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Differential gene expression is the basis for cell type diversity in multicellular organisms and the driving force of
development and differentiation. It is achievedby cell type-specific transcriptional enhancers,which are genomic
DNA sequences that activate the transcription of their target genes. Their identification and characterization is
fundamental to our understanding of gene regulation. Features that are associated with enhancer activity, such
as regulatory factor binding or histonemodifications can predict the location of enhancers. Nonetheless, enhanc-
er activity can only be assessed by transcriptional reporter assays. Over the past years massively parallel reporter
assays have been developed for large scale testing of enhancers. In this reviewwe focus on the principles and ap-
plications of STARR-seq, a functional assay that quantifies enhancer strengths in complex candidate libraries and
thus allows activity-based enhancer identification in entire genomes. We explain how STARR-seqworks, discuss
current uses and give an outlook to future applications.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. What are transcriptional enhancers?

How can a single genome give rise to the diverse cell types of an
animal? Differential gene expression is the basic process creating this
er), cosmas.arnold@imp.ac.at

. This is an open access article under
diversity throughout development and differentiation [1–6]. Gene
transcription starts at core promoters, which are the sites where the
transcription machinery assembles [7]. As core promoters typically
only support low-level basal transcription, so called cis-regulatorymod-
ules (CRMs) or enhancers [8] carry most of the regulatory information
in gene expression. These regions act as binding platforms for transcrip-
tion factors (TFs) and co-factors, which together activate productive
transcription. They can be located near the core promoter, often referred
to as promoter-proximal, or distal to the target gene and are typically
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/82741949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ygeno.2015.06.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ygeno.2015.06.001
mailto:felix.muerdter@imp.ac.at
mailto:cosmas.arnold@imp.ac.at
http://dx.doi.org/10.1016/j.ygeno.2015.06.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/08887543


146 F. Muerdter et al. / Genomics 106 (2015) 145–150
found within accessible chromatin [1,3,4,9,10]. The combined input of
activating and repressing transcription factors bound to an enhancer
determines its overall regulatory output in a cell type or tissue-specific
manner (e.g. the even-skipped stripe 2 enhancer [11], sparkling [12], or
the interferon-beta enhanceosome [13]; reviewed in [10]). Further-
more, genes with complex expression patterns are often regulated in a
modular fashion via multiple enhancers that contribute individual
patterns additively [3,14–16]. The modularity of gene regulation and
the context-independent functions of enhancers become evident
when they are tested in vivo using reporter assays. Enhancers typically
retain their endogenous activity patterns and, in combination,
recapitulate their target genes' endogenous expression patterns. This
has been demonstrated for several examples, including the stripe
pattern of the even-skipped [3] and blimp1 [17] genes in fruitfly embryos
or sonic hedgehog (shh) in mice [18], and holds for most tested en-
hancers genome-wide [16]. Correspondingly, deletion or disruption
of a single enhancer can cause domain-specific loss of gene expres-
sion, e.g. as shown for blimp1 in specific stripes [17] or shh in limb
buds [18]. Overall, this demonstrates that single enhancers can be
context independent and are sufficient to recapitulate endogenous
expression patterns, even when tested in an ectopic position. For
the above reasons, the regulation of gene expression can be studied
using functional enhancer assays.

2. How can we identify enhancers?

Enhancers display features at the sequence and chromatin level that
distinguish them from non-regulatory genomic regions [5,19]. Active
enhancers are bound by TFs and co-factors (eg. CBP/p300; [20]) and
are therefore typically found in accessible chromatin regions (DNaseI
hypersensitive sites; [21]). Adjacent nucleosomes often contain
histones that are post-translationally modified at their C-terminal
tails. Active enhancers have been shown to correlate with acetylation
of lysine 27of the adjacent histoneH3 (H3K27ac) andmethylation of ly-
sine 4 (H3K4me1) [22–25]. In addition, enhancers can be bound and
transcribed by RNA polymerase II, which gives rise to enhancer RNAs
or eRNAs [26,27] and additionally are often found to be hypomethylated
inmammalian cells [28,29]. The expansion of next-generation sequenc-
ing technologies during the past decade made it possible to assay these
diverse sequence and chromatin properties genome-wide [19], and
thus has allowed extensively predicting putative enhancer regions in
the genomes of many organisms.

