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Shelah's theory of forking (or stability theory) is generalized in a way which deals with 
measures instead of complete types. This allows us to extend the method of forking from the 
class of stable theories to the larger class of theories which do not have the independence 
property. When restricted to the special case of stable theories, this paper reduces to a 
reformulation of the classical approach. However, it goes beyond the classical approach in the 
case of unstable theories. Methods from ordinary forking theory and the Loeb measure 
construction from nonstandard analysis are used. 

Introduction 

In this paper we propose an extension of Shelah's theory of forking which deals 
with measures instead of complete types. The classical theory of forking has been 
highly successful in classifying types over models of stable theories. However, 
since stable theories are quite rare, one would like to apply the method to a 
larger class of theories. The principal aim of this paper is to apply the method of 
forking to the larger class of theories which do not have the independence 
property. In analysis one can often simplify a problem by considering behavior 
almost everywhere with respect to a measure instead of everywhere. Measures 
fulfill a similar purpose here. Roughly speaking, the results concern behavior 
everywhere on the stable part of a model and almost everywhere on the unstable 
part. A key property of forking for types in a stable theory is that a complete type 
over a small subset of a model has only a small number of nonforking extensions. 
With our notion of a nonforking extension of a measure, the analogous property 
holds for certain measures (called smooth measures) in a theory without the 
independence property. That is, each smooth measure over a small subset of the 
model has only a small number of nonforking extensions. 

We shall make heavy use of methods from ordinary forking theory and light 
use of the Loeb measure construction from nonstandard analysis. 

While the main focus of this paper is on the case of unstable theories, the 
approach may still be of interest in the special case of stable theories. In 
particular, the result in Section 5 that every complete type in a stable theory has a 
unique definable extension measure appears to have no analogue in the classical 
theory of forking. 
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As in the classical theory of forking, we work in a large saturated model M, 
and consider subsets of M of smaller cardinality. We restrict our consideration to 
models of countable languages. A complete type p over a subset A of M may be 
regarded as a finitely additive probability measure on the algebra F(A) of subsets 
definable over A in which each set has measure zero or one. More generally, we 
consider arbitrary finitely additive problability measures c~ over F(A). Such a 
finitely additive measure on formulas is extended to a countably additive 
probability measure as follows. We identify a type (set of formulas, possibly 
uncountable) t over A with the set of elements of M which satisfy t, and define 
the measure at(t) as the infimum of the measures of the finite conjunctions of 
formulas in t. Using a construction of Loeb [6], tr then has a unique extension to 
a countably additive probability measure on the o-algebra generated by the types 
over F(A). In this extension, various subsets of M which arise in the classical 
theory of forking are measurable. Among these are the stable part of A, which is 
the union of all complete stable types over A, and the forking part of A over a 
subset C, which is the union of the set of all complete types over A which fork 
over C. The central notions of our theory are the notions of a pure extension of a 
measure, of a nonforking extension of a measure, and of a smooth measure. 
Given subsets A c B of M, an extension of a measure a~ over A to a measure fl 
over B is said to be pure if the stable part of cr has the same measure as the stable 
part of fl, and nonforking if the forking part of B over A has fl-measure zero. An 
important fact in classical stability theory is that a stable complete type has only a 
small number  of nonforking extensions. In order to have an analogous property 
for measures in an unstable theory, we need measures which decide everything on 
the unstable part  of A. The smooth measures fill this need. A measure ac over A 
is said to be smooth if for every B ~ A, all extensions fl of ac to B agree on the 
unstable part  of A. 

In Section 2 we show that the nonforking relation on the class of smooth 
measures in an arbitrary theory has the main properties enjoyed by the 
nonforking relation on the class of complete types in a stable theory. In 
particular, every smooth measure c~ over A is a nonforking extension of a smooth 
measure 6 over a countable subset D c A, and has at least one and at most 
continuum many smooth nonforking extensions to each set B D A. In fact, the 
nonforking relation on smooth measures is characterized by a set of axioms 
analogous to the axioms of Lascar characterizing the nonforking relation on 
complete types in a stable theory. 

The question of existence of smooth measures is dealt with in Section 3. It is 
shown that if the theory of M does not have the independence property, then 
smooth measures exist in abundance. In fact, for a theory without the 
independence property,  every measure c~ has a smooth extension fl over each set 
B ~ A such that fl is pure over tr and fl is nonforking on the stable part of ac. Such 
an extension fl is called a faithful extension of or. Conversely, the only theories 
such that every measure has a smooth faithful extension are the theories which do 
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not have the independence property. If a measure a~ is already smooth, then the 
faithful extensions of tr are exactly the nonforking extensions of a~. 

Section 4 deals with stationary measures, that is, smooth measures which have 
a unique nonforking extension to every larger set. These measures correspond to 
the stationary types in classical stability theory. 

In Section 5 we show that every smooth measure over A induces in a natural 
way a unique extension to each set B D A, called the eventually definable 
extension. This unique extension fl is nonforking and can be characterized in two 
ways. First, for any C D B, fl has a further extension over C which is preserved 
under automorphisms of M which fix each element of A. Second, for every 
C ~ B, fl has an extension over C which is 'definable' over A in the sense that the 
probability of each formula is an F(A)-measurable function of the parameters 
occurring in the formula. By contrast, in the classical theory only the stationary 
complete types have natural unique extensions to sets B D A. Given a complete 
type p in a stable theory, it may be useful to consider the unique eventually 
definable extension of p. In the case that p is not stationary, this extension will be 
a measure which takes values other than zero and one, rather than a complete 
type. 

In Section 6 we prove the analogue of the symmetry theorem for stationary 
measures. In order to do this we first extend the results in the preceding sections 
to smooth measures over the whole model M rather than over small subsets of M. 
One important fact is that every smooth measure over M is definable over some 
countable subset of M. Measures definable over countable subsets of M play a 
key role in this section. For such measures a~ with special variable x and fl with 
special variable y we define a new measure [or x fl] over M with special variables 
(x, y), called the nonforking product. The [re x fl]-measure of a formula in two 
variables is computed as a double integral. [a~ x fl] is again definable over a 
countable fragment, so the nonforking product operation can be iterated, 
allowing us to pass from measures with single special variables to measures with 
tuples of special variables. The nonforking product is associative. When one 
factor is a smooth measure it is also commutative, that is, the double integral 
does not depend on the order of integration. This result is an analogue of the 
Fubini theorem for products of measures, but the formula ~(x, y) is in general 
measurable only in an extension of the usual product measure. In general, the 
nonforking product of two smooth measures over M is not smooth. However, the 
nonforking product of two faithful extensions of measures over a set C is again 
faithful over C. By combining results about nonforking products of measures with 
the symmetry theorem for ordinary complete stable types, we obtain a symmetry 

theorem for measures. 
Other articles in the literature have considered the possibilities of extending the 

forking relation to unstable theories. The book [10] contains many results on 
unstable theories. The independence property is introduced there, and it is shown 
that a countable theory,,has the independence property if and only if for every 
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infinite cardinal r ,  there is the maximum possible number Z '¢ of complete types 
over every model of power r .  This result suggests that theories without the 
independence property may be more tractable than arbitrary theories. The papers 
[4] and [8] pay particular attention to the extent to which the theory of forking for 
complete types applies to unstable theories. This paper is in a similar spirit, but 
while the previous treatments are noncommital about the unstable part of a 
model, the measures allow one to study both the stable and unstable parts. The 
paper [11] has results concerning the classification of the set of unstable theories 
which do not have the tree property, (this set is disjoint from the set of unstable 
theories which do not have the independence property). Pillay and Steinhorn [9] 
obtain results concerning definability and prime models in a special class of 
unstable theories without the independence property, the 0-minimal theories. 

The reader is assumed to have some familiarity with the classical forking theory 
on complete types, as developed in Shelah [10], Harnik and Harrington [4], or 
Pillay [7]. We shall make heavy use of results in that classical theory. The basic 
definitions and notation we need are developed in Section 1. Following [4], we 
consider types and measures over fragments in M instead of subsets A of M. The 
usual examples of a fragment are the set of all formulas with parameters in a 
subset A, and the set of all formulas almost over A. The use of fragments rather 
than subsets of M is not necessary for the present exposition, but gives more 
flexibility for possible future applications and eliminates the step from the set A 
to the algebra of formulas F(A). For an introductory treatment of model theory 
see Chang and Keisler [1]. For a treatment of standard measure theory see 
Halmos [3], and for the Loeb construction and nonstandard analysis see Loeb [6], 
Stroyan and Bayod [12], or Cutland [2]. 

I wish to thank Victor Harnik and Anand Pillay for valuable discussions on this 
work. This research was supported in part by the National Science Foundation 
and the Vilas Trust Fund. 

1. Preliminaries 

We assume throughout that M is a saturated model of a theory T in a count- 
able language L, and r = IMI is an uncountable inaccessible cardinal. A small 
set is a set of power less than r .  Throughout this paper we shall work with a 
specified tuple $ of variables called special variables. To simplify notation, we 
work with a single special variable x unless we state otherwise. F(M) is the 
algebra of formulas of M with at most x free and with parameters in M. 

1.1. Delln!tion. Given a small subset G of F(M), the subsets of M defined by 
finite Boolean combinations of elements of G are called basic sets over G. The 
union of a set of basic sets is said to be open over G, and the complement of an 
open set is said to be closed over G. The sets in the a-algebra trG generated by 
the open (or closed) sets over G are said to be Borel over G. 
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It follows from saturation that a subset of M is basic over G if and only if it is 
both open and closed over G. 

We shall usually identify formulas with basic sets, and types (sets of formulas) 
with closed sets. Inclusion relations between types will refer to the corresponding 
subsets of M rather than sets of formulas. Thus if t and u are types and t is a 
subset of u as a set of formulas, then t ~ u as subsets of M. 

The following result defines a canonical extension of a finitely additive 
probability measure on G to a countably additive probability measure on oG. 
The measures obtained in this way are the primary object of study in this paper. 

1.2. Theorem. Any  finitely additive probability measure ol on a small Boolean 
closed subset G o f  F(M)  has a unique countably additive extension to the 
o-algebra oG such that the measure o f  an open set over G is the supremum o f  the 
measures o f  its basic subsets. We shall call this extension the measure generated by 
OL 

Proof. Expand M to a x-saturated structure M'  with three new sorts, a sort for 
subclasses of M satisfying comprehension for formulas of L, a sort for the 
hyperreal unit interval *[0, 1], and a sort for finitely additive mappings from the 
classes into *[0, 1]. We shall call the elements of M' internal. By saturation, tr can 
be extended to an internal finitely additive mapping #. Using the tol-saturation of 
M' ,  let fl be the Loeb measure generated by #. fl is a complete countably additive 
probability measure such that for each internal class X in M' ,  fl(X) is the 
standard part of #(X). For each subset F of G, we see by saturation that there is 
an internal class containing the union of F whose #-measure is infinitely close to 
the supremum of the tr-measures of the finite subsets of F. Therefore the union 
of F is fl-measurable with the required measure. Hence every set in oG is 
fl-measurable and the restriction of fl to oG has the required properties. [] 

As in Harnik and Harrington [4], a fragment is a small (that is, of power less 
than x) set of formulas of the diagram language of M containing all formulas of L 
and dosed under connectives, quantifiers, and free substitutions of variables. 
Unless we explicitly mention other variables, we restrict our attention to formulas 
in F with only the special variable x free. Thus given a fragment F, oF is the set 
of Borel sets over F, that is, the a-algebra of subsets of M generated by the types 
over F. By a measure over a fragment F we mean a measure a~ on oF which is 
generated (in the sense of Theorem 1.2) by a finitely additive probability measure 
on the basic sets over F. By a measure on M we mean a measure a~ over some 
fragment F(tr) in M. (Note the use of the phrases 'over F '  and 'on M'). A 
measure a~ on M is countably generated if its fragment F(a0 is countable. The 
measure algebra of a~ is the quotient of a~ modulo the sets of oF(ix) of a~-measure 
zero. By a complete type (in the special variable x) over a fragment F we mean a 
measure over F which only takes on the values 0 and 1. The formulas of measure 
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1 in a complete  type form a complete type in the classical sense, i .e. ,  a maximal 
consistent set of  formulas in the variable x over F. By the F-interior of a set 
X ~ M we mean  the union of all open sets over  F which are included in X. 

A measure  fl is an extension of a measure  a ,  and a is a submeasure of fl, in 
symbols a c fl and fl ~ a,  if a and fl are measures  on M, F ( a )  c F(fl) ,  and a is 
the restriction fl [ F ( a )  of fl to oF(a) .  The reduct of a measure  a on M to a 
sublanguage L '  of L is the restriction of a to the part  of the f ragment  F ( a )  in L ' .  

The a-inner measure of a set X c M is defined as the supremum of the 
a -measures  of all a -measurab le  subsets of X. The a-outer measure is defined 
analogously. If X, Y • F ( a )  and X c Y, we say that  X has ful l  measure in Y (with 
respect to a )  if a ( X )  = a (Y) .  Equivalent ly,  the set Y - X has a -measure  zero. 

In the next three  lemmas we present  some basic facts about  measures  on M 
which will be needed  later. 

1.3. Lemma.  Let  a be a measure on M and let G be a fragment containing F(a) .  
(i) The a-inner measure o f  a set X c M is the surpremum o f  the measures o f  all 

closed sets C over F ( a )  such that C ~ X.  The a-outer measure is the infimum of  
the measures o f  all open sets U over F ( a )  such that U D X. 

(ii) For every set X • oG and every real r between the a-inner and a-outer 
measures o f  X,  a can be extended to a countably additive probability measure fl on 

oG such that X has fl-measure r. (Note: Here  fl is not necessarily a measure  over 
G in our sense, for the fl-measure of an open set may  be greater  than the 
supremum of the f l-measures of its basic subsets.)  

(iii) A formula ep in F(M)  has a-inner measure >r i f  and only i f  there is a 
fomula 0 • F(ol) such that 0 ~ cp and a(O) > r. Similarly for  outer measure <r. 

(iv) For any formula dp • G and any real r between the a-inner and a-outer 

measure o f  cp, a can be extended to a measure fl over G such that fl(dp) = r. 
(v) The a-inner measure o f  an open set X over G is equal to the a-measure o f  

the F(a)-interior o f  X. 
(vi) For every open set Y over F(a)  there is a countable subfragment H o f F ( a )  

such that the H-interior o f  Y has full  measure in Y. 

Proof.  For  (i) it suffices to prove that for every set X • oF(a) ,  and every real 
r > 0, there is a closed set Y over F ( a )  such that  Y c X and a ( Y )  is within r of 
a (X) .  From results in [3], there is a set Z in the algebra genera ted  by the open 
sets over F(a)  such that Z c X and a(Z)  is within r/2 of a(X). Putting Z in 
disjunctive normal  form, we may represent  Z as a finite union of sets of the form 
A N B where A is open and B is closed over  F ( a ) .  By replacing each A by a basic 
set within r/2n of A,  we obtain a closed subset Y c Z over  F ( a )  such that  a (Y)  is 
within r of a (X) .  

(ii) follows from classical results in [3]. 
(iii) follows from (i) and saturation. 
For  (iv), first use (ii) to extend a~ to a probabil i ty measure  di on oG with 
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~(~)  = r, then restrict 6 to the basic sets in G and apply Theorem 1.2 to obtain 
the required measure fl over G. 

(v) follows from (i) and saturation. 
(vi) By the definition of a measure on M, there is a countable union Z of 

F(a0-basic subsets of Y which has full measure in Y. Let H be a countable 
subfragment of F (a  0 which contains each of the formulas used in Z. Then Z is 
contained in the H-interior of Y, so H has the required property. [] 

1.4. Definition. A measurability pattern is a set of finite positive Boolean 
combinations of statements asserting that the measure of a formula over M 
belongs to a closed subinterval of [0, 1]. A measurability pattern is satisfiable if 
there is a finitely additive probability measure on the formulas over M which 
agrees with the pattern. 

Notice that a (non-strict) inequality between the measures of two formulas over 
M can be expressed by a countable measurability pattern. The next lemma is a 
compactness theorem for measurability patterns. 

1.5. Lemma.  I f  every finite subset of  a measurability pattern is satisfiable, then the 
whole pattern is satisfiable. 

