
Pergamon 
Computers Math. Applic. Vol. 30, No. 11, pp. 91-106, 1995 

Copyright©1995 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0898-1221/95 $9.50 -t- 0.00 
0898-1221(95)00167-0 

Linear Codes  Interpolat ion from Noisy  Pat terns  
by Means  of a Vector Quantizat ion Process  

S.  R A M P O N E  
Dpt. of Fisica Teorica e S.M.S.A., Universit£ di Salerno 

1-84081 Baronissi (Sa) Italy 

(Received January 1995; accepted March 1995) 

A b s t r a c t - - A n  algorithm inferring a boolean linear code from noisy patterns received by a noisy 
channel, under the assumption of uniform occurrence distribution over the codewords, and an upper 
bound to the amount of data are presented. A vector quantizer is designed from the noisy patterns, 
choosing the obtained codebook as code approximation. It is shown both theoretically and exper- 
imentally that, when the data are affected by independent random errors, this strategy requires a 
small number of patterns to obtain a good identification with high probability of the code from the 
noisy data. 

K e y w o r d s - - L i n e a r  code, Noisy data, Vector quantization, Majority-vote, Probably approxi- 
mately correct identification. 

1. I N T R O D U C T I O N  

Communication theory deals primarily with systems for transmitting information from one point 
to another. In information transmission over channels subject to noise disturbances, for example 
a te lephone line, a high frequency radio link, channel  noise may corrupt  the t r a n smi t t e d  signal. 

The  problem is usual ly  faced by encoding the message selected at the source in a r e d u n d a n t  

way. This  allows the decoder, t ha t  represents the processing of the channel  ou tpu t ,  to control  

the received informat ion.  The  decoder processing makes use of a priori informat ion  abou t  the  

coding [1-4]. 
In  this  work, we assume to receive the ou tpu t  of a noisy channel  before the decoder, and,  for 

some reason, we do not  know the code used by the sender. Our  aim is to infer the  code only 

by means  of the noisy pat terns .  As it is defined, the problem is f inding a set of reproduct ion  

vectors such tha t  a given cri terion for the tota l  dis tor t ion is minimized,  i.e., it is a c luster ing 

opt imiza t ion ,  or, equivalently, a vector quant izer  design problem [5-8]. 

The  quest ions we address are: 

QUESTION 1. IS it possible to minimize the difference between the original code and the  inferred 

one? 

QUESTION 2. How m a n y  noisy pa t te rns  are required? 
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The basis of this work is information theory; references [1] and [2] include most of the results 
we use. 

Our approach is strictly connected to vector quantization ([9] is an excellent collection of 
papers on the matter) and in general to cluster analysis [10]. Although application of vector 
quantization to the space of binary sequences of fixed length under Hamming distance has been 
suggested since 1967 [7], and several papers have considered applications of vector quantization 
to estimation problems in classification, regression, and density estimation, our results appear to 
be novel. 

The problem is also related to "learning from noisy examples," afforded from a theoretical 
point of view by Angluin and Laird [11] in the case of noise affecting a single bit. 

This paper can be summarized as follows. In Section 2, we explain the communication scenario, 
and the decoding as quantization. In Section 3, we introduce the estimations of the code para- 
meters and of the number of noisy patterns to run an identification procedure, and summarize 
in an algorithm their computation. In Section 4, we describe a way to find an initial codebook 
and a refinement algorithm. Finally in Section 5, we show the simulation results obtained with 
the procedure. 

2. D E C O D I N G  A N D  Q U A N T I Z A T I O N  

We restrict our attention to Binary Linear codes [1-4], that  are often used in channel encoding, 
because they are easy to specify, and allow an easy encoding. 

An (N, k) binary linear code C is a k-dimensional subspace of the N-dimensional vector space 

V N  = {(Wl ,  W 2 , . . . ,  W N )  [ W j  ~_. {0, 1}}.  (1) 

Each vector of VN belonging to C is denoted as 

C C . .  W c wch = ( W h , l ' W h , 2 '  " ' h , N ) '  (2) 

and is called co&word; N is also called the length of the codeword. The codewords, in number 
of L, are denoted as the vectors 

c c . W c w t , w 2 , ' " ,  L" (3) 

