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A comprehensive understanding of the origin and spread
of plastids remains an important yet elusive goal in the
field of eukaryotic evolution. Combined with the discovery
of new photosynthetic and non-photosynthetic protist
lineages, the results of recent taxonomically broad phylo-
genomic studies suggest that a re-shuffling of higher-level
eukaryote systematics is in order. Consequently, new
models of plastid evolution involving ancient secondary
and tertiary endosymbioses are needed to explain the full
spectrum of photosynthetic eukaryotes.

Introduction
Our planet is teeming with photosynthetic life. The textbook
version of how this came to be is relatively straightforward:
oxygenic photosynthesis first evolved in the ancestors of
modern cyanobacteria more than two billion years ago [1]
and their light-harvesting capabilities were subsequently
exploited by eukaryotic (nucleus-containing) cells through
the process of endosymbiosis [2,3]. Co-evolving with their
opportunistic hosts, these intracellular cyanobacteria
were eventually transformed into bona fide organelles —
plastids — ultimately giving rise to the plants and algae
that surround us today. Easy, right?

The basic outline of this evolutionary scenario is correct,
but the reality is much, much more complicated. Photosyn-
thetic eukaryotes are astonishingly diverse in form and
function, a fact that complicates efforts to discern their
evolutionary history. Eukaryotic phototrophs can be macro-
scopic (e.g., land plants, seaweed) or microscopic (e.g., the
unicellular green alga Chlamydomonas), sessile or motile (or
both), and given a bit of sunlight, they thrive in virtually any
habitat imaginable, terrestrial and aquatic, from the equator
to the poles. This vast diversity actually makes sense when
one considers that the term ‘algae’ can be applied to organ-
isms that are not specifically related to one another. In addi-
tion to simple vertical inheritance, plastids have on multiple
occasions spread laterally between distantly related groups
of eukaryotes. Having evolved wone billion years in the past
[4], today’s plastids weave a tangled web across a very large
fraction of the eukaryotic tree. Consequently, large sections
of the puzzle of plastid evolution remain unassembled.

This article focuses on the latest advances in our under-
standing of the origin and spread of plastids. In particular,
the merits and shortcomings of competing hypotheses about
the evolution of plastids are discussed in light of a flood of
new molecular, biochemical, genomic and phylogenomic
data. Progress has been swift, but there are still many ques-
tions that need to be answered, and many newly discovered
protist lineages that need to be investigated, before it can be
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said that the evolution of eukaryotic photosynthesis is under-
stood with confidence.

Primary Plastids
Unlike the origin of mitochondria, the details of which are still
debated [5], there is no longer any doubt that plastids are
derived from once free-living cyanobacteria and that the
host cell was a full-blown eukaryote with a nucleus, cytoskel-
eton and mitochondrion. The so-called ‘primary’ endosymbi-
otic origin of plastids (Figure 1A) can be considered the
‘launch point’ for eukaryotic photosynthesis in the sense
that all canonical plastids appear to be derived from this
pivotal event, either directly or indirectly. Primary plastids
are characterized by the presence of two membranes, both
of which are cyanobacterial in nature [2], and are found in
red algae, glaucophyte algae and green algae, the latter
group being the unicellular lineage that gave rise to land
plants. This tripartite assemblage is referred to as the
Plantae or Archaeplastida [6] (Figure 2).

The evidence for and against the singular origin of primary
plastids has been reviewed extensively elsewhere (e.g.,
[3,7,8] and references therein). For the purposes of this
review, I will simply note that many researchers are reason-
ably convinced that primary plastids evolved only once, in
the common ancestor of green, red and glaucophyte algae
(Figure 2; see refs [3,7] for review), recognizing that the tech-
nical and conceptual challenges associated with inferring
such ancient evolutionary events are considerable [8].
Indeed, there is much debate as to whether red, green and
glaucophyte algae really are each other’s closest relatives
to the exclusion of all other eukaryotes (e.g., [9–13]) and if
they are not, how the evolution of their plastids should be
interpreted [7,12,14].