Proof. Expand M by adding a sort for the ordered field of real numbers, a 
constant symbol for each real, and, for each formula tp(x, )7) of L, a function 
symbol f , (~)  for the measure of ~p(x, ti). Let T be the theory consisting of the 
diagrams of M and the real numbers, and axioms for a finitely additive probability 
measure on formulas tp(x, a). By hypothesis, T is consistent with every finite 
subset of the given measurability pattern P. By compactness, T has a model M'  in 
which the whole pattern P holds. M'  is an elementary extension of M with a 
finitely additive probability measure from formulas to an elementary extension of 
the reals. Taking standard parts and restricting to M, we obtain a finitely additive 
probability measure on the formulas over M which agrees with the pattern P. [] 

We now apply measurability patterns to prove a useful lemma on extending 
measures on M. Measurability patterns will be used again in Sections 3 and 5. 

1.6. Lemma.  Let tr be a measure on M and let G be a fragment containing F(o:). 
Let Xi, i • I, be a chain o f  open sets over G indexed by a linearly ordered set L 
Then tr has an extension fl over G such that the fl-measure o f  each Xi is equal to its 
ol-inner measure. Moreover, for each set V • oF(o:) and each i, the fl-measure o f  
Xi n V is equal to its it-inner measure. 

Proof. For each i, let r /be the it-inner measure of X~. Let P be the measurability 
pattern which assigns tr(~) to each ~ • F(te) and states that each 0 • G which is 
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included in X~ has measure <~ri. We must show that  each finite subset of P is 
satisfiable. By taking unions of basic subsets of X~, we may restrict our 
consideration to finite subsets of P which mention at most one basic subset Zi of 
X/for finitely many i e I and are such that Ii increases as i increases. Let k be the 
largest of these i's. By classical measure theory, M can be extended to a 
probability measure for which Ik has measure at most rk and the inner measures 
of the sets Ai for i < k are unchanged. Repeating this process finitely many times, 
we see that the finite subset of P is satisfiable. By Lemma 1.5, P is satisfiable. By 
Theorem 1.2 there is a measure fl over G which agrees with P and therefore is an 
extension of o: such that each X~ has fl-measure r~. For each V ~ oF(o:) and each 
i, the sum of the o:-inner measures of X~ f7 V and X~ - V is ri, and it follows that 
the fl-measure of X~ A V must equal its it-inner measure. [] 

For the remainder of this section we shall review some notions from classical 
forking theory, introduce corresponding notions for measures on M, and prove 
some basic lemmas which will be used later on. We shall now introduce the stable 
part of a fragment F. We always let A, or A(x, )7), denote a finite set of formulas 
~(x, )7) of L(M) ,  with special variable x and parameter variables )7. A A-type in 
the variable x is a type consisting of formulas q~(x,/~) where ~ or its negation 
belongs to A. A complete A-type over a fragment F is a maximal consistent 
A-type of formulas over F .  If p is a complete type over F, p I A denotes the 
complete A-type obtained by restricting p to formulas ~(x,/~) where ~ or its 
negation belongs to ,4. Let t be a type in x over F. The (Morley) A-rank of t is 
defined inductively as follows, t has A-rank ~>0 if and only if t is consistent, t has 
A-rank >~n + 1 if and only if for every finite subset u of t (as a set of formulas, 
hence u D t as a subset of M), and every m e N, there are at least m formally 
disjoint A-types q over some G ~ F such that u N q has A-rank ~>m. (Two types 
are formally disjoint if for some formula ~, ~ belongs to one type and 7 ~  to the 
other.) t is A-stable if the A-rank of t is finite, t is said to be stable if t is A-stable 
for every finite A c L. If t is stable, then t is A-stable even for every finite 
A c L(M).  Similar notation is used for an n-tuple $ in place of the variable x. A 
formula t~(x, )7) of L(M)  is stable if every type t is {~}-stable. 

The A-stable part of a fragment F, denoted by sbl(A, F), is the union of all 
A-stable basic types (or formulas) over F. For each n and A, sbl(n, A, F) will 
denote the union of all basic types over F of A-rank at most n. Thus sbl(A, F) is 
the union of sbl(n, A, F) over n. Moreover, sbl(A, F) and each sbl(n, A, F) is 
open over F. The stable part of F, sbl(F), is the intersection of the sets sbl(A, F) 
for all finite A c L. Then sbl(F) c sbl(A, F) even for A c L(M).  The complement 
of the stable part of F is the unstable part usbl(F). Similarly, the complement of 
sbl(A, F) is denoted by usbl(A, F). For a measure o: on M, we put sbl(o:)= 
sbl(F(o:)), etc. 

1.7. Lemma. Let  o: be a measure on M, let A c F(o:), and let qb be a A-stable 
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basic type over F(o:). Then the union o f  the sets ep tqp, where p is a complete 
A-type over F(o 0 and ~p N p has positive measure, has full measure in dp. 

Proof. We argue by induction on the A-rank of ~. Suppose the result holds for 
A-rank less than n, and ~ has A-rank n. Then ~ is the union of the open set 

N sbl(n - 1, A, F(c~)) and finitely many sets of A-rank n of the form tp N p 
where p is a complete A-type over F(tr). The inductive hypothesis applies to each 
basic subset of tp fq sbl(n - 1, A, F(te)), and by the definition of measure on M, 
there is a union of countably many basic subsets which has full measure in 

f7 sbl(n - 1, A, F(te)). It follows that the union of the sets ~ Np  of positive 
measure where p is a complete A-type over F(cr) has full measure in tp, as 
required. [] 

1.8. Corollary. Let te be a measure on M and let A c F(o O. Then the union of  the 
sets sbl(A, ol) N p o f  positive measure, where p is a complete A-type over F(cr), 
has full measure in sbl(A, c~). 

Proof. sbl(A, re) is an open set over F(te), so there is a countable union of 
A-stable formulas over F(te) which has full measure in sbl(A, a~). A complete 
A-type p over F(o~) has positive measure in sbl(A, t~) if and only if it has positive 
measure in one of the sets of the countable union. The result now follows from 

Lemma 1.7. [] 

1.9. Lemma. (i) I f  t and u are types and t c u, then for each finite A the A-rank 

o f  t is <<- the A-rank o f  u. 
(ii) I f  t is a type over F, then for  each A c F there is a formula cp over F such 

that t c ~p and the A-rank o f  cp equals the A-rank o f  t. 
(iii) The sets sbl(n, A, F) and the A-stable part of  a fragment F are open over F 

and the stable part o f  F is Borel over F. 
(iv) I f  G is an extension o f  F, then for each n and A c F, sbl(n, A, F) is the 

F-interior o f  sbl(n, A, G), sbl(A, F) is the F-interior of  sbl(A, G), and sbl(F) is a 

subset of  sbl(G). 
(v) A type t over F is A-stable i f  and only if  t c sbl(A, F), and has A-rank at 

most n if  and only i f  t r- sbl(n, A, F). 

These results are implicit in [10]. 
We shall now introduce two kinds of well behaved extensions of measures on 

M, the pure extensions, which are well behaved on the unstable part of re, and 
the nonforking extensions, which are well behaved on the stable part of a~. We 
begin with the pure extensions, which are extensions which do not increase the 
measure of the stable part. At the same time we introduce the stronger notion of 
a locally pure extension, which is an extension which does not increase the 
measure of any A-stable part. 



128 H.J. Keisler 

1.10. i )e tki l ion.  A measure fl is a pure extension of ac if fl is an extension of ac 
and the stable part of tr has full measure in the stable part of ft. That is, the set 
sbl(fl) - sbl(tr) has fl-measure zero. We say that fl is pure over a fragment F if fl 
is pure over its restriction to F. 

fl is a locally pure extension of a: if fl is an extension of a~ such that for each 
A = L, the A-stable part of tr has full measure in the A-stable part of ft. That is, 
the union over A c L of the sets sbl(A, fl) - sbl(A, tr) has fl-measure zero. 

1 .U.  Lemma. (i) Every locally pure extension of  a measure ol on M is a pure 
extension of  oi. 

(ii) Every measure fl on M is a locally pure extension o f  some countably 
generated submeasure. 

(iii) (Transitivity Properties). I f  ol c l~ ~ fl, then fl is pure over tr if  and only if  
l~ is pure over ol and fl is pure over It. Similarly for locally pure. 

(iv) fl is a pure extension of  te i f  and only if  there is a restriction Olo o f  o: to a 
countable fragment such that every countable extension o f  Olo which is included in 
fl is a pure extension o f  teo. Similarly for  locally pure. 

(v) The union o f  a chain of  locally pure extensions o f  a measure te on M is a 
locally pure extension o f  ol. 

(vi) I f  L '  is a sublanguage o f  L and fl is a locally pure extension of  re, then the 
L'-reduct o f  fl is a locally pure extension o f  the L'-reduct o f  ol. 

Proof. (i) If fl is locally pure over a~, then for each finite A c L the sets sbl(A, fl) 
and sbl(A, a¢) differ by a set of fl-measure zero, and therefore the respective 
intersections over A differ by a set of fl-measure zero, whence fl is pure over a~. 

(ii) By 1.3(vi) and the fact that the A-stable part of fl is open, for each finite A 
there is a countable subfragrnent Gz, of F(fl)  such that the A-stable part of Ga has 
full measure in the A-stable part of F(fl). Let G be the union of the fragments 
GA. Then for each A, the A-stable part of fl I G has full measure in the A-stable 
part of ft. Therefore fl is a locally pure extension of fl I G. 

(iii) This is straightforward. 
(iv) First let fl be a pure extension of ac. by (ii) there is a countably generated 

submeasure tro of tr such that a: is a pure extension of tro. It follows from (iii) that 
every measure between re0 and fl is a pure extension of a~o. Conversely, suppose 
a~o is a countably generated submeasure of tr such that every countably generated 
measure between tro and fl is a pure extension. By (i) there is a countably 
generated submeasure flo of fl such that fl is a pure extension of flo- Then the 
union of a¢o and flo is a pure extension of aCo and a pure submeasure of fl, and by 
(ii), fl is a pure extension of a~. 

(v) follows from the fact that if G,, is an increasing chain of fragments 
containing F, and G is the union of the chain, then for each A, sbl(A, G) is the 
union of the sets sbl(A, Gn). 

(vi) follows from the_.~corresponding result for complete types. [] 
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The following example shows that in the preceding theorem, parts (v) and (vi) 
on unions of chains and reducts do not hold for pure extensions. Let T be the 
theory in a language with countably many binary relation symbols Rn, n e N, such 
that each Rn is a dense pre-linear ordering without endpoints, and for any 
elements ai, • • •, ak and distinct nl,  • • •, nk E N, the intersection of the equiv- 
alence classes {x:xRniai ¢~aiRni x} is dense in all the other relations R,,, 
n 4 : n l , . . . ,  nk. Let t be a complete type over an elementary submodel of M 
which has no equivalence class for any R,,. Let t,, be an increasing chain of 
complete types extending t such that t,, has an R,, equivalence class, but does not 
have an R,+I equivalence class. Then each t,, is in the stable part of R, but in the 
unstable part of R,,+I. It follows that each tn is a pure extension of t, but the 
union of the t, 's is not pure over t. Moreover, the reduct of t,, to R,, is not pure 
over the reduct of t to Rn. 

We are now ready to introduce the notion of forking. The following definition 
of a complete type q over G forking over F is from [4, Theorem 8.10]. For the 
stable case it is equivalent to the original definition in [10]. 

1.12. Definition. Let p be a complete type over a fragment F and let G be a 
fragment containing F. We shall say that an extension q of p to a complete type 
over G is nonforking over F if for each stable formula 6(x, )7)e F and each 
element b ~ M, if q ~ 6(x,/~) then the di-rank o fp  n 6(x,/~) is equal to the 0-rank 
of p. If q is not nonforking over F we say that q forks over F. 

By the forking part of G over F, denoted by fk(G, F), we mean the union of all 
complete types q over G such that q forks over F. Given measures a~ c t ,  we 
shall write fk(fl, a 0 for fk(F(fl) ,  F(oO), fk(G, tr) for fk(G, F(tr)) ,  and so forth. 

Given a finite set A of formulas in F, we denote by fk(A, G, F)  the union of all 
complete types q over G such that the a - rank  of q is less than the a - rank  of q I F. 

1.13. Lemma. Let F and G be fragments with F c G. 
(i) fk(G, F) is open over G. 

(ii) fk(G, F)  n sbl(F) = U {fk(A, G, F ) : A  c L} n sbl(F) 

= U {fk(A, G, F ) : A  c F} n sbl(F). 
(iii) Every complete type p over F has a nonforking extension to a complete type 

q over G. 
(iv) fk(G, F)  c U  {fk(A, G, F)" A c f and A is stable}. 

These results (i) and (ii) axe from [10], and (iii) is from [4, Proposition 8.9]. (iv) 
follows easily from the definitions. We now introduce the notion of a nonforking 
extension of a measure on M. 

1.14. Definition. Let  fl be a measure on M. fl is a nonforking extension of a 
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measure tr on M if the forking part of F(fl) over F(te) has fl-measure zero, 

= 0 .  

1.15. Lemma. (i) Every measure fl on M is a nonforking extension of  some 
countably generated submeasure of  ft. 

(ii) (Transitivity). Let ol c # ~ ft. I f  fl is nonforking over # and # is nonforking 
over ol, then fl is nonforking over ol. I f  fl is nonforking over or, then # is 
nonforking over ol. 

(iii) fl is a nonforking extension of  ol i f  and only if  there is a countably generated 
submeasure Olo of  ol such that every countably generated submeasure flo of  fl which 
contains O~o is nonforking over Olo. 

(iv) I f  fl is nonforking over its restriction to F and # is a measure over F(fl) 
which is absolutely continuous with respect to fl (that is, every set of  fl-measure 
zero has #-measure zero), then # is nonforking over its restriction to F. 

Proof. (i) By 1.3(vi) there is a countable subfragment H of F(fl) such that the 
H-interior of sbl(n, A, fl) has full measure in sbl(n, A, fl) for each n and A ~- H. 
By Lemma 1.9(iv), sbl(n, A, H) is the H-interior of sbl(n, A, fl). It follows that 
for each A c H, the set fk(A, fl, H) has fl-measure zero. Therefore by 1.13(iv), fl 
is a nonforking extension of fl I H. 

(ii) follows from the corresponding result for complete types. 
The proof of (iii) is similar to the proof of 1.11(iv). 
(iv) follows because if fk(G, o:) has fl-measure zero and # is absolutely 

continuous with respect to fl, then fk(G, o 0 has #-measure zero. [] 

1.16. Lemma. L e t  ol be  a m e a s u r e  on  M .  

(i) The union of  a chain o f  nonforking extensions of  ol is non forking over ol. 
(ii) Let L' be a sublanguage o f  L. I f  fl is a nonforking extension of  tr, then the 

L'-reduct o f  fl is a nonforking extension of  the L'-reduct o f  ol. 

Proof. (i) It is easy to check that if Gn is an increasing chain 
containing F, then 

t_J fk(Gn, F) = fk(U G~, F). 

(ii) follows from the corresponding result for complete types. [] 

of fragments 

1.17. Lemma. For every measure tr on M and every fragment G containing F(tr), 
the forking part o f  G over F(~)  has ~-inner measure zero. 

Proof. Let Y be dosed over F(a 0 and Y c fk(G, t~). Then Y is a union of 
complete types over F(tr). By Lemma 1.13(iii), every complete type over F has a 
nonforking extension to G, and thus is not contained in fk(G, o O. Therefore Y is 
empty, and fk(G, oc) has tr-inner measure zero. [] 
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1.18. Theorem. For every measure ol on M and fragment G D F(o:), 
nonforking extension to G. 
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a~has a 

Proof. By lemmas 1.6, 1.13(i), and 1.17, a~ has an extension fl to G such that 
fk(G, a 0 has t -measure  zero. [] 

1.19. Definition. A fragment G is a countable base for a complete type t over a 
fragment F if G is countable, G c F, and for every A c G, the restriction of t to 
G has the same A-rank and A-multiplicity as t. G is a countable base for a 
measure a~ on M if G is countable, G c F(a0,  and the set of x e M such that G is 
a countable base for the complete type of x over F(t~) has a~-measure one. 

If G is a countable base for a~, then for each A c G the set fk(A, a~, G) has 
a~-measure zero and hence a~ is a locally pure nonforking extension of a~[ G. It 
follows from the transitivity property that the union of any countable chain of 
countable bases for a~ is also a countable base for a~. 