Even though these features correlate with enhancer activity, they
cannot assess reporter activity nor measure enhancer strength [19].
Furthermore, these features are not exclusive to active enhancers,
which leads to false positive predictions [19,30]. Thus, to validate and
functionally characterize enhancers, assays that report on enhancer
activity directly are of paramount importance.

3. How can we assess enhancer activity in high throughput?

Traditionally, enhancers have been studied using reporter assays
that assess enhancer activity through the expression of various reporter
genes: When introduced into a reporter construct upstream of a mini-
mal promoter, enhancers will activate the transcription of a reporter
gene,whose expression levels can be either visualized (by LacZ staining,
fluorescence or in situ hybridization) or quantified using biolumines-
cence (e.g. in luciferase assays) [19]. The abundance of reporter tran-
script or protein is in direct relation to the strength of the enhancer.
These assays are therefore considered the gold standard in the study
of enhancer activity of individual candidate sequences. Nonetheless,
such reporter assays require that each candidate be tested individually,
which strongly limits the number of candidates.

Recent advances in functional approaches for enhancer activity have
overcome the low throughput of these assays and have led to the
development of massively parallel reporter assays (MPRAs). Here,
individual candidate fragments are tested in parallel instead of one-
by-one in separate experiments, creating the challenge to couple
the assay's readout of activity to the individual candidates' identities.
This has been achieved mainly by two different means with different
advantages and drawbacks: in the first scenario individual cells con-
tain only a single candidate fragment each, such that the cellular
levels of a GFP reporter can be used to separate cells that contain
active or inactive fragments (coupling at the cellular level [31–34]).
Alternatively, the reporter transcripts contain information that al-
lows their unique assignment to the respective candidate fragments,
e.g. in the form of molecular barcodes (coupling at the sequence/
plasmid level [30,35–40]).

The former concept allows for the testing not only of pre-selected
candidates, but also the screening of randomly sheared fragments
from different sources of DNA such as BACs or DNase I hypersensitive
regions [31–34].

The fact that only a single candidate can be tested per cell, however,
couples the throughput of such an approach to the number of cells. Ad-
ditionally, positive cells have to be separated from negative cells by
fluorescence-activated cell sorting (FACS). To achieve integration into
a large number of cells with a controlled number of integration events
per cell, lentiviral strategies have been successfully applied [33]. The
fact that the site of integration is random, however, can have strong
positional effects on the reporter activity [41]. In order to alleviate
such positional effects, site-specific integration into a more defined
landing site can be employed [31,32,34]. Here, the low efficiency of
site-directed integration further constrains the throughput by demand-
ing a highnumber of input cells or tissue to generate a certain number of
integration-positive cells. Interestingly, whether or not the integration
of reporter constructs into chromosomes has a differential effect on re-
porter activity, in comparison to plasmid-based constructs, has not been
systematically assessed. Two studies in flies and yeast even suggest that
themeasured activity for enhancers agree, when tested in integrated or
episomal constructs [34,42]. Finally, the binary readout (active vs.
inactive) of above methodologies makes it hard to quantitatively assess
the strength of the tested candidate.

Reporter activity can also be measured as abundance of the re-
porter transcript through RNA-seq, which quantitatively reflects
the strength of the enhancer. Here, candidate sequences can drive
the transcription of a reporter construct, which harbors a unique
barcode in its transcript that informs on the identity of the enhancer
candidate. Massively parallel sequencing of the barcodes encoded as
cDNA and subsequent paring with upstream candidate sequences
thus reflects the activity of the candidate sequence [30,35–40]. In
this scenario, several candidate sequences can be interrogated per
cell, making high throughput more feasible. One challenge of these
approaches, however, is tomatch the candidates and their respective
barcodes. If the candidates are paired randomly with barcodes dur-
ing the cloning step, the resulting libraries have to be sequenced
first in order to create the assignments [37]. Synthesizing the
candidate-barcode-pair in a single reaction, thereby creating
known pairs, can circumvent this complication [36]. Nonetheless,
synthetic oligonucleotides are still limited in size and are costly
when produced in high numbers [43], which would be required for
the production of highly complex libraries. Given above limitations,
these assays are most often used to systematically probe candidate
sequences rather than for the identification of enhancers.