We suppose the codewords transmitted on a Binary Symmetrical Channel (BSC) [1,2]. This 
channel works on binary input and output  sequences, where each digit of the input sequence is 
correctly reproduced at the channel output with some fixed probability (1 - e) and is altered 
by noise into the opposite digit with probability e, where ¢ < 1/2. When a codeword w~ 
is transmitted over this channel, the receiver gets a corrupted version (noisy pattern) of the 
transmit ted codeword, 

w, = + z, (4) 

where z is the error pattern. 
To detect and recover error patterns with minimum mean error probability [2], the Hamming 

distance, 
N 

d(wrC' WsC) = E IwreJ - WsC,J l, (5) 
j = l  

between each pair of codewords w~, w~, i.e., the number of discordant components, is set to be 
greater than or equal to an integer quantity 2E + 1, E > Ne. This allows us to define a disjoint 
Hamming sphere of radius E around each codeword [1]. For each codeword w~,, we call its sphere 
cell Ch. 

Given wi, if each codeword is sent with the same probability ( l /L) ,  the receiver's best strategy 
for guessing which codeword was sent is to perform the Maximum Likelihood Decoding (MLD), 
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mapping w~ onto the codeword w~, such that the Hamming distance between wi, w~ is smallest 1 

[1,2]. 
We say that  wi is quantized as the reproduction vector w~, when wi belongs to the Voronoi, or 

nearest neighbor, region of w~,, consisting of all the patterns of the N-dimensional binary space 
that  are closer to w~, than to any other codeword. 

In this way, we can see the decoder as an L-level Vector Quantizer (L-VQ) [5-7]. An L-level 

vector quantizer can be defined as a mapping from a source alphabet of N-dimensional vectors 
to a reproduction alphabet (eodebook) of L reproduction vectors. 

Let us consider this quantizer by a distortion measure [8]. A distortion measure is an assignment 

of a cost of reproducing any input vector we as a codeword w~. When we is quantized as w~, 

the distortion measure can be defined as a linear function of the Hamming distance 

1 d(wi, w~). (6) dist(wi, w~) = 

Given such a distortion measure, we can quantify the performance of the system by the average 

distortion 

E[dist]. (7) 

A vector quantizer is said to be an optimal (minimum distortion) quantizer if the average 

distortion is minimized over all L-level quantizers [5]. In this sense, the MLD L-VQ having C as 

codebook is optimal, because it minimizes (7) over all L-level quantizers. 

Then, in the described environment, our problem can be formally stated as follows: given a set 

G = {wl, w 2 , . . . ,  wp}  of P noisy patterns of length N of an unknown linear code C, received 

from a BSC channel with error probability e, design from this set an optimal vector quantizer. 

We call its codebook C*, and w~ the L* inferred reproduction vectors. 

The described quantizer misinterprets the received pattern if it does not fall inside the Voronoi 

region of the transmitted codeword. Then in the following, a noisy pattern in the Voronoi region 

of a codeword w~ will be called related to wE, and treated as a noisy version of w~, even if w~, 
q ~ h, has been transmitted. 

f- -7 
Channel 

- - -  ~ decoder I 
[ _ _ _ _ _ J  

J Vector ] 
I 

Figure 1. Block diagram of the communication scenario. The messages selected at 
the source are encoded in a redundant way by the channel encoder and transmitted 
over the noisy channel. The channel output is received and processed by the quantizer 
before the decoding processing. 

A block diagram of the described environment is reported in Figure 1. 

3. P A R A M E T E R  E S T I M A T I O N  

3.1. C o v e r i n g  R a d i u s  

The codebook we have to identify is characterized by cells of Hamming sphere shape. As the 

first step, we want to estimate the radius E. 

1Because a noisy pattern can have the same distance from two different codewords, and for computational con- 
siderations, the decoding rule is usually restricted to pick w~ , when wi falls inside a cell Cu, and to detect but 
not correct the error otherwise. However, because this does not affect the following, we assume the MLD. 
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The errors of a BSC channel follow the binomial distribution [1], i.e., taking ne the number of 
channel errors for a transmitted codeword, 

Pr(ne = k) = (1--¢)N-kck ( N )  , (8) 

with mean N¢ and variance N¢(1 - ¢ ) .  As k goes from 0 to N, the terms (8) first increase 
monotonically, then decrease monotonically, reaching their greatest value when k = / (N + 1)eJ 
[12]. Thus, if the code C is designed in the hypothesis of the previous section, with respect to 

the channel noise, 
E _> (Y + 1)e, (9) 

and we can set as lower bound on E 

E*= VNc]. (10a) 