1.20. Proposition. Every measure ol on M has a countable base. 

Proof. By Lemma 1.11 and the proof of Lemma 1.15(iv), F(tr)  has a countable 
subfragment G such that for each A c G, the set fk(A, tr, G) has tr-measure zero. 
There is a countable subfragment H of F(tr)  such that G c H and for each finite 
,4 c G and each formula ~ over H of finite A-rank n, there are the same number 
of complete A-types t with t n ~ of rank n over H as over F(tr). Repeating this 
construction countably many times and taking the union, we obtain a countable 
base for tr. [] 

We shall say that two measures fl and/u over G agree on a Borel set X over G 
if for every ~ e G, fl(~ f i X ) =  gt(q~ OX).  

1.21. Theorem.  Let  tr be a measure on M and let G be a fragment containing 
F(o O. There are at most continuum many nonforking extensions o f  oi to G which 
disagree on the stable part o f  F(ol). 

Proof. By the preceding results, we may assume without loss of generality that 
F(a0 is countable and G is generated by a small elementary submodel N of M. 
Suppose fl and/~ are nonforking extensions of tr over G. Let A be a finite subset 
of F ( a  0. Suppose that for each A-stable formula ~, e F (a  0 and each complete 
A-type p over G such that ~ N p  has the same A-rank as 4, fl(~ Np)  = /~(~  r ip) .  
Using Lemma 1.7, we shall show by induction on the A-rank of ~ that for each 
A-stable formula ~ e F(tr)  and each tS(x, b) e G with 6(x, ~) e A, 

,5(x, g)) = & g)). (1) 
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Assume this holds for formulas of A-rank less than n, and let t# have A-rank n. 
By the inductive hypothesis, 

fl(dp(x) & tS(x,/~) n sbl(n - 1, tr)) = p(~(x)  & t$(x,/~) n sbl(n - 1, oc)). 

There are only finitely many complete A-types P l , . . .  ,Pk over G such that 
tpNpi has the same A-rank as tp. Since tp(x) is A-stable, the formula 
tp(x) & ~5(x, 37) is stable for each ~ e A. It follows from the definition of fk(G, a~) 
that 

[tp n u s b l ( n -  1,, A, a ' ) ] -  [pl U . . .  U p k ] c f k ( G  , tr), 

so the above set has fl-measure zero and p-measure zero. By our hypothesis on fl 
and p, fl(dp np i )  = p ( ~  npi )  for each i ~< k. This shows that formula (1) holds for 
all 6(x,/~). Our induction is complete. 

It follows that for each 6(x,/~) • G with 6(x, 37) • A, 

fl(sbl(A, a 0 O t$(x,/~)) = p(sbl(A, or) n t$(x,/~). 

If the assumption on fl and p holds for all A, then fl and p agree on sbl(a~). 
Moreover, there are only countably many formulas in F(a  0, and for each 
zl c F(tr) and A-stable formula tp • F(tr) there are only finitely many complete 
A-types p over G such that tp n p has the same A-rank as ~p. This shows that 
there are at most continuum many nonforking extensions of tr to G which 
disagree on sbl(tr). [] 

2. Smooth measures 

In this section we introduce the notion of a smooth measure and study the 
nonforking relation on the class of smooth measures on M. We shall see that this 
relation enjoys the same properties as the nonforking relation on the complete 
types of a stable theory, and can be characterized by a set of axioms in a manner 
analogous to Lascar's characterization (see [4]) of the nonforking relation on 
complete stable types. In addition, we show that a smooth measure on M has a 
countably generated measure algebra. 

2.1. Definition. A measure tr on M is smooth if for every fragment G ~ F(a~), 
any two extensions of te to measures over G agree on the unstable part of or. 

For example, any measure tr on M whose unstable part has measure zero is 
smooth. In particular, in a stable theory every measure on M is smooth. At the 
other extreme among theories without the independence property is the theory 
DLO of dense linear order without endpoints, where the stable part of a measure 
a~ over a fragment F consists only of the elements of M which are definable over 
F. It can be seen using elimination of quantifiers that a measure tr over a 
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fragment F in DLO is smooth if and only if every complete type over F which is 
an infinite subset of M has a~-measure zero. For example ,  the usual length 
measure on the rational subintervals of [0, 1] is smooth. Moreover,  if we identify 
[0, 1] with a subset of the saturated model M, then any countably additive 
probability measure on the Borel subsets of [0, 1] induces a smooth measure over 
the fragment F([0, 1]) generated by [0, 1]. However, the measure over F([0, 1]) 
which assigns measure one to the set of positive infinitesimals is not smooth. 

We now give some examples in which both the stable and unstable parts of a 
fragment F are nontrivial. Let T be the theory of models M with a unary 
predicate U and a binary relation R such that R is a dense linear order on U and 
an equivalence relation with infinitely many infinite classes on the complement of 
U. Then the stable part of a fragment F consists of the elements of U which are 
definable in F and the complement of U. A measure over F will be smooth if and 
only if every complete type over F which is an infinite subset of U in M has 
measure zero. In particular, given any smooth measures tr and fl over F such that 
t~(U) = 1 and fl(U) = 0, any linear combination r -  a~ + (1 - r ) -  fl, 0 <~ r ~< 1, will 
be a smooth measure over F in which U has measure r. 

Let T be the theory with two binary relations E and R such that E is an 
equivalence relation with infinitely many equivalence classes, R is a dense linear 
ordering of the universe without endpoints, and each equivalence class of E is 
dense in R. Then an extension of a measure a~ over a fragment F is nonforking if 
and only if there are no new equivalence classes or elements of positive measure. 
A measure te over F is smooth if and only if the R-reduct of tr is smooth and the 
union of the equivalence classes definable in F with positive ce-measure has 
a~-measure one. 

We shall use the notation X A Y for the symmetric difference of the sets X and 

Y. 

2.2. Lemma. Let o: be a measure on M. The following are equivalent. 
(i) a~/s smooth. 

(ii) For every formula dp in F(M) ,  the o:-inner and o:-outer measures o f  
~p n usbl(a0 are equal. 

(iii) For every formula dp in F (M)  and each r > 0 and finite A, there are 
formulas O, :r, and t$ in F(tr) such that o~(:r) < r, t$ is A-stable, and 0 A cp = :r U 

(iv) For every formula dp(x, y) o f  L and each r > 0 and finite A there are a 
A-stable formula t$ in F(tr) and finite sequences o f  formulas Ore, :rm, in F(o:), 
m = 1 , . . . ,  k, such that ~(:rm) < r, and for each b in M there exists m <~ k such 
that 

em A 9(x, b) U a. 

Proof. By Lemma 1.6, for each fragment G D E(tr) and each formula ~b ~ G, o: 
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has an extension fl over G such that fl(~ f3 usbl(tr)) is equal to the it-inner 
measure of ~ N usbl(a 0, and another extension fl' such that f l ' (~  f3 usbl(a0) is 
equal to the a~-outer measure of ~ tq usbl(tr). If tr is smooth, then a~ and fl' must 
agree on ~ N usbl(a 0, so (i) implies (ii). The remaining implications follow from 
saturation, the fact that a finite disjunction of A-stable formulas is A-stable, and 
Lemma 1.3. [] 

2.3. Lemma. (i) Every extension of  a smooth measure on M is smooth. 
(ii) A complete type over a fragment F is smooth if and only if  it is stable. 

Proof. (i) follows from the fact that if te c fl, then usbl(o 0 ~ usbl(fl). Since an 
unstable complete type has more than one extension to a complete type over 
some fragment which properly contains F, (ii) holds. [] 

2.4. Lemma. Let ol be a smooth measure on M and let fl be an extension o f  ol. 
(i) fl is a locally pure extension o f  or. 

(ii) For each A ~ L, the set fk(A, fl, el) has fl-measure zero in the unstable part 

of . 
(iii) I f  fl is nonforking over ol i f  and only if for  each A c F(e  0 the set 

fk(A,  fl, o 0 has fl-measure zero, and also if and only if  for  each A c L the set 
fk(A, fl, a ' )N sbl(a') has fl-measure zero. 

Proof. Suppose (i) fails. Then there is a A c L and a A-stable formula ~ over fl 
of positive measure in the A-unstable part of a~. By Lemma 2.2(ii), the 
intersection of ~ with the A-unstable part of a~ has the same m-inner and a~-outer 
measures. Thus by Lemma 1.3(i) and saturation there is a formula 0 • F(te) 
which has positive measure in the A-unstable part of a~ and implies 6. Since 6 is 
A-stable, 0 is A-stable, contradicting the fact that 0 has positive measure in the 
A-unstable part of o~. This proves (i). 

(ii) Suppose that the set fk(A, fl, a 0 has positive fl-measure in usbl(a 0. Then 
for some n, the set 

Y =  (sbl(n, A, f l ) -  usbl(n, A, re)) N usbl(o 0 

has positive measure r. By Lemma 2.2(ii) the set Y has a~-inner measure r, so 
there is a closed set C c Y over F(o0 of measure >r/2. Since Y ~ sbl(n, A, fl) 
and sbl(n, A, fl) is open over fl, there is a basic set 0 over F(tr)  with 
C c 0 c sbl(n, A, fl). But since 0 • F(a0,  0 c sbl(n, A, a0, and thus C is empty, 
contradicting the fact that C has fl-measure >r/2. 

(iii) now follows by Lemma 1.13. [] 

By a smooth countable base for a measure fl on M we mean a countable base G 
for fl such that the restriction of fl to G is smooth. 
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2.5. Proposition. Every smooth measure fl on M has a countable smooth base. 

Proof. Let fl be smooth. We first show that fl has a smooth countably generated 
submeasure. Let G be a countable subfragment of F(fl) which contains all the 
formulas Ore, arm, 6m of Lemma 2.2 for each rational r > 0, each n, and each 
tp(x, 37). L e t / ,  = fl [ G. By Lemma 2.2,/z is smooth and countably generated. By 
Lemma 1.20, fl has a countable base H. Let  J be a countable fragment such that 
G U H c F(fl). By Lemma 2.3(i), fl I J is smooth and J is a countable base for 

[] 

2.6. Proposition. Every smooth measure has a countably generated measure 
algebra. 

Proof. Suppose the measure algebra of te is not countably generated. Then there 
is a sequence ~bi, i < to1, of formulas over F(te) such that no ~/ i s  within a null set 
of the a-algebra Ai generated by the preceding sets. Since the language L is 
countable, we may asume that all the ~/ are of the form ~(x, a/), that is, 
definable from the same formula tp. We may then find a positive real s and an 
infinite set of i's such that the measures of the symmetric differences of the 
~(x, a/) are at least s. 

Let r be a positive real number. Call a formula 6 e F(0r) r-large if there is an 
infinite set of i's such that the measures of the symmetric differences of the 
~(x, a:) intersected with 6 are at least r. By Ramsey's theorem, for each 6 either 
6 or -a6 is s/2-1arge. We claim that if 6 is r-large for some positive r, then 6 is not 
t~-stable. The proof is by induction on the ~-rank of 6. Suppose 6 is an r-large 
~-stable basic set over F(tr)  of ~-rank n. Then 6 contains only finitely many 
complete ~-types of ~-rank n, so infinitely many of the ~(x, a~) must contain the 
same complete ~-types in 6 of ~-rank n. There is a formula ar of ~-rank less than 
n which is within r/2 of the open set s b l ( n -  1, ~, re)N 6. Whenever i :/:j and 
~(x, ti~) and ~(x, tij) agree on complete ~-types in 6 of rank n, the set 
(~(x, ti:) A ~(x, tij)) N ar will have measure at least r/2. Then ar is r/2-1arge and 
of ~-rank less than n. This proves the claim. 

We conclude that for every ~-stable basic set 6 over F(a0 ,  -a6 is s/2-1arge. By 
taking 6 of measure within s/4 of the ~-stable part of F(o~), we obtain an infinite 
set of tii such that the measures of the symmetric differences of the q~(x, ti/) are 
bounded away from zero in the ~-unstable part of F(a  0. 

By saturation, for any cardinal ~. < x, o~ has an extension fl with ~. formulas of 
the form t~(x, ~) whose symmetric differences have t -measureS bounded away 
from zero in the ~-unstable part of F(a  0. For A large enough, two of these 
formulas must have the same Borel subsets and supersets in aF(tr) .  Therefore 
within the unstable part of a~, the g-inner measure of ~(x, ~) is less than the 
e-outer  measure of ¢(x,  e). Hence the unstable part of a~ has more than one 
extension to F(fl). It fol~ows that ff is not smooth. [] 



136 H.J. Keisler 

2.7. Theorem. Let ct be a smooth measure on M and let G be a fragment 
containing F(tr). Then o: has at most continuum many nonforking extensions to G. 

Proof. This follows from Theorem 1.21, since by definition any two nonforking 
extensions of te agree on the unstable part of a~. [] 

At this point let us recall the notions of elementary maps and conjugate 
formulas and types. If F c G are fragments, an F-elementary map on G is an 
automorphism f of M such that the induced mapping on formulas maps G onto G 
and is the identity on F. Two formulas ~(x,/~) and ~(x, ~) in G are said to be 
F-conjugates on G if they are images of each other under F-elementary maps on 
G. Types over G which are F-conjugate are defined analogously. It is easily seen 
that if p is a complete A-type over G, then any F-conjugate of p on G is either 
equal to p or disjoint from p .  

The following lemma is related to various results in the literature, for example 
in [10, Section III.2],  and [4, p. 266]. We give a proof here because we need the 
result locally for A c L in a possibly unstable theory. We refer to [1, Chapter 5] 
for a treatment of special models. 

Definition. By a special fragment over F we mean a fragment G ~ F which is 
generated by a special elementary submodel N of M whose power has cofinality 
)., where card(F) < ). < r .  

2.8. Lemma. Let A be a finite set o f  formulas o f  L, let F be a small fragment, and 
let G be a special fragment over F. 

(i) I f  a e sbl(A, G) and the complete A-type of  a over G has infinitely many 
F-conjugates on G, then a ~ fk( A, G, F). 

(ii) I f  a e fk(A, G, F), then the complete A-type of  a over G has at least 
F-conjugates on G. 

Proof. (i) Suppose the complete A-type p of a over G has infinitely many 
F-conjugates on G. Let r be the complete type of a over F. Then for any 
F-conjugate p '  of p on G, r n p and r O p '  have the same A-rank. If r has infinite 
A-rank, then a e usbl(A, F)  n sbl(A, G), so x ~ fk(A, G, F). If r has finite 
A-rank, then there are only finitely many complete A-types q over G such that 
r n q has the same A-rank as r. It follows that r n p has smaller A-rank than r, 
and hence 

a e r n p  ~ l k ( A ,  G, F). 

(ii) Now suppose that a e lk(A,  G, F). We may assume without loss of 
generality that F is generated by an elementary submodel No of N. Let p be the 
complete type of a over F. Then for some finite Boolean combination di(x, y) of 
formulas in A and some ~- in N, 6(a, ~) holds and p n 6(x, ~) has smaller A-rank 
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than p. By transfinite recursion we may construct sequences 

f~,Mi, i<Z,  

such that f0 is the identity map on M, Mo = No, and: 
(1) The Mi form an increasing chain of elementary submodels of N. 
(2) For each i < ~., f~ is an F-elementary map on G. 
(3) The tuple J~(~) belongs to Mi+~. 
(4) The complete type of f~(a) over the fragment generated by Mi has the same 

A-rank as the complete type off/(a) over F. 
Then for each j < 3 ,  we have 8~(a),  fj(e)) but -~6~(a), j~(~)) for all i<j .  

Therefore the complete A-type of a over G has ~. distinct F-conjugates on G. [] 

We shall now show that the nonforking relation has two more properties, 
convexity and closedness in a certain topology, and then give an axiomatic 
characterization of the nonforking relation. 

2.9. Definition, A neighborhood of a measure # over F is a set 
N(r, X 1 , . . . ,  Xn), where r > 0 and each Xk e oF, consisting of all measures fl 
over F such that [fl(Xk) - #(Xk)l < r for k = 1 , . . . ,  n. This induces a topology on 
the set of all measures over F. A set of measures over F is closed if it is closed in 
this topology. A set of measures over F is convex if it is closed under sums 
a# + bfl where 0 ~< a, 0 ~< b, and a + b = 1. If usbl(or) has positive measure, the 
unstable piece of or is the restriction of or to usbl(or) divided by the measure of 

usbl(or). 

2.10. Lenuna. or is smooth if  and only if either usbl(or) has measure zero or the 
unstable piece of  or is smooth. The set of  smooth measures over F is convex. The 
set of  smooth measures over F is closed. 

