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a b s t r a c t

The first-integral method is a direct algebraic method for obtaining exact solutions of
some nonlinear partial differential equations. This method can be applied to nonintegrable
equations as well as to integrable ones. This method is based on the theory of commutative
algebra. In this work, we apply the first-integral method to study the exact solutions of the
Eckhaus equation.

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that nonlinear partial differential equations (NPDEs) are widely used to describe complex phenomena
in various fields of science, such as physics, biology, chemistry, etc. Therefore, seeking exact solutions of NPDEs is very
important and significant in the nonlinear sciences. In the past few decades, a great effort has been made in this task and
many powerful methods have been presented, such as the inverse scattering method [1], Hirota’s direct method [2], the
tanh method [3], the extended tanh function method [4], the Jacobian elliptic function expansion method [5], and so on.

The first-integral method was first proposed by Feng [6] in solving the Burgers–KdV equation which is based on the ring
theory of commutative algebra. Recently, this useful method has been widely used by many researchers, such as in [7–11]
and the references therein.

The Eckhaus equation is in the following form:

iΨt + Ψxx + 2(|Ψ |
2)xΨ + |Ψ |

4Ψ = 0,

whereΨ = Ψ (x, t) is a complex-valued function of two real variables x, t . This equation is of nonlinear Schrödinger type. The
Eckhaus equation was found in [12] as an asymptotic multiscale reduction of certain classes of nonlinear partial differential
equations. In [13], many of the properties of the Eckhaus equation were investigated. In [14], the Eckhaus equation was
(exactly) linearized by a change of (dependent) variable. The aim of this work is to find exact solutions of the Eckhaus
equation by the first-integral method.

2. The first-integral method

Raslan summarized the use of the first-integral method [8].
Step 1. Consider a general nonlinear PDE in the form

F(u, ux, ut , uxx, uxt , . . .) = 0. (1)
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Using a wave variable where ξ = x − ct , we can rewrite Eq. (1) as the following nonlinear ODE:

G(U,U ′,U ′′, . . .) = 0, (2)

where the prime denotes differentiation with respect to ξ .

Step 2. Suppose that the solution of ODE (2) can be written as follows:

u(x, t) = f (ξ). (3)

Step 3. We introduce a new independent variable

X(ξ) = f (ξ), Y =
∂ f (ξ)

∂ξ
, (4)

which leads a system of nonlinear ordinary differential equations:

∂X(ξ)

∂ξ
= Y (ξ), (5)

∂Y (ξ)

∂ξ
= F1(X(ξ), Y (ξ)).

Step 4. By the qualitative theory of ordinary differential equations [15], if we can find the integrals for Eq. (5) under the
same conditions, then the general solutions to Eq. (5) can be obtained directly. However, in general, it is really difficult for
us to realize this even for one first integral, because for a given plane autonomous system, there is no systematic theory
that can tell us how to find its first integrals, nor is there a logical way for us to tell what these first integrals are. We will
apply the Division Theorem to obtain one first integral for Eq. (5) which reduces Eq. (2) to a first-order integrable ordinary
differential equation. An exact solution to Eq. (1) is then obtained by solving this equation. Now, let us recall the Division
Theorem:

Division Theorem. Suppose that P(w, z) and Q (w, z) are polynomials in C[w, z]; and P(w, z) is irreducible in C[w, z].
If Q (w, z) vanishes at all zero points of P(w, z), then there exists a polynomial G(w, z) in C[w, z] such that

Q (w, z) = P(w, z)G(w, z).