What can be said with confidence is that intracellular
(or endosymbiotic) gene transfer (EGT) was a major factor
in the integration of the cyanobacterial progenitor of the
plastid and its eukaryotic host [15,16]. While plastid genomes
rarely encode more than w200 proteins, a thousand or more
nucleus-encoded proteins — many but not all of which are
demonstrably cyanobacterial in origin — are needed to
service a fully functional plastid. The bulk of these proteins
are translated on cytoplasmic ribosomes and targeted to
the plastid post-translationally by a dedicated protein
import apparatus [2,17] whose evolution has been touted
as the defining feature of an endosymbiont-turned-organelle
[18,19]. The nuclear genomes of primary-plastid-bearing
eukaryotes thus possess hundreds of endosymbiont-derived
genes, many encoding plastid-targeted proteins as well as
others that have evolved non-plastid, host-associated func-
tions [15,16,20]. This endosymbiotic ‘footprint’ becomes
significant when one considers the pervasiveness of plastid
loss in eukaryotic evolution, and whether plastid-/algal-
derived genes in the nuclear genomes of non-photosynthetic
eukaryotes are reliable indicators of a photosynthetic
ancestry (below).

As ancient as the primary endosymbiotic origin of plastids
was, it is worth noting that several instances of ‘recent’
cyanobacterium–eukaryote endosymbioses are known, for
example, in the testate amoeba Paulinella chromatophora
[21] and the diatom Rhopalodia gibba [22]. Such examples
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Figure 1. Plastid evolution by primary, secondary, and tertiary endosymbiosis.

(A) A cartoon depicting the primary endosymbiotic origin of plastids through the uptake of a double-membrane-bound cyanobacterium by a non-
photosynthetic host eukaryote. (B) Secondary endosymbiosis involves the engulfment of a primary-plastid-containing eukaryote by a second,
non-photosynthetic eukaryote. All known primary plastids are surrounded by two membranes and, in the case of glaucophyte algae, a layer of
peptidoglycan. (C) Tertiary endosymbiosis occurs when a secondary-plastid-containing endosymbiont is taken up by a eukaryotic host, which
may or may not itself possess a plastid. (D) Serial secondary endosymbiosis between a secondary-plastid-containing eukaryotic host and an
endosymbiont with a primary plastid. (E) Endosymbiotic gene transfer and protein targeting in secondary-plastid-containing algae. Diagram
shows basic cellular structure of a cryptophyte alga with a four-membrane-bound plastid of red-algal origin and a nucleomorph. Plastid and
plastid-derived DNA is in red, nucleomorph and nucleomorph-derived DNA is blue, and host nuclear DNA is black (mitochondrial DNA has
been omitted for simplicity). As in haptophytes and heterokonts, the outermost plastid membrane of the cryptophyte plastid is continuous
with the host cell endomembrane system and is studded with ribosomes. In most secondary-plastid-containing algae, the nucleomorph-to-
host-nucleus gene transfer process has gone to completion. See text for further discussion. Abbreviations: CB, cyanobacterium; M, mitochon-
drion; NU, host nucleus; PL, plastid; NM, nucleomorph; PPC, periplastid compartment; ERAD, endoplasmic reticulum-associated protein degra-
dation machinery; TIC and TOC, translocons of the inner and outer chloroplast membrane, respectively.
do not directly bear on the diversification of canonical plas-
tids, but they are potentially informative in that they may
provide clues as to the molecular and cellular events that
led to their establishment [23]. Whether the term ‘endosym-
biont’ or ‘organelle’ is more appropriate in these cases is
debatable and depends in large part on one’s definition of
organelle [19,24,25].

Secondary and Tertiary Plastids: Who’s Got’em, Where’d
They Get’em?
Speculation that photosynthesis has spread laterally across
the eukaryotic tree dates back to the 1970s (e.g., [26,27]). A
Canadian, Sarah Gibbs, first noted that the chlorophyll-a+b-
pigmented plastid of the common lab alga Euglena was
clearly green algal in nature, yet the ultrastructure of the
host organism ‘‘.could not be more unlike green algae’’
[26,28]. Coupled with the presence of supernumerary plastid
membranes, incongruence between the evolution of the
plastid and the host cell in which it resides is now seen as
the red flag of ‘secondary’ endosymbiosis, i.e., the movement
of plastids from one eukaryote to another (Figure 1B). In the
case of Euglena, its plastid is indeed derived from a green
alga [29], which was engulfed by a non-photosynthetic rela-
tive of the euglenids, an important protist group belonging
to the eukaryotic ‘supergroup’ Excavata [30] (Figure 2).