Proof. We show that the set of smooth measures over F is closed. Suppose or is a 
measure over F which is not smooth. Then there is a formula ¢(x,  b) in F(M) 
and an r > 0  such that the or-inner and or-outer measures of q~(x,/)) O usbl(F) 
differ by at least r. It follows that there is a finite A and a A-stable formula ~ e F 
such that the or-outer measure of (p(x,/~) O usbl(A, F) is at least the or-inner 
measure of ~(x,/~) O-n6 plus r/2. Let X be the minimal closed set over F 
containing ¢p(x,/~) n usbl(A, F)  and let Y be the F-interior of ~p(x, b) n -ndi. By 
Lemma 1.3(v), for any measure # over F, #(X)  is the #-outer measure of the 
dosed set ~(x, b) n usbl(A, F)  and #(Y) is the #-inner measure of the basic set 
¢(x,/~) n -~6. Then or(X) - a,(Y) I> r/2. Also, for any measure # over F such that 
#(X) - #(Y)  >I r/2, the #-outer measure of ~p(x,/~) n usbl(A, F) must exceed the 
#-inner measure by at least r/2, whence # is not smooth. Therefore or has a 
neighborhood which contains no smooth measures over F. The proofs of the 
other parts of the lemma are routine. [] 
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2.11. Lemma.  Every neighborhood o f  a measure or over F contains a finite 
convex combination of  the unstable piece of  or and finitely many stable complete 
types. (In fact, the coefficients o f  the convex combination may be taken to be 
rational.) 

Proof. Given finitely many Borel sets over F, form all finite Boolean combina- 
tions, pick a stable complete type in each portion which meets sbl(or), and form 
the appropriate convex combination with the unstable piece of or. [] 

2.12. Lemma.  Let F and G be fragments with F c G. The set o f  pairs o f  measures 
or over F and fl over G such that fl is a nonforking extension o f  or is convex and 
closed in the set o f  all pairs o f  measures over F and G with the product topology. 

Proof. Convexity is easy. The relation or c fl is obviously closed. The set of 
nonforking extensions is closed because fl forks over or if and only if the Borel set 
fk(G, F) has fl-measure greater than zero. [2 

2.13. Theorem. The nonforking relation is the unique relation <- on smooth 
measures such that Axioms 0-5 below hold. (Axioms 0-4  are similar to the Lascar 
axioms for complete types, as stated in [4, p. 246].) 

O. The relation or <- fl implies or c fl and is preserved under elementary maps. 

1. I f  or c fl c 6, then or <~ 6 if  and only if  or <- fl and fl <~ 6. 
2. On every fragment G ~ F(or) there exists fl >>- or. I f  or is a complete type there 

exists a complete type fl >>- or over G. 
3. For every or there is a countably generated fl with fl <~ or. 
4. On each fragment G ~ F(or), there are at most continuum many fl >~ or. 
5. For each pair o f  fragments F c G, the set o f  pairs or over F and fl over G 

such that or <<- fl is closed and convex. 

Proof. The preceding results show that the nonforking relation satisfies Axioms 
0-5. (The transitivity Axiom 1 follows from Lemmas 1.15 and 2.4.) 

To prove uniqueness of the relation ~<, assume that a relation ~< on the smooth 
measures satisfies Axioms 0-5. Suppose or ~< ft. We show that fl is a nonforking 
extension of or. By Axiom 0, a~ c ft. Let G be a special fragment over F(fl). By 
Axiom 2 there is a 6 I> fl over G. Let X be the set of all x in sbl(G) such that for 
each finite A the complete A-type of x over G has positive 6-measure. By 
Corollary 1.8, X has full 6-measure in sbl(G). Suppose 6 forks over or. By 
Lemma 2.4, fk(G, or) N sbl(or) has positive 6-measure. Then X N fk(G, or) t'l 
sbl(or) has positive 6-measure and thus has an element x. By Lemma 2.8, for 
some finite A ~ L there are more than continuum many mutually disjoint 
F(or)-conjugates of the complete A-type of x over G. Since x e X, the complete 
A-type of x over G has positive 6-measure, and its F(or)-conjugates have positive 
measure in the corresponding F(or)-conjugate of 6. It follows that there are more 
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than continuum many mutually distinct F(a~)-conjugates of 6. By Axiom 0, there 
are more than continuum many / , />  a~ over G, contradicting Axiom 4. Therefore 

is a nonforking extension of tr, and hence fl is a nonforking extension of a~. 
Now suppose that p and q are complete stable types and q is a nonforking 

extension of p. Using Axiom 2 and the result of the preceding paragraph, the 
argument in [4, p. 266], shows that p ~< q. 

Finally, suppose fl is a nonforking extension of tr. Let N(r, X)  be a 
neighborhood of a~ and N(s, I 7") a neighborhood of ft. We may assume that r = s, 
and that ~" is a subsequence of I7". By Lemma 2.11, N(s, Y) contains a finite 
convex sum fl' of comi~lete types qi over F(fl) and the unstable piece of ft. 
Moreover, from the proof of 2.11, since fl(fk(fl, t r ) )=  0, each qi may be taken 
outside of fk(fl, tr), so that qi is nonforking over F(tr). Let Pi be the restriction of 
qi to F(tr), and let tr' be the convex sum of the pi and the unstable piece of tr 
with the same coefficients as were used for fl'. By the preceding paragraph, each 
qi >-Pi. The unstable piece of fl is t> the unstable piece of tr because it is the 
unique extension. It then follows by Axiom 5 that tr' ~< fl '  since the relation ~< is 
convex, and that tr <~ fl since ~< is closed. [] 

3. Existence of smooth extensions 

In this SEction we take up the question of when well behaved smooth 
extensions of a measure tr exist. In general, a measure on M does not necessarily 
have a smooth nonforking extension. However, we shall see that for a theory 
without the independence property, every measure has a smooth extension which 
is pure and is nonforking on the stable part. We shall call such extensions faithful. 
We shall also obtain the converse result that if every measure on M has a smooth 
extension, then the theory does not have the independence property. Another 
necessary and sufficient condition for a theory to not have the independence 
property is that every measure on M has a countably generated measure algebra. 

At the end of this section we list several open questions. We also discuss a 
natural alternative to the notion of a smooth measure. We call a measure tr 
weakly smooth if over every fragment containing F(tr), all nonforking extensions 
agree on the unstable part of a~. The notion of weakly smooth behaves better than 
smooth in at least one respect, that every measure on M has a weakly smooth 
nonforking extension. However, we have not been able to determine whether the 
weakly smooth measures have all the properties needed to have a good theory of 
forking, and we include some of these properties in the list of open problems. 

Before going into the details let us see what goes wrong with a theory which 
does have the independence property. For example, consider the complete theory 
T of the model 92 = (A, N A, S A, E ) where N a is a countable set and S A is the set 
of all finite subsets of N a. On the saturated elementary extension M of 92, let tr 
be a measure over N A such that the basic sets of the form a ~ x for a in N A are 
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independent of each other and have measure ½. Then no extension fl of a~ can be 
smooth, because if c is an element of N M such that the formula c e x is not in the 
fragment F(fl), then the subset of M defined by c e x has inner measure zero and 
outer measure one with respect to ft. 

For an example in a theory which does not have the independence property of 
a measure which has no smooth nonforking extension, we return to an example 
from Section 2. Let T be the theory with two binary relations R and E such that R 
is a dense linear order  without endpoints and E is an equivalence relations with 
infinitely many classes such that each class in dense in R. T does not have the 
independence property.  Now let a~ be a measure on M such that the R-reduct of 
a~ is smooth but each equivalence class definable over F(a  0 has a~-measure zero. 
Then a~ has no smooth nonforking extension, because in any nonforking 
extension fl, each equivalence class definable over F(fl) must have fl-measure 
zero. However,  fl is not smooth because each 'new' equivalence class has fl-inner 
measure zero and fl-outer measure one. 

3.1. Definition. An  extension fl of a measure a~ over M is said to be faithful if for 
each A c L, the set sbl(fl) f3 fk(A, fl, a 0 has fl-measure zero. 

In general, neither one of the notions of a faithful extension or a nonforking 
extension implies the other. 

3.2. Lemma. (i) Every pure nonforking extension is faithful. 
(ii) A n  extension o f  a measure ol on M is faithful if  and only i f  it is pure and is 

nonforking on the stable part o f  oc, that is, the sets s b l ( f l ) - s b l ( ~ )  and 
fk(fl, a 0 N sbl(a 0 have fl-measure zero. 

(Ffi) A n  extension o f  a smooth measure is faithful if and only if  it is nonforking. 
(iv) I f  ot c fl c ~, then It is a faithful extension of  oc if  and only i f  fl is a faithful 

extension o f  ol and ~ is a faithful extension of  ft. 

Proof. (i), (ii), and (iv) are immediate, and (iii) follows from Lemma 2.4. [] 

Our main task in this section is to show that if T does not have the 
independence property,  then every measure a~ on M has a smooth faithful 
extension. To do this we must add enough information to the unstable part of a~ 
to determine the measure of every formula over M, and at the same time make 
sure that the extension is pure (i.e. the stable part is not enlarged) and is 
nonforking on the stable part of a~. Our  first step will be to obtain a faithful 
extension fl of a~ with the property that every extension of fl is pure over ft. This 
is done by introducing a technical notion called a dense measure which implies 
that every extension is pure, and showing in Proposition 3.12 that every a~ has a 
dense faithful extension. The second step is to show that if T does not have the 
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independence property, then every dense measure i has a smooth faithful 
extension #. This is done in Theorem 3.16. 

In order to obtain pure extensions of measures, we introduce the technical 
notion of a (An }-pure extension, which is like a locally pure extension except that 
it applies only to a particular increasing chain of finite sets of formulas An instead 
of to all finite sets A c L. 

3.3. Definition. Fix a countable enumeration of the formulas ~(x, )7) of L and let 
An be the set consisting of the first n formulas. An extension i of a~ is a 
( A n }-pure extension of te if for each n, the An-stable part of tr has full measure in 
the An-stable part of i .  

3.4. Lemma.  (i) Every ( A n }-pure extension o f  ol is a pure extension. 
(ii) The union o f  a chain o f  ( An}-pure extensions of  ol is a ( An)-pure extension 

ofo~. 

Proof. The stable part of fl is the intersection of the An-stable parts of t and the 
An-stable parts of i form a decreasing chain. Given an increasing chain of 
measures Elk, the An-stable part of i is the union of the An-stable parts of the ik" 
ThUS 

sbl ( i )  = ~ sbl(An, if), 
n 

sbl(An, i )  -" [..3 sbl(An, ilk)" [] 
k 

3.5. Lemma.  Let oi be a measure on M and let G be a fragment containing F(o O. 
Then ol has a ( An)-pure faithful extension to a measure fl over G. 

Proof. The sequence sbl(A,, G) is a decreasing chain of open sets o v e r  G. It 
follows from Lemma 1.9(v), Lemma 1.3(v), and Lemma 1.6 that ~ has an 
extension # to G such that each sbl(An, ~) has full #-measure in sbl(A n, G), and 
hence # is a (An)-pure extension of a~. By Theorem 1.18, tr has a nonforking 
extension 6 to G. Let fl be the measure over G which agrees with # on the 
unstable part of a~ and with 6 on the stable part of tr. Then fl is a (A, ) -pure  
faithful extension of a~ to G. [] 

We shall now consider measurability patterns of the sort discussed in Section 1 
but with an n-tuple of additional parameters 37. Such a pattern p07) consists of  a 
set of finite positive Boolean combinations of inequalities between a real number 
and the probability in x of a formula ~(x, )7) in the diagram language of M. 

3.6. Lemma.  Let P(~) be a measurability pattern involving formulas over a 
fragment F and a finite sequence o f  additional parameters 37. The set o f  6 in M such 
that the pattern P(b)  is satisfiable is closed over F. Moreover, i f  P(~) is finite, then 
the set o f  b in M such that P(b)  is satisfiable is basic over F. 
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Proof. Since the pattern P(/~) involves a set of fewer than x formulas, it suffices 
by Lemma 1.5 to prove the result for the case that P07) is finite. Let P07) be a 
finite pattern involving formulas ~l(x, ) 7 ) , . . . ,  ¢#n(x, )7) over F. Let us call/~ and 

equivalent if the sequences ~ l ( x , / ~ ) , . . . ,  ~n(X,/~) and ~l(x, ~ ) , . . . ,  ~,,(x, ~) 
have exactly the same nonempty Boolean combinations. If /~ and ~ are 
equivalent, then the pattern P(/~) is satisfiable if and only if P(~) is satisfiable. It 
follows that the set of/~ in M such that p(/~) is satisfiable is basic over F. [] 

3.7. Dellnition. A A-tree in F is a tree of basic A-types over F with free variable 
x whose branches are pairwise inconsistent. The nodes of the tree are ordered by 
inclusion and the union of the branches is M. 

3.8. Lemma. Let oi be a measure on M and let ,It c L. Suppose 0 is a formula o f  
F(ol) with measure r > 0 in the A-unstable part of  ol. Then ol has a faithful 
( zin}-pure extension fl such that F(fl) has a finite zi-tree for  which each branch has 
E-measure ~<0.9 r in 0 intersected with the A-unstable part of  ol. 

Proof. Suppose not. Let G be an extension of F(o~). Then for any A-formula 
6(x,/~) over G and every faithful (An}-pure extension fl of a~ to G, either 

(1) f l (6 (x , /~ )n  0 n usbl(zi, a~)) < 0 . 1 r ,  or 
(2) f l(6(x,  b)N 0 n usbl(zi, a~)>0.9r.  

Since the average of two faithful (An}-pure extensions of a~ to G is again a 
(An}-pure faithful extension of ~ to G, either (1) holds for all fl or (2) holds for 
all ft. By extending G further, it follows that either (1) holds for all fragments G 
containing 6(x, b) and all fl or (2) holds for all G and all ft. Call an n-tuple/~ in 
M of type 1 if condition (1) holds for all fragments G containing 6(x, b) and all 
faithful (An }-pure extensions fl of a~ to G, and call/~ of type 2 if it is not of type 
1. We shall show that the set of n-tuples/~ in M of type 1 is basic over F(a~). 

Let G be a fragment determined by a special elementary submodel A of M of 
power greater than the power of F(a~) which contains F(a~). There are 
measurability patterns P(/~, A) and Q(/~, A) over G such that an n-tuple/~ in A is 
of type 1 if and only if P(/~, A) is satisfiable, and of type 2 if and only if Q(/~, A) is 
satisfiable. By Lemma 3.6, the sets of/~ in A of types 1 and 2 are both closed over 
G, and hence are basic over G. It follows that there is a formula 6'07, A) over G 
such that/~ is of type 1 if and only if 6'(/~, A) holds. Since A is special, every/~ in 
M belongs to an elementary submodel A'  of M which is isomorphic to A over 
F(a~). Thus an n-tuple/~ in M is of type 1 if and only if the diagram of A over 
F(a~) is consistent with 6'(/~, A), and is of type 2 if and only if the diagram of A 
over F(a~) is consistent with ~6 ' (5 ,  A). By compactness and replacing the 
constants in A by new existentially quantified variables, there is a formula 6"(9) 
over F (a  0 such that an n-tuple/~ in M is of type 1 if and only if 6"(b). This shows 
that the set of n-tuples/~ in M of type 1 is basic over F(a~). 
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Let k(x) be the conjunction of the formulas 

(V)7)[6(x,)7) iff 6"(fl)] 

in F(m) for t re  A. Then k(x) is a branch of a finite A-tree such that every branch 
except k(x) has measure less than 0.1 r in 0 intersected with the A-unstable part 
of m. It follows from the hypotheses that k(x) & 0 has measure greater than 0.9 r 
in the A-unstable part of m. However, k(x) implies a complete A-type and is 
therefore A-stable, a contradiction. This completes the proof. [] 

3.9. Definition. A measure m on M is dense if for every real r > 0, every finite 
sequence /~ of elements of M and ~pi(x, Y) of formulas in F~+l(m), and every 
extension/3 ~ m such that each ~i(x,/~) is in F(/3), there exists a finite sequence 
such that each formula q~i(x, ~) is in F(m) and for each i, tr[~i(x, ~ ) n  usbl(m)] is 
within r of fl[~pi(x, b)f3 usbl(m)]. 