To choose an upper bound, it is reasonable to take into account the standard deviation a -- 
x/Ne(1 - e), having 

Eu = [We + a].  (lOb) 

Then we choose as estimation of E the mean value 

E* + E u  
E s -  T (II) 

Figure 2 is a schematic representation of a cell Ch. 
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Figure  2. Schemat ic  representa t ion  of a cell C h .  T h e  center  of  t he  cell is the  codeword 
w~.  T h e  channe l  errors follow t he  binomial  d is t r ibut ion ,  and  t he  noisy pa t t e rns ,  by 
hav ing  NE errors in mean,  t end  to have a H a m m i n g  d i s tance  Ne  from the  center.  

EXAMPLE 1. Suppose given a code C with N = 32, ~ = 0.17; by (10a) E* = 6, and by (10b) 
Eu = 8; then Es = 7. 

3.2. R e p r o d u c t i o n  V e c t o r  

Our aim is to find in the N-dimensional space L regions (clusters) C~, and associate with each 
cluster a reproduction vector w~. 

Because the target quantizer is optimal, as necessary condition for the optimality [6], each 
reproduction vector w~' is chosen to minimize the distortion in cluster C*. This vector is called 
the generalized centroid (or center of gravity or barycenter) of all the patterns lying in C~'. 
Computing the centroid depends on the definition of the distortion measure [5-7]. In the case 
of Hamming distortion measure (6), that corresponds to the mean square error, this centroid is 
simply the sample mean of the vectors belonging to the cluster C~' [6], 

1 m~ 
- -  ( 1 2 )  
m i  r--1 

where mi is the number of patterns wi~ E C~. 
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This does not suffice in our case, because the reproduction vectors must belong to {0, 1} g.  
To do this we apply a further quantization to the nearest Boolean vector, and in this way the 

centroid computation, 
= * = (w~* , l  * . . .  w , , N ) ,  ( 1 3 )  cent(C*) w~ , w~,2, , 

results in the majority-vote criterion [1]. By observing that  (1/mi))-]~--'1 wirJ is greater than 
1/2 if and only if the wi~j's in the sum are set to 1 more than 50% of the time, this criterion can 
be stated as 

where 1 [] is the Heaviside function 1 [x] = ~" 1, 
[ 0, 

E W i ~ , j  - -  

r = l  

if x > O; 

if x < 0; 

(14) 

As we formally see in the following, in a sufficient large set of patterns, each component is 
unlikely to be in error more than the 50% of the time. In such case, the majority-vote (14) 
assures the convergence to the transmitted codeword once the patterns related to each codeword 
have been grouped in a single cluster. 

3.3. S a mp l e  Size 

We have now to evaluate the number of patterns P needed to make use successfully of (14). 
To this aim we apply the Probably Approximately Correct (PAC) criterion [13], recently related 
to the classical Estimate of the Error Probability of pattern recognition literature [14]. 

The PAC criterion assumes that  after randomly sampling examples of a concept C, an iden- 
tification procedure should conjecture a concept C* that  with "high probability" is "not too 
different" from the correct concept. Here, the formal notions of "examples" and "concept" cor- 
respond, respectively, to "noisy patterns" and "codebook". 

The success of the identification is measured by two given parameters, U and 5, and by the 
concept complexity. 

The parameter 77, the tolerance, is a bound on the "difference" between the conjectured con- 
cept C* and the unknown concept C. We value the difference between C, C* by, 

L* 
1 . 

D[C, C*] = ~-7 E D[w~ ], (15) 
i=1 

where 
1 

D[w;] = ~ m~n d(w;,  w~) = minh gist(w;, w~), (16) 

i.e., D[C, C*] is the sample mean of D[w~]. 
The parameter 6 is a confidence parameter that  bounds the likelihood that  the procedure fails. 
The concept complexity is a measure of the number of bits necessary to represent the concept, 

that,  in our case, can be summarized by the length N and by the number of the reproduction 
vectors L. The parameter L is unknown, but by the Hamming Bound [1,2] 

2 N 
L < , (17) 

setting 
2 N 

L~ = , (18a) 
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we can estimate the maximum reproduction vector number as 