3. The Eckhaus equation

Let us consider the Eckhaus equation:

iΨt + Ψxx + 2(|Ψ |
2)xΨ + |Ψ |

4Ψ = 0. (6)

We use the wave transformation

Ψ (x, t) = u(ξ)ei(αx+βt), ξ = k(x − 2αt), (7)

where k, α and β are constants to be determined later.
Substituting (7) into (6), we obtain an ordinary differential equation:

k2u′′
− (β + α2)u + 4ku′u2

+ u5
= 0. (8)

Using (4) and (5), we get

Ẋ(ξ) = Y (ξ), (9)

Ẏ (ξ) = −
4
k
(X(ξ))2Y (ξ) +

(β + α2)

k2
X(ξ) −

1
k2

(X(ξ))5. (10)

According to the first-integral method, we suppose that X(ξ) and Y (ξ) are nontrivial solutions of (9) and (10), and

Q (X, Y ) =

m
i=0

ai(X)Y i
= 0

is an irreducible polynomial in the complex domain C[X, Y ] such that

Q (X(ξ), Y (ξ)) =

m
i=0

ai(X(ξ))Y i(ξ) = 0, (11)
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where the ai(X) (i = 0, 1, . . . ,m) are polynomials in X and am(X) ≠ 0. Eq. (11) is called the first integral for (9) and (10).
Due to the Division Theorem, there exists a polynomial g(X) + h(X)Y in the complex domain C[X, Y ] such that

dQ
dξ

=
dQ
dX

dX
dξ

+
dQ
dY

dY
dξ

= (g(X) + h(X)Y )

m
i=0

ai(X)Y i. (12)

In this example, we take two different cases, assuming thatm = 1 andm = 2 in (11).
Case A: Suppose thatm = 1; by comparing the coefficients of the Y i (i = 2, 1, 0) on either side of (12), we have

ȧ1(X) = h(X)a1(X), (13)

ȧ0(X) =


4
k
(X(ξ))2 + g(X)


a1(X) + h(X)a0(X), (14)

a1(X)


(β + α2)

k2
X(ξ) −

1
k2

(X(ξ))5


= g(X)a0(X). (15)

Since ai(X) (i = 0, 1) are polynomials, then from (13) we deduce that a1(X) is constant and h(X) = 0. For simplicity, take
a1(X) = 1. Balancing the degrees of g(X) and a0(X), we conclude that deg (g(X)) = 2 only.

Suppose that g(X) = A0 + A1X + A2X2; then we find a0(X).

a0(X) = B0 + A0X +
A1

2
X2

+


4
3k

+
A2

3


X3, (16)

where B0 is an arbitrary integration constant.
Substituting a0(X) and g(X) into (15) and setting all the coefficients of powers of X to zero, we then obtain a system of

nonlinear algebraic equations and by solving it, we obtain

B0 = 0, A0 = −


β + α2

k
, A1 = 0, A2 = −

1
k
, (17)

B0 = 0, A0 =


β + α2

k
, A1 = 0, A2 = −

1
k
, (18)

where k, α and β are arbitrary constants.
Using the conditions (17) in (11), we obtain

Y (ξ) =


β + α2

k
X(ξ) −

1
k
X3(ξ). (19)

Combining (19)with (9), we obtain the exact solution to Eq. (8) and the exact solution to the Eckhaus equation can bewritten
as

Ψ (x, t) = ±


(β + α2)


e

2
k

√
(β+α2)(k(x−2αt)+ξ0)

1 + e
2
k

√
(β+α2)(k(x−2αt)+ξ0)

 1
2

ei(αx+βt), (20)

where ξ0 is an arbitrary constant.
If λ =

2
k


(β + α2), then

Ψ (x, t) = ±


kλ
2


eλ(k(x−2αt)+ξ0)

1 + eλ(k(x−2αt)+ξ0)

 1
2

ei(αx+βt)

= ±


kλ
2


1
2

−
1
2
tanh


λ

2
(k(x − 2αt) + ξ0)

 1
2

ei(αx+βt).

