
Artificial Intelligence 99 (1998) 21-71

Artificial
Intelligence

Learning metric-topological maps for indoor
mobile robot navigation ’

Sebastian Thrun 2
Computer Science Department and Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,

USA

Received June 1996; revised October 1997

Abstract

Autonomous robots must be able to learn and maintain models of their environments. Research
on mobile robot navigation has produced two major paradigms for mapping indoor environments:
grid-based and topological. While grid-based methods produce accurate metric maps, their com-
plexity often prohibits efficient planning and problem solving in large-scale indoor environments.
Topological maps, on the other hand, can be used much more efficiently, yet accurate and con-
sistent topological maps are often difficult to learn and maintain in large-scale environments,
particularly if momentary sensor data is highly ambiguous. This paper describes an approach that
integrates both paradigms: grid-based and topoIogica1. Grid-based maps are learned using artificial
neural networks and naive Bayesian integration. Topological maps are generated on top of the
grid-based maps, by partitioning the latter into coherent regions. By combining both paradigms,
the approach presented here gains advantages from both worlds: accuracy/consistency and effi-
ciency. The paper gives results for autonomous exploration, mapping and operation of a mobile
robot in populated multi-room environments. @ 1998 Elsevier Science B.V.

Keywords: Autonomous robots; Exploration; Mobile robots; Neural networks; Occupancy grids; Path
planning; Planning; Robot mapping; Topological maps

I This research is sponsored in part by Daimler-Benz Research (via Frieder Lohnert), the National Science

Foundation under award IRI-9313367, the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel

Command, IJSAF, and the DARPA Advanced Research Projects Agency (DARPA) under grant number
F33615-93-l-1330, and the Defense Advanced Research Projects Agency (DARPA) via the Air Force Missile
System Command under contract number FO4701-97-C-0022. The views and conclusions contained in this

document are those of the author and should not be interpreted as necessarily representing official policies or

endorsements, either expressed or implied, of Daimler-Benz Research, the National Science Foundation, the

Air Force Materiel Command, the Air Force Missile System Command, or the United States Government.

2 Email: thrun@heaven.leaming.cs.cmu.edu.

0004-3702/98/$19.00 @ 1998 Elsevier Science B.V. All tights reserved.

PII SOOO4-3702(97)00078-7

22

1. Introduction

S. Thrun/Arti$cial Intelligence 99 (1998) 21-71

To efficiently carry out complex missions in indoor environments, autonomous mobile
robots must be able to acquire and maintain models of their environments. The problem

of acquiring models is difficult and far from being solved. The following factors impose
practical limitations on a robot’s ability to learn and use accurate models:

(i) Sensors. Sensors often are not capable of directly measuring the quantity of
interest. For example, cameras measure color, brightness and saturation of light,
whereas for navigation one might be interested in assertions such as “there is a

door in front of the robot.”

(ii) Perceptual limitations. The perceptual range of most sensors (such as ultrasonic
transducers, cameras) is limited to a small range around the robot. To acquire
global information, the robot has to actively explore its environment.

(iii) Sensor noise. Sensor measurements are typically corrupted by noise. Often, the
distribution of this noise is not known.

(iv) Drift/slippage. Robot motion is inaccurate. Unfortunately, odometric errors accu-
mulate over time. For example, even the smallest rotational errors can have huge

effects on subsequent translational errors when estimating the robot’s position.
(v) Complexity and dynamics. Robot environments are complex and dynamic, mak-

ing it principally impossible to maintain exact models and to predict accurately.
(vi) Real-time requirements. Time requirements often demand that internal models

must be simple and easily accessible. For example, accurate fine-grain CAD

models of complex indoor environments are often inappropriate if actions have
to be generated in real-time.

Recent research has produced two fundamental paradigms for modeling indoor robot en-

vironments: the grid-based (metric) paradigm and the topological paradigm. Grid-based
approaches, such as those proposed by Moravec and Elfes [3 1,32,73] and Borenstein
and Koren [81 and many others, represent environments by evenly-spaced grids. Each
grid cell may, for example, indicate the presence of an obstacle in the corresponding
region of the environment. Topological approaches, such a those proposed by Kuipers
and Byun, MatariC and others [34,56,59,68,84,111,118,121], represent robot envi-
ronments by graphs. Nodes in such graphs correspond to distinct situations, places, or
landmarks (such as doorways). They are connected by arcs if there exists a direct path
between them.

