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Possible large CP violation in three-body decays of heavy baryon
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We propose a new mechanism which can introduce large CP asymmetries in the phase spaces of three-
body decays of heavy baryons. In this mechanism, a large CP asymmetry is induced by the interference 
of two intermediate resonances, which subsequently decay into two different combinations of final 
particles. We apply this mechanism to the decay channel �0

b → pπ0π−, and find that the differential 
CP asymmetry can reach as large as 50%, while the regional CP asymmetry can reach as large as 16% in 
the interference region of the phase space.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

CP violation is an important phenomenon in particle physics. 
Although it has been discovered in the mixing and decay pro-
cesses of K and B meson systems, including the first discovery 
of CP violation in K system [1], no CP violation was established 
in the baryon sector, except an evidence in the decay channel 
�0

b → pK − [2]. Within the Standard Model, CP violation has orig-
inated from the weak phase in the Cabibbo–Kobayashi–Maskawa 
(CKM) matrix [3], along with a strong phase which usually arises 
from strong interactions. One reason for the smallness of CP vio-
lation is that the strong phases are usually small, especially when 
the strong phases come from a scale that is much larger than the 
QCD scale. However, non-perturbative effects of the strong interac-
tion at low scales provide possibilities for large strong phases, and 
hence, large CP violation.

Three-body decays of heavy hadrons can be dominated by in-
termediate resonances in certain regions of the phase space. When 
two resonances decay into two different combinations of final par-
ticles, it is possible for them to dominate in the same region of 
the phase space. As a result, the interference effect together with 
a possible large strong phase can generate a large CP asymmetry.
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2. Differential CP asymmetry

It gets more interesting when one applies the aforementioned 
interference effect to the decay process of heavy baryons. For the 
decay process �0

b → pπ0π− , there is an overlap region in the 
phase space for resonances ρ−(770) and N+(1440), which lies 
right in the corner of the phase space. The decay amplitude for 
�0

b → pπ0π− can be expressed as

M = 〈pπ0|Ĥ1|N+〉〈π−N+|Ĥeff|�0
b〉

s0 − m2
N + imN�N

+ 〈π0π−|Ĥ2|ρ−〉〈pρ−|Ĥeff|�0
b〉

s − m2
ρ + imρ�ρ

, (1)

in the overlap region of the phase space, where Ĥeff is the effec-
tive Hamiltonian for the weak decays, Ĥ1 and Ĥ2 are the formal 
Hamiltonian for the strong decays in which the magnitudes of the 
coupling constants can be determined from experiments, s and s0
are the invariant mass squares of the systems π0π− and pπ0, re-
spectively, mρ , mN , �ρ , and �N are the masses and decay widths 
of ρ0(770) and N+(1440), respectively, and the summation over 
the polarizations of the intermediate particles is understood. The 
effective Hamiltonian Ĥeff takes the form [4]
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Ĥeff = G F√
2

[
V ub V ∗

ud(c1 O u
1 + c2 O u

2)

+ V cb V ∗
cd(c1 O c

1 + c2 O c
2) − Vtb V ∗

td

10∑
i=3

ci O i

]

+ h.c., (2)

where G F is the Fermi constant, V ud , V ub , V cd , V cb , Vtd , and Vtb
are the CKM matrix elements, ci (ci = 1, · · · , 10) is the Wilson 
constant, and O i is the four-Fermion operator, which takes the 
form

O q
1 = d̄αγμ(1 − γ5)qβ q̄βγ μ(1 − γ5)bα,

O q
2 = d̄γμ(1 − γ5)qq̄γ μ(1 − γ5)b,

O 3 = d̄γμ(1 − γ5)b
∑

q′
q̄′γ μ(1 − γ5)q

′,

O 4 = d̄αγμ(1 − γ5)bβ

∑
q′

q̄′
βγ μ(1 − γ5)q

′
α,

O 5 = d̄γμ(1 − γ5)b
∑

q′
q̄′γ μ(1 + γ5)q

′,

O 6 = d̄αγμ(1 − γ5)bβ

∑
q′

q̄′
βγ μ(1 + γ5)q

′
α,

O 7 = 3

2
d̄γμ(1 − γ5)b

∑
q′

eq′ q̄′γ μ(1 + γ5)q
′,

O 8 = 3

2
d̄αγμ(1 − γ5)bβ

∑
q′

eq′ q̄′
βγ μ(1 + γ5)q

′
α,

O 9 = 3

2
d̄γμ(1 − γ5)b

∑
q′

eq′ q̄′γ μ(1 − γ5)q
′,

O 10 = 3

2
d̄αγμ(1 − γ5)bβ

∑
q′

eq′ q̄′
βγ μ(1 − γ5)q

′
α, (3)

with d, b, q, and q′ being quark fields and α and β being colour 
indices.