3.10. Lemma. Every extension/3 of  a dense measure m on M is locally pure. 

Proof. Suppose m is dense and fl is an extension of m which is not locally pure. 
Then for some A c L, sb l (A , /3 ) -  sbl(A, m) has positive measure r > 0  in /3. 
Choose a A-stable formula 6(x, b) in F(/3) whose t -measure is within 0.1 r of 
sbl(Zl,/3), and a A-stable formula 0 in F(m) whose m-measure is within 0.1 r of 
sbl(A, m). Then 6(x, b)n-~o has t -measure at least 0.8r. Since -70 is 
within 0.1 r of usbl(A, m) and usbl(A, m) is a subset of usbl(m), 6(x, b ) n  
-70 n usbl(m) has/3-measure at least 0.7 r. The formula 6(x, y) may be chosen so 
that for every ~, 6 (x, ~) is A-stable. Since m is dense, there is a ~ such that 6(x, ~) 
is a A-stable formula in F(m) and 6(x, ~ ) n - , o  f3 usbl(a~) has measure at least 
0.6r. But then sbl(A, m ) n ~ 0  has measure at least 0.6r,  contrary to the 
hypothesis that 0 is within 0.1 r of sbl(A, m). [] 

3.11. Lemma. The union of  a chain of dense measures is dense. 

The proof is straightforward. 

3.12. Proposition. Let m be a measure on M. Then m has a dense faithful 
extension ft. 

Proof. Let A be a finite set of formulas of L. By iterating Lemma 3.8, obtain a 
(A,) -pure  faithful extension/, of m with a countable set of constants C such that 
every complete A-type over C has measure zero in usbl(za, m). Repeat this 
process for each A ~- L and take the union of the chain. The resulting measure 6 
is a pure extension of oc with a countable set C of constants such that for every 
Zi c L, every complete A-type over C has measure zero in usbl(A, 6), Let 60 be a 
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countably generated submeasure of 6 containing all formulas with constants from 
C. Then in any countably generated fragment G containing F(60), every stable 
complete A-type in G contained in the A-unstable part of 60 has outer measure 
zero. Since there are only countably many stable complete A-types in G, the 
A-stable part of G has outer measure zero in the A-unstable part of 60. Then 
every countably generated extension of 60 is pure over 60. By Lemma 1.11, every 
extension of 60 is pure over 6o, and hence every extension of 6 is pure over 6. 
Now extend 6 to a dense measure fl by forming a countable chain of extensions. 

is a pure extension of 6. By Theorem 1.18, we can adjust the measure fl outside 
usbl(6) to obtain a dense faithful extension. [] 

The remainder of this section is devoted to proving that if the theory T does 
not have the independence property, then every measure on M has a smooth 
faithful extension. 

3.13. Definition (Shelah [10]). A theory T has the independence property if there 
is a formula 0(x,  )7) such that for each n there e x i s t / ~ , . . . , / ~  in M such that 
each nontrivial Boolean combination of 0 (x , /~ ) ,  • • • ,  0 ( x , / ~ )  is satisfiable in M. 

3.14. Theorem. The following are equivalent. 
(i) T does not have the independence property. 

(ii) For every measure ol on M and formula O(x, )7), every set of  O(x, ti) ~ F(oO 
such that the measures of  the symmetric differences of  the O(x, ~) are bounded 
away from zero is finite. 

(ii') Same as (ii) but with the word 'finite' replaced by 'countable'. 
(iii) Every measure on M has a countably generated measure algebra. 

Proof. (iii)implies (i) is easy. Assume (iii) fails for a measure tr. Then there is a 
sequence 0i, i < to1, of definable sets in F(a  0 such that no 0i is within a null set 
of the a-algebra Ai generated by the preceding sets. Since L is countable, we may 
assume that all the 0i are of the form 0(x, tii), that is, definable from the same 
formula 4. We may then find an uncountable set of i's such that the measures of 
the symmetric differences of the sets 0(x, ti~) are bounded away from zero, so 
(ii)' fails. (ii) trivially implies (ii)'. Now assume (ii) fails and (i) holds. Let F be a 
finite set of formulas and let n e to. We may find countably many tik, k < to, 
which are F-n-indiscernible, and such that the measure of the symmetric 
differences of the basic sets 0(x, tit,) are bounded away from zero. By a result of 
Shelah [10], F and n may be chosen to guarantee that for every x e M the truth 
value of 0(X, tik) is constant for all sufficiently large k. Therefore the basic sets 0k 
converge pointwise to a set S. Then the measures of Ok A S approach zero, 
contradicting the fact t h a t t h e  measures of Ok A 01 are bounded away from 
zero. [] 
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3.15. Lemma. I f  cr is a measure on M which is dense and not smooth, then cr has 
a -faithful extension # with a basic set cp such that the set {#(tp A 0 ) : 0  e F(a,)} is 
bounded away f rom zero. 

ProoL Let 3. and fl be two extensions of a~ to the same fragment G which are 
distinct on usbl(tr). For some positive real r and some basic set tp over G, 
13.(B)- fl(B)l > r  where B = ~ N usbl(te). By Lemma 3.11, 2 and fl are pure 
extensions of tr, and by Lemma 1.14 they may be taken to be faithful extensions 
of t~. Let # be the average of 3. and ft. Then # is also a faithful extension of a~. 
For any re-measurable set A, either 3.(A A tp) > r/2 or f l(A A dp) > r/2, and 
hence #(A A tp) > r/4. Then # and tp have the required property. [] 

3.16. Theorem. The -following are equivalent. 
(i) T does not have the independence property. 

(ii) Every measure o: on M has a smooth extension. 
(iii) Every measure te on M has a smooth -faithful extension. 

Proof. It is trivial that (iii) implies (ii). Assume that (i) fails, that is, T has the 
independence property. By Theorem 3.14, there is a measure tr on M whose 
measure algebra is not countably generated. The same applies to any extension of 
re. Then by Proposition 2.6, a~ does not have a smooth extension, so (ii) fails. 
Therefore (ii) implies (i). 

We now assume (i) and prove (iii). Using Proposition 3.12, let fl be a dense 
faithful extension of a~. Iterating results 3.12 and 3.14 to1 times, we either obtain a 
smooth faithful extension of fl or an uncountable sequence of formulas such that 
the measures of the symmetric differences of each formula with the previous ones 
is bounded away from zero. If the second alternative occurs, then there is a 
formula ~(x, 37) which has uncountably many instances in the sequence of 
formulas, and hence there are infinitely many instances of ~b such that the 
measures of the symmetric differences are bounded away from zero. This is 
impossible by Theorem 3.14, so a~ has a smooth faithful extension. [] 

Here is one more extension result for theories without the independence 
property whose proof uses methods similar to the preceding results. 

3.17. Theorem. Suppose T does not have the independence property. Then every 
measure te on M has a non forking extension fl such that fl has a unique non-forking 
extension over each fragment G D F(fl). 

Proof. Recall from Theorem 1.18 that every measure fl on M has a nonforking 
extension to each fragment G ~ F(fl). Suppose that for any nonforking extension 
fl of a~ there is a fragment G ~ F(fl) over which fl has two distinct nonforking 
extensions. Since the average of two nonforking extensions is again nonforking, 
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we see as in the proof of Lemma 3.15 that fl has a nonforking extension/Z such 
that for some basic set ¢ over G, the/z-measures of the symmetric differences of 

with sets in F(fl) are bounded away from zero. Since the union of a chain of 
nonforking extensions is again nonforking over a~, there is a nonforking extension 
fl of a~ which has an uncountable sequence of basic sets such that for each set 
in the sequence, the fl-measures of the symmetric differences of ~ with the 
previous sets are bounded away from zero. As in the proof of Theorem 3.16, it 
follows from Theorem 3.14 that T has the independence property. [] 

W e  conclude this section with some open questions which arise in connection 
with the central result that in a theory without the independence property, every 
measure on M has a smooth faithful extension. 

3.15. Op~J Problems. (i) To what extent can the results of this paper be 
extended to the case that the language L is uncountable? The main place where 
the countability of L was used in an essential way is in the construction of a 
smooth faithful extension by means of (An)-pure extensions. 

(ii) In a theory without the independence property, does every measure a~ on 
M have a locally pure smooth extension? A locally pure faithful smooth 
extension? 

(iii) In a theory T without the independence property, is there a 'canonical' 
way to choose a smooth faithful extension of an arbitrary measure a~ on M? 

(iv) Does every measure a~ over M have a locally pure extension to each 
fragment G D F(a~)? Equivalently, does the union of the sets sbl(A, G ) -  
sbl(A, a~) over all ,4 = L always have a~-inner measure zero? 

(v) Does every measure a~ on M have a locally pure nonforking extension to 
each fragment G D F(a0?  Equivalently, does the union of the sets fk(A, G, a~) 
over all z~ ~ L always have a~-inner measure zero? 

For the following problems we consider a weakening of the notion of a smooth 
measure. Let us call a measure o~ on M weakly smooth if any two nonforking 
extensions of a~ agree on the unstable part of a~. One reason to consider weakly 
smooth measures is that, while it is not true that every measure on M has a 
smooth nonforking extension, it follows from Theorem 3.17 above that every 
measure on M has a weakly smooth nonforking extension. It follows from the 
transitivity of nonforking that every nonforking extension of a weakly smooth 
measure is weakly smooth. Moreover, by the proof to Theorem 2.7, for every 
weakly smooth measure a~ on M, a~ has at most continuum many nonforking 
extensions over each fragment G D F(a0. In fact the nonforking relation between 
weakly smooth measures on M satisfies all the Axioms 0 through 5 of Theorem 
2.13 except possibly for Axiom 3, which is listed as an open question below. (The 
proof of the transitivity Axiom 1 uses Lemma 1.13.) There is hope that a well 
behaved theory can be obtained with weakly smooth in place of smooth and 
locally pure nonforking extensions in place of faithful extensions. However, the 
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outcome of such a program would depend on the answers to some of the open 
questions which follow. 

For an example of a measure which is weakly smooth but not smooth, let T be 
the theory with a dense linear order R and an equivalence relation E with 
infinitely many classes all dense in R; then any measure a~ on M with a smooth 
R-reduct and such that each equivalence class definable over F(a  0 has tr-measure 
zero is weakly smooth but not smooth. 

We now resume our list of open questions. 

(vi) Does every measure cr on M have a locally pure weakly smooth extension? 
A locally pure smooth extension? A locally pure weakly smooth nonforking 
extension? 

(vii) Does every weakly smooth measure on M have a weakly smooth 
countable base? 

(viii) Does every weakly smooth measure on M have a countable measure 
algebra? 

(ix) Is every nonforking extension of a weakly smooth measure on M a locally 
pure extension? 

4. Stationary measures 

In this section we shall study measure which have unique faithful extensions to 
any larger fragment. We call such measures stationary. Stationary complete stable 
types are defined in Shelah [10] and several equivalent characterizations are given 
in the literature. Harnik and Harrington [4] introduced a definition of a stationary 
complete type which is weaker than the notion we shall use in the case that p is 
unstable. 

4.1. Definition. A measure a~ on M is stationary if a~ has a unique faithful 
extension to every fragment containing F(o 0. 

4.2. Lemma. Every stationary measure o: on M is smooth. 

Proof. Suppose that o~ is not smooth. By Lemma 2.2, there is a formula $ in 
F(M)  such that the oMnner measure of t# n usbl(o 0 is less then the t~-outer 
measure of ¢ n usbl(o 0. Then there is a A c L such that the aMnner measure of 
t# n usbl(A, t~) is less than the o~-outer measure of ~ n usbl(A, tr). Let G be a 
fragment containing F(tr)  and the formula 4. It follows from the proof of Lemma 
3.5 that o~ has a faithful extension fl to G such that fl[~t# U sbl(A, G)] equals the 
aMnner measure of mr# U sbl(A, G). It follows that fl[-~t# O sbl(A, o0] equals the 
tr-inner measure of - ~  O sbl(A, tr), and hence that fl[$ n usbl(A, a0] equals the 
e-outer  measure of $ n usbl(A, if). Similarly, o~ has a faithful extension # to G 
such that # [ - ~  n usbl(A, a0] equals the a~-outer measure of ~t# n usbl(A, tr), 
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Then/~[~ f') usbl(,4, or)] equals the a~-inner measure of ~ Iq usbl(,4, or). Therefore 
fl and/~ differ on ~ N usbl(,4, or), and or is not stationary. [] 

Recall that a complete type on M is smooth if and only if it is stable. Therefore 
every stationary complete type on M is stable. For stable complete types, our 
notion of a stationary type coincides with the notions from the literature. 

4.3. Lemma. I f  or is a measure on M, then the union o f  the stationary complete 

types over or is Borel over F(or), and in fact is a countable intersection o f  open sets 
over F(or). 

Proof. It is shown in [10, p. 107] that a complete stable type p over F is 
stationary if and only if for every finite "4, p is ,4-stable and the ,4-multiplicity of 
p is one, that is, over each G ~ F there is only one complete ,4-type of maximal 
,4-rank consistent with p. Moreover,  for each n and finite "4, the set sbl(n, ,4, F) 
intersected with the set of all x such that the complete type of x over F has 
,4-multiplicity one is open over F. The result follows. [] 

4.4. Lemma. I f  or is a stationary measure on M, then every nonforking extension 
o f  or is stationary, and the restriction o f  or to any smooth base for  or is stationary. 

Proof. It follows from the transitivity property of nonforking that every 
nonforking extension of or is stationary. If G is a smooth base for or, then by 
Theorem 1.18 every nonforking extension of or[ G has a nonforking extension to 
a fragment containing F(or). Since or is stationary, any two nonforking extensions 
of or l G to a fragment H must be equal, so or ] G is stationary. [] 

4.5. Theorem. Let te be a smooth measure on M. The following are equivalent. 
(i) or is stationary. 

(ii) The union o f  the nonstationary complete stable types over F(o 0 has 

measure zero. 
(iii) For every r > 0 and formula dp(x) in F(M)  there are formulas 0 and :t over 

F(or) and a fragment G ~ F(or) such that or(:t) < r and 

0 A ~ c :r U fk(G, or). 

Proof. We first prove that (ii) implies (i). Assume (ii). Let G be a fragment 
containing F(or). On the unstable part of G, an extension fl of or to G is uniquely 
determined because or is smooth. On the stable part of G, the faithful extension fl 
of or to G is also uniquely determined as follows. Let X be the union of the 
stationary complete types over F(or), and let X '  be the union of the unique 
nonforking extensions of the complete stationary types over F(or) to G. By (ii), X 
has full or-measure in sbl(or). For any Borel subset Y' of X '  over G, we have 
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Y c Y '  c Y U fk(G,  o:) where Y is the union of the complete types of elements of 
Y' over F(or). Also, Y is Borel over F(or). Therefore for any faithful extension fl 
of or to G, the fl-measure of Y' must equal the or-measure of Y, and the 
fl-measure of X '  must equal the or-measure of sbl(or). It follows that or is 
stationary. 

We now prove that (i) implies (ii). Assume that (ii) fails, so the union of the 
nonstationary complete stable types over F(or) has positive measure. Let 
mlt(1, A, or) be the union of all complete A-stable types over F(or) of A- 
multiplicity one. Then mlt(1, A, or) is open over F(or). It follows from the proof 
of Lemma 2.12 that for some finite "4, the set sbl(or) - m l t ( 1 ,  ,4, a0 has positive 
or-measure. Then for some n, the set sbl(or)Nsbl(n, ,4, o r ) -  mlt(1, ,4, or) has 
positive or-measure. Take the smallest such n. By Lemma 1.7, there is a complete 
,4-type p over or such that the intersection of p with sbl(or)f7 sbl(n, A, o r ) -  
mlt(1, "4, or) has positive or-measure. Then for some formula 0 c sbl(n, ,4, or) 
over F(or), the dosed set 0 r ip  - mlt(1, ,4, or) has positive or-measure in sbl(or). 
Let G ~ F(or) be a fragment generated by an elementary submodel of M. Then 
there exist k > 1 and complete ,4-types q t , . . . ,  qk over G such that qi c P ,  each 
0 f7 qi has A-rank n, and 0 M p is contained in the union of the 0 n q~ and 
fk('4, G, tr). Let :ri be formulas over G such that 0 17 q / c  :t/ and the :t/ are 
pairwise disjoint. For each i, the open set :t~Ufk(G, or) intersected with 
0 M p (7 sb l (or ) -  mlt(1, ,4, or) has or-inner measure zero, because any complete 
type 

t c 0 M p 17 sbl(or) - mlt(1, A, or) 

over F(or) contains points outside of fk(G, or) and points outside of :r~. By 
Lemma 1.6, or has an extension ~ to G such that 

X i = [.7[, i U fk(G,  or)] M 0 M p M sbl(a0 - mlt(1, ,4, or) 

has /~i-measure zero. By Theorem 2.4, /zi is a pure extension of or, and by 
Theorem 1.18 the ~i may be taken to be nonforking extensions of or. The union of 
the sets X/ contains 0 fTp Msbl(or) -ml t (1 ,  ,4, or) and hence has positive /u;- 
measure. It follows that or has two nonforking extensions to G which differ on the 
sets X/. Therefore or is nonstationary, and (i) fails. 