Similarly, in the case of (18), from (11), we obtain

Y (ξ) = −


β + α2

k
X(ξ) −

1
k
X3(ξ), (21)

and then the exact solution of the Eckhaus equation can be written as

Ψ (x, t) = ±


(β + α2)


e−

2
k

√
(β+α2)(k(x−2αt)+ξ0)

1 − e−
2
k

√
(β+α2)(k(x−2αt)+ξ0)

 1
2

ei(αx+βt), (22)

where ξ0 is an arbitrary constant.
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If λ =
2
k


(β + α2), then

Ψ (x, t) = ±


kλ
2


e−λ(k(x−2αt)+ξ0)

1 − e−λ(k(x−2αt)+ξ0)

 1
2

ei(αx+βt)

= ±


kλ
2


−

1
2

+
1
2
coth


λ

2
(k(x − 2αt) + ξ0)

 1
2

ei(αx+βt).

Comparing our results with Zhang’s results [16], it can be seen that the results are same.
Case B: Suppose thatm = 2; by equating the coefficients of Y i (i = 3, 2, 1, 0) on either side of (12), we have

ȧ2(X) = h(X)a2(X), (23)

ȧ1(X) =


8
k
X2

+ g(X)


a2(X) + h(X)a1(X), (24)

ȧ0(X) = −2a2(X)


(β + α2)

k2
X −

1
k2

X5


+


4
k
X2

+ g(X)


a1(X) + h(X)a0(X), (25)

a1(X)


(β + α2)

k2
X −

1
k2

X5


= g(X)a0(X). (26)

Since ai(X) (i = 0, 1, 2) are polynomials, then from (23) we deduce that a2(X) is constant and h(X) = 0. For simplicity,
take a2(X) = 1. Balancing the degrees of g(X), a1(X) and a2(X), we conclude that deg(g(X)) = 2 only. Suppose that
g(X) = A0 + A1X + A2X2; then we find a1(X) and a0(X) as follows:

a1(X) = B0 + A0X +
A1

2
X2

+


8
3k

+
A2

3


X3, (27)

a0(X) = d + A0B0X +
1
2


−

2(β + α2)

k2
+ A2

0 + A1B0


X2

+
1
3


3
2
A0A1 +


4
k

+ A2


B0


X3

+
1
4


A0


8
3k

+
A2

3


+

A2
1

2
+ A0


A2 +

4
k


X4

+
1
5


A1


8
3k

+
A2

3


+

1
2


A2 +

4
k


A1


X5

+
1
6


2
k2

+


A2 +

4
k

 
8
3k

+
A2

3


X6. (28)

Substituting a0(X), a1(X) and g(X) in the last equation in (26) and setting all the coefficients of powers of X to zero, we then
obtain a system of nonlinear algebraic equations and by solving it with the aid of Maple, we obtain

d = 0, B0 = 0, A0 = 0, A1 = 0, A2 = −
2
k
, (29)

where α and β are arbitrary constants.

d = 0, B0 = 0, A0 = 0, A1 = 0, A2 = −
4
k
, β = −α2, (30)

where α is an arbitrary constant.
Using the conditions (29) in (11), we get

Y (ξ) =
(−X2(ξ) ±


(β + α2))X(ξ)

k
. (31)

Combining (31) with (9), we obtain the exact solution to Eq. (8) and then the exact solutions to the Eckhaus equation can be
written as

Ψ (x, t) = ±


kλ
2


1
2

−
1
2
tanh


λ

2
(k(x − 2αt) + ξ0)

 1
2

ei(αx+βt), (32)

Ψ (x, t) = ±


kλ
2


−

1
2

+
1
2
coth


λ

2
(k(x − 2αt) + ξ0)

 1
2

ei(αx+βt),

where λ =
2
k


(β + α2) and ξ0 is an arbitrary constant.

Similarly, in the case of (30), from (11), we obtain

Y (ξ) = −
1
k
X3(ξ), (33)
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and then the exact solution of the Eckhaus equation can be written as

Ψ (x, t) = ±


k
2


1

(k(x − 2αt) + ξ0)

 1
2

ei(αx−α2t), (34)

where ξ0 is an arbitrary constant.

4. Conclusion

In this work, we obtained exact solutions of the Eckhaus equation by using the first-integral method. The results show
that this method is efficient.
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