Both approaches to robot mapping exhibit orthogonal strengths and weaknesses.
Occupancy grids are easy to construct and to maintain in large-scale environments
[9,107,108]. Occupancy grid approaches disambiguate different places based on the
robot’s geometric position within a global coordinate frame. The robot’s position is
estimated incrementally, based on odometric information and sensor readings taken by
the robot. Thus, occupancy grid approaches usually use an unbounded number of sensor
readings to determine a robot’s location. To the extent that the position of a mobile robot
can be tracked accurately, different positions for which sensors measurements look alike
are naturally disambiguated. Nearby geometric places are recognized as such, even if the
sensor measurements differ-which is often the case in dynamic environments where,
e.g., humans can block a robot’s sensors.

Table 1

S. ThrudArtifcial Intelligence 99 (1998) 21-71 23

Advantages and disadvantages of grid-based and topological approaches to map building

Grid-based (metric) approaches Topological approaches

easy to build, represent, and maintain +
recognition of places (based on geometry) is non-
ambiguou:s and view point-independent
facilitates computation of shortest paths +

+

planning inefficient, space-consuming (resolution -
does not depend on the complexity of the envi-
ronment) _

requires accurate determination of the robot’s po-
sition _

poor interface for most symbolic problem solvers

permits efficient planning, low space complexity
(resolution depends on the complexity of the en-
vironment)
does not require accurate determination of the
robot’s position
convenient representation for symbolic plan-
ner/problem solver, natural language

difficult to construct and maintain in large-scale
environments if sensor information is ambiguous
recognition of places often difficult, sensitive to
the point of view
may yield suboptimal paths

This is not the case for topological approaches. Topological approaches determine the
position of the robot relative to the model primarily based on landmarks or distinct, mo-
mentary sensor features. For example, if the robot traverses two places that look alike,

topological approaches often have difficulty determining if these places are the same
or not (particularly if these places have been reached via different paths). Also, since

sensory input usually depends strongly on the view-point of the robot, topological ap-
proaches may fail to recognize geometrically nearby places even in static environments,
making it difficult to construct large-scale maps, particularly if sensor information is
highly ambiguous.

On the other hand, grid-based approaches suffer from their enormous space and time
complexity. This is because the resolution of a grid must be fine enough to capture
every important detail of the world. The key advantage of topological representation
is their compactness. The resolution of topological maps corresponds directly to the
complexity of the environment. The compactness of topological representations gives

them three key advantages over grid-based approaches: (a) they permit fast planning,
(b) they facilitate interfacing to symbolic planners and problem-solvers, and (c) they
provide more natural interfaces for human instructions (such as: “go CO room A”). Since

topological approaches usually do not require the exact determination of the geometric
position of the robot, they often recover better from drift and slippage-phenomena that
must constantly be monitored and compensated in grid-based approaches. To summarize,
both paradigms have orthogonal strengths and weaknesses, which are summarized in
Table 1.

This paper advocates the integration of both paradigms to gain the best of both
worlds (see also [151). The approach presented here combines grid-based (metric)
and topological representations. To construct a grid-based model of the environment,
sensor values are interpreted by an artificial neural network and mapped into probabil-
ities for occupancy. Multiple interpretations are integrated over time using Bayes rule.
On top of the grid representation, more compact topological maps are generated by

24 S. ThrudArtificial Intelligence 99 (1998) 21-71

Fig. 1. The robots used in our research: RHINO (University of Bonn), XAVIER, and AMELIA (both CMU)
The software has also been ported to RWI’s B14 robots.

splitting the metric map into coherent regions, separated through critical lines. Critical
lines correspond to narrow passages such as doorways. By partitioning the metric map
into a small number of regions, the number of topological entities is several orders
of magnitude smaller than the number of cells in the grid representation. Therefore,

the integration of both representations has unique advantages that cannot be found for
either approach in isolation: the grid-based representation, which is easy to construct
and maintain in environments of moderate size and complexity, models the world con-
sistently and disambiguates different positions. The topological representation, which
is grounded in the metric representation, facilitates fast planning and problem solv-

ing. The approach also inherits two disadvantages of grid-based approaches, namely
the considerably larger memory requirements and the necessity for accurate localiza-
tion.