Ls = 2 [l°g2 L.J, (18b) 

an identification procedure, 
applies the majority-vote, requires at most 

P = (2l* + 1)L8 lnL~ + 4Lsv/2~- + 1 

THEOREM 1. Given a linear code C, V3, ~, e 6 [0, 1/2[, N > 1, setting 

z -- ¢-1(1 - ~), 

where ¢ 0  is the normal distribution, and 

(19) 

7* = 2Ls~? + z 2 - zV/z 2 + 4Lsq(1 - ~) (20) 
2(Ls + z 2) 

ln(7* ) 1 
l* = (21) 

(1 - 2e) 2 2' 

that collects in clusters the pattern related to each codeword and 

(22) 

noisy pat tern  of C, to produce a codebook C*, such that 

Pr(D[C, C*] < ~) >__ 1 - & (23) 

PROOF. First of all we are interested in the sample size P necessary to the acquisition of at least 
mi patterns for each codeword. Given the estimation L8 of L (18), we get the expected number 
of drawings necessary to acquire at least a pattern for each codeword by [12] 

L8 in Ls. (24) 

Then we evaluate P as 
P = m~L8 lnLs + 4Lsv~-7. (25) 

(This claim is proved in the Appendix.) 

Now let us consider the patterns related to a codeword collected in a cluster C~. Without  loss 
of generality, we set 

ms = 2l + 1. (26) 

The reproduction vector is selected by the relation (14) that  we rewrite as 

2 2l+1 ] 
w [ j = l  ~ ~ =  win , j -1  , (27) 

where w*. is the jth component of the vector. This component is wrong if at least 1 + 1 patterns %3 
have an error on the jth component. The probability of this event is 

2/+1 

h=l+l 

because the number of codewords is an integer power of two. As we see, by (11) and (18), Ls is 
a function of N and e. 

In this way an identification procedure is said to PAC identify C if and only if the difference 
(15) between the correct code C and the conjectured codebook C* is small (less than ~?) with 
high probability (greater than 1 - ~), given a sample of patterns of size depending on ~, (5, N,  
and e. 
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that  we can rewrite as 

p~ 
:~_~1 (l _ e)2Z+X_hEh ( 2l ; 1 )  . 

h=r{(21+l)] 
(29) 

By the Hoeffding's inequality [15], 

h=[(¢+s)N] 
Ve, s e [0, 1], (30) 

setting s = 1/2 - ~, we have, 

Pe ~-- e-2(½-~)=(2/+1) = "y(l, 8). (31) 

The inverse function of ~/(/, c) is 
h~ (~) 1 

l=  
(1 - 2~) 2 2 

It follows from (31) that the jth component is correct with probability 

(32) 

p~ - 1 - p ~  _~ 1 -"7(l,e:). (33) 

Then 
LN~J 

j = O  

(34) 

The expectation of this distribution is ~/(l, e), see Figure 3, and the variance ~(l, ~)(1 - ~ ( l ,  e)) 
[16]. 
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Figure 3. The expected distortion ~, varying l and e. 
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Because the (15) is the sample mean of D[w~], by the DeMoivre Laplace theorem [12,16,17] 

( k  ~/7(l ,  ~ ) Pr(D[C,C*] - 7 ( l , e )  < k) > ¢ e ) (1 -7 ( l , e ) )  ' (35) 

where ¢ is the normal distribution function 

1 /" I~2 ¢ ( z ) = ~  ~-~ ~x, (36) 

setting 

we have 

k = .1 - 7(I, ~) _> 0, (37) 

( Pr(D[C,C*] < '1) >_ ¢ (*1-7(1,e))x/7(l,e)(1 - 7 ( l , e ) ) /  " 

Calling z the value such that  

and imposing 

we have 

(38) 

¢(z) = 1 - 6, (39) 

(.1 - ~(1, ~)) 
v ~  

~/,~(1, ~)(1 - ,y(l, e)) 
= z, (40) 

2L*.1 + z 2 - zx/z2 + 4L*.1(1 - .1) 
7(l, e) = 2(L* + z 2) (41) 

The thesis follows substituting to L* the estimation LB. (It is easy to prove that  the logarithmic 
loss in (32) of this substitution, when L* < Ls, is balanced by a linear growth of (24).) | 

3.4. E s t i m a t i o n  A l g o r i t h m  

The evaluations of this section can be summarized in the following procedure. 

ESTIMATION ALGORITHM. 

Step 1: Input: N= codeword length, e = channel error probability, .1 = tolerance, 6 =confi- 
dence. 