The chlorarachniophytes are a group of rhizarian amoebo-
flagellate algae that also possess green algal plastids of
secondary endosymbiotic origin (Figure 2). In this case there
is no doubt as to the mechanism of organelle capture: unlike
Euglena, chlorarachniophyte cells still possess the nucleus
of the green algal endosymbiont that came in with the plastid
in a vestigial form referred to as a ‘nucleomorph’ [31–33].
Euglenid and chlorarachniophyte plastids possess three
and four plastid membranes, respectively, in contrast to
the two membranes that envelop all known primary plastids.

No fewer than six algal lineages are known to harbor
red-algal-derived plastids: these include the cryptophytes
(which also possess a nucleomorph [34,35]), haptophytes,
plastid-bearing stramenopiles (e.g., diatoms and kelp), api-
complexans, dinoflagellates and Chromera velia (Figure 2).
The case for red algal plastids in cryptophytes, haptophytes
and stramenopiles is clear-cut (e.g., [34,36–38]), but the
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Figure 2. Hypothesis for the origin and spread of photosynthesis in eukaryotes.

The diagram shows six ‘supergroups’ of eukaryotes, with emphasis on lineages with one or more plastid-bearing groups. Several lineages of
unknown affinity are also indicated. The tree topology is a consensus based on published phylogenetic and phylogenomic analyses as of August
2008, as well as consideration of discrete characters such as lateral gene transfers, endosymbiotic gene replacements, plastid pigmentation, etc.
Branch lengths are not significant. Possible secondary, tertiary and serial secondary endosymbioses involving red and green algal endosymbi-
onts are color-coded, based on the hypothesis of Sanchez-Puerta and Delwiche [66]. Dashed lines indicate uncertainty in organismal relation-
ships and plastid movement. Question marks (?) indicate uncertainty about the presence of a plastid and/or photosynthetic ancestry, as well
as a lack of knowledge about the source of the red secondary plastid in a common ancestor of cryptophytes and haptophytes. Refer to the
text for discussion. Abbreviation: SAR, stramenopiles, alveolates and Rhizaria.
situation is more complicated for apicomplexans and dino-
flagellates [39,40]. Apicomplexans are a medically important
group of secondarily non-photosynthetic parasites (e.g., the
malaria pathogen Plasmodium), many of which possess
a remnant plastid with 4 membranes, retained because
they are the site of essential cellular processes such as fatty
acid and isoprenoid biosynthesis [41]. Apicomplexan plas-
tids still possess a genome, but it is quite reduced, and its
genes are highly derived and thus difficult to place accu-
rately in molecular phylogenies.

The dinoflagellates are a relative of apicomplexans (Fig-
ure 2) and are one of the most remarkable algal lineages
known. Only w50% of known dinoflagellate species are actu-
ally photosynthetic, but of those that are, most possess a
three-membrane-bound, peridinin-pigmented plastid [42].
Other dinoflagellates possess what is referred to as a ‘tertiary’
plastid, i.e., an organelle derived from the uptake of a
secondary plastid-containing alga (Figure 1C). These include
plastids that have been taken from cryptophytes [43,44],
haptophytes [45] and stramenopiles [46,47]. Still others
possess ‘serial secondary’ plastids (Figure 1D), such as
Lepidodinium, which harbors a plastid of prasinophyte green
algal ancestry [48,49]. The degree of host–endosymbiont
integration in these organisms varies considerably: the peri-
dinin plastids are severely reduced and reveal few clues as
to their origin, while the tertiary ‘plastids’ of Kryptoperidinium
and related species are clearly a very recent acquisition from
a diatom and still possess a nucleus and mitochondria
[50–53]. A putative remnant of the original peridinin plastid
is retained in the host cell as an ‘eye spot’ [46]. Finally, a newly
discovered alga dubbed Chromera velia possesses a plastid
of apparent red algal origin. As will be elaborated upon below,
this organism represents a potentially important link between
the dinoflagellate and apicomplexan plastids [54].

Endosymbiotic Gene Transfer and Protein Re-Targeting:
Barriers to Secondary Plastid Evolution
One of the most intriguing aspects of secondary and tertiary
endosymbiosis is the fate of the endosymbiont nucleus and
the essential genes it harbors. Most secondary- and tertiary-
plastid-containing organisms have completely done away
with the primary algal nucleus that accompanied the plastid.
Consequently, the hundreds of plastid genes that moved
from the original cyanobacterial endosymbiont to the host
nucleus during primary endosymbiosis (Figure 1A) must
have moved again, this time from the primary host nucleus
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to that of the secondary host (Figure 1E). Complete nuclear
genome sequences from secondary-plastid-containing
organisms such as the diatom Thalassiosira [55] and the
apicomplexan Plasmodium [56] confirm that this is indeed
the case. Even in the nucleomorph-containing cryptophytes
and chlorarachniophytes, the coding capacity of the
nucleomorph genome is extremely limited [31], and their
plastids rely heavily on secondary host nucleus-encoded
proteins [57,58].

