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Packing and Decomposition Problems for Polynomial Association
Schemes

V. I. LEVENSHTEIN

We consider P- and @-polynomial association schemes and introduce definitions of Delsarte
codes and decomposable schemes. Many known combinatorial notions can be defined as
Delsarte codes in suitable association schemes, and almost all ¢lassical association schemes turn
out to be decomposable, For decomposable association schemes we prove some packing
bounds, which were proven before only for antipodal schemes. We also prove that any
Delsarte code consists of maximal possible numbers of points for its minimal distance. Some
statements about the connection between designs in decomposable schemes and designs in their
projections are also given. Detailed proofs of some of our results will be published in the
longer paper [24], where analogous problems for a wider class of finite and infinite polynomial
metric spaces are considered,

1. InTrRODUCTION: BOUNDS FOR EXTREMAL SUBSETS IN PoLynomiaL METRIC Space

Considering packing problems for association schemes, it is convenient to use a
definition which is analogous to the definition of metric space. A (symmetrical)
association scheme (with D classes) is a finite set X with a given function d(x, y) which
is defined for any pair x, y € X, taking values 0,1, ..., D, and has the following
properties:

(i) d(x,y)=0iff x =y,

(ii) d(x, yy=d(y, x) for any x, y € X;

(iii) for any x, ye X and any i,je{0,1,..., D}, the number of points z such that
d(x, z) =1, d(z, y) =j depends on d(x, y) only (usually this number is denoted by p},
where k = d(x, y)). Using the adjacency matrices A;, i =0, 1, ..., D, defined by

1, ifd(x, y)=1i
0, otherwise,

(Ader=]

the definition of association scheme can be expressed by

D D

DA =4, A=l A=Al  AA =3 pkA,

i=0 i=0
where J is the matrix the entries of which are all equal to one, [ is the unit matrix and
A7 is the transpose of A. The matrices A; are linearly independent and generate a
(D + 1)-dimensional commutative algebra 11 of symmetric matrices, which is called
the Bose-Mesner algebra. We consider the |X|-dimensional Hermitian space V =
{f(x): X > C} of complex functions on X with the inner product

1 -
u,v)=— u(x)uix). 1.1
(,0) =5 3wl (LY
It is known (Delsart [5], Bannai and Ito [1}) that for an association scheme with D
classes there exists a decomposition

V=WV,+V+.--+Vp {1.2)
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of V into a direct sum of pairwise orthogonal subspaces V;, where V; is a maximal

common eigenspace of Ay, A, ..., 4p and ¥, consists of constants only. Let
r=dimV,i=0,1,...,D, and {v,(x),j=1, ..., r;} be any orthonormal basis of V,.
The matrices
1 & _ .
Edx, y) =|7(—| ZI vi{x)y(y), i=0,1,...,D, (1.3)
i=

do not depend on the choice of the basis of V, and form the basis of minimal
idempotents of the algebra 1l. The eigenmatrices P=(P,;) and Q =(Q;;) of an
association scheme are defined by

[ £
A=3 PE,  E= =3 QA (1.9
i=0 IXl i=(
Furthermore, O, =rank E; =r; and Fy; =p}f,,- (that is, the number of points z such that
d(x, z) =] for a fixed x € X'; we denote this number by &;).

It is clear that an association scheme is a metric space with distance d(x, y) when for
this function the triangle inequality holds. Delsarte proved [5] that it holds if there exist
polynomials p{t) of degree i,i=1,..., D, such that A; = p;(A4,) or, in other words,
P, ;= p,(P; ). Such an association scheme is called a P-polynomial, or metric.

There is another description of metric association schemes in terms of graphs. The
vertex set X of any undirected graph I' can be considered as a metric space with metric
dr{x, v} equal to the number of edges in the shortest path from x to y. An undirected
connected graph I' with the vertex set X is called distance-regular if or any x, y € X the
number of vertices z such that d;{(x, z)=1, d{y, z)=d{x, y) ~ 1 and the number of
vertices z such that d{x, z)=1, d{y, z)=d(x,¥)+1 depend on d{x,y) only.
Delsarte proved [5] that for any distance-regular graph I' with vertex set X,
{X, d{(x, y}} is a metric association scheme, and for any metric association scheme
{X, d(x, y)} the graph I' with vertex set X and the adjacency matrix A, is a
distance-regular graph, and d(x, y)=d{x, ¥). Thus, there is one-to-one correspon-
dence between metric association schemes with D classes and distance-regular graphs
of diameter D.