The robots used in our research are shown in Fig. 1. All robots are equipped with
an array of sonar sensors, consisting of 24 or 16 sonars. Sonar sensors return the prox-
imity of surrounding obstacles, along with noise. One of these robots (AMELIA) is
also equipped with a laser range finder, which measures proximity of nearby objects
with higher spatial resolution. Throughout this paper, we will restrict ourselves to the
interpretation of proximity sensors, although the methods described here have (in a
prototype version) also been operated using cameras and infrared light sensors in ad-
dition to sonar sensors, using the image segmentation approach described in [9 1. The

integrated approach to map building has been tested extensively using sonar sensors in
various indoor environments. It is now distributed commercially by a leading mobile

robot manufacturer (Real World Interface, Inc.) as the sole navigation software along
with their B14 and B21 robots.

The remainder of the paper is organized as follows: Section 2 describes our approach
for building grid-based maps; followed by the description of our approach to building
topological maps, described in Section 3; subsequently, Section 4 evaluates the utility
of the integrated approach empirically; Section 5 reviews relevant literature; the paper
is concluded by a discussion in Section 6.

S. ThndArtificial intelligence 99 (1998) 21-71 25

2. Grid-based maps

The metric maps considered here are discrete, two-dimensional occupancy grids, as
originally proposed in [3 1,731. Occupancy grids have been implemented successfully
in various systems. Each grid-cell (x, y) in a map has attached a value that mea-
sures the subjective belief that this cell is occupied. More specifically, it contains the
belief as to whether or not the center of the robot can be moved to the center of
that cell (it thus represents the configuration space of the robot projected into the
x-y-plane, see e.g., [61, 1121) . Occupancy values are determined based on sensor read-

ings.
This section describes the four major components of our approach to building grid-

based maps [32,104] :
(i) Interpretation. Sensor readings are mapped to occupancy values.

(ii) Integration. Multiple sensor interpretations are integrated over time to yield a

single, combined estimate of occupancy.
(iii) Position estimation. The position of the robot is continuously tracked and odo-

metric errors are corrected.
(iv) Exploration. Shortest path through unoccupied regions are generated to move

the robot greedily towards unexplored terrain.

Examples of metric maps are shown in various places in this paper.

2.1. Sensor interpretation

To build metric maps, sensor reading must be “translated” into occupancy values

OCCXJ for each grid cell (x, y). The idea here is to train an artificial neural network
[921 using Back-Propagation to map sonar measurements to occupancy values [1041.
As shown in Fig. 2, the input to the network consists of

- two values that encode (x, y) in polar coordinates relative to the robot (angle to

the first of the four sensors, and distance), and
- the four sensor readings closest to (x, y).

The output target for the network is 1, if (x, y) is occupied, and 0 otherwise. Train-
ing examples can be obtained by operating a robot in a known environment, while
recording its sensor readings. Notice that each sonar scan can be used to construct

many training examples for different x-y coordinates. In our implementation, training
examples are generated by a mobile robot simulator to facilitate the collection of the

data. ’

.7 Our simu:lator simulates sonar sensors in the following way: The main sonar cone-and only this cone

is considerecl-is approximated by a set of five rays. For each ray, one of the following options is chosen

at random: I 1) a random short value is repotted, (2) the correct distance is returned, and (3) a random
large value i:; returned. The probability of these events depends on the angle between the ray and the surface

normal of the obstacle. The simulator returns the shortest of those five values. This model was adopted based

on a series of empirical measurements [1141. The current simulator does not model (1) cones other than the

main cone, (2) reflections involving more than one obstacle, (3) cross-sonar interference, and (4) temporal

dependencies. in sensor noise (cf. [57]). Nevertheless, the networks trained with our simulator generate good

interpretations, as demonstrated throughout this paper.

26 S. Thrun/Art$cial Intelligence 99 (1998) 21-71

f f f f an&LY)
4 sensor values& t

distance(x,y)

Fig. 2. An artificial neural network maps sensor measurements to probabilities of occupancy.