To screen entire genomes for enhancers based on their activity, we
recently developed a quantitative method that directly couples the
identity of a candidate sequence to its activity for millions of sequences
in parallel: Self-transcribing active regulatory region sequencing
(STARR-seq) (Fig. 1A).

Testing of defined enhancer candidates are discussed elsewhere
[19], which is why we will focus more on the aspect of high
throughput screening for enhancer activity for the remainder of
this review.
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4. What is STARR-seq?

STARR-seq is a massively parallel reporter assay to identify tran-
scriptional enhancers directly based on their activity in entire genomes
and to assess their activity quantitatively [42].

5. How does STARR-seq work?

Enhancer activity is directly linked to the underlying DNA sequence
and measured as presence of the resulting reporter transcripts among
cellular RNA by deep sequencing.

Specifically, DNA fragments are cloned downstream of a core pro-
moter and into the 3′UTR of a reporter gene. Active enhancerswill tran-
scribe themselves and become part of the resulting reporter transcripts
(Fig. 1A). This setup allows the simultaneous testing of millions of DNA
sequences in a highly complex reporter library and also ensures that the
identified sequences act as bona fide enhancers (rather than for example
promoters) as they activate transcription from a remote position
(Fig. 1A) [42].

6. What are the features of the reporter library?

Candidate DNA fragments can be obtained from arbitrary sources of
DNA, including genomic DNA [42,44–46], targeted regions via bacterial
artificial chromosomes (BACs) [42,46], DNA fragments enriched for re-
gions of interest such as open chromatin, TF binding sites, or predicted
enhancers [47] as well as synthetic DNA. The size of the candidate
DNA fragments can be of a wide range including sizes that fully cover
known enhancers.

7. What are the features of STARR-seq?

As STARR-seq is an ectopic, plasmid-based assay, the measured ac-
tivity directly reflects the regulatory capacity of enhancer sequences.
This measurement is not affected by the location of the candidate se-
quences within the transcript or their orientation [42] and accurately
reflects activity changes after cellular signaling such as hormone treat-
ment highlighting its episomal responsiveness [44]. Due to its episomal
nature, STARR-seq is unlikely to suffer from position effects resulting
from random genomic integration as has been observed for integrated
reporter assays [41]. Furthermore, integration of the reporter constructs
in the genome in order to propagate them to daughter cell populations
is not necessary due to the short timeframe of STARR-seq, which is in
the order of a single cell cycle or less for most cell types. The activity
of candidate sequences tested independently in luciferase assays and
STARR-seq is linearly correlated in flies and humans. Thus, STARR-seq
reports quantitatively on enhancer activity and constitutes a genome-
wide equivalent of luciferase assays. In addition, enhancers identified
by STARR-seq are active after random integration into the genome of
cell lines, as well as in vivo in transgenic flies after site-specific integra-
tion [42]. Taken together, STARR-seq draws genome-wide cell type-
specific quantitative enhancer activity maps of any cell type that allows
efficient delivery of the reporter library [42].

Although STARR-seq does not measure the enhancer's activity in its
endogenous chromatin environment, the majority of enhancers identi-
fied by STARR-seq overlap accessible chromatin and carry enhancer-
typical histonemodifications [42]. This indicates that they are functional
in their endogenous context. In addition, STARR-seq can also measure
enhancer activities of sequences that lie within inaccessible chromatin.
These “closed enhancers” are marked by H3K4me1, suggesting that
they are recognized as bona fide enhancers by the cell's trans-
regulatory environment. As they are marked by H3K27me3, they are
likely actively silenced by Polycomb, presumably at the chromatin
level. These regions would be invisible to methods that predict en-
hancers based on chromatin features (DHS-seq, ChIP-seq etc.) alone,
yet provide interesting starting points to investigate chromatin-
mediated silencing and the extent to which this form of silencing is in-
volved in gene regulation [42].