Step 2: Covering Radius and Cluster number estimation: (Determination of E8 and Ls by 
(11) and (18)) 

2.1 E* *-- [Nel 
2.2 Eu *-- [Ne + x/Ne(1 - e)l 
2.3 E8 ~-- (E* + Eu)/2 

2.4 L~ ~-- 2N /~ '=o ( N ) 

2.5 L8 *-- 2Hog2 n,,J 

Step 3: Cluster sample size estimation: (Determination of l* by (19),(20), and (21)) 
3.1 determine z such that ¢(z) = 1 - 6 

3.2 ~* ~- (2L~.1+ z~ - z , / z~  + 4L..1(1 -.1))/2(L. + z~) 
3.3 z* ~- - i n  (7")/(1 - 2E) 2 - 1/2 

Step 4: Sample size estimation: P ~- (2l* + 1)Ls lnLs + 4 L s v ~ ;  + 1 
Step 5: Output: Es, Ls, P 
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Table 1. Some values of z for ¢(z) E [0.5, 1]. 

¢(z) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.50 0.00 0.02 0.05 0.07 0.10 0.13 0.16 0.18 0.20 0.23 

0.60 0.25 0.28 0.31 0.33 0.36 0.39 0.41 0.44 0.47 0.50 

0.70 0.52 0.55 0.58 0.61 0.64 0.67 0.71 0.74 0.78 0.81 

0.80 0.84 0.88 0.92 0.95 0.99 1.06 1.08 1.13 1.18 1.23 

0.90 1.28 1.34 1.41 1.48 1.55 1.65 1.75 1.88 2.05 2.33 

99 

To accomplish the z determinat ion in the Step 3, tables of the values of  the s tandard  normal  
dis t r ibut ion function can be used. Because ¢(z)  = 1 - 5 and 5 c [0, 1/2[, the only useful values 

of ¢(z)  are in the range ]0.5,1]. The  Table 1 summarizes some values in this range. 

EXAMPLE 2. Suppose given a code C with N = 32, s = 0.17. We want D[C, C*] lower than  0.1, 

with probabi l i ty  greater  than  0.9. We have: 

(1) N = 32, ~ = 0.17, U = 0.1, $ = 0.1; 

(2) By  (11) Es = 7, and by (18) L8 = 512; 
(3) ¢(z)  = 0.90 ~ ,  from table (1), z = 1.28 ~ ,  subst i tut ing in (20), ~* = 0.08 ~ ,  subst i tu t ing 

in (21), l* = 5.18; 

(4) P = 43177 (i.e., 1/100000 of the total  number  of pat terns  232 = 4,294,967,  296). 

4. C L U S T E R I N G  

We have now an est imation of the number  of noisy patterns,  and a rule to identify, given a 

cluster, a reproduct ion vector. We need a way to group the pat terns  related to each codeword. 

The  me thod  we adopt  to accomplish this task is based on an iterative clustering a lgor i thm 

known in the  pa t te rn  recognition li terature as the K-means  or, in a different version, LBG 
algor i thm [6,7,18]. As we need, the algori thm divides the given set of  pat terns  into clusters 

assigning to each cluster a reproduct ion vector tha t  minimizes the distort ion in tha t  cluster. 

4.1. Initial Codebook Design 

In  its simplest version the algorithm, given an initial set of clusters, assigns each pa t te rn  to 

the cluster having the nearest centroid. Then  the centroid is computed  again and the process is 

i terated until no more pa t te rn  reassignment take place. The  key of the algori thm is the iterative 

opt imizat ion of the initial codebook, and it is well known tha t  the performances essentially depend 

on this initial choice [6]. The  reason is tha t  this method  tends to get t r apped  in local op t ima  

and most  major  changes in assignments tend to occur in the first reallocation step. 

In our case, given the pa t te rn  distr ibution (8), we design the initial codebook by a r andom 

selection. We take the set G of pat terns  received from the BSC channel. Iteratively, a pa t t e rn  

(seed) is selected within all the pat tern  of G whose Hamming  distance from tha t  pa t te rn  is less 

t han  2E* + 1. From this set we build a centroid. Then  all the chosen pat terns  are marked and 

they  can not be further eligible as seeds. 

The  reason is tha t  if we randomly  choose a pat tern  w~ E G, we build around this pa t te rn  an 

Hamming  sphere C* of radius 2E*, and we compute  the centroid w*. 