If (iii) holds, then for any formula ~ E F(M) ,  any two nonforking extensions of 
or to the same fragment G must  assign the same measure to 4 ,  so (i) holds. 

Finally, we prove that (i) implies (iii). Assume that or is stationary. Let 
dp ~ F(M)  and let G be a fragment containing F(or) with tp ~ G. Let fl be the 
unique nonforking extension of or to G. It follows from results in [10] (or from the 
open mapping theorem, cf. [4]) that there is an open set X '  over F(or) such that a 
stationary type p over F(or) is contained in X'  if and only if t~ belongs to the 
unique nonforking extension of p to G. Let Z be the union of all stationary 
complete types over F(or). Then 

x '  n ( z  - f k ( Q  or)) = n ( z  - or)), 



150 H.J. Keisler 

SO 

X '  A ~ ~ (M - Z)  U fk(G, or). 

Since or is smooth,  there  are Borel  sets X", Y" over F(or) such that  or(Y") = 0 and 

(X" A q~) 17 usbl(or) c Y". 

Since or is s tat ionary,  the set 
Therefore  putt ing 

we have 

Y' = (M - Z)  f7 sbl(or) has or-measure zero. 

X = ( X '  NsbI(or))U(X"AusbI(or)), Y =  Y ' U  Y", 

o r ( Y ) = O  and X A dpc Y O f k ( G ,  or). 

Now let r > 0. Choose a closed set V and an open set W over F(or) such that  

V e X - Y ,  X U Y c W ,  

By saturat ion there  are formulas 
W - V c ~, and or(:r) < r. Then 

0 A c Ufk(G,  or) 

as required.  [] 

or (W-  V) <r/2.  

0, :r in F(or) such that  V c O c W ,  

4.6. Corollary.  Every smooth measure or on M such that F(or) is algebraically 
closed is stationary. In particular, every smooth measure or on M such that F(or) is 
generated by an elementary submodel of  M is stationary. 

Proof.  For  the definition of an algebraically closed fragment  see [14]. Every  
stable complete  type over an algebraically closed f ragment  F(or) is s tat ionary in 
our sense (see [4, Corollary 5.4]). The result now follows from Theorem 
4.5(ii). [] 

5. Definable and fiat extensions 

In this section we show that every smooth  measure  or on M induces a unique 
extension fl to every fragment G ~ F(or). We shall call fl the flat extension of or, 
or using an equivalent  characterization,  the eventually definable extension of or. 
This extension is necessarily nonforking over or. Thus in the case that  tr is a 
stat ionary measure ,  the unique nonforking extension of or to G is the flat 
extension. The flat extension of a smooth measure  or to G may be thought  of as 
the 'average '  of all nonforking extensions of or to G. In the case that  or is a 
complete stable type over F(or), the flat extensions of or will be complete  types if 
or is stat ionary,  but will be measures with some values strictly between 0 and 1 if 
or is not s tat ionary and G is large enough.  In the next section we shall need the 
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notions of flat and eventually definable extensions of measures which are not 
necessarily smooth. In general, we show that every eventually definable extension 
is fiat, and every fiat extension is faithful. 

5.1. Definition. An extension/, of a measure or on M is said to be a f lat extension 
if for every fragment G D F(/z), # has an extension 13 over G which is invariant 
under F(or)-elementary maps on G, that is, for each F(or)-elementary map g on 
G and each formula ¢# ~ G, fl(cp) = f l (g$) .  

5.2. Lemma. Let  tr be a measure on M such that f o r  each fragment  G ~ F(or), tr 

has a unique nonfork ing  extension to G. Then every nonforking extension o f  tr is 

flat. In particular, i f  or is stationary, then every nonforking extension o f  or is flat. 

Proof. This follows from the fact that if/3 is a nonforking extension of or over G 
and f is an F(or)-elementary map on G, then f ( f l )  is nonforking over or. [] 

5.3. Theorem. Every  flat extension o f  a measure on M is a fai thful  extension. 

Proof. We shall use Lemma 2.8. Let or be a measure on M and let fl be a flat 
extension of or. Let G be a special fragment over F(fl).  Let/z be an extension of fl 
to G such that/z is invariant under F(or)-elementary maps on G. We shall show 
that/u is a faithful extension of or. Suppose not. Then for some finite 27 c L, the 
set s b l ( G ) O f  k(27, G, or) has positive /z-measure. Let X be the set of all 
x e sbl(G) such that for each A c L the complete A-type of x over G has positive 
/z-measure. By Corollary 1.8, X has full measure in sbl(G), and hence the set 
sbl(G) n fk(Z, G, or) O X has positive/z-measure and contains an element x. By 
Lemma 2.8(ii), for some finite A the complete A-type of x over G has infinitely 
many distinct F(or)-conjugates on G. But these F(or)-conjugates are pairwise 
disjoint and must all have the same positive /~-measure, which is impossible. 
Therefore /z is a faithful extension of a~, and by transitivity, /3 is a faithful 
extension of or. [] 

Remark. The proof of the above theorem also shows that if G is a special 
fragment over F(ct) and /~ is an extension of or to G which is invariant under 
F(a0-elementary maps on G, then/~ is a faithful extension of or. 

5.4. Lemma. Let  or be a smooth  measure on M and lz an extension o f  or. Let  oro 
and IZo be the restrictions o f  or and 1* to countable smooth bases such that Po is an 

extension o f  oro. Then It is f lat over  or i f  and only i f  lto i f  f lat  over  oro. 

The proof is routine. 
The following lemma is a consequence of the open mapping theorem (see [4, 

Theorem 10.6]). 
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5.5. Lemma. Let F be a small fragment and let G be a special fragment over F. 
Let dp be a basic set over G and let X be the union of  all the F-conjugates of  dp on 
G. Then there is an open set Y over F such that 

X n (sbl(F) - fk(G, F)) c Y c X U usbl(F) U fk(G, F). 

Proof .  The set X is open over G. By the open mapping theorem the set 

Y ' =  U {tp(x, F ) : x  • X n ( s b l ( F ) -  fk(G, F)} 

is open in F relative to sbl(F), that is, Y ' =  Y n sbl(F) for some open set Y over 
F. Here tp(x, F) is the complete type of x over F. Then 

X n (sbl(F) - fk(G, F)) c r '  c Y. 

Moreover, for any x in sbl(F), all nonforking extensions of tp(x, F) over G are 
F-conjugates of each other [4, Theorem 5.5]. Therefore 

Y'  ~ - X U f k ( G ,  F), 

and hence 

Y = X U u s b I ( F )  Ufk(G,  F). [] 

5.6. Theorem. A smooth measure o~ on M has a unique flat extension to each 
fragment G D F(o 0 

Proof. Let G ~ F(a  0. Assume first that G is a special fragment over F(te). Let P 
be the measurability pattern which contains the diagram of a~ and states that for 
each formula 6(x, ~) over G, all the F(a0-conjugates of 6(x, ~') on G have the 
same measure. We claim that every finite subset P '  of P is satisfiable. To prove 
the claim, first observe that the claim holds if usbl(a) has a~-measure one since a~ 
is smooth. Next show that the claim holds if A ~ L, all the formulas 6(x, ?) 
involved in P '  belong to A, tp(x) is a formula over F(a0 of A-rank n, and the set 

X = tp n sbl(a0 n usbl(n - 1, A, a0 

has tr-measure one. This is because there are only finitely many complete A-types 
t over G such that t n ~p has A-rank n, and the union of these types contains 
X -  fk(A, G, o:) and thus has a~-outer measure one. Finally, the claim in general 
follows by approximating tr by a convex sum of measures of the above kinds. 
Then by Lemma 1.5, P is satisfiable by a measure fl over G. fl is preserved under 
F(a,)-elementary maps on G. 

We now prove that there is a unique extension of a~ to G which is preserved 
under F(~)-elementary maps on G. Let fl' be any extension of ~ over G which is 
preserved under F(a0-elementary maps on G. Since a~ is smooth, fl and fl' agree 
on usbl(a0. By Theorem 5.3, both fl and fl' are nonforking over a~. By Lemma 
5.5, for any basic set ~ over G, fl and fl' assign the same measure to the union of 
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the F(a0-conjugates of ~ on G. It follows that for each dosed set t over G, fl and 
fl' assign the same measure to the union of the F(tr)-conjugates of t on G. For 
every A = L and every complete A-type t over G, the F(tr)-conjugates of t on G 
are either equal or disjoint. Since fl and fl' are fiat, they both assign measure r / k  
to t where r is the measure of the union of the F(tr)-conjugates of t and k is the 
number  of conjugates. It follows that fl' = ft. 

Finally, consider an arbitrary fragment H containing F(tr). Let G be a special 
fragment over H. It follows from the preceding paragraphs that the restriction of 
fl to H is the unique fiat extension of a~ to H. [] 

5.7. Corollary. Let  o~ be a smooth  measure on M. 
(i) I f  tr = ~6 c / z ,  then/z  is a flat extension o f  te i f  and only i f  fl is a flat extenswn 

o f  ol a n d / z  is a flat extenswn o f  ft. 
(ii) The union o f  a chain o f  flat extensions o f  ol is a flat extension o f  ol. 

We now turn to the definable extensions of a measure. 

5.8. Definition. Let fl be a measure over a fragment G and let F be a 
subfragment of G, and let ~(x, )7) be a formula of L with special variable x and 
an n-tuple of variables )7. Let F(37) be the algebra of formulas of F in the variables 
)7. A real-valued function f07) is said to be Borel over F if f is measurable with 
respect to the a-algebra aF07) generated by the open (or closed) sets over F07). 
fl is ~-definable over F if there is a Borel function f07) on F such that whenever 
(p(x, 6)  e G, fl(~p(x, 6)) = f (b ) .  fl is definable over F if fl is ~-defmable over F for 
every formula t~ of L. fl is eventually definable over F if for every fragment 
G D F(f l ) ,  fl has an extension 6 over G which is definable over F. (Thus eventual 
definability implies definability.) 

5.9. Proposition. Every eventually definable extension o f  a measure oi on M is a 
flat extension (and hence a faithful  extension). 

Proof.  An extension of a~ over G which is definable over F(a  0 is preserved by 
F(a0-elementary maps on G, and hence any eventually definable extension is fiat. 
Flat extensions are faithful by Lemma 5.3. [] 

5.10. Proposition. I f  a measure ol on M is definable over a f ragment  H and i f  
H c G = F(ol), then ol is definable over G and tr I G is definable over  H. Similarly 
f o r  eventual definability. 

The proof is straightforward. 

5.11. Proposition. Suppose a measure t~ on M is eventually definable over a 
f ragment  H. Then there is a mapping f4, f r o m  formulas  dp(x, y)  o f  L to real-valued 
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Borel functions f~,(y) over H such that for every fragment G ~ F, tr has an 
extension fl over G which is #p-definable over H by f , .  (In other words, the 
#p-definition depends only on #p and not on the extension G o f  F.) 

Proof. Since r is inaccessible and there are fewer than r mappings from formulas 
to Borel functions over H, there must be one mapping f ,  which gives a 
#p-definition for extensions of cr over arbitrarily large fragments containing 

F(cQ. [] 

5.12. Theorem. Let  cr be a smooth measure on M. Then every flat extension of  tr 
is eventually definable over ol. 

Proof. Let G be a special fragment over F(ol), and let fl be the unique flat 
extension of tr to G. Let 

f ( b )  = fl[#p(x, g) n usbl(¢, a~)]. 

We first show that for each r I--0, the set of g such that f ( g ) >  r is open over 
F(tr). We have f ( g ) >  r if and only if there is a basic set 0 over tr such that 
tr[0 n usbl(#p, a0] > r and 0 n usbl(#p, tr) c #p(x, g). Since usbl(#p, tr) is closed 
over F(cr), the last inclusion holds if and only if there is a #p-stable basic set 
over F(tr)  such that 

(Vx)[0 ¢(x, g)]. 
Therefore the set of g suchthat f (b)  > r is open over F(ac). 

We next show by induction on n that if 0 is a e-stable basic set over F of 
e-rank n, then the function 

go(b) = fl[¢(x, b) n 01 

is Borel over F(ac). Assume the inductive hypothesis for all m < n. The argument 
which follows uses the finite equivalence relation theorem and related results 
from [10]. Let 0 be a e-stable basic set over F(ac) of e-rank n. Then the function 

f l[¢(x,  13) n 0 n sbl(n - 1, ¢, a0] (1) 

is Borel over F(ac), because it is the limit of the Borel functions 

g) n 0 n #] 

where ~(x) is a basic set over F(a~) of e-rank less than n. 
Let K be the set of all types of the form 0 O t where t is a complete e- type over 

G and 0 n t has e-rank n. K is finite and nonempty. By the finite equivalence 
relation theorem, there is a finite equivalence relation E(x, z) over F(cr) such 
that if x and z have different types in K then -~E(x, z). For each k e K, let k '  be 
the union of all types h e K which are F(c~)-conjugates of k. Let k 6 K. Since K is 
finite, k '  is closed over G. Let 6(x) be the union of all E-classes which meet k' .  
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Since E has only finitely many classes, 6 is almost over F(a 0. But 6 is its only 
F(te)-conjugate on G, so 6 is basic over F(te). Moreover, 

n 0 n usbl(n - 1, 4, G) = k '  n usbl(n - 1, 4, G). 

Since fl is flat over tr, fl is faithful over tr, and therefore usbl(n - 1, 4, G) has full 
fl-measure in usbl(n - 1, 4, tr). Then 

fl[k' O usbl(n - 1, 4, tr)] = tr[6 n 0 n usbl(n - 1, 4, a0] =J- 

Define the natural numbers a, b, c, d by 

a = number of F(a0-conjugates of k- on G which meet 4(x,/~); 
b = number of F(a0-conjugates of k on G; 
c = number of E-classes which meet 4(x,/~) & 6(x); 
d = number of E-classes which meet 6(x). 

Suppose 4(x,/~) e h for some F(a0-conjugate h of k on G, so that a > 0. Let e be 
the number of E-classes which meet h. Then e > 0. Since any F(t~)-elementary 
map sends E-classes to E-classes, the integer e does not depend on h. Therefore 

c/a = d/b = e, 

and hence 

a/b = c/d. 

The number d does not depend on/~. For each c, the set of/~ with the value c is 
basic over F(a  0, since c can be defined from the formulas E(x, y), dt(x), and 
4(x,/~). Since fl is preserved under F(tr)-maps on G, all F(a0-conjugates on G 
of a type k e K must have the same fl-measure. Thus fl[k' O 4(x, b) n usbl(n - 
1, 4, oO]=(a/b)"1. Then 

f l[O(x)n4(x,  b) o usbl(n - 1, 4, a0] (2) 

is a finite sum of terms of the form (a/b).  j, one term for each F-conjugacy class 
of types in the finite set K. It follows that the function (2) is Borel over F(tr). 
Then go, which is the sum of the functions (1) and (2), is Borel over F(a  0. This 
completes our induction. 

The function 

g ( b ) =  fl[4(x,/~) O sbl(4, a0] 

is the limit of the Borel functions go where 0 is a 4-stable formula over F(a0, and 
is therefore Borel over F(a  0. We conclude that the function 

fl[4(x, /~)] = f ( b )  + g(b) 

is Borel over F(a  0. Therefore fl is definable over F(tr). 
Since every flat extension of a~ can be extended to a flat extension fl over a 

special fragment G over F(tr), every flat extension of a~ is eventually definable 
over F(tr). [] 
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5.13. Corollary. (i) An extension of  a stationary measure ol on M is nonforking if 
and only if  it is eventually definable over F(t~). 

(ii) I f  ol is a smooth measure on M and G is a smooth base of  ol, then ol is 
eventually definable over G. 

Proof. In each case, there is a unique nonforking extension, which must be flat 
by Lemma 5.2 and Theorem 5.6 and eventually definable by Theorem 5.12. [] 

5.14. Theorem. Let cr be a smooth measure and let/Z be the flat extension o f  ol to 
a fragment G ~ F(ol). An  extension fl o f  ol to G is nonforking over tr if  and only if  
every basic set over G o f  ~z-measure zero has fl-measure zero. 