Once trained, the network generates values in [0, 1] that can be interpreted as prob-
ability of occupancy. Formally, the interpretation of the network’s output as conditional
probability of a binary event is justified if the network is trained to minimize cross-
entropy; we refer the interested reader to page 167 of Mitchell’s textbook [70], which
demonstrates that networks trained in this way approximate the maximum likelihood

hypothesis [30,113].
Fig. 3 shows three examples of sonar scans (top row, bird’s eye view) along with

their neural network interpretation (bottom row). The darker a value in the circu-

lar region around the robot, the larger the occupancy value computed by the net-
work. Figs. 3(a) and 3 (b) show situations in a corridor. Here the network predicts
the walls correctly. Notice the interpretation of the erroneous long reading in the left
side of Fig. 3(a), and the erroneous short reading in Fig. 3(b). For the area cov-
ered by those readings, the network outputs roughly 0.5, which indicates maximum
uncertainty. Fig. 3(c) shows a different situation in which the interpretation of the
sensor values is less straightforward. This example illustrates that the network inter-
prets sensors in the context of neighboring sensors. Long readings are only interpreted
as free-space if the neighboring sensors agree. Otherwise, the network returns values
close to 0.5, which again indicates maximal uncertainty. Situations such as the one
shown in Fig. 3(c)-that defy simple interpretation-are typical for cluttered indoor
environments.

Training a neural network to interpret sonar sensors has two key advantages over
previous hand-crafted approaches to sensor interpretation:

S. Thrun/Art@cial Intelligence 99 (1998) 21-71 21

60 (b)

Fig. 3. Sensor interpretation: Three sample sonar scans (top row) and local occupancy maps (bottom row),

as generated by the neural network. Bright regions indicate free-space, and dark regions indicate walls and

obstacles (enlarged by a robot diameter).

(i>

(ii)

Since neural networks are trained based on examples, they can easily be adapted
to new circumstances. For example, the walls in the competition ring of the
1994 AAAI Robot Competition [991 were. much smoother than the walls in
the building in which the software was originally developed. Even though time
was short, the neural network could quickly be retrained to accommodate this
new situation. Others, such as Pomerleau [851, also report a significant decrease
in development time of integrated robotic systems through the use of machine
learning algorithms.
Multiple sensor readings are interpreted simultaneously. To the best of our
knowledge, all current approaches interpret each sensor reading individually,
one at a time (see, e.g., [8,31,32,73]). Interpreting sensor readings in the
context of their neighbors generally yields more accurate results. For exam-
ple, the reflection properties of most surfaces depends strongly on the an-
gle of the surface to the sonar beam, which can be detected by interpreting
multiple sonar sensors simultaneously. The neural networks take such phe-
nomena into account. For example, they ignore long readings if their neigh-
bors suggest that the angle between the sonar cone and the surface normal is

large.

2.2. Integration over time

Sonar interpretations must be integrated over time to yield a single, consistent map.
To do so, it is convenient to interpret the network’s output for the tth sensor reading

28 S. Thrun/Artijcial Intelligence 99 (1998) 21-71

(denoted by s(‘)) as the probability that a grid cell (x, y) is occupied conditioned on
the sensor reading s(‘):

Prob(occ,,,Is(‘)).

A map is obtained by integrating these probabilities for all available sensor readings,

denoted by s(l), d’), . . . , dT). In other words, the desired occupancy value for each grid
cell (x, y) can be written as the probability

Prob(occ,,!,Is(1),s(2), . . . ,dT)),

which is conditioned on all sensor readings. A straightforward approach to estimating

this quantity is to apply Bayes rule. To do so, one has to assume independence of the
noise in different readings. More specifically, given the true occupancy of a grid cell
(x, y), the conditional probability Prob(s(‘) ~occ,,~) must be assumed to be independent

of Prob(s(“)[occ,,) if t # t’. This assumption is not implausible-in fact, it is com-
monly made in approaches to building occupancy grids. It is important to note that the
conditional independence assumption does not imply the independence of Prob(s(‘))
and Prob(s(“)). The latter two random variables are usually dependent.