(1) Inside Selection. By (8) and (9), in the most  probable case w~ is inside a cell Ch (Fig- 
ure 4a). Then  if each Ch contains about  the same number  of  pat terns,  by the at  most  

complete inclusion of CA, by (14), w~ approaches w~. 
(2) Outside Selection. If  the pa t te rn  is selected outside any sphere, 

(a) Unbalanced Case. In the most  probable case, w~ is more close to a par t icular  Ch 
(Figure 4b), and this results in a centroid more close to w~ as in Case 1. 
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(b) Balanced case. Only when there are about the same number of pat terns in the major  
intersections, (Figure 4c), the obtained centroid may go far from any w~. The prob- 
ability of this event is bounded by the probability that  a bounded distance decoder 

detects the presence of an error pat tern but is unable to correct it [19], but, though 
we are confident it is small, the exact a priori evaluation remains an open problem. 

(b) Outside unbalanced selection. (a) Inside selection. (c) Outside balanced selection. 

Figure 4. The three seed choices in the initial codebook design algorithm. 

Anyway, because an outside selection does not cover completely any Ch, another inside pat tern  

can be chosen as seed. 
Furthermore,  because a linear code is a vector space, 0 E C, and we can select 0 as first seed. 
The cluster number, L*, is determined as part  of the clustering procedure. I t  is initially equal 

to zero, and is increased by 1 each time a new cluster is selected. 

This procedure can be sketched as follows. 

INITCODE ALGORITHM. 

Step 1: Input: N= codeword length, ¢ = channel error probability, G = {Wl, w2 . . . .  , w p }  
the set of P received patterns. 
Initialization: Set L* = 0, C* = 0, E* = IN¢]. Unmaxk all the pat terns  in G. 

Step 2: First seed: w~ ~- 0. Let C~ be the subset of G made by all the pat terns of G whose 

distance from 0 is less than 2E* + 1. Mark all the patterns in C~ 
Step 3: While G contains unmarked patterns 

3.1. Seed selection: Select an unmarked wi E G 
3.2. Cluster selection: Let C* be the subset of G made by wi and by all the pat terns  of 

G whose distance from w~ is less than 2E* + 1. Let mi be the C* cardinality. 
Mark all the patterns in C~*. 

3.3. Reproduction vector initialization: Build from C~ the centroid w~ applying (14) 

w i ~-- cent(C~). 

3.4. Cluster number updating: Set L* ~-- L* + 1. 

3.5. Codebook updating: C* ~-- C* U {w~}. 

Step 4: Output: C*,L*. 

The resulting C* is the initial codebook. 

4.2.  C o d e b o o k  R e f i n e m e n t  

Then we apply a K-means  algorithm to refine the codebook. 
With respect to the original formulation, at each step the algorithm updates  the level number 

by testing the Hamming distance between the centroids. There are two reasons to do this: 

(1) if two or more seed points inadvertently lie near a single cell Ch, their resulting clusters 
may split Ch; 

(2) the existence of an outlier might produce at least one group on the border of the cell. 
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Moreover, because the reproduction vectors are discrete, and, by (14), reassignments are pos- 

sible only if at least a centroid changes, the termination test  is made on the changes in the 

codebook. 
Finally, the cluster shapes are not required to be Hamming spheres, since these objects do not 

exhaust  the space and a pat tern is not guaranteed to go inside any one. 
Below, t is the iteration index and C*(t) is the i th shape-free cluster at iteration t, with w*(t) 

its centroid. The algorithm is as follows. 

REFINEMENT ALGORITHM. 

Step 1: Input: G = { W l , W 2 , . . . , w p }  the set of P received patterns; L* = initial cluster 

number; C* = the set of initial reproduction vectors w~'(0), 1 < i < L*. 

Initialization: Set t = 0, E* = [N~]. 
Step 2: Cluster assignment: Classify every wi C G into the cluster C~(t) whose centroid 

w~(t) is nearest. Let mi be the cardinality of each resulting C~(t). 
Step 3: Reproduction vector updating: t ~- t + 1. Update  the reproduction vector of every 

cluster by computing the centroid of the patterns in each cluster as in (14) 

w * ( t ) ~ c e n t ( C * ( t - 1 ) ) ,  t < i < L * .  

Step 4: Level number updating: If d(w~(t), w~(t)) < E*, i ~ j ,  then erase w~(t) and decrease 
the level number L*. 

