f(s 2, Yj), (s2, sg)). Then, in the original interpretation, r
has a single tree a(c($~)) n b(c($o)), so that

Pb) = I(& 9 b3, sd), (s, 9 b3, d), (s*, bar SqDl,

and the sets of states reachable from sr are {sJ), {Q} and {So, sq}. On the other
hand, by the set semantics p* we have p”(p) = {(s,, {s2})}, and hence p’(a) =

{(sl, {s3}), (s, , {s4})}, so that the set {So, sq) is not reachabte from sI .

However, we should observe that this choice of semantics for schemes does not
-affect the interpretation of formulas in the logics. The reason is that, as can be easily
shown,

(1) p”(a) c p(a) for every program cy (identifying a multiset U with the set
set(U) consisting preciseIy of its elements), and

(2) (s, U) E p(~)*3 U’(U* c set(U), (s, Up) E p”(a)) for every program cc.
These two observations serve to prove that, for any formula A,

This holds on both the propositional and first-order levels, an
c-reg, c-goio and sticky. Therefore the vaIidity/satisfiability properties
formulas are the same under T and $, and we may assu e the (p”, ~“7 se
in what follows.

ssume we are given a consistent formula 0, for w
ce of a satis el. rst for formulas A0 using only atomic

42 Lx Pkleg

tests la? in programs. Further, we assume that all occurrences of subprograms a(p)
0 T(B) in A0 are such that /3 is $i for some i. Clearly, any A0 may be transformed
into an equivalent formula in this form, using Axioms (A3) and (A5). The model

constructed on the basis of the Fischer-Ladner closure of A*, FL, defined

(1) A& FL,
(2) A v BE FL+A, BE FL,
(3) RAE FL~AE FL,
(4) (a)A E FLaAi, 9 l l l 9 Ai, E FL,

(5) (B?($i)){(i:Ai)}E FL+Ai h BE FL,
(6) (cy u /3)A E FL =j (a)A v (@)A E FL,
(7) (a n /3)A E FL * (a)A h @)A E FL,
(8) (~;‘/~)AEFL+~)A[~~(/~)A]EFL,
(9) (a*QA E FL+(cu)A, (ru)A[ij(cu’i)A]~ FL,

(10) (cr)AcFL*(a)(A-{(i:A,)})rFLif $&Y.
Throughout, we identify TTA with A and A A B with T(TA v 1B).
LetFL={A,,...) Ap}. An atorn is a consistent conjunction X = /\ I~i~.p Bi, where

Bi E {Ai, 1Ai) for every 1 s i s p. (Here consistency is w.r.t. the axiom system of
Section 7.) Let ‘WI = {X 1 X atom} be our world (or ‘state space’).

Following conventions set in [23], we write AS B to denote +A 2 B, and let
A+ = {X f X E W, X A A is consistent}. For a set of atoms U E let QU =vxEU X

We now collect some well-known properties concerning these notions.

.I. Lemma. For every atom X E and formula A E FL, the following conditions are
equi0izlent:

(1) XsA (ort_X~A);
(2) X E A+ (or X h A is consistent);
(3) A uppeurs posititrely in X.

.2, Lemm

(1) For every two distinct atoms X and Y, X A Y is inconsistent.

(2) IV& X)=true.

da A, t-A 2 QA+. Furthermore, ifA E FL, then I-A E (PA+.

for any set of atoms

Concurrent program schemes and their logics

.6. Lemma. For all formulas A,

Now the model we construct is 7t, p”) where rr and ps are defined

?I(P) = p+,

p”(a) = KX { YH I x E ((a(%*))W : Y)W~,

for every atomic propositi program a app
Throughcut the sequel we shall write of p”(a), for s
every labeled set U={($ C.$)/l~j~n {(ii:pu,,)llSjSn}.

The following lemma is proved by simple structural induction.

B.7. Lemma. If FA = B and D is obtained from C by replacing some occurrences of
A by B, then !-C = D.