8. What has STARR-seq been used for?

8.1. Enhancer identification, validation and characterization in flies and
human

STARR-seq can be used to ask fundamental questions of transcrip-
tional regulation and enhancer biology. Cell type-specific enhancers
drive differential gene expression, hence, identifying such enhancers
can be of utmost importance to our understanding of development
and differentiation. We generated quantitative enhancer activity maps
that describe the enhancer activity landscape of three Drosophila
melanogaster cell types of developmentally different origin, one derived
from embryos (S2), one from larval brain (BG3), and one from adult
ovaries (OSC) by screening the entire fly genome [42]. This revealed
thousands of enhancers, exhibiting an activity spectrum ranging from
strictly cell type-specific to equally active across cell types and their ge-
nomic locations. Importantly, cell type-specific gene expression levels
were correlated to the combined activities of the flanking enhancers
within each cell type and across cell types [42], which links differential
gene expression to differences in enhancer activity and demonstrates
that ectopic assays can accurately assess cell type-specific enhancer
activities (Fig. 1B).

In human, the 20-times larger genome poses considerable chal-
lenges to the cloning of high-coverage libraries, the screening of large
numbers of cells and processing of high levels of RNA. Thus, STARR-
seq has been applied to libraries of reduced complexity to test selected
enhancer candidates [47] or to screen defined genomic regions in an un-
biased fashion [42]. The agreement of luciferase assays and STARR-seq
signal further showed that STARR-seq is also quantitative in mammali-
an cells [42,47]. Spicuglia and colleagues captured fragments from son-
icated genomic DNA that corresponded to candidate regulatory regions
predicted based on chromatin accessibility and TF binding. This allowed
them to test 7152 candidate regions in parallel in their murine T-cell
model (Fig. 1B), revealing 2279 weak and 433 strong enhancers, but
also demonstrating that many predicted candidates were negative
[47], emphasizing the need for functional validation of such predictions.

8.2. DNA sequence features of active enhancers

The genome-wide enhancer activitymaps from STARR-seq provided
large collections of functional enhancer sequences and negative con-
trols. This unique set of enhancers enabled us to derive cis-regulatory
sequence rules as well as functionally important TF binding motifs by
computational analysis, thus explaining cell type-specific enhancer
function from the DNA sequence. In addition, STARR-seq enabled iden-
tification of a novel class of enhancer sequence elements (dinucleotide
repeat motifs — DRM), which are important for the activity of broadly
active enhancers [48].

8.3. Dynamic changes of enhancer activity induced by signaling

Signaling pathways often cause changes in gene expression levels.
Signaling-responsive enhancers direct these changes. STARR-seq allows
assessing the underlying differences in enhancer activities by compar-
ing genome-wide enhancer activity maps before and after signal induc-
tion. For example, steroid hormones regulate gene expression through
their nuclear receptors, which bind to specific DNA motifs and act as
transcription factors, thus influencing the activity of the bound enhanc-
er. Using ecdysone signaling inD.melanogaster S2 andOSCs hundreds of
hormone dependent, cell type-specific enhancers could be identified. In
addition this allowed extracting the underlying cis-regulatory logic re-
sponsible for a cell type-specific hormone response from these enhanc-
er sequences (Fig. 1B) [44]. This study demonstrates how STARR-seq



Fig. 1. STARR-seq— Principles and Applications. (A) Overview of the STARR-seq pipeline. First a reporter library is cloned from an arbitrary DNA source, which can be sonicated genomic
DNA for comprehensive genome-wide screens. The reporter library is transfected into cultured cells and the reporter transcripts are isolated from the pool of total RNA after 24 h. After
cDNA synthesis and PCR amplification of the self-transcribing sequences, deep sequencing is conducted and the resulting reads are mapped to the reference genome. The enrichment of
reporter cDNAover input directly and quantitatively reflects enhancer activity [42]. (B) Shownare graphical abstracts of STARR-seq applicationsdisplayingoriginal data (for details refer to
the original publication and the main text) and a schematic of STARR-seq in a murine T-cell model using a capture approach (CapStarr-seq) [47].
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can be used to study the principles of signal-dependent gene expres-
sion, which are important in many aspects of cellular transitions and
differentiation.
8.4. Impact of cis-regulatory sequence variation on enhancer activity and
evolution