An association scheme {X, d(x, y)} with D classes is called Q-polynomial, or
cometric, if there exist polynomials g;(o) of degree j, j=0, 1, ..., D, of a real variable
o such that Q,,=q{Q,,) forany d =0, 1, ..., D. For any Q-polynomial association
scheme we fix some function

o(dj=c1Qur+ 2, where ¢, c, € B and ¢, #0

and consider polynomials

1 o-c .
Qf(0)=;q;( 2), i=0,1,...,D,
t

¢y

$0 that

Q. ;=r0{(o(d)) foranyd=0,1,..., D (1.5)
Without loss of generality, we can assume that

o(0)=0=o(d)=1 ford=0,1,...,D, (1.6)
because the function o{d) is determined only up to a linear transformation. From
(1.1)-(1.6), it follows that for any x, ye X and any i =0, 1, ..., D,

1& —_—
Qo(d(x, y))) == 2, vy (), (1.7)

Fj=1
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and for the polynomial system {Q{0c),j=0,1,..., D} the following conditions of
orthogonality and normalization hold:

Z Ql(a(d))QI(U(d))kd .lp (1'8)
|X| =0
040) =1, i=0,1,...,D. (1.9)
Note that the polynomial
Qp.i(0)=(a(0) - 0)(e(1) — 0) - - - (a(D} — 0) (1.10)
is orthogonal to all polynomials Q;(0),j=0,1,...,D. The polynomial system
{0(0),j=0,1,..., D} has the following property of ‘positivity’: all coefficients g},

(Krein parameters), defined uniquely by

Q(o)Q(a)—Zq,,Qk(c)(monM(o)) i,j=0,...,D, (1.11)

k=0

are non-negative, because

q:;= |X| E_ZHQ (0(d))Q,(o(d)) Qi (o (d )k,

r

|X12 Z g‘ Z

P4

Xv;,,(x)v,-.,-(x)vk.,(x) -

Furthermore,
qﬁfj_>0, ifi+j=k. (1.12)

Hereafter we consider -polynomial association schemes {X, d(x, v)} with D classes
for which d(x, y) is a metric on X*. Such Q-polynomial association schemes and metric
spaces are referred to as (finite) polynomial metric spaces (of diameter D with the
function o{d)). In particular, P- and Q-polynomial association schemes are polynomial
metric spaces. For a polynomial metric space of diameter I we call the function o(d)
standard it o(d) is an increasing function such that

0(0) = 0< o{d) = o(D) = 1. (1.13)

Note that, in fact, we use the standardization o(d) = (r, — @, 1)/(r, — QOp.,), which is
distinct from the standardization o(d)= Q,,/r; used in [2]. We do not consider in
detail here infinite polynomial metric spaces, which are the same as connected compact
two-point homogeneous spaces (see Wang [37], Kabatjansky and Levenshtein [18] and
Sloane [31]); namely, the Euclidean sphere, the real, complex, quaternionic projective
spaces and the Cayley elliptic plane.

We recall some classical metric spaces which are polynomial (Delsarte [5,7],
Delsarte and Goethals [9] and Stanton [32, 33]) with the standard function o(d) =d/D
or o(d)=[a"(a’ — 1))/[&’(&” — 1)], where D is the diameter and « is a power of a
prime. Let g be a power of a prime, let F, be the finite field with g elements, and let F7
be the n-dimensional vector space over F,. We denote the Hamming space of all
vectors of length n over the alphabet {0, 1,...,r—1} by H(n, r); the space of all
matrices of size r X n over F,, r = n, by H(n, r, q); the Johnson space of all n-subsets of
a v-set, 2n < v, by J(v, n); the Grassmann space of all n-dimensional linear subspaces
of Fj, n=<v, by J(v, n, q); the space of all alternating matrices of order N over F, by
A(N, q), and the dual polar spaces of all maximal (n-dimensional) isotropic subspaces
of a non-singular bilinear form of one of six types over F,, where & =q or @ =¢?, by
Sin, q),i=1,...,6. The metrics are: d(x, y)=n—|x Ny| for J(v, n); d(x, y)=n—
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dim(x Ny) for J(v,n,q) and Si(n, q); d(x, y)=rank(x —y) for H(n,r, g), and
d{x, y)=1rank(x —y) for A(N, g). The diameter D of the above-mentioned metric
spaces is equal to n, if [N/2] = n for A(N, q). We do not consider the space He(n, q)
of all \Hermitian matrices of order n over F,, where o = g°, because the function o(d)
is not monotone in this case, nor the Egawa [14] space of quadratic forms over FY
which has the same parameters as A(N + 1, gq).

Now we give some definitions and notations for any subset or, as we prefer to say,
code W of a polynomial metric space X (with the function o(d)). Let /(W) be the
number of distances between distinct points of W, let d(W} be the minimal distance
between distinct points of W, and let D(W) be the maximal distance between points of
W (that is, the diameter W). A code W < X is called diametrical if D(W)= D(X), and
called d-code if d(W)=d. We call a code W c X maximum if, for any W' c X such
that d(W’)=d(W), the inequality |W|z=|W’| holds. A polynomial f(o) is called
annihilating for W if

flo(d{x, y)))=0 for any distinct x, y € W.

An annihilating polynomial for W of minimal degree (that is, /(W)) is defined up to a
constant factor and denoted by fi,.(0). A code Wis called a t-design, t=0,1, ..., D, if
(see (1.2))

1
> u(x)=0 foranywv(x)e Ul V.
xeW i=

Let t(W) be the maximal 1, 1 =0, 1, ..., D, such that W is a ¢-design.