Under the factorization hypothesis, the weak decay amplitudes 
can be expressed as

〈π−N+|Heff|�0
b〉 = iηN uN/pπ−(1 − γ5)u�b , (4)

〈ρ−p|Heff|�0
b〉 = ηpmρuN/ερ−(1 − γ5)u�b , (5)

where ερ− is the polarization vector of ρ− , uN and u�b are the 
spinors for N+(1440) and �b , respectively,

ηN = G F√
2

fπ F �b→N+
{

a2 V ub V ∗
ud

− Vtb V ∗
td

[
(a4 + a10) − 2m2

π (a6 + a8)

(mu + md)mb

]}
, (6)

ηp = G F√
2

fρ F �b→p {
a2 V ub V ∗

ud − Vtb V ∗
td [(a4 + a10)]

}
, (7)

with fπ being the decay constant of the pion, F �b→N+
and F �b→p

being the form factors for the transition �b → N+(1440) and 
�b → p, respectively, and ai = ci + ci−1/Nc for even i.

Because of the non-perturbative effects of strong interactions, 
there can be a relative strong phase between the coupling con-
stants of Ĥ1 and Ĥ2. We will denote this relative phase by δ and 
treat it as a free parameter. The strong decay amplitudes are then 
expressed as
〈pπ0|Ĥ1|N+〉 = ig1upγ5uN , (8)

and

〈π0π−|Ĥ2|ρ−〉 = eiδ g2(pπ− − pπ0) · ερ− , (9)

respectively, where the effective coupling constants g1 and g2 can 
be expressed as

g2
1 = 8πm2

N�N+→Nπ

3λN(m2
N + m2

ρ − 2mNmp − m2
π )

, (10)

g2
2 = 6πm2

ρ�ρ−→π0π−

λ3
ρ

, (11)

with mp being the mass of proton, �N+→Nπ and �ρ−→π0π−
being the partial decay widths for N+(1440) → N(939)π and 
ρ−(770) → π0π− , respectively, and

λN = 1

2mN

√[
m2

N − (mp + mπ )2
] · [m2

N − (mp − mπ )2
]
, (12)

λρ = 1

2

√
m2

ρ − 4m2
π . (13)

The differential CP asymmetry is then defined as

ACP = |M |2 − ∣∣M̄ ∣∣2

|M |2 + ∣∣M̄ ∣∣2
, (14)

where M̄ is the decay amplitude of the CP conjugate process, 

�0
b → pπ+π0, and the overlines above |M |2 and 

∣∣∣M̄
∣∣∣2

represent 
averaging and summing over the spin states of the initial and final 
particles, respectively. After some algebra, one has

|M |2 =
{
|λ1|2

[
(m2

�b
− s−)(s0 − m2

p) − m2
π (m�b − mp)2 + m4

π

]

+ |λ2|2
[
(m2

�b
− s0)(s− − m2

p) − m2
π (m�b − mp)2 + m4

π

]

+ 2R
(
λ1λ

∗
2

) [
s0s− + m�b mp(m2

�b
− m�b mp

+ m2
p − s0 − s−) − m4

π

]}

+
{

m�b → −m�b

}
, (15)

where s− is the invariant mass squared of the system pπ− ,

λ1 = m2
�b

− s0

m�b − mp

g1

sN
ηN + eiδ g2

sρ
mρηp, (16)

λ2 = m�b (mp − mN) + mpmN − s0

m�b − mp

g1

sN
ηN − eiδ g2

sρ
mρηp, (17)

and sN = s0 −m2
N + imN�N , sρ = s −m2

ρ + imρ�ρ . In order to obtain 

the expression for 
∣∣∣M̄ ∣∣∣2

, all one needs to do is to replace the CKM 
matrix elements in Eq. (15) with their complex conjugates.

In order to see where the CP asymmetry arises, let’s first display 
the weak and strong phases in λ1 and λ2 explicitly. For a fixed 
point in the phase space, λ1 and λ2 can be expressed as

λi = λTree
i ei(φTree

i +αTree
i ) + λ

Penguin
i ei(φPenguin

i +α
Penguin
i ), (18)

where i = 1, 2, λTree
i and λPenguin

i are the tree and penguin parts 
of λi , respectively, φTree

i and φPenguin
i are the corresponding weak 

phases, which take the values

φTree = Arg
(

V ub V ∗ )
, (19)
i ud
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Fig. 1. Differential CP asymmetry (in unit of %) distributions in the overlap region of 
the phase space for various values of δ. The six diagrams (a) to (f) correspond to δ
taking values form 0 to 5π/3 for every π/3. The invariant mass squares, s and s0, 
are in units of GeV2.

and

φ
Penguin
i = Arg

(
Vtb V ∗

td

)
, (20)

αTree
i and α

Penguin
i are the corresponding strong phases, which 

originate mainly form the strong phase δ and the phases in the 
propagators. Since the strong phases are CP-even while the weak 
phases are CP-odd, with the aid of Eq. (15), it follows that the dif-

ference between |M |2 and 
∣∣∣M̄

∣∣∣2
takes the from

|M |2 − ∣∣M̄ ∣∣2 ∼ sinφ
[
a sin

(
α

Penguin
1 − αTree

1

)

+ b sin
(
α

Penguin
2 − αTree

2

)

+ c sin
(
α

Penguin
1 − αTree

2

)

+ d sin
(
α

Penguin
2 − αTree

1

)]
, (21)

where φ = Arg
(

Vtb V ∗
td/V ub V ∗

ud

)
, and a, b, c, and d are real quan-

tities. One can see from Eq. (21) that both the strong and weak 
phases are essential for CP violation. The difference in Eq. (21) is 
proportional to the sine of the difference of the tree and penguin 
weak phases. Besides, the four terms in Eq. (21) are also propor-
tional to the sine of the differences of the tree and penguin strong 
phases, respectively.