Furthermore, STARR-seq allows screening multiple cis-regulatory
genomes in a single cell type, i.e. in the same trans-regulatory
environment, enabling powerful comparative analyses of differential
enhancer activities that arise from sequence variation.

Screening the genomes of 5 Drosophila species (spanning an evolu-
tionary distance of 30–40 Ma) in a single D. melanogaster cell type
(S2) revealed that a large portion of D. melanogaster orthologous en-
hancers is functionally conserved, presumably due to stabilizing turn-
over of TF motifs. Interestingly, functional enhancers can also be
gainedwithin relatively short evolutionary timespanswithout apparent
adaptive selection, yet can be involved in changes of gene expression in
vivo (Fig. 1B) [45]. The above approach can be extended to studying



149F. Muerdter et al. / Genomics 106 (2015) 145–150
sequence variation across different species, within selected populations,
or betweenDNA fromhealthy versus disease-tissue (e.g. in cancer)with
respect to phenotypic variation or disease.

8.5. Mechanistic aspects of transcriptional regulation

Finally, the functional readout and the defined setup of STARR-seq
makes it possible to ask basic mechanistic questions of enhancer biolo-
gy. For example, screening the entire fly genome by STARR-seq using
different core promoters derived from either ubiquitously expressed
housekeeping genes or from developmentally regulated and cell type-
specific genes revealed thousands of enhancers that are specific to ei-
ther of these two classes of core promoters. This suggests the existence
of twomajor transcriptional programs, one for ubiquitous expression of
housekeeping genes through ubiquitously active, promoter proximal
enhancers and one for the expression of developmental and cell type-
specific genes. The latter involves more distally located and often cell
type-specific enhancers. Thus, STARR-seq revealed the separation of
housekeeping and developmental gene regulation through global
enhancer–core-promoter specificity and motif analysis combined with
ChIP-seq data identified the responsible TFs (Fig. 1B) [46]. This work
demonstrates that STARR-seq is a powerful tool to address longstanding
and fundamental questions of gene regulation [49].

9. What comes next?

In recent years, advances in sequencing technology have allowed
large-scale predictions of enhancers in many cell types and tissues
[19]. There is a need to validate and test these predictions using the
functional assays described above. Additionally, the comprehensiveness
of functional enhancer activity assays at a genome-wide scale will allow
the field to re-evaluate and refine themodels currently used in enhanc-
er prediction [30]. These assays can further assess the modularity and
sufficiency of enhancers and it will be exciting to see recent advances
in genome-editing tools such as the CRISPR/Cas9 system applied to
test their requirement for gene regulation in genomic loss-of-function
models [50–52].

The quantitative assessment of enhancer activity is also especially
interesting in biological systems that exhibit strong changes in gene ex-
pression. For example, it will be exciting to see the dynamics of enhanc-
er strength during cellular differentiation and identify the causal
regulatory regions. Another intriguing cellular transition that is exten-
sively studied at the enhancer level is malignant transformation in
mammalian cells. STARR-seq in combination with co-factor disruption
by CRISPRi [53] or inhibition with small molecule inhibitors could
shed light on the involvement of certain co-factors in cancer. Some of
these factors are especially interesting, as theymight become important
targets in cancer therapy [54]. Finally, it will be exciting to see STARR-
seq and similar approaches to be applied to diverse tissues and cell
types in vivo.

In this review, we highlight a powerful functional assay that enables
characterization of enhancers directly based on their activity. We fore-
see that this and related assays will continue to advance our under-
standing of transcriptional regulation and are excited to see future
developments in this area of research.
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