For the formalization of the known bounds on the cardinality of codes with given
parameters t{W), /(W) and 4(W) in polynomial metric space X of diameter D (with
the standard function o(d)), it is convenient to introduce for any a, 6=0,1,...
‘adjacent’ systems {Q%*(0)} of orthogonal polynomials. Let ¢** be a positive constant
(for normalization of a new measure), so that

ab D

3 2, Dy - @)k =1, =1 (1.14)

Then due to (1.13) the polynomials Q%"(c) and positive constants r%* are determined
uniguely by the following conditions of orthogonality and normalization:

rq.b a b D
'le dE:“ Q" (o(d)Q " (o(dN(o(d))' (1 — o(d)) ks = 8, (1.15)

Q;"(0)=1. (1.16)

Denote the smallest root d of equation Q7 *(a{d))=0 by d¢" and notice that some
statements on separation of these values hold; in particular [22],

dy'<d{<d}*,, k=1,...,D—-1, where dl''= D, di'=dkl, =1

Also, introduce the kernel

KiP(s, 1) = §g‘, reP QP ()0 (). (1.17)

Using (1.15), (1.16) and the Cristoffel-Darboux formula [35]
(s = KT (s, 1) = riPm ™ (QT(5)Q1 () — QF(sY21A (1)), (1.18)

where m®? is the ratio of the highest coefficient of Q* (o) to that of Q%% (o) (m{? <0
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for our normalization), we have

K(1, 0) K?(0, )

Qﬁ"l(0)=m, Q}“'(O):m, i=0,1,...,0-1, (1.19)
K?'(0, 0) .
Q}'I(U)=m, i=0,1,...,D-2 (1.20)

It is convenient to assume (cf. (1.10)) that

Bh(a)=—0Q5"(0) = (1~ 0)Q%'(0) = —o(1 - 0)Q} (o), (1.21)
so that mp® |, m$', and myL, will also be negative.

From (1.7) and (1.13) we can see that for any W < X and any polynomial
{
floy=2 fQ(0), t=0,1,...,D, (1.22)
i=(
the equality

2

|W|f(0)+ 2 flo(d(x, ) =W| f(,+21 21 EW v; Ax) (1.23)

holds. This equality and the decomposition (1.2) are the main tools for obtaining
bounds on extremal codes W = X. We exclude from consideration the case W =X in
which I(W)—t(W) DW)=D, fw(o)=03"0)=(1—0)Q5" (0) and d(W)=1=

1,0 _
d Dl

CororLary 1.1 (Delsarte [S]). If W is a t-design, f(6)=0 for 0 o<1 and f,>0,
then

IW1= Q(f) = f(0)/fo. (1.24)

Moreover, this bound is attained iff f(0) is a annihilating polynomial for W.

CoroLary 1.2 (Delsarte [5]). If W is a d-code and the polynonial f(0) has the
following properties:

>0, i=0,1,...,1,
(1.25)
flo)y=0 forod)so=1,
then
(W= (f) = f0) /). (1.26)

Moreover, this bound is attained iff f(0) is an annihilating polynomial for W, and W is
a t-design.

The problem is to find the permissible polynomials f(o) which optimize the
right-hand sides of (1.24) and (1.26). Notice that all bounds given below depend only
on the diameter D, the function k,, and the standard function ag(d),d=0,1,...,D.
Furthermore, from results of Leonard [19] and Terwilliger [36] it follows that the
bounds depend only on the first values of these functions: k,, k», (1), (2), and o(3).
It should be observed in advance that the bounds (1.31) and (1.33) given below have
been proved for some, but not yet for all, polynomial metric spaces.
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Bounds for t-designs (Delsarte [5] and Dunkl [13]). For any W c X,

k
|Wf;§jr,. if (W) =2k, (1.27)
1
[le(l (f))) ,En" if (W) =2k — 1. (1.28)

These bounds are attained iff fw(0)=Qy% o) and fy(0)=(1- )0t (o)
respectively.

For a proof of (1.27), Delsarte (5] used Corollary 1.1 for polynomials f(o)=
(Qx"(0)y ((without the assumption on monotonicity of o(d)). For a proof of (1.28),
Dunkl [13] used the polynomial f(o)=(1— ¢)(@:2.(o))* and monotonicity of o(d)
(see (1.13)). Moreover, Delsarte proved that (W) =2/(W) for any W = X and that
every code from the class

DD(X) = {W c X: ¢(W) = 2I(W) — 2}

(Delsarte design in X) is a O-polynomial association scheme. The codes W, for which
the bounds (1.27) or (1.28) are attained, are called righs designs. The class TD(X) of
tight designs in X can be defined by

THX) = {Wc X: ((W)=2{(W)or (W) =2[(W)—1and D(W) = D(X)}.
Now we introduce a class DC(X) of Delsarte codes in X by
DCX)={WcX:(W)=2I(W)—1lort(W)=2{(W)-2>0
and D{W) = D(X)}. (1.29)

The class DC(X) is intermediate between TD(X) and DD(X). In Section 3, we will
see that Delsarte codes are maximum. This is surprising, since in the definition of
Delsarte codes we say nothing about its minimal distance. It is also interesting that
many known combinatorial notions can be defined as Delsarte codes in certain
polynomial metric spaces (see, for example, Table 1, a list of Delsarte codes in
Hamming space).