B.8. Lemma. For every XE
in AO,

Ui, 3 l l l 9 Uir S and every program QI appearing

X A (at)pu is consistent 1 3 U’((X, U’) E pt .&) h %/’ 2

Proof. By induction on (Y. We give the most involved cas %,&ta;h is ct = p*l. Assume
X A (/~*J)P~ is consistent. Denote B = (Ig*Qpu. Let V be the smallest ,et of atoms
s.t. Ut G V and for every atom Y, YE ((B)sU[r/p,])‘* YE K An alternative,
equivalent definition is V = V$, where V0 = U, and Vi+ I= Vi v ((/3)4pu [I/ QV, 1)’ for
every i 3 0. Denote A, = ~~ and A, = pu,,, for every 1 s j =S n, 4 # 1. We need the
following easy claims:

B.&l. Claim. (fl)A A l(pv is inconsistent.

B.8.2. Claim. t-(/3 */)A 3 tpv.

B.8.3. Claim. B+c K

We also need the following claim.

B.8.4. Claim. For every i > 0 and every atom Z E Vi there exists a U’E U s. t.

(z, U’) E P(B”).

Proof. By induction on i.
Basis (i =0): If Z E U,, then (2, U,) E p($t), so (2, U) E p(fi*l).

Induction (i+l): ZE vI:+1 means ZE V;: or ZE((P)~~[~/~~,])+. In the first case

the result is immediate by inductive hypothesis on i. Now assume Z A (p>
is consistent. By the main inductive hypothesis on p there exists a Uij c Ui, (for
1 s js n, 4 # 1) and U; c V;: s.t. (Z, U’) E p(p). Let U; the
inductive hypothesis on i, for every 1 s m G k there exists a mk
p(j3*1). Choose & =UlsmSk W;” and T, = U+UISmSk r 1 s js n, 4 # 0,

) E p(p; p*q E p(p*‘). q

Now the proof of the pan case is completed; since
by Claim

D. Meg

For every (a)A E FL and every X E ‘W,

Xh(a)A is consistent e ~U(UEA+~(X,

Proof. The (=+)-direction follows immedliately from Lemma B.8, viewing
The other direction is proved by induction on cy. Here we give the following cqs.

Case CY = /3 n y: Recall that both (8) , (y)A E FL. Assuming 3

(X, U) E P(1B n Y)) we get that there are V, W s.t. U = Vu
(X, W)Ep(y). Since x WE U&F, by inductive hypothesis, both X A (/3)A and
X A (y)A are consistent, hence both (/3)A and (y)A appear positively in X, so
X h (j#)A h (y)A is consistent, and by Axiom (A9) X A (#I A y)A is consistent too.

Case ar = /3 ;’ y: Denote I3 = (y)A. Both B and (/3)A[ljB] are in FL. Assume
3 U(U c A+ h (X, U) E p(p ;‘y)). Then there are & = { Y,, . . . , Yk}, Kj G Uij (for
lsjsn, &#l), WI,..., Wk such that (X, V)E p(p), for every 16 m s k,
(Y,, W”) E p(y), and UI =Ulsrnsk WY and Qj = Fj uU,~,,,~~ WY for 1 s js n,
ij # Z. Hence, W” C_ U for every 1 s 111 s k By the inductive hypothesis on y, for
every 1 s m e k, Ym A (y)A is consistent, SO Ym E B+. Hence, Vi G B+, and V c
z[I/ B+] and by the inductive hypothesis on p, X A (@)A[1/ B] is consistent. By
Axiom (AIO), X A (fl ;‘y)A is consistent too. 0

B.10. Lemma. For aery AE FL, m(A) = A+.

Proof. By induction on the structure of &4. The claim is immediate for atomic
propositions by the definition of ?r, the B v C, 1B cases follow from Lemma B.4(2),
(1) respectively, and the cease of (a)B follows from Lemma B.9. Cl

Now the satisfiabiiity *)f A0 follows from the fact that since A0 is consistent, AZ
is nonempty, as PA; = kk) $ fake.