In Fig. 1, we present the differential CP asymmetry distribution 
in the overlap region of the phase space for various values of δ, 
from which one can see clearly that the interference effect of the 
two aforementioned resonances does result in a CP asymmetry in 
the overlap region of the phase space.

Among the input parameters, the Wilson coefficients are taken 
from Ref. [4], and the rest of the input parameters are from Par-
ticle Data Group [5]. In the heavy quark limit and for large re-
coil final light baryon, both of the from factors for �b → p and 
�b → N+(1440) transitions reduce to a single form factor [6]. 
Since the structure of N+(1440) is still not clear, the decay form 
factors for the transition �b → N+(1440) is not available. There-
fore, we set in Fig. 1 the heavy-to-light baryonic tradition form 
factors equal to each other, i.e. F �b→p = F �b→N+

.
One interesting behaviour for the differential CP asymmetry 

in Fig. 1 is that it can be as large as 50% in the overlap re-
gion of the phase space. Besides, one can see that the differential 
CP asymmetry shows large anisotropic behaviour in the overlap 
Fig. 2. CP asymmetries in Region �OL as a function of the strong phase δ. The 
dashed, solid, and dotted curves are for F �b→p/F �b→N+ = 0.5, 1, and 2, respec-
tively.

region, especially when s is away from the vicinity of ρ−(770)

(
√

s > mρ + �ρ ). The reason for this behaviour is that the am-
plitude of �b → pρ− → pπ0π− is larger than that of �b →
N+(1440)π− → pπ0π− when s and s0 are close to m2

ρ− and m2
N+ , 

respectively.

3. Regional CP asymmetry

In order to compare with future experiments, one has to con-
sider the regional CP asymmetry, which can be defined as

A�
CP = �� − �̄�

�� + �̄�
, (22)

where � is some region of the phase space, �� and �̄� are the 
regional decay width for �0

b → pπ0π− and �0
b → pπ0π+ , respec-

tively, with the former one taking the form

�� = 1

256π3m3
�b

∫
�

dsds0|M |2. (23)

We will focus on an overlap region of the phase space which 
satisfies mρ + �ρ <

√
s < mρ + 2�ρ , and mN − 0.5�N <

√
s0 <

mN + 0.5�N , and denote it by �OL. The reason for choosing this 
region is of two folds. First, we have to exclude the pollution of 
other resonances. For the π0π− system, one can easily check that 
ρ−(770) is the only dominated resonance for 

√
s < 1.5 GeV. The 

amplitude of the first term in Eq. (1) still dominates even if s is 
little bit away from the vicinity of ρ−(770). For the pπ− sys-
tem, on the other hand, resonances such as �(1232), N(1520), and 
N(1535) could give comparable contributions besides N+(1440). 
In order to exclude these resonances, we have to keep close to the 
vicinity of N+(1440). Secondly, it is understandable that the con-
tribution of the interference effect becomes more significant when 
the two amplitudes in Eq. (1) are comparable. One can easily check 
that the first term is much larger than the second one when both 
of the resonances ρ−(770) and N+(1440) are on the mass shell. 
Consequently, we choose the region �OL around the vicinity of 
N+(1440) but a bit further away from the vicinity of ρ−(770).

In Fig. 2, we present the regional CP asymmetries in Re-
gion �OL as a function of the strong phase δ. The three curves 
in Fig. 2 correspond to the CP asymmetries in Region �OL for 
F �b→p/F �b→N+ = 0.5, 1, and 2, respectively, indicating that the 
regional CP asymmetry is sensitive to the form factors. From Fig. 2, 
one can see that the interference of the decay amplitudes corre-
sponding to the intermediate resonances ρ∓(770) and N±(1440), 
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together with proper strong phase δ, does result in the regional CP
asymmetry in the interference region of phase space. Especially, 
the regional CP asymmetry in Region �OL can reach as large as 
±16% when F �b→p/F �b→N+ = 0.5.

To conclude, we want to point out that the interference of 
ρ(770) with other baryonic resonances such as N(1520) can also 
result in CP asymmetries, given that the decay amplitudes corre-
sponding to these baryonic resonances are comparable with that 
corresponding to ρ(770) in the interference regions. Besides, there 
can also be regional CP asymmetries induced by the interference 
between the amplitudes corresponding to nearby baryonic reso-
nances, for example, N(1440) and N(1520). Similar behaviour to 
the latter one has already been proposed in B meson decay pro-
cesses [7] and observed by the LHCb Collaboration [8].
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