Absolute bounds {Delsarte [5]). For any W c X,

&
WX r ifl(W)=k, (1.30)

i=0

W= (1 Qm(l()l))kgl v, ifI(W)=k and D(W)= D(X). (1.31)

These bounds are attained iff (W) =2k and fi, (o) = Q:"(0) or t(W)=2k—1 and
fw(oy=(1-0)QiL (o) respectively.

For the proof of (1.30), Delsarte [5] used the decomposition (1.2) and the
annihilating polynomial f (o). The bound (1.31) was proved by Delsarte, Goethals
and Seidel [10, 11], and by Hoggar [17] for infinite polynomial metric spaces. Neumaier
(26] has published (1.31) as a conjecture for finite polynomial metric spaces, and has
noted that it is true for antipodal spaces. Notice that, by Theorem 8.2.4 in Brouwer,
Cohen and Neumaier [2], an antipodal polynomial metric space can be defined as a
polynomial metric space X of diameter I} with a standard function o(d) such that
o(d)+ o(D—d)=1for any d=0, 1, ..., D; and that for any x € X there exists one
and only one point at distance D from x.

i=0
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The following bounds are an improvement of the McElicce—Rodemich—Rumsey—
Welch bounds for d-codes [25], which were obtained in 1977 for the Hamming and
Johnson spaces by using Corollary 1.2 for the polynomials

(U(d) O')(K“ ()l(o_ O'(d))2 if dti 0 - d< U U
Bounds for d-codes (Levenshtein [20]). Let W c X and d(W) =d. Then
I (] k—1
(1 (U(d))) Sno ifd=d=dll,

«(o(d i=0 1.32
Wi=5D= g;("(()c(f(c)z)n L "
(1 _Q‘rl"(o(d))) gbn ifdit<d <dy (1.33)
and, in particular,
W< B(d}") = i no ifd=dy (1.34)
< 1. Qil (1) e g bl
Wi = B(dL!,) = ( o0 ) %}r ifd=db!, (1.35)

Furthermore, the function B{d) is a decreasing continuous function, and the bounds
(1.32)—(1.35) are attained iff

(00 = i (0, o) TP,
T =11 Z o)o(d) — 0)KE (o, o(d))  ifdY <d <dL

and

1.0 - Al1
"W = {gi o if d}:f‘ i dZZ};’.dk_h
These bounds are obtained [20] by using Corollary 1.2 for the polynomials
F9(0) = {(a(d) o) Kyl (o, a(d))Y if d} ”<d<dk 1s (1.36)
(1 —o)(o(d) — o} Ky (o, old)))y®  ifdy' <d<d;" (1.37)

It was proved in [20-22] that £(f“?)y= B(d) for any d, 1=d = D. On the other hand,
Sidelnikov’s result [30] can be reformulated [24] as follows: for any polynomial f(o)
(see (1.22)) such that f(o) <0 for o(d) = o=1, f,>0 and the degree of f(o} does not
exceed the degree of f““(o), the inequality ©(f)= B(d) holds (cf. (1.26)). The
condition {1.25) for the polynomials (1.36) has been proved [20-22] for any (finite and
infinite) polynomial metric spaces, and hence the bound (1.32) and its special cases
(1.34) and (1.35) are true. But the condition (1.25) for the polynomials (1.37) and
hence the bound (1.33) was proved in these works only for antipodal spaces. Later, the
author found [23] a proof of the bound (1.33) for all infinite polynomial metric spaces.
In [22] one can find the explicit forms of the above-mentioned bounds for many finite
and infinite polynomial metric spaces, and numerous cases of their attainability.
It should be noted that, for £ =1, (1.35) gives the upper bound

1
B=B(D)=1--—- (1.38
0.(1) )
for the maximal cardinality of a code W with minimal distance d(W)=D(X)=D
Using this notation it is possible to show (see [24]) that the value
i [) 1 k—1
BGapty=(1- L=

B Qk(l) ) 2%
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(see (1.28), (1.31) and (1.35)) may also be expressed as

k—1
B(dy1)=B 2, .
=0
Some of the geometrical meaning of this will be clear from the next section. Note that
B =2 for antipodal spaces, B =r for H(n, r), and B = ¢ for H{n, r, g).