The significance of these observations is that for
secondary endosymbiosis to give rise to a secondary plastid,
an additional protein import pathway must evolve. Primary
plastids are characterized by the presence of the ‘TOC/TIC’
import machinery, a pair of multi-protein translocons that
direct the movement of nucleus-encoded proteins from the
cytoplasm across the outer and inner plastid membranes
[2]. These translocons recognize transit peptides that are
present on the amino termini of plastid-targeted proteins
[59]. Secondary-plastid-containing algae have built upon
this pre-existing system: in addition to a transit peptide, their
nucleus-encoded, plastid-targeted proteins possess a signal
peptide which directs them to the host cell’s endomembrane
system, where (in some organisms at least) a newly discov-
ered endosymbiont-derived translocon with homology to
the endoplasmic reticulum-associated degradation (ERAD)
machinery guides them through to the remnant cytosol of
the engulfed primary alga (the periplastid compartment or
PPC; Figure 1E) [2,60]. Once in the PPC, these proteins
shuttle to the plastid via the TOC/TIC system, as in primary
plastids. It is not enough to simply transfer endosymbiont
genes to the secondary host nuclear genome. Each of the
many hundreds of transferred genes must ‘acquire’ a coding
sequence sufficient to produce a signal peptide that can be
recognized by the nascent protein import apparatus. This
gene-transfer/protein-re-import process represents a poten-
tially formidable barrier to the establishment of a secondary
plastid and is the rationale behind the ‘chromalveolate
hypothesis’ of Cavalier-Smith [61], without doubt the most
controversial modern scheme put forth to explain the tempo
and mode of plastid evolution.

Plastid Loss and the Genetic Legacy of Endosymbiosis
Despite years of effort, the question of exactly how many
endosymbioses have given rise to the known diversity of
photosynthetic eukaryotes remains unanswered. An abso-
lute minimum of two independent secondary endosymbi-
oses must be inferred given that examples of both green
and red secondary plastids are known, and in the case of
green secondary plastids, the general consensus is that
the euglenid and chlorarachniophyte plastids are of indepen-
dent origin [62,63]. It has been suggested that the plastids in
these two groups might be the product of a single, ancient
endosymbiotic event in their common ancestor [61], but
given that the host cell components of these two lineages
belong to two different eukaryotic supergroups dominated
by non-photosynthetic, plastid-lacking organisms (Figure 2;
see below), this view is considered by most to be untenable
(e.g., [64]). This raises the minimum number of secondary
endosymbioses to three, but beyond this, all bets are off.

The chromalveolate hypothesis [61] represents an ambi-
tious attempt to unite the full spectrum of red secondary-
plastid-derived algae by postulating a single red algal
acquisition in the common ancestor of ‘chromists’ (crypto-
phytes, haptophytes and photosynthetic stramenopiles)
and alveolates (apicomplexans, dinoflagellates and ciliates).
Inspired by intriguing ultrastructural and biochemical simi-
larities shared among chromist taxa and some dinoflagel-
lates (reviewed in [65,66]), the main assumptions of the chro-
malveolate hypothesis are that secondary endosymbiosis is
very difficult and thus rare, and that the absence of plastids
and/or photosynthesis in many ‘chromalveolate’ species is
a derived feature. The challenge of testing the hypothesis
amounts to assessing the degree of congruence between
plastid- and host-associated features for the lineages in
question, and deciding whether the data are more consistent
with a single, ancient engulfment of a red alga in the common
ancestor of all ‘chromalveolate’ taxa, or multiple indepen-
dent endosymbioses involving different eukaryotic hosts
and distinct (though potentially closely related) red algal
endosymbionts. This has proven to be exceedingly difficult,
as it is often unclear how conclusions drawn from different
types of information (e.g., cell biological, biochemical,
molecular phylogenetic) should be weighed relative to one
another.