The desired probability can be computed in the following way:

Prob(occ,,YIs(1),s(2), . . . , dT))

Prob(occ,,,ls(‘)) r
rI

Prob(occ,,#‘)) 1 - Prob(occ,,,,) -’

1 - Prob(occ,,,ls(‘)) 7=2 1 - Prob(occx,YIs(‘)) Prob(occ,,Y) > ’

(1)

Here Prob(occx,Y) denotes the prior probability for occupancy (which, if set to 0.5, can

be omitted in this equation).
The update formula (1) follows directly from Bayes rule and the conditional inde-

pendence assumption. According to Bayes rule,

Prob(occ,,,,Is(‘), . . . , dT))

Prob(~occ,,, Is(‘), . . . , dT’)

Prob(s(T)locc,,Y, s(l), . . . , dT-‘)) Prob(occ,&(‘), . . . , dT-‘))

= Prob(s(T)I~occ,,y,s(l), . . . , s(r-I)) Prob(loccx,YIs(l), . . . ,dT-‘))

which can be simplified by virtue of the conditional independence assumption to

Prob(s(r)locc,,) Prob(occ,,ls(‘), . . . , dT-‘))

= Prob(s(r)ITocc,,,) Prob(yocc,,,ls(i), . . . ,dT-‘)) *

Applying Bayes rule to the first term leads to

Prob(occx,YIs(T)) Prob(locc,,Y) Prob(occ,,~js(‘), . . . , s(~-‘))

= Prob(~occ,,,Is (r)) Prob(occx,Y) Prob(~occ,,,ls(‘), . . . , scT--l)) ’

S. ThrudArtQicial Intelligence 99 (1998) 21-71 29

Fig. 4. If there were no odometric errors, huge maps could be built with ease. Shown here is a map of the size
105 by 63 meters, which the robot learned fully autonomously in approximately 45 minutes, using the map
building and exploration algorithms described in this paper. The higher a point in the map, the more likely it
is to be occupied. This map has been built using a simulator. The simulator uses a fairly realistic sonar noise
model, but here it does not model odometric error.

Induction over T yields:

Rob(occx,y) ’ rI
Prob(occ,,_,,]s(r))

=
1 - Prob(occ,,Y)

1 - Prob(dcc,,y) ,._, 1 - Prob(occ,,Js(r)) Prob(acc,,,) .
(2)

The update equation (1) is now obtained by solving (2) for Prob(occ,,,, Is(‘), . . . , dT)) ,
using the fact that Prob(loccX,ujs(l), . . . , dT)) = 1 - Prob(occX,Y]s(‘), . . . ,#). This
probabilistic update rule, which is sound given our conditional independence assumption,
is frequently used for the accumulation of sensor evidence [73,821. It differs from Bayes
networks [821 in that albeit the fact that occupancy causally determines sensor readings
{~(~)},i,,.,,r and not the other way round, the networks represent the inverse conditional
probability: Prob(occ,,,,Is(‘)). Notice that Eq. (1) can be used to update occupancy
values incrementally, i.e., at any point in time r it suffices to memorize a single value
per grid cell: Prob(occX,Yls(l), s(*), . . . , dT)). Technically speaking, this single value is

a sufJicientstatistic for s(i),s(*),...,sC7) [113].
Fig. 4 shows an example map. Although this figure appears to be three-dimensional,

the actual map is two-dimensional: The higher a point, the more likely it is to be
occupied. This map was built using a simulator in order to investigate map building in
the absence of odometric errors-all other maps shown in this paper were constructed
using a real robot. In this particular run, the simulator did not introduce odometric errors;
it did, however, model noise in perception. The map shown in Fig. 4 is approximately 105

30 S. Thrun/Art$cial Intelligence 99 (1998) 21-71

by 63 meters in size and was acquired in 45 minutes of autonomous robot exploration.
The algorithm used for exploration is described below. As can be seen in Fig. 4, the
neural network approach to interpreting sensor data combined with the probabilistic
method for integrating them yield quite accurate maps. In the presence of odometric
errors maps are usually less accurate.

2.3. Localization

The accuracy of the metric map depends crucially on the alignment of the robot with

its map. Unfortunately, slippage and drift can have devastating effects on the estimation
of the robot position. Identifying and correcting for slippage and drift (odometric error)
is therefore an important issue in map building [7,22,89].