Proof. /Z is nonforking over a~ by Theorem 5.3. Suppose that every basic set over 
G of /z-measure zero has fl-measure zero. fk(G, a 0 is open over G and has 
/z-measure zero, because/Z is nonforking over a~. Therefore every basic subset of 
fk(G, tr) has/z-measure zero, and hence has fl-measure zero. Then fk(G, a~) has 
fl-measure zero, so fl is nonforking over re. 

Now suppose fl is nonforking over a~. By the transitivity properties we may 
assume that G is a special fragment over F(tr). Let ~ be a basic set over G with 
positive fl-measure. Let H be the algebraic closure of F(a  0. Then F(tr) ~ H ~ G, 
sbl(H) = sbl(tr), and fk(G, H ) =  fk(G, a~). Also, all H-conjugates of ¢ on G 
agree on the nonforking part of G over H. By Lemma 5.5. there is an open set Y 
over H such that 

n (sbl(H) - fk(G; H)) c Y c tp U usbl(H) U fk(G, H). 

Since a~ is smooth, fl and/Z agree on usbl(H) and since they are nonforking they 
assign measure zero to fk(G, H). If fl(tp O usbl(H)) is positive, then /Z(~) is 
positive, so we may assume that fl(~ O usb l (H) )=0 .  Therefore fl(Y)>t fl(dp) and 
/Z(Y) t>/Z(~). Thus f l (Y)  > 0, and there is a basic set 0 over H such that 0 c Y 
and f l (O)> 0. Since H is the algebraic closure of F(t~), 0 is almost over F(tr) ,  
that is, 0 has finitely many F(tr)-conjugates on G. Using Lemma 5.5 again, we 
see that/Z and fl assign the same measure to the union X of the F(a:)-conjugates 
of 0 on G. We have 0 < f l ( 0 ) <  f l ( X ) - / Z ( X ) .  Since /Z is flat over G, all the 
F(tr)-conjugates of 0 on G have the same/z-measure.  But there are only finitely 
many conjugates, so/Z(0) > 0. Then/Z(~)  > 0 as required. [] 

5.15. Corollary. Let p be a stable complete type over a fragment F and let/Z be the 
flat extension o f  p to a fragment G ~ F. A complete type q ~ p  over G is 
nonforking over p i f  and only if every cp e q has positive ~z-measure. 

5.16. Theorem. The flat extension relation is the unique relation <~' 
measures such that: 

O. ol <<-' fl implies o: ~J3. 

on smooth 
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1. I f  ol c fl c 6, then oi <~' ~ i f  and only i f  ol <~' fl and fl <~' 6. 
2. For every o: and every fragment  G D F(te) there is a unique fl over G such 

that tr <-' ft. 
3. I f  o:<~' fl and f is an F(ol)-elementary map on F(fl) ,  then f l = f f l .  

Proof. The flat extension relation satisfies Axioms 0-3 by Theorem 5.6 and 
Corollary 5.5. 

To prove uniqueness let ~<' be a relation satisfying Axioms 0-3.  Let a~ and fl be 
smooth measures on M such that a~ ~<' ft. Let G be a fragment containing F(fl).  
By Axiom 2 there is a measure 6 over G such that fl ~<' 6. By Axiom 1, tr ~<' 6. 
By Axiom 3, 6 is preserved under F(a0-elementary maps. Then fl is a flat 
extension of a:. On the other hand, if fl is the flat extension of a~ to G, then 
tr ~<' fl by Axiom 2 and the uniqueness of the flat extension. [] 

6. The nonforking product 

In this section we introduce the nonforking product [a~ x fl] of two measures a~ 
and fl, which will allow us to pass from measures in the special variables x and y 
separately to measures in the pair of special variables (x, y), and to tuples of 
special variables. It will be convenient to work with measures over M itself as well 
as measures over small fragments in M. We shall see that each smooth measure 
over M is definable over a countable fragment. When a~ and fl are measures over 
M which are definable over countable fragments, the [a~ x fl]-measure of a 
formula ¢(x, y) over M is computed by integrating the a~-measure of ~(x, y) as a 
function of y with respect to ft. This product is an extension of the ordinary 
product measure, and will usually be a proper extension because the formula 
~(x, y) is in general not product measurable. The nonforking product of two 
measures which are definable over a countable fragment is again definable over a 
countable fragment, so the operation can be iterated. The nonforking product 
operation is associative, and if one of the measures tr and fl is smooth, then it is 
also commutative. The commutativity result is an analogue of the Fubini theorem 
for ordinary products of measures. 

The symmetry theorem for complete types (from Shelah [10, p. 112]) states 
that if T is stable a and b are elements of M and C is a small subset of M, then the 
complete type of a over C U b is nonforking over C if and only if the complete 
type of b over C U a is nonforking over C. Using the symmetry theorem for 
complete types and the commutativity of the nonforking product, we obtain a 
symmetry theorem for measures. 

Since this section deals with products of measures, we shall state our results for 
finite sequences of special variables instead of just one special variable. All the 
results in the preceding sections which were stated for a single special variable x 
also hold for a finite sequence of special variables :~. 

We begin with a series of definitions and results concerning measures over M. 
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6.1. Definition. The  family of Borel sets over M (in the special variables :~) is the 
o-algebra  oM genera ted  by the set of unions of fewer than x basic sets (in the 
special variables $)  over  M. A measure over M is a countably additive probabil i ty 
measure  c~ defined on oM such that  the measure  of the union of  a set S of fewer 
than x basic sets over  M is the supremum of the measures of the unions of the 
finite subsets of S. A measure  a~ over M is smooth if there is a (small) fragment F 
in M such that  the restriction of cr to F is smooth.  

Warning.  Notice our  use of the words 'over '  and 'on'  to distinguish measures 
over M, which are defined on the family of all Borel  sets over  M, f rom measures 
on M, which are only defined on the Borel sets over some small f ragment  F. 

A set is Borel  over  M if and only if it is Borel  over some f ragment  F in M, 
because the family of sets which are Borel over  some fragment  is a o-algebra 
containing all unions of fewer than r basic sets over M. Similarly, a real-valued 
function is Borel  over  M if and only if it is Borel  over some fragment.  

It  follows from saturat ion that  every complete type over M is a measure  over 
M. A complete type over  M is a smooth measure  if and only if it is stable. 

6.2. Lemma.  Any  finitely additive probability measure ol on the algebra F~ (M) o f  
basic subsets of  M in the variables i has a unique extension to a measure over M. 

Proof .  By Theo rem 1.2, for each fragment F in the variables £', the restriction of 
t r l F  generates a unique  measure  over F. Let us denote this measure  by [tr ] F]. 
For each fragment  G c F, the restriction [tr I F]  I G of [tr I F] to G is a measure  
over  G which extends ol lG,  and by uniqueness we must have [ o l l F ] l G -  
[trl  G]. Thus if F ~ G ,  then [a~ I F] is an extension of [tr I G]. Since r is 
inaccessible, it follows that  the union of all the measures [a~lF] is the unique 
measure  over M which extends re. [] 

Measures  over M behave somewhat  differently than measures  over  fragments.  
For  instance, we do not  introduce the notion of the stable par t  of M because 
every e lement  b of  M satisfies the trivial stable formula x = b of rank zero. To 
describe the proper t ies  of a measure  a: over M, we consider the propert ies  of the 
restrictions of a~ to (small) fragments in M. 

6.3. Definition. Let  tr be a measure  over M and let F be a f ragment  in M. The 
restriction of tr to F is denoted  by t r l F .  tr is nonforking over  F if for every 
f ragment  G D F, tr I G is nonforking over F. tr is faithful over F if for every 
f ragment  G ~ F, tr I G is faithful over F. a~ is stationary if there  is a fragment F 
such that  a~ t F is s ta t ionary and tr is nonforking over F. tr is flat over  F if for every 
f ragment  G ~ F, o: I G is flat over  F. tr is definable over F if for every  fragment 
G D F, tr I G is definable over  F. F is a base for tr if for every f ragment  G D F, F 
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is a base for a~ [ G. tr is pure  over F if for every fragment  G ~ F, tr [ G is pure 
over F. 

Note  that  if a measure  te over  M is faithful over  F, flat over  F, definable over 
F, or is pure  over  F, then the corresponding proper ty  also holds for any fragment 
G ~ F .  

6.4. Proposi t ion.  (i) Every  measure on M has a nonforking extension to a 
measure over  M. 

(ii) T does not  have the independence property i f  and only i f  every measure on 

M has a faithful extension to a smooth measure over  M. 

(iii) Every smooth  measure o: on M has a unique extension to a measure over M 

which is definable over F(o:). 

(iv) Every stationary measure ol on M has a unique nonforking extension to a 

measure over  M, and this measure is definable over  F(ol). 

(v) I f  ol is a measure over M and ol is definable over F, then ol I G is eventually 

definable over  F for  every fragment  G ~ F. 

Proof.  (i) Let  te be a measure  on M. By Theorem 1.18 and L e m m a  1.16, there is 
an increasing chain of nonforking extensions of tr, whose union is a nonforking 
extension of a~ over M. 

(ii) This follows from Theorem 3.16 and (i). 
(iii) Let tr be a smooth measure  over a f ragment  F. Le t / z  be the union of the 

unique eventual ly  definable extensions of tr to G for all f ragments  G ~ F. Then /z  
is a definable extension of te to a measure  over M. ~ is clearly the only definable 
extension of  tr to a measure  over M. 

(iv) Let ~u be the union of the unique nonforking extensions of  a: to G for all 
fragments G ~ F. These extensions agree where they are both defined because of 
the transitivity propert ies  of nonforking,  and/z  is the unique nonforking extension 
to tr to M. This argument  only uses the fact that  o~ has a unique nonforking 
extension to each G ~ F. Since tr is s tat ionary,  a~ is smooth,  so # is definable over 
G by (iii). 

(v) Let G ~ F. For each fragment  H ~ G, a~ ] H is an extension of tr [ G which 
is definable over  F, so a~ t G is eventual ly definable over F. [] 

6.5. Proposi t ion.  I f  ol is a smooth  measure over M, then ol has a smooth 

countable base H, and ol l H is stationary. 

Proof.  Since tr is smooth,  there is a fragment F such that  a~ [ F is smooth.  Let G 
be a countable  smooth base for te[ F. Then a~ [ G is smooth.  For  each A c L and 
each complete  A-type t over  M, let a~'(t) be the infimum of the measures  of all 
finite conjunctions of formulas in t. There  are only countably many  pairs (A, t) 
such that  t is a complete A-type over  M and t r ' ( t ) >  0. It follows that  there is a 
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countable fragment H D G such that for each ,4 c L and each complete A-type u 
over H, there is a complete A-type t extending u to M such that cr(u)= cr'(t). 
Then H is a base for cr I J whenever J D H, so H is a base for cr. cr I H must be 
stationary, because otherwise criB would have two distinct nonforking exten- 
sions to some fragment J D H, which could in turn be extended to distinct 
nonforking extensions of c r l H  over M. [] 

6.6. Proposition. Le t  cr be a smoo th  measure over  M and let F be a smooth  base 

for cr. Then cr is definable over F. 
"r: 

Proof. This follows from Corollary 5.13. [] 

6.7. Corollary. Every smooth measure over M is definable over a countable 
fragment. 

Proof. By Proposition 6.5, tr has a countable smooth base F, and by Proposition 
6.6, cr is definable over F. [] 

6.8. Proposition. A theory T does not have the independence property if  and only 
if  every measure over the saturated model M has a countably generated measure 
algebra. 

Proof. This follows from Theorem 3.12 and the fact that a measure tr over M has 
a countably generated measure algebra if and only if c r l F  has a countably 
generated measure algebra for every fragment F in M. [] 

6.9. Lemma. A measure cr over M is definable over F if  and only i f  for  every 
formula dp($, )7) o f  L (or o f  F), the real-valued function f (~)  = cr{:~ : @($, 37)} is 
Borel over F. 

Proof. We prove only the nontrivial direction. Suppose cr is definable over the 
fragment F. Then for each formula ~(:~, )7) of L and fragment G ~ F there is a 
Borel function g over F such that g(/~) = f ( b )  whenever @($,/~) e G. Since the 
cardinal x of M is inaccessible, there is a Borel function h over F such that g = h 
for arbitrarily large fragments G. Then f =  h, so f is Borel over F. When 
~($, )7, ~) is a formula of F, the corresponding function f is a section of the 
function for the formula ~($, )7, ~) of L, so f is still Borel over F. [] 

In order to introduce a product of measures, we need to deal with integrals 
with respect to measures over M. The next lemma shows that integrals of Borel 
functions with respect to measures over M which are definable over a countable 
fragment are themselves Borel over the fragment. 
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6.10. Lemma. Let F be a countable fragment. A measure te over M is definable 
over F if and only if for every bounded real-valued function f($,  )7) which is Borel 
over F, the integral 

g07) = f f($,  )7) da:(:~) 

is Borel over F. 

Proof. The integrability condition implies that a~ is definable over F because the 
integral of the characteristic function of a formula tp($, )7) with respect to a~(~) is 
the re-measure of the formula in ~. For the converse, assume that tr is definable 
over F. Since F is countable, a relation R(£, 37) is Borel over F if and only if it 
belongs to the a-algebra generated by the basic sets over F. By the monotone 
class theorem (see [3]), the t~-measure of any Borel relation over F is Borel over 
F as a function of )7. Then the integral of any Borel simple function over F is 
Borel over F, and hence the integral of any Borel function over F is Borel over 
F. [] 

Remark. When the fragment F is not assumed to be countable, the above lemma 
holds provided that for each real r and each formula ~(:~, )7) over F, the set of )7 
such that a~[~($, )7)] > r is open over F. The proof must be modified by first 
proving the result for f the characteristic function of an open set over F, then the 
characteristic function of a finite Boolean combination of open sets over F, and 
then applying the monotone class theorem as before. 

We are now ready to introduce the nonforking product of two definable 
measures over M. 

6.11. Definition. Let a~ and fl be measures over M in the special variables $ and 
)7 respectively, and let a~ be definable over some fragment. The nonforking 
product [tr x t ]  of a~ and fl is the measure over M such that for each formula 
~(~, )7) in F(M), 

[o~ x fl],p(~, )7) = f o~(~" ¢,(~, 37)} dp()7). 

It follows from Lemma 6.9 that the function f07) = a~{$ : ~(:~, )7)) is Borel over 
M, and since its values are in the interval [0, 1], the integral exists and [a~ x t ]  is 
defined and is a measure over M. It is clear that for any pair of formulas at(S) and 
007) in F(M), [oc x fl](ar & 0 ) =  tr(~r) • fl(O). The same holds for pairs of Borel 
sets over F in the variables :~ and )7. Thus the nonforking product [a~ x t ]  is an 
extension of the ordinary product measure of a~ and ft. In general, [a~ x t ]  will be 
a proper extension of the ordinary product measure, and in fact a formula ~(:~, )7) 
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will ordinarily not be measurable even with respect to the completion of the 
ordinary product of tr and ft. 

6.12. Lemma. L e t  ol and fl be measures over  M which are both flat ove r  a 

fragment F. Then [ol x fl] is flat over F. 

Proof. o~ and fl are preserved under F-elementary maps, and thus the integral 
which gives [tr x fl] is preserved under F-elementary maps. [] 

The next lemma shows that nonforking products of measures which are 
definable over countable fragments are again definable over a countable 
fragment, so that the nonforking product operation can be iterated. 

6.13. Lemma. Let ol and fl be measures over M in the special variables ~ and 
which are both definable over a countable fragment F. Then the nonforking 
product [ol x fl] is definable over F. Moreover, for every bounded function 
f(~, y, ~.) which is Borel over F, 

(1) 

for all ~ in M, and the function of  ~. given by either side of  (1) is Borel over F. 