The main incentive for this work was the desire to prove the bounds (1.31) and
(1.33) for all finite polynomial metric spaces with the standard o(d). Later, we
introduce a natural definition of decomposable polynomial metric spaces, and prove
that for such spaces all the above-mentioned bounds and the conditions of their
attainability are true. Many classical polynomial metric spaces, in particular, Ham-
ming, Johnson and Grassman spaces, turn oui 1o be decomposable. It is easy to see
that our bounds for d-codes can be attained only for Delsarte codes. We prove the
converse statement that all Delsarte codes in decomposable spaces are maximum.
Furthermore, we give some statements about the connection between designs in
decomposable spaces and designs in their projections. In conclusion, we formulate
some open problems.

This paper is the extended lecture at the Conference ‘Algebraic Combinatorics’, held
at Viadimir in August 1991. The limited extent of the paper does not allow us to give
detailed proofs of all statements. Some of them will be be published in the longer
paper [24], where analogous problems for a wide class of finite and infinite polynomial
metric spaces are considered. Some of our results were announced carlier in [23].

2. DecomposaBLE PoLynoMiAL METRIC SPACES

A polynomial metric space X with the standard function o(d) is called decomposable
if for some k there exist £ metri¢ subspaces Xy, . .., X}, of X such that:

@ X=X @

(i) all the subspaces X; are isometric to a single metric space X which is polynomial
with the same o(d};

(iii) for any x, y € X the number of subspaces X,, ..., X, containing both x and y is
equal to
|X|
1= o(d(x, y)))h— 2.2)
( X
Let X be a decomposable metric space and let X,,..., X, be the subspaces

mentioned in its definition. For any W ¢ X we say that W N X, is the projection of W
onto X; and, in particular, that X; is projection of X (onto X;). Notice that the space X
(and any X;) is a polynomial metric space with respect to o(d), which is not standard
for X, since from (1.13} and (2.2} it follows that

DX)=D(X) - 1.

The parameters of the space X, which arc analogous to the _parameters k;, r; and
Q{0),i=0,1,...,D, of the space X, are denoted by k;, 7 and Q(0),i=
0,1,..., D —1, respectively.

THeEOREM 2.1.  Let X be a decomposable polynomial metric space with diameter D,
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Then
ky=(1-o(d)k,, d=0,1,...,D—1; (2.3)
X|=B1X|; (2.4)
F=r Q) =0"(e), i=0,1,...,D—-1 (2.5)

Proor. Itisclear that, ford=0,1,..., D -1,
h
E 'I{X,y}:d(x,,\’)=d;xEX;',)’EXﬂ:h |X* kd'
j=1

We can calculate this sum in another way by multiplying (2.2}, for d(x, y)}=d, by
|X| k. That gives (2.3). Using (2.3), the equality

Q.(0)=1-(1-Q\(1))o, (2.6)
the orthogonality condition (1.8) and the definition (1.38) of the number B, we have
ISP X Q,(1) _ |X]
X|= ky= 1-—o{d)k, = ——=—, 2.7
KI= 2 ka= 2 (1= oldpks = 37 =" (
which proves (2.4). From (2.7) and (1.14)-(1.16) it follows that ¢*'=B, and the
parameters "' and QV''(0),i=0,1,...,D—1, are determined uniquely by the
following orthogonality and normalization conditions:
01 o
Ir)‘(’Tl 2 QM (o(@)Q] (o(d)(1 — o(dka=6;,  QM'(0)=1
d=0
But because of (2.3) these conditions determine uniquely the parameters 7, and Q,(0)
as well, and (2.5) holds. O

Below we use the fact that for a decomposable space both orthogonal systems
{Q,(0)} and {QV'(0)} have the ‘positivity’ property. Denote by F[a] the set of all
polynomials of real variable . For every g € Flo] there exists a unigue polynomial
g(0) =Yl 50" (0) of some degree /, 0={= D — 1, such that g, # 0 if g #0 and

§(o)=g(o)  (mod Q3'(0)).

Denote the set of all polynomials g € F[o], for which all coefficients g,, . . ., g, of (1)
are positive, by F':'. It follows from (1.11) and (1.12) (for the system {QV'(o}) that
g geFY  ifg e F)'and g, e FY. (2.8)

TueoreM 2.2. For any decomposable polynomial metric space X the bounds
(1.32)—(1.35) for d-codes and the conditions of their attainability are valid.

ProoF.  As noted before, we only have to prove that the condition (1.25) is satisfied
for the polynomials (1.37) of degree =2k with k<D — 1. First, using (1.17) and
(1.18) we have

Kiis, 0)= 3 "0 ()1 ().
(s — O)Kili(s, o) =rilimil (@ (5)QF (o) — QL ()0 o)),

where, in particular, s = o(d). It is known [22, (2.53)] that for d}'<d<dL® the
inequalities

M o(d)>0, i=0,1,...,k-1, QF(a(d)<0
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hold. Since Q!''(0)e F%',i=0,1,..., D -2, by (1.20) and
0 1( )
Li(o)= = (—rpLimpl ) 'K5L.(0, o) e FY!
due to (1.18), (1.21) and Q""(U) =0, it follows that
(ofd) — 0)K ;1L\ (o(d), o) e F§, Ki'i(o(d), o) e FYY,

hence, by (2.8),
(o(d) — o)(Kili(0(d), o)) e FL.
Now note that, by (1.19), (1.18) and (1.21),
Q:..(1)Q:(0) — Qii(0)C:(1)
Q;+1(1) - Q1) ,
(1- 0)0%(0) = Qp+(0) and sgn Q,(1) = (—1)". This completes the proof. ad

(1-0)Q! (o) = i=0,1,...,D~1,

TueoreMm 2.3. Let W be a code in a decomposable metric space X =\_J}_ X;. If
every projection W,=WNX,j=1,...,h is a (t—1)-design in X; of cardinality
|W|/B, then W is a t-design in X.