Figs. 5 and 10 give examples that illustrate the importance of position estimation

in grid-based robot mapping. For example, in Fig. 5(a) the position is determined
solely based on dead-reckoning. After approximately 15 minutes of robot operation,

the position error is approximately 11.5 meters. Obviously, the resulting map is too
erroneous to be of practical use. The map shown in Fig. 5(b), constructed from the
identical data, is the result of exploiting and integrating three sources of information:

(9

(ii)

Wheel encoders. Wheel encoders measure the revolution of the robot’s wheels.
Based on their measurements, odometry yields an estimate of the robot’s position
at any point in time. We will denote this estimate by (~&,r, y,&,r, tYk&. As
can be seen from Fig. 5(a) and 10(b), odometry is very accurate over short
distances, but it is inaccurate in the long run.
Map matching. Whenever the robot interprets an actual sensor reading, it con-
structs a “local” map (such as the ones shown in Fig. 3). The correlation of
the local and the corresponding section of the global map is a measure of their
correspondence. Obviously, the more correlated the two maps are, the more
alike the local map looks to the global one, hence the more plausible it is. The
correlation is a function of the robot’s position (~r~,,~r, ~p~~,,r, O&,ot). Thus, the
correlation of the local with the global map gives a second source of information
for aligning the robot’s position.

Technically, local maps are computed in local, robot-centered coordinates,
whereas global maps are computed in a global coordinate system. As a result,
each grid cell of the global map that overlaps with the local map, overlaps
almost always with exactly four grid cells of the local map, as shown in Fig. 7.
Let (x, y) be the coordinates of a cell in the global map which overlaps with
the local map, and let (x’, y’) denote the corresponding coordinates in the local

map. Let (x;, y;) with i = 1, . . . ,4 denote the coordinates of the four grid points
in the local map that are nearest to (x’, y’) (which are unique with probability
1) . The global occupancy occ,?, is then matched with the local occupancy value
obtained using the following interpolation:

c;, 1.x - &I IY - Yil lococcx,.v,

c;~~I~-xillY-Yil .
(3)

S. Thrun/Arti&ial Intelligence 99 (1998) 21-71

tb)

Fig. 5. Map constructed (a) without and (b) with the position estimation mechanism described in this paper.

In (a), only the wheel encoders are used to determine the robot’s position. The positional error accumulates to

more than 1 1 meters, and the resulting map is clearly unusable. This illustrates the importance of sensor-based

position estimation for map building.

32 S. Thrun/Art@ial Intelligence 99 (1998) 21-71

Fig. 6. Wall, detected by considering five adjacent sonar measurements. Wall orientations are used to correct
for dead-reckoning errors in the robot orientation 8rOb,,t.

Local Map (grey)

Global Map (black) -

global map, grid-cell center

Fig. 7. Map matching. Since local maps are recorded in local robot coordinates and global maps are recorded
in global coordinates, each cell in the global occupancy grid usually overlaps with four local grid cell. The
values of these four cells are interpolated to yield a single occupancy value.

where lococc denotes the local occupancy grid. In other words, the coordinate
of a global grid cell is projected into the local robot’s coordinates, and the local
occupancy value is obtained by interpolation. The interpolating function is simi-
lar in spirit to Shepard’s interpolation [981. It has several interesting properties,
most notably it is smooth [continuous) and almost everywhere differentiable in

Kclbot 9 Y&X * %&3J *
The key advantage of interpolating between occupancy values, instead of

simply picking the nearest one, lies in the fact that gradient ascent can be
employed to maximize the correlation between the global and the local map.
The correlation of the two maps is a differentiable function of the interpolated
local map values, which themselves are differentiable functions of the robot’s

S. Thrun/Arti&ial In?elligence 99 (1998) 21-71 33

Fig. 8. The function (T and its derivative. (T is most sensitive to values close to zero. Thus, small deviations
of the expected and observed wall orientation have the strongest effect. If this deviation is larger than W, it

is completely ignored. Consequently, walls that deviate from the expected wall orientation by more than 1Y

have no effect.

(iii)

coordinates. Thus, given the interpolation described here, the correlation function
is differentiable in the robot’s position. Gradient ascent is an efficient search
sclheme for searching large spaces, which usually suffers from the danger of
local minima. If the robot’s error is small, which is typically the case when
tracking a robot’s position (since odometric errors are small), gradient ascent
search usually leads to the correct solution.