One prediction under the ‘chromalveolate’ model of plastid
evolution is that non-photosynthetic lineages that are specif-
ically related to photosynthetic groups might still possess
plastids, as seen in apicomplexans [67]. This prediction has
in fact been borne out several times in recent years. For
example, an expressed sequence tag survey of the ‘basal’
non-photosynthetic dinoflagellate Oxyrrhis identified eight
nuclear genes encoding proteins with plastid-related func-
tions, at least four of which possess amino-terminal exten-
sions reminiscent of plastid-targeting signals [68]. Similar
results have been obtained for another non-photosynthetic
dinoflagellate, Crypthecodinium [69], suggesting that both
species probably possess hitherto unidentified plastids, as
has just been uncovered in the dinoflagellate-like parasite
Perkinsus [70]. These results are consistent with the possi-
bility that dinoflagellates evolved from photosynthetic
ancestors, perhaps together with apicomplexans.

That apicomplexans and dinoflagellates may have shared
a photosynthetic common ancestor appears even more plau-
sible with the recent discovery of Chromera velia, a tiny,
unassuming alga found living in the coral at the bottom of
Sydney Harbor, Australia [54]. C. velia is a photosynthetic
unicell with a chlorophyll-a-pigmented plastid surrounded
by four membranes (like most secondary-plastid-containing
algae) and is characterized by the presence of cortical
alveoli — membranous sacs underneath the cell surface —
the hallmark feature for which the alveolates are named.
Preliminary gene sequence analyses confirm that the host
component of C. velia is indeed an alveolate and effectively
settles the debate about the origin of the apicomplexan
plastid: the ‘apicoplast’ is very likely derived from a red algal
secondary endosymbiont [54,71]. Furthermore, the data are
consistent with the idea that C. velia is the closest known
free-living relative of apicomplexans: if confirmed, this opens
up a possible window on the evolution of parasitism in these
medically important organisms [72]. C. velia seems to occupy
a pivotal position in alveolate evolution, pushing the probable
origin of the apicomplexan and peridinin-containing dinofla-
gellate plastids back to their common ancestor.

Of course, the chromalveolate hypothesis predicts that
this plastid goes still further back in time. Consistent with
this idea is the fact that alveolates and stramenopiles show
affinity for one another in host nuclear phylogenies (e.g.,
[73]), and the phylogenetic distribution of rare endosymbiotic
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gene replacements involving nuclear genes for plastid
proteins is interpreted by many [74–76] (though not all [77])
researchers as evidence in favor of the chromalveolate
model, i.e., that chromist plastids (including those of strame-
nopiles) share a common origin with those of alveolates.
This takes us back to the thorn in the side of the chromalveo-
late hypothesis: the existence of non-photosynthetic and
assumed-to-be plastid-lacking sister groups to photosyn-
thetic ‘chromalveolate’ taxa. These include the cryptomonad
Goniomonas, many dinoflagellates, heterotrophic strameno-
piles such as oomycetes, and most glaringly, the ciliates
(Figure 2), a diverse, exclusively non-photosynthetic, and
very well-studied protist group that is without doubt specif-
ically related to dinoflagellates and apicomplexans [78]. As
discussed above, several key heterotrophic dinoflagellate
lineages now appear to have plastids after all [68,69], and
given the essential biochemical role that non-photosynthetic
plastids often play for their hosts [41], it is important to
consider whether there are in fact any convincing cases of
outright plastid loss.

The most compelling example thus far is in the apicom-
plexan Cryptosporidium, whose genome sequence revealed
no evidence for the existence of plastid-targeted proteins in
the organism [79] but did uncover a handful of plastid- /endo-
symbiont-derived genes [80]. Given its phylogenetic position
within apicomplexans, it seems reasonable to conclude that
outright plastid loss has indeed occurred in Cryptospo-
ridium. A similar conclusion was drawn from the presence
of plastid/cyanobacterial genes in the genome sequence of
the plastid-lacking oomycete plant pathogen Phytophthora
[81], and most recently, in the genome of the ciliates Tetrahy-
mena and Paramecium [82]. As for Cryptosporidium, these
results are interesting in that they bespeak a possible photo-
synthetic ancestry for both lineages, although it is also
possible that the genes in question were acquired more
recently by lateral gene transfer (LGT), a scenario that is not
difficult to envision for ciliates, which make a living ingesting
other organisms and sometimes harbor algal endosymbionts
(e.g., [83]). Given increasing recognition of the prevalence of
LGT in eukaryotic evolution [84] and the fact that LGT has
been documented in both oomycetes [85] and ciliates [86],
critics of the chromalveolate hypothesis are not likely to be
impressed by the existence of small numbers of plastid/
cyanobacterial genes in the nuclear genomes of plastid-
lacking ‘chromalveolate’ taxa. What is needed in these cases
is a much better sense of the ‘signal-to-noise’ ratio, i.e., how
the genes of putative plastid/cyanobacterial ancestry stack
up against non-cyanobacterial genes clearly acquired by
LGT [87].