Termination test: If the new codebook is the same as the previous, then stop; other- Step 5: 

Step 6: 

wise go to Step 2. 

Output: 

H:.32 1=3 ,.. '"°°",.%, 

....... ....... i.. 

(a) Histogram of D[C, C*] varying e and the expected distortion ~, (the dotted line). 

(b) Histogram of L*/L. 

Figure 5. Results of test 1 for 1=3. 

H::32 1=5 ...' ...... ,., 

'° 

............ ........... 

(a) Histogram of D[C, 6'*] varying e and the expected distortion 3, (the dotted line). 

(b) Histogram of L*/L. 

Figure 6. Results of test 1 for 1=5. 

CA~ 30-ll-H 
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~ 3 2  I:7 ." ...... • 

(a) Histogram of D[C, C*] varying e and the expected distortion ,7 (the dotted line), 

(b) Histogram of L*/L. 

Figure 7. Results of test 1 for 1=7. 

• 32 1:9 .. ..... .. 

• o 

. . . . . .  

(a) Histogram of D[C, C*] varying e and the expected distortion 7 (the dotted line), 

(b) Histogram of L*/L. 

Figure 8. Results of test 1 for 1=9. 

5. E X P E R I M E N T S  

In this section, we compare the behaviour of the algorithm with our derived theoretical predic- 
tions. The test  environment is the following. Given a code C of L codewords, and a channel error 

probabili ty c, a random generator selects a codeword with probabili ty 1/L. Then each bit of the 
codeword is modified with probability E. The process is i terated P times, obtaining the noisy 

set. Then the InitCode and Refinement algorithms are applied, obtaining the codebook C*. No 
a priori information is given on the codeword number and on the error correcting capacity. 

5.1. T e s t  1 

The aim of the first test is to compare the estimated mean distortion V(1,~) (31) and the 
real distortion measure. To see the results in the largest possible range of e, we experiment on 
the situation where we separate two classes of objects, the noisy versions of two complementary 
codewords of length 32. Fixed P, the codebook is built for all the 6 values in [0, 1] with a step of 
0.01. In order for the test be meaningful, the first seed assignment is omitted, and E* is upper 
bounded to ( N -  1)/2. For each value, D[C, C*] is compared with the expected value V(/,e)(31). 
Given parameters:  

• Codeword length N = 32; 
• Channel noise c e [0, 1]. 

The Figures 5a-10a depict the resulting D[C,C*]'s and the corresponding expected results 
"r(l,s) for 1 -- 3,5, 7,9, 20, 30. The distortion curve is approximately symmetrical  because a 
complementary code is used. The Figures 5b-10b show the ratio L*/L 
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~-32 1=39 

(a) Histogram of D[C, C*] varying ~ and the expected distortion "7 (the dotted line). 

(b) Histogram of L*/L. 

Figure 9. Results of test 1 for 1=20. 
. ' ,  

(a) Histogram of D[C, C*] varying s and the expected distortion V (the dotted line). 

(b) Histogram of L*/L. 

Figure 10. Results of test 1 for 1=30. 

The  7(/, s) value appears  to be an overestimation for l < 10 (bet ter  than  expected),  and follows 

well the  distort ion curve for l > 10. 

5.2.  T e s t  2, R e e d - M u l l e r  (1,3)  

In  the second serial of  tests, we run the algori thm on noisy pat terns  of the Reed-Muller (1,3) 

code, of  16 codewords. We want to infer the code with a minimum distort ion (less than  0.01, 

corresponding to  an accuracy of 99%) with probabil i ty greater  than  0.9. 

Given Parameters :  

• Codeword length N = 8; 

• Channel  noise c = 0.09; 

• Tolerance ~? = 0.01; 

• Confidence ~ = 0.1. 

These parameters  are given as inputs to the est imation algori thm tha t  est imates the following 

parameters :  

• Error  correcting capaci ty  Es = 1; 
• Codeword number  L8 = 16; 
• Sample size P = 1231. 

The  r andom generator  then produces the 1231 noisy patterns,  and the In i tCode  and Refinement 
algori thms are applied, obtaining the inferred code C*. Figure 11 depicts the results of  10 
different runs of the algorithm. The  resulting D[C, C*]'s are in each test lower than  or equal to 

the required ~?, and 7 times the system reaches the perfect identification. 
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Figure 11. Histogram of D[C, C*] on ten different runs of the  algorithm in test  2. 
The  dotted line is the required bound ~?. 