Generalization of the proof to formulas with rich tests, and not only propositional,
is obtained by defining a seq;lence of sets of formulas Li, where Lo allows only
atomic tests, and Li+1 allows formulas of Li as tests. Then the result is proved by
induction on i, using the described proof process in each level, and the previous
inductive step to account for the test case in Lemmas B.8 and B.9 of the current level.

I would like to thank David are1 for many stimulating discussions and valuable
suggcstior -r, and an anonymous referee for his helpful comments.

K. Abrahamson,
Washington, 1980.

and expressiveness of logics of processes, Ph.D. Thesis, Univ. of

Concurrent program schemes and their logics 45

[2] A.K. Chandra, The power of parallelism and nondeterminism in programmin IFIP
(1974) 461-465.

[3] A.K. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation, .t. A
ischer and R.E. Ladner, Propositional dynamic logic of regui

(1981) 114-133.
rams, J. Comput. System

[SJ S.A. Greibach, 77teory of ~~~~~~rn Structures: Schemes, Semantics, Verijkation, Lecture Notes in
Computer Science 36 (Springer, Berlin, 1975).

[6] F. Gecseg and M. Steinby, 7%-e Aktw* ,.ita (Rkademiai Kiado, Budapest, 1985).
[7] D. Harel, Dynamic logic, in: 9 .Ssi-,by and F. G. Guenthner, eds., Handbook of philosophical

Logic II (Reidel, Dordrech’, ;984&
[8] D. Hare& On folk theorebyl’,., Cur’,tri. ACAS 23 (1980) 379-389.
[9] D. Hare1 and DC. Koe en ;4. pqramming language for the inductive sets, and applications, Infirm.

and Control 63 (1984) i l&13:$.‘
[lo] D. Hare1 and R. Sherman, Propositional dynamic Iogic of ff owcharts, Inform. and Control

119-135.
[1 l] J.E. Hopcroft pcd J.D. Ullman, Formal Languages and their Relation to Automata (

Reading, MA, 1969).
[12] DC. Kozen, Results on the propositional F-calculus, in: Proc. 9th ICALP, Lecture Notes in

Computer Science 140 (Springer; Berlin, 1982) 3~38-359.
[13] R.M. Karp and R.E. Miller, Parallel program schemata, .I. Comput. System Sci. 3 (1969) 147-195.
[141 Z. Manna, The correctness of nondeterministic programs, Artificial Intelligence I (1970) l-26.
[IS] A.R. Meyer and R. Parikh, Definability in dynamic logic, .I. Comput. System Sci. 23 (1981) 279-298.
1161 R. Parikh, Propositional game logic, in: Proc. 24th IEEE Symp. on Foundations ofcomputer Science

(1983) 195-200.
‘[171 D.M.R. Park, Finiteness is mu-ineffable, Theoret. Comput. Sci. 3 (1976) 173- 18 1.
[181 D. Peleg, Concurrent dynamic logic, J. ACM 34 (1987) 450-479.
[191 D. Peleg, Communication in concurrent dynamic logic, J. Comput. System Sci. 35 (1987) 23-58.
1201 G. Slutzki, Alternating tree automata, 7beoret. Comput. Sci. 41 (1985) 305-318.
121) J.W. Thatcher, Tree automata: an informal survey, in: A.V. Aho, ed., Currents of the Theory of

Computing (Prentice-Hal, Englewood Cliffs, NJ, 1973).
1221 M. Tiomlcin, Extensions of p -opositional dynamic logic, Ph.D. Thesis, The Technion, Haifa, 198.1.
[23! D. C. Kozen and R. Parikh, An elementary proof of the completeness of PDL, neoret. Cornput.

Sci. 14 (1982) 113-118.