A New Phylogenomic Framework for Inferring
the Spread of Plastids
Are ‘chromalveolates’ as a whole truly a natural (i.e., mono-
phyletic) group? The last two years have seen intense
activity in the application of ‘phylogenomics’ to broad-scale
eukaryote systematics, and the answer to this question based
on multiple analyses of datasets containing 100or more genes
seems to be ‘No.’ Figure 2 represents a consensus topology of
the tree of eukaryotes based on the latest phylogenomic
studies of nuclear loci [10,88–91], highlighting the increasingly
popular (though much debated) notion of six eukaryotic
‘supergroups’ (see [30,92,93] for recent discussion).

From the perspective of deep plastid evolution, one of the
most important phylogenomic advances has been the
realization that cryptophytes and haptophytes are specifi-
cally related to one another [88–91]. This result (a) unites
two of the three original chromist groups [61], (b) argues for
plastid loss in the basal cryptomonad Goniomonas, and (c)
is consistent with the presence of a non-cyanobacterial
rpL36 gene in the plastid genome of both cryptophytes and
haptophytes, presumed to be the product of a rare plastid
LGT in their common ancestor [94]. Nevertheless, three other
eukaryotic groups warrant discussion as potentially impor-
tant pieces of the cryptophyte–haptophyte portion of the
plastid puzzle. Foremost among them are the picobiliphytes
(or biliphytes), an as-yet uncultured photosynthetic group
that appears to be related to cryptophytes on the basis of
nuclear ribosomal DNA phylogenies [95,96]. Intriguingly, pi-
cobiliphytes may possess a nucleomorph [96], as in crypto-
phytes: assuming they can be tamed in the lab, detailed
experiments will be necessary to ascertain the origin of the pi-
cobiliphyte plastid and how it relates to those of cryptophytes
and haptophytes. The remaining two groups are the telone-
mids and katablepharids, both of which are non-photosyn-
thetic protists with firm phylogenetic and ultrastructural
connections to cryptophytes [97,98]. With picobiliphytes, ka-
tablepharids and telonemids now in the mix (Figure 2), the
cryptophyte–haptophyte clade becomes a complex assem-
blage of photosynthetic and non-photosynthetic taxa, remi-
niscent of the situation in stramenopiles.

In a twist few would have predicted, the most up-to-date
phylogenomic analyses also show that stramenopiles and
alveolates appear to share a common ancestor with
Rhizaria — the supergroup to which the green secondary-
plastid-containing chlorarachniophytes belong — to the
exclusion of the haptophyte–cryptophyte group (Figure 2).
The branching order of stramenopiles and alveolates relative
to Rhizaria is not yet clear, but the monophyly of these three
groups is consistent and strongly supported [88–90]. Some
analyses place the haptophyte–cryptophyte clade as sister
to the primary-plastid-containing Plantae [89] (see below),
while others place cryptophytes–haptophytes basal to the
‘SAR’ group (i.e., stramenopiles, alveolates and Rhizaria
[88,90]).