Proof. We first prove that the right side of equation (1) is Borel over F. Let 
h(~, ~) be the integral of f with respect to tr. Since tr is definable over F, the 
function h is Borel over F by Lemma 6.10. Since fl, is definable over F, the 
integral of h(~, ~) with respect to fl is Borel over F. This integral is the right side 
of equation (1). We next prove equation (1). By definition of [a~ x fl], equation 
(1) holds for all ~ whenever f is the characteristic function of a basic set over F. 
Since F is a countable fragment, aF  is the a-algebra generated by the basic sets 
over F in the variables x, y, and ~. It follows that equation (1) holds for all simple 
functions over F, and therefore holds for all bounded Borel functions over F. 
Then the left side of (1) is Borel over F, and by Lemma 6.10, [tr x fl] is definable 
over F. [] 

6.14. Corollary (Associative law). I f  ol, fl, and lz are measures over M and are 
definable over a countable fragment F, then 

[# x 

Proof. A simple computation using Lemma 6.13 shows that for any bounded 
Borel function f (2 ,  ~, y.) over F, the integral of f with respect to either 

x [fl ×/~] or [~ x fl] x/z is equal to the triple iterated integral with respect to 
~, fl, and/~. [] 
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We now prove a commutativity law for nonforking products, which is a Fubini 
type theorem for pairs of measures over M. 

6.15. Theorem. Let o: and fl be measures over M in the special variables ~ and )7 
respectively, such that o: is smooth and fl is definable over a countable fragment. 
Then for every formula dp(x, y) in F(M), 

f a~{$-@(,~, 37)} dfl07) = ffl{)7, t#(~, )7)} da~(.~). (2) 

Remark. The theorem shows that [tr x fl] in the special variables (:~,)7) is equal 
to [fl x m] in the special variables (37, ~ }. 

Proof. By Proposition 6.5, o~ has a smooth base F. By Proposition 6.6, t~ is 
definable over F. F may be chosen so that fl is also definable over F, whence both 
integrals exist. To simplify notation, we shall give the proof for the case that o~ 
and fl have single special variables x and y. 

We first prove the formula (2) in the case that the formula t#(x, y) of L(M) is 
stable, that is, every type is t#-stable. From [10], @(x, y) is stable with special 
variable x and parameter variable y if and only if it is stable with special variable 
y and parameter variable x. Let G be a special fragment over F which is a base 
for o~ and ft. It follows from [4, Corollary 2.8], that every complete t#-type t(x) 
over G in the variable x has a tp(x, y)-definition 6t(y) over G which is a positive 
Boolean combination of formulas in G of the form @(c, y). Also, for each 
fragment H D G, each complete @-type t(x) over G has a unique extension to a 
complete t#-type t'(x) over H with the same ~-rank, and t'(x) has the same 
@(x, y)-definition over G. Similarly for complete types u over G in y. Let J be the 
set of all the complete @-types in x over G which have positive a~-measure, and 
let K be the set of all complete t#-types in y over G which have positive 
fl-measure. By Lemma 1.7, U J has full o~-measure in M, and U K has full 
fl-measure in "M. The sets J and K are countable. Consider types t ( x ) eJ  and 
u(y) e K, with t#-definitions 6t(y) and tSu(x) over G. 

We claim that t~t(y) ~ u(y) if and only if tSu(x) ~ t(x). The proof of this claim is 
like the proof that every coheir is an heir (see [7]). Choose sequences an, bn of 
elements such that for each n, An is an elementary extension of Bn-1 (with 
G = Bo) containing an, Bn is an elementary extension of An containing bn, the 
@-type of an over Bn-1 is the extension of t(x) given by t~t(y), and the @-type of 
bn over An is the extension of u(y) given by tSu(x). If the claim is not true for t(x) 
and u(y), say tSu(x)Dt(x) but not tSt(y)~u(y), then dp(am, bn) if and only if 
m ~<n. Thus t# has the order property (see [10, p. 30]), which contradicts the 
hypothesis that @ is stable. 

Let I be the set of all pairs (t, u ) e J  x K such that tSu(x)~t(x). If a has 
@(x, y)-type t e J, b ha~: @(y, x)-type u ~ K, and the e-type of b over G O a is 
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given by 6u(x), then q(a,  b) if and only if (t, u} e l .  The q-type of b over G Ua 
is given by 6u(x) if and only if b is not an element of fk(q, G U a, G). Since G is 
a base for fl, fk(q, G U a, G) has fl-measure zero. Therefore fl(q, (a, y)) is the 
sum of fl(u(y)) over all u such that (t, u} eI .  Similarly, for any b of q(y, x)-type 
u e K, c~(q(x, b)) is the sum of o:(t(x)) over all t such that (t, u} eI .  It follows 
that both integrals in (2) are equal to the sum of c~(t)- fl(u) over all (t, u} • I. 
This completes the proof of (2) in the case that q(x, y) is stable. 

We now take up the general case where q is not assumed to be stable. Let 
r > O. Let ir(x) be a q(x, y)-stable formula over G such that sbl(q(x, y), G ) -  
ir(x) has a~-measure less than r. Then ir(x) & q(x, y) is stable, and it follows that 
equation (2) holds for the formula ir(x) & q(x,  y ) =  q'(x,  y). 

By Lemma 2.2(iv) there are finite sequences of formulas Om(X), :rm(X), 6m(X) 
in G, m = 1 , . . . ,  k, such that tr(:rm) < r, 6m is q-stable, and for every b in M 
there exists m ~< k such that 

Om A q ' (x ,b )=aZmU6m.  (3) 

(The fact that a~ is smooth is used here.) We may take the Om SO that 0,~ c-aF,  
and thus Om A q'(x,  b )c -aF.  Since a~(6m O - a F ) < r ,  the symmetric difference 
Om A q'(x,  b) has a~-measure less than 2r. Let Am(y) be the set of b e M such that 
(3) holds for m and fails for all m'  < m. The Am form a finite partition of M by 
formulas in y over G. Let trl(X , y) be the disjunction of the formulas 

Ore(X) & -a:rm(X) & -abm(X) &-alr(x) & Zm(y), m -- 1 , . . . ,  k, 

and let o2(x, y) be the disjunction of the formulas 

[O,,(X) V :tm(X) V 6m(X)] & -air(X) & ;~m(y), m = l, . . . , k. 

Then al(x, y) = q'(x,  y) = o2(x, y), al and er E are finite unions of products of 
basic sets over G in the variables x and y, and 02 - al  has measure less than 2r in 
the product measure t ex  ft. It follows that the intersection of q(x, y) with the 
q-unstable part of G in the variable x is measurable in the completion of the 
product of te and ft. By the Fubini theorem, equation (2) holds when q(x, y) is 
replaced by q ( x , y ) n u s b l ( q ,  G)(x). Since (2) also holds when q ( x , y )  is 
replaced by q(x, y ) & F ( x )  for any q-stable formula ir(x), it holds for the 
original formula q(x, y) as required. [] 

6.16. Corollary. Let ol and fl be measures over M such that te is smooth and fl is 
definable over a countable fragment. Then for any bounded function f(~, ~) which 
is Borel over some countable fragment, 

f f f(~, ~) da~(:~) df l f f )  = SSf(X, ~) dfl(~) dtr(~). 

By Lemma 6.13, both integrals are also equal to the integral of f(~, ~) with 
respect to [a~ x fl]. 
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We do now know whether the above equation holds when f is only assumed to 
be Borel over some fragment, rather than Borel over a countable fragment. 

The nonforking product [t~ x fl] of two smooth measures a~ and fl over M is not 
necessarily smooth over M. For example, let T be the theory with a unary 
relation U and a binary relation R which is a dense linear order without endpoints 
on U and an equivalence relation with infinitely many infinite classes on the 
complement of U. Let a~ be a smooth measure over M such that tr(U) = ½, each 
singleton in U has re-measure zero, and each equivalence class in the complement 
of U has o~-measure zero. Then [re x tel is not smooth. To see this, consider any 
fragment G and an equivalence class R(b,  y) & ~ U ( y )  which is not definable over 
G, where -~U(b). The set U ( x ) & R ( b ,  y ) &  ~ U ( y )  is included in the unstable 
part of G(x,  y)  but has inner measure 0 and outer measure ~ with respect to 

In the special case that the theory T is stable, every measure over M is smooth, 
and in particular the nonforking product [tr x fl] is smooth. 

Since only one measure is required to be smooth in Corollary 6.16, the result 
can be iterated to apply to finite sequences of smooth measures. We state this 
iterated result as a corollary. 

6.17. Corollary. Let  OLl,. . .  , ol n be smooth measures over M in the special 

variables Yl, • • • ,  Yn. For any bounded function f (Yl ,  • • •,  Yn) which is Borel over 
a countable fragment, all the iterated integrals o f  f with respect to the measures 
oll, . . . , oLn are the same regardless o f  the order in which the integrals are taken. 

Proof. By Lemma 6.13 and Corollaries 6.14 and 6.16. [] 

We shall now give some applications of the above results on products and the 
symmetry theorem for complete stable types. For the remainder of this section we 
consider fragments generated by small subsets C of M and complete types of 
elements b of M over C. The complete type of b over C is denoted by tp(b, C). 
Given a set C and an element b, we sometimes write C O  b for C U {b}. To  
simplify notation, we consider pairs of measures with single special variables x 

and y. 

6.18. Lemma. If  ol is a measure over M and b e M, then ol I C U b is nonforking 
over C i f  and only i f  for  oL-almost all a ~ M, tp(a, C U b) is nonforking over C. 

ProoL Immediate from the definition of nonforking extension. [] 

6.19. Lemma (see [10]). For any small subset C o f  M, the set o f  pairs (a, b ) i n  
M 2 such that tp(a, C U b) forks over C is open over C. 

6.20. Lemma (Symmetry Theorem for types, [4, Theorem 10.1]). Let  a and b be 
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elements o f  M and C a subset o f  M such that tp(a, C) stable. Then tp(a, C U b) 
does not fork over C if  and only i f  tp(b, C tA a) does not fork  over C. 

6.21. Theorem (Symmetry Theorem for measures). Let C be a small subset o f  M 
and let oc and fl be measures over M such that oil C is smooth and fl is definable 
over some countable fragment. The following are equivalent: 

(i) For m-almost all a • sbl(C), fl [ C U a does not fork  over C. 
(ii) For fl-almost all b • M, ol[ C U b does not fork over C. 

Proof. By the symmetry theorem for types, if a e sbl(C) then tp(b, C tA a) does 
not fork over C if and only if tp(a, C U b) does not fork over C. By Lemma 6.19, 
the sets of pairs (a, b } such that tp(b, C U a) does not fork over C, and such that 
tp(a, C U b) does not fork over C, are closed over C. Let D be a countable subset 
of C which is a smooth base for a~[ C and a base for fl [ C. Then for any a, 
fl [ C U a does not fork over C if and only if fl [ C t.J a does not fork over D, and 
also if and only if for each countable E with D c E c C, fl [ E t.J a does not fork 
over E. The analogous result also holds for a~. Moreover,  since t r [ D  is smooth, if 
D c E c C then t r [ E  U b does not fork over E if and only for a~-almost all 
a • sbl(C), tp(a, E t.J b) does not fork over E. Therefore by Theorem 6.15 and 
Lemma 6.20, the following are equivalent: 

For m-almost all a • sbl(C), f l l C  U a does not fork over C. 
For tr-almost all a • sbl(C), for all countable D c E c C, f l [ E  tJ a does not 

fork over E. 

For all countable D = E c C, for a:-almost all a • sbl(C), f i l E  U a does not 
fork over fl (this step uses the fact that the intersection of a family of fewer than x 
closed sets over M has full m-measure in the intersection of some countable 
subfamily). 

For all countable D c E c C, for a~-almost all a • sbl(C), for fl-almost all 
b • M, tp(b, EtA a) does ot fork over E. 

For all countable D c E c C, for a~-almost all a • sbl(C), for fl-almost all 
b • M, tp(a, E U b) does not fork over E. 

For all countable D c E c C, for fl-almost all b • M ,  for re-almost all 
a • sbl(C), tp(a, E U b) does not fork over E. 

For all countable D c E c C, for fl-almost all b • M, t r [ E  U b does not fork 
over E (this step uses the fact that a~[D is smooth).  

For fl-almost all b • M, for all countable D c E c C, o~ [ E U b does not fork 
over E. 

For fl-almost all b • M, a~ [ C U b does not fork over C. I7 

When both measures are smooth over C, we have the following form of the 
symmetry theorem. 

6.22. Corollary. Let C be a small subset o f  M and let o: and fl be measures over M 
such that both vii C and fl [ C are smooth. Then the following are equivalent. 
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(i) For or-almost all a ~ M, [3 I C U a does not fork  over C. 
(ii) for  or-almost all a ~ sbl(C), [3 1C U a does not fork  over C. 

(iii) For [3-almost all b ~ M, or [ C U b does not fork  over C. 
(iv) For [3-almost all b ~ sbl(C), or l C U b does not fork  over C. 

Proof. By Theorem 6.21, (i) is equivalent to (iv), and (ii) is equivalent to (iii). By 
a minor modification of the proof of 6.21, we also can show that (ii) is equivalent 
to (iv). [] 

We conclude with some additional results showing that various properties are 
preserved by the nonforking product of measures. 

6.23. Lemma. For any fragment F, the stable part o f  F in the variables (x, y)  is 
the cartesian product o f  the stable part o f  F in the variable x and the stable part o f  F 
in the variable y. In symbols. 

sbl(F)(x, y) = sbl(F)(x) x sbl(F)(y). 

This follows from the fact that a type p over a countable F is A-stable if and 
only if p has countably many extensions by complete A-types over each countable 
G D F [10, Theorem 3.1]. 

6.24. Proposition. Let or and [3 be measures over M such that or is definable over a 
countable fragment, and let C be a small subset o f  M. Then [or × [3] is pure over C 
if  and only if  both or and [3 are pure over C. 

Proof. Let C' be a countable base for or{ C, f l lC ,  and [or x f l ] lC.  Then or, fl, 
or [or x fl] is pure over C if and only if it is pure over C'. For any countable set D 
with C ' c  D c M, it follows from Lemma 6.24 and 6.13 that [or x [3]ID is pure 
over C'  if and only if or [ D and [3 I D are pure over C'. The result now follows by 
Lemma 1.11. [] 

We shall use the following consequence of the symmetry theorem for complete 
types. 

5. [,emma [4, Theorem 10.7]. Let C and D be small subsets o f  M with C c D, 
and let (a, b) be a pair o f  elements o f  M whose complete type over D is stable. 
Then tp((a, b), D)  does not fork  over C if  and only i f  tp(a, D) does not fork  over 
C and tp(b, D U a) does not fork  over C. 

6.26. Theorem. Let  or and fl be measures over M which are definable over some 
countable fragment. Let C be a small subset o f  M. Then [or x fl] is faithful over C 
if  and only if  both or and fl are faithful over C. 
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Proof. It suffices to prove the theorem for C countable. Let D be a countable 
subset of M such that C c D and both cr and fl are definable over D. By Lemma 
6.13, [ac x B] is definable over D. By Proposition 5.9, or, B, and [or x B] are 
faithful over D. By Proposition 6.24, we may assume that cr, B, and [or x B] are 
pure over C. By Lemmas 6.23 and 6.25, the following are equivalent. 

[ac x B] is faithful over C. 
[u × B]ID is faithful over C. 
For [or x B]-almost all (a, b) in sbl(D), tp((a, b), D) does not fork over C. 
For [or x/]]-almost all (a, b) in sbl(D), tp(a, D) and tp(b, D Ua)  do not fork 

over C. 
For a~-almost all a in sbl(D), for B-almost all b in sbl(D), tp(a, D) and 

tp(b, D U a) do not fork over C. 
For or-almost all a in sbl(D), for B-almost all b in sbl(D), tp(a, D) and tp(b, D) 

do not fork over C (because BID u a is faithful over BID). 
c~lD and B I D are faithful over C. 
0c and B are faithful over C. I-q 

For the following corollary, given a finite sequence ( a l , . . . ,  an) and a set 
J c  { 1 , . . . ,  n}, let a j =  ( a j : j e J ) ,  and let an_ j=  { a i : i e  { 1 , . . . ,  n } - J } .  

6.27. Corollary. L e t  o : 1 , . . . ,  ten be s m o o t h  measures  over  M in the special 

variables x l ,  . . . , xn. L e t  C be a smal l  subse t  o f  M such that each irk is non fork ing  

over  C. Then f o r  [trl x . . . x otn]-almost all n-tuples ( a l ,  . . . , an) o f  elements o f  

M ,  and  f o r  each subse t  J r- { 1 , . . . ,  n}, i f  tp(aj, C tO an - j )  is stable, then it is 

non fork ing  over  C. 

Proof. By Theorem 6.26 and Corollary 6.17, the nonforking product a~j of the 
measures trj for j e J is faithful over C Therefore for trj-almost all al, and aH 
an-l, if tp(aj, C U an-j)  is stable then it is nonforking over C. [] 

The preceding results also hold for finite sequences $ and )7 of special variables 
instead of single special variables x and y. 
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