5.3. T e s t  3, R e e d - M u l l e r  (1,5) 

The third serial of tests is performed on the Reed-Muller (1,5) code of 64 codewords. In 

this case, having a high channel noise (about 20%), we require a distortion less than  0.1 with 

probabili ty greater than 0.9. Given Parameters: 

• Codeword length N -- 32; 
• Channel noise ~ = 0.17; 

• Tolerance 7/= 0.1; 
• Confidence 6 = 0.1. 

Est imated Parameters:  

• Error correcting capacity E8 = 7; 
• Codeword number Ls = 512; 
• Sample size P = 43177. 

Figure 12 depicts the results of 10 different runs of the algorithm. The resulting D[C, C*]'s are 

in each test  lower than the required ~. 

6. C O N C L U S I O N S  

The problem afforded in this paper  is learning a binary linear code from noisy patterns.  As 

it is defined, the problem is to find a set of reproduction vectors such tha t  a given criterion for 
the total  distortion is minimized, and is thus a clustering optimization, or, equivalently, a vector 
quantizer design problem. 

The main results are an algorithm inferring a binary linear code from noisy pat terns  and an 

upper  bound to the amount of data. 
We derived a general explicit formula that  relates the identification accuracy and the sam- 

ple size, when an extension of the majori ty-vote criterion is used in the reproduction vector 
determination. Specifically, the difference between the original and the inferred code decreases 
exponentially with high probability in the training set size. An application of similar prediction 
criteria to vector quantization, very different in scope, can be found in [20], but in tha t  case the 
theoretical worst-case bounds appear to be far from the typically observed performance. 

We suggested two heuristic schemes to start  and to recover erroneous initializations of a classical 
clustering procedure. The simulation results show this is an effective approach, and the theoretical 
results allows us to directly bound the distortion as a function of the codebook training set size. 
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Figure 12. Histogram of D [ C ,  C*] on ten different runs of the  algori thm in tes t  3. 
The  do t t ed  line is the  required bound 77. 

Open problems rest in the initial codebook design algorithm introduced. An outside balanced 
selection, in spite of the good results obtained, may in principle cause the identification falls in a 
local minimum. Many approaches have been suggested to eliminate the sensitivity of K-means to 
the choice of the initial configuration, for example simulated and deterministic annealing [21,22], 
and they will be a matter of a future work. 

Moreover, the obtained codebook may not satisfy all the properties of vector subspace, unless 
the perfect identification is reached. Refinements of low computational cost are necessary. Intu- 
itively, this task can be reached using lattice quantizers [23-25], but they can not be improved 
by K-means without losing their structure [5]. 

A P P E N D I X  

In this appendix, we prove the claim (25). 

LEMMA 1. Given a linear code C, with L~ estimated codewords, a sample of 

P = mL~ lnLs + 4 L s v ~  

acquires at least m patterns in the Voronoi region of each codeword with probability 1. 

PROOF. We sample with replacement a population of at most Ls distinct classes uniformly 
distributed. 

Let us consider the sample size necessary for the acquisition of at least one pattern for each 
class. We call a drawing successful if it results in adding a pattern of a new class in the sample. 
Let Xi be the number of drawings up to and including the Lts h success. The expected number of 
drawings necessary to exhaust the entire population is ([12], example IX.3.d) 

The variance is 

L~ 1 
E(Xi) = ~ -- L~ ~ - ~- L~ In L~. 

j=l 3 

L.-  1 j 4 (2L~ - Ls) - L8 In LB. var(Xi) = a  2=L8 Z (L8 2 j)2 "~ -5 
j = l  
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Now let us consider m repeated samplings for the acquisition of L8 distinct elements 

X1, X2, • • •, Xm. 

This is a sequence of mutually independent random variables with a common distribution. Let 

Sm = X 1  + X 2  + ' "  + X m .  

By the central limit theorem [12,16,17] 

(S~_-- m# < ) 
Prk, a v ~  - k _ - ~ ¢ ( k ) '  

where ¢ is the normal distribution function. We impose 

¢(k) -~ 1 ::~ k = 3.9. 

Then 
Pr(Sm < m# + 3.9av/-m) ~- 1. 

The thesis follows approximating 3.9av@ to 4Lsv@. 
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