Taking into account these new and unexpected phyloge-
netic relationships, the movement of plastids depicted in
Figure 2 is based on the recent hypothesis of Sanchez-Puerta
and Delwiche [66]. A single primary endosymbiotic origin of
plastids is evoked in the common ancestor of Plantae (the
possibility of an even earlier primary endosymbiosis has not
been discussed here but should be recognized; e.g.,
[11,99]) and an as-yet unidentified (and possibly extinct)
lineage of red algae donated a plastid to the ancestor of cryp-
tophytes and haptophytes by secondary endosymbiosis
(Figure 2). Subsequently, this plastid spread from a crypto-
phyte–haptophyte ancestor to the stramenopile–alveolate
lineage by tertiary endosymbiosis, prior to the lateral transfer
of the non-cyanobacterial rpL36 gene seen in the plastid
genomes of cryptophytes and haptophytes [94]. This could
have been a single tertiary event in a stramenopile–alveolate
ancestor or two separate events, one at some point during
stramenopile evolution and another at the base of alveolates
or subsequent to the divergence of ciliates (Figure 2). Varying
degrees of plastid loss and/or loss of photosynthesis must be
proposed. Two independent green algal secondary endo-
symbioses are proposed in Rhizaria and Excavates, and
tertiary and serial secondary endosymbiosis is frequent and
ongoing in the dinoflagellates [42]. As emphasized by
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Sanchez-Puerta and Delwiche [66], tertiary endosymbiosis
has already been evoked to account for incongruence
between host- and plastid-associated features in ‘chromal-
veolates’ (e.g., [77,100–103]) and other recipients of the orig-
inal red algal ‘chromalveolate’ plastid should not be dis-
counted (e.g., [103]).

The possibility of a truly ancient red algal secondary endo-
symbiosis in a putative ‘chromalveolate’–rhizarian ancestor
has been discussed [88,90,104], although it is problematic
in that even more extensive plastid loss must be invoked. It
also becomes completely untenable if the haptophyte–
cryptophyte clade shares a common ancestor with Plantae,
as suggested recently [89]. This result warrants close scru-
tiny, as ancient, cryptic eukaryote–eukaryote endosymbiotic
gene replacements have the potential to greatly mislead phy-
logenomic studies of secondary- and tertiary-plastid-con-
taining algae [104]. Coupled with well-known phylogenetic
artifacts such as long branch attraction, gene replacements
involving the red algal endosymbiont genome as donor and
the ancestral cryptophyte–haptophyte genome as recipient
could in part explain the cryptophyte–haptophyte–Plantae
topology observed in the 135 gene phylogenies of Burki
et al. [89].

Prospectus
So, is it time to dispense with the ‘chromalveolate’ concept?
The model for plastid spread discussed above is certainly
cause for re-evaluation of the principle of parsimony as
applied to the perceived evolutionary stability of plastid
membrane number and topology (e.g., the ‘chloroplast endo-
plasmic reticulum’ of chromists [61]), as well as the difficulty
with which a protein import system can be established in
the context of secondary and tertiary endosymbiosis [66].
Although there is still much to learn, our present under-
standing of the plastid protein import mechanism used in
‘chromalveolate’ taxa, chlorarachniophytes and euglenids
[2] reveals that the host cell’s endomembrane system has
been ‘hijacked’ multiple times independently. Conversely, it
also seems unnecessarily complex and premature to evoke
a separate secondary or tertiary endosymbiosis to explain
the presence of plastids in each and every photosynthetic
lineage, given the steady rate at which remnant plastids are
being discovered in heterotrophic taxa [68–70]. We certainly
do not know enough about the relative difficulty of plastid
gain versus plastid loss to be able to confidently distinguish
between three, four, five or six endosymbiotic events based
on parsimony alone, but if the evolution of a secondary
plastid were utterly trivial, one might expect to see many
more plastid-bearing photosynthetic groups nested within
large and predominantly heterotrophic lineages (e.g., ciliates,
Rhizaria, Amoebozoa) than we actually do, given the obvious
advantage of photosynthesis and the propensity for eukary-
otes to ingest other eukaryotes. For the time being, it seems
reasonable to conclude that the rationale underlying the
chromalveolate hypothesis is sound and some of its predic-
tions have proven to be correct: endosymbiosis is an
extremely complex process, outright plastid loss is possible
[79–81] and some of the key ‘chromalveolate’ taxa are
specifically related to one another (e.g., cryptophytes and
haptophytes [88–91]).

How the puzzle of plastid evolution progresses from here
depends on the results of current and future nuclear and
organellar genome sequencing projects from diverse
phototrophs such as Chromera velia [71], cryptophytes,
chlorarachniophytes, haptophytes, and additional red algae,
as well as heterotrophic protists such as katablepharids and
telonemids. Integrated with the results of ultrastructural
studies and increasingly detailed biochemical analysis of
the similarities and differences in the plastid protein import
machinery (e.g., [60]), these genomes should provide the
data with which to speculate with increased certainty on
the original recipient of the primordial red algal secondary
plastid, and the directionality and frequency of tertiary plastid
flow among the ancestors of modern-day photosynthetic
eukaryotes.
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