Proor. We use the following known statement (see (1.23)): a code W in a
polynomial metric space X is a ¢-design iff, for every polynomial f (o) of degree at most
£

1w,z,,,,§;wf("(‘“x yW=f»  wherefo=rp dEﬂf(o(d))kd

Let f(o) be an arbitrary polynomial of degree at most ¢ and
flo)y=(1-o0)g(a) +f(1). : (2.9)
Since W, is a (¢ — 1)-design in X; and |W)| B = |W|
o(d(x, = o(d)k 2.10
,W|2”26Mg( o(d(x, ))) = |X| 2(,3( (d))ka. (2.10)
Averaging (2.10) over alt j,j=1,..., h, and using (2_2)—(2.4), we have
—— 2 (1-oald(x, y)gla(dix, y))) = 2 (1 - old))g(a(d)ka.
|W| x.yeW |X’d 0
This completes the proof due to (2.9). .

The author has not been able to find a proof of necessity of the theorem conditions.
Note, however, that by the Roos theorem every projection W, of a f-design Win a
decomposable metric space X =[J\_, X; has size |[W}/B, since by (2.3) each X; is an
antidesign with dual diameter 1 (see [27]).

TueoreM 2.4. The classical polynomial metric spaces I(v,n), I(v,n, q),
Si(n,q),i=1,...,6, H(n,r), H(n,r,q) and A(2n q) of diameter n are
decomposable.

SkercH OoF PrRoor. We can consider the above-mentioned spaces as spaces of
mappings, namely: identity mappings of the n-subsets of a v-set for J(v, n), of the
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n-dimensional subspaces of F} for J(v,n, g), and of the n-dimensional maximal
isotropic subspaces of a non-singular bilinear form for S,(n, g¢); or mappings f:
{1,...,n}={0,...,r—1} for H(n, r), matrix transformations of F} into F} for
H(n, q, r), and alternating matrix transformations of F) into F) for A(N, ¢q). If we
fix some element or some 1-dimensional space respectively from the domain of
these mappings and consider all mappings which take some fixed value at this
element, then we obtain some number k& of metric subspaces; namely, h=v,
h=(q"—1/(g—1, h=Q1+a")a"—-1)/{a—1), h=nr, h=qg"(q" — 1)/(g—1) and
h=g""'"(¢" —1D/(qg—1) in order of consideration. Using the transitivity of the
isometry group of each initial space, it is easy to show that all these h subspaces
are isometric to (v -1, n—1), J(v—-1,nrn—-1,q), S;(n—1,q), Hn—-1,r), Hin -1,
r,q) or A(N—1, g) respectively, which are polynomial with respect to the same
function o(d). Then, using Delsarte [5,6,8] and Stanton [32,33], we check that
the condition (iii) (see (2.2)) of the definition of a decomposable space is satisfied
for the above-mentioned spaces, except A(N, ¢) for odd M.

THEOREM 2.5.  Let X be one of decomposable spaces I(v, n), J(v, n, @), S;(n, q), i =
1,...,6, H(n.r) or H(n,r,q). Then a code W< X is a t-design in X iff every
projection W,=W N X, j=1,..., h, isa(t— 1)-design in X; of cardinality |W|/B.

Proor. In each case the space X can be embedded (Delsarte [6], Stanton [32, 34])
as nth level set of a ranked poset P(X). Elements of the ith level of P(X) are
mappings, defined on i-subsets or i-dimensional subspaces depending on the space
under consideration, and elements of P(X) are ordered by the extension of mappings.
The Delsarte—Stanton theorem tells that W is a t-design in X iff there exists a constant
c such that for any element « of the tth level of P(X) the equality

HxeX:xoa}=cl{xeW:x=a}| (2.11)

holds; moreover, ¢ = |X|/|W| for a t-design W in X. If X,, ..., X, are all projections
of the decmposable space X, then from the proof of Theorem 2.4 it follows that the
first level of P(X) consists of exactly & elements a,, . . ., a; such that

Xi={xeX:x>a;, j=1,...,h (2.12)

Furthermore, every element a of ¢th level of P(X}, such that a > a;, can be considered
as an clement of the (7 — 1)-level of the poset P(X)). Therefore, the code W, = W N X,
is a (# — 1)-design in X, iff there exists a constant C such that for any element a of the
tth level of P(X) satisfying « = a;, the equality

HreX:xoal=Cl{xeW:x>a}| (2.13)

holds; moreover, C = |.X;|/|W, for a t-design W, in X;. Let W be a t-design in X. Then,
for any X; and any element « of the tth level of P(X) satisfying a - &; from (2.11) and
(2.12), (2.13) follows with C = ¢ = |X'}/|W|. This means that W; is a (+ — 1)-design in X
and |W;| = |W||X;|/|X| = |W|/B. On the other hand, the conditions of the theorem are
sufficient by Theorem 2.3, O

In the general case, we could only prove the following weaker statements,

THEOREM 2.6. Let W be a diametrical code in a decomposable metric space
X = X; such that (W) =k and fy(0) = (1 — 0)g(0), where g € F;' and g(0) =1,
and let t be an integer such that k <t=<2k —1. Then W is a t-design in X iff every
projection WNX;, j=1,..., h, isa(t—1) design in X; of cardinality |W|/B.
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Corortary 2.1, A diametrical code W in a decomposable metric space X ={_Ji_, X;
is a Delsarte code iff every projection WNX,, j=1,...,h, is a non-diametrical
Delsarte code in X; of cardinality |W|/B.

CoroLLARY 2.2. A code W in a decomposable metric space X =\_J/_, X, is. a tight
(2k + 1)-design iff every projection WN X, j=1,..., h, is a tight 2k-design in X,.

Now, as an example, we give bounds for d-codes in the Hamming space H(n, r),
which are true by_ Theorems 2.2 and 2.4, In this case we have the diameter D =n,
ki=r=(7)(r—1) and

1
Qi(0) =~ P1(am),

where

X . /d —d

pa) =3 (e - ()3 %) (2.14)
j=0 JINk—]

is the Krawtchouk polynomial of degree k. Using (1.14)—(1.20) and [22] it is possible to

show that

nr2

(oG -1}

-1
AR G TR VA ,

e
(", Yo

o1 Lo__F 11

Pl = , b1(g) = Py "(on) ’
i e
Loy P " (on—1) , 110 = P2 (an—1) ’
k (G) _E;{;O (’:)(r ~ 1)‘_ (0) Ln (n l_ 1)(r ~ 1),'

and hence, denoting the smallest zero of (2.14) by d.(n, r) (or d,(n) for short), we
have

di'=d(n—1,7r), d"=dfn-1r)+1, d'=dfan-2,r)+1
The bounds {1.32)-{1.35) take the following form. If W < H{n, r) and d =d(W)>1,

then
Z (?)(r —1 - (2)0 - 1)*%;%_;—”

ifdn-D=d—1<sd,_(n-2),

i={

-

|W|< B(d) = { (2.15)

[ if d(n —2) <d — 1< di(n — 1);
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and, in particular,

k

wi=B@h=3 (Ho-1y  itd=dm-1n+1,

i=0N
. lyn—1 ,
|W|=B(di ) =r 2 ( ; )(r—l)‘ ifd=d,_\(n—2,r)+ 1.
i=(}
The bound (2.15) is attained iff the code W is a k-distance set, with the distances being
the zeros x of the polynomial

(x B d) kz—:l P?_l'r(d _ 1)P?"”(x _ 1)

=0 (" A 1)(1’— 1y

i

ifd(n—-1)<sd-1<d,_,(n-2), or a(k+ 1)-distance set with the distances being the
zeros x of the polynomial

k—1 P?—z.r(d _ 1)P?72.r(x _ l)
—n) E, (n_z)(r—].)i

if di(n —2)<d—1<d(n—1), and the code W forms a (2k — 1)-design if d,(n — 1) <
d—1=d,_,(n—2), or a 2k-design it di{n —2)<d — 1 =d,(n — 1). The parameters of
the known (to the author) codes for which the bounds (2.15) are attained, are given in
Table 1.

In particular, d,(n)=(r— V)a/r, d2(n) = (2(r — )n — r + 2 — Va(r— L)n+ (r—2)")/2r,
and if dy(n — 1) =d —1=d(n —2), then

rd((n(r =D+ n(r—1)—rd+2)—r)
rd(2n(r—1)—r+2—rd)—n(n — D{r —1)*’

moreover, the equality in (2.16) is attained iff W is a two-distance code with distances

(r—D(n—1) 1
4 and ; (]+(r—1)(n—l)—r(d—1))+1

and W forms a 3-design or a 4-design depending on whether d >ds(n —1)+1 or
d =d,(n — 1)+ 1. 1t is interesting that in the case r = ¢ the class of linear (n, k)}-codes
over F, attaining the bound (2.16) coincides with the class of all projective
(n, k, n — wy, n — wy) caps, investigated by Calderbank [3] and Calderbank and Kantor
(4].

Let

(x —d)(x

|W|=

(2.16)

o,(n, M) = max d(W).

WeHn r), (WM

Since the function B(d) is decreasing, §,(n, B(d)) = d for any 4. As proved in [22] for

fixed k and r,
r—1 2
di(n, r)= p n(l - mhk) + (1)

as n tends to infinity, where h, is the greatest zero of the Hermite polynomial H, (2} of
degree k, h, =0, h,=1/V2, hy;=V3/V2 [35]. This implies, for example, that

6,(n, é}(r;)(r - 1)’) s’; ln(l . /n(r_z—l)hk) + o(1)
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in the asymptotical process under consideration. However, for fixed r the asymptotical
behaviour of the value (1/#)log, B(d) as n increases to infinity and d/n tends to a
certain limit is the same as for the McEliece-Rodemich—Rumsey—Welch bound for
d-codes [25].

3, MAXIMALITY OF DELSARTE CODES

We defined the Delsarte codes in (1.29) and the function B(d) in (1.32) and (1.33).
A proof of maximality of Delsarte codes is based on the following statement, which is

true for any (finite or infinite) polynomial metric space X with a standard function
o(d).

THEOREM 3.1. Let W X, W)=k =1 and d(W)=d. Then:
(i) t(W) =2k iff
d=d}°, |\W|=B(d) and fw(0o)=Qi"%o0);
(i) {(W)=2k—1Iiff

dit<d=dpl,, \W|=B(d) and fu(0)=(o(d)— Kl (0, o(d));
(iii) for k =2, (W) =2k — 2 and D(W)= D(X) iff
dbl < d<dll, (W|=B(d) and fu(0)=(1-0)(o(d) - 0)K} ' (0o, o(d)).

The first part of this theorem is well known, and follows immediately from (1.27)
and (1.30). For proof of the second and third parts we used in [24] the bounds (1.27)
and (1.28) for ¢-designs, the absolute bound (1.30) (but not (1.31)), the bound (1.32)
for d-codes (but not (1.33)} and Theorem 5.23 of Delsarte [5].

From the proof of Theorem 3.1 one can derive the following:

CoroLLARY 3.1, The annihilating polynomial f, (o) for any Delsarte code W,
normalized by the condition fy(0)=1, decomposes over the basis {Q;(0),j=
0,1,..., D} with positive coefficients.

It is interesting to note that from Theorem 3.1 and monotonicity of B(d) it follows
that:

CorovLary 3.2, Any of the values d(W) or |W| of a Delsarte code W in a
polynomial metric space X uniquely determines the other value and also the values [(W)
and (W), the list of distances between code points and the parameters of the association
scheme formed by the code W.

THEOREM 3.2. Any Delsarte code in a decomposable polynomial metric space is
maximum.

The theorem follows from Theorems 2.2 and 3.1. In the case of infinite polynomial
metric spaces, all Delsarte codes are maximum [23, 24]. In the general case of finite
polynomial metric spaces, from the above statements it only follows that a Delsarte
code W is maximum if ({(W)=2I(W) - 1.

Tueorem 3.3. For any decomposable polynomial metric space X the absolute
bounds (1.30) and (1.31) and the conditions of their attainability are valid.
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Proor. As was noted before, we have to prove only the bound (1.31) and
conditions of its attainability. Let W be a diametrical code in a decomposable space X
and let /[(W)=k. Since the function o(d) is standard there exists an annihilating
polynomial fi (o) = (1 — o)f (o), where f(o) is a polynomial of degree kX — 1 such that
f(0)y=1. From (2.2) and (2.4} it follows that every point x € X belongs to A/B

projections among & ones X |, . .., X, of the space X, and hence
h
hiW|=B 2 W], 3.1)
j=1
where W, = W N X; is the projection of W onto X, j=1,..., A Since {(W)<k -1,

using Theorem 2.1 and absolute bound (1.30) for space X;, we have that

k—1
LA (32)
i=
moreover, if the bound (3.2) is attained then f(o)= QL (0) and hence (see (1.20))
f(o)=Qy (o). From (3.1) and (3.2) it follows that

k-1
Wi<B 2 ' (3.3)

i=0
and if the bound (3.3} is attained then for any projection W, the bound (3.2) is attained
and fy (0) =(1 — 0)Q;1 (o). Using Theorem 3.1 for d =d,!, we obtain that (W)=
2k — 1 if the bound (3.3) is attained. The sufficiency of the condition for attainability of
(1.31) is a direct consequence of the bound (1.28) for (2k — 1)-designs. |

In conclusion, we would like to formulate the following open problems.
{i) Describe all decomposable metric spaces.
(ii) Describe all Delsarte codes in any (finite and infinite) polynomial metric space. In
Table 1 we give a list of the known Delsarte codes in the Hamming space H{n, r).
Similar lists for some other polynomial metric spaces can be found in [24].
(iii) Prove the above-mentioned bounds for all finite polynomial metric spaces with the
standard function o(d). In connection with the Bannai-Ito conjecture [1] on the
structure of all P- and @-polynomial association schemes, it should be noted that we
proved in [24] that the bounds (1.31) and (1.35) hold for the folded space of any
antipodal polynomial metric space of even diameter, and that they hold for ‘halves’ of
any bipartite polynomial metric space of even diameter if its is true for the whole
space.
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