Wzll orientation. A third component memorizes the global wall orientation
[25,431. This approach rests on the restrictive assumption that walls are either
parallel or orthogonal to each other or differ by more than 15 degrees from
these canonical wall directions. In the beginning of map building, the global
orientation of walls is estimated by analyzing consecutive sonar scans (cf.
Fig. 6). This is done by searching straight lines that connect the endpoints of
five or more adjacent sonar measurements. Once the global wall orientation
(denoted by C&ii) has been determined, subsequent sonar scans are used to
realign the robot’s orientation. More specifically, suppose the robot detects a
line in a sonar scan. Let 8 be the angle of this line relative to the robot.
Then-in the ideal case-

a (&,bot 38, &a11 > := (erobot + 8 - &a~ > module 90”

should be zero, i.e., the detected wall should be orthogonal or parallel to &a~i. If
this is not the case, the robot corrects its orientation accordingly, by maximizing

(+(a) :=
(la] - 151”)~ if]cr] < 15”,

0 if Icy] > 15”

34 S. ThrudArtificial Intelligence 99 (1998) 21-71

using gradient ascent. The function (+ and its first derivative is shown in Fig. 8.
Walls whose orientation differ from the global wall orientation by 15” or more
have no effect. This is because the derivative of cr with respect to Brobot is
zero if ILY 2 15”. If JLY] is smaller than lS’, the gradient of (+ with respect

to &,bOr is non-zero and increases linearly as a approaches 0’. Thus, the more
similar the global and the observed wall orientation, the larger the gradient,
and the stronger the effect on the estimated robot orientation &&,i. This graded
scheme was empirically found to yield the best results in various populated
indoor environments. In particular, it was found to be robust to noise, errors in
wall detection, obstacles such as desks and chairs, and people walking by.

The exact function that is being minimized when calculating the robot’s position is:

J := pl [(X;&,t - Xrobot) * + (&b,,t - Yrobot) 2 1

+ p2 (o;obot - erobot > *

- P3COd&obot > Yrobot 9 hobot >

- P40.(a(e,bot,8,e,,ll)). (4)

Here pi, &, &, and p4 are gain parameters that trade off the different sources of
information. The first two terms in (4) correspond to the odometry of the robot. The
third term measures the correlation between the global and the local map, and the
fourth term relates the global wall orientation to the observed wall orientation. Eq. (4)
is differentiable, and gradient descent is employed to minimize J. Gradient descent

is an iterative search scheme, whose accuracy usually increases with the number of
iterations. When a new sonar reading arrives, the previous gradient search is terminated
and its result is incorporated into the current position estimation. Consequently, the
position tracking algorithm is an anytime algorithm [27] whose accuracy depends on
the available computation time.

An example map of a competition ring constructed at the 1994 AAAI Autonomous
Robot Competition is shown in Fig. 9. This map contains an open area, which was
intentionally created by the competition organizers to test the robot’s ability to navigate

in large open spaces [99]. In [1081, occupancy maps are constructed using stereo
vision for depth estimation [37,381. As shown there, sonar and stereo information have
somewhat orthogonal sensor characteristics and thus can complement each other.

Position control based on odometry and map correlation alone (items 1 and 2 above)
works well if the robot travels through mapped terrain [1041, but fails to localize the
robot if it explores and maps unknown terrain. The third mechanism, which arguably
relies on a restrictive assumption concerning the nature of indoor environments, has
proven extremely valuable when autonomously exploring and mapping large-scale indoor
environments. Notice that all maps shown in this paper (with the exception of the maps
shown in Figs. 5(a) and 10(b)) have been generated using this position estimation
mechanism.

A difficult challenge for any localization method-and in fact any approach for learn-
ing maps-is a large circular environment, where local sensor readings or short histories
thereof are insufficient to disambiguate the robot’s location. Fig. 10 depicts such an

S. Thrun/Artijicial Intelligence 99 (1998) 21-71 35

. 32.2 meters

Fig. 9. Grid-based map, constructed at the 1994 AAAI Autonomous Mobile Robot Competition with the
techniques described here.

environment. Here the robot starts in a corner of a circular corridor, and after traversing
more than 160m of unmapped corridor it reaches the same location. The map shown
in Fig. 10 has been obtained using a laser range finder to measure proximity. The laser
range finder is more accurate and has an increased angular resolution (0.5” instead of
W), which leads to more accurate localization results. In nine experiments using sonar
and laser sensors, laser was found to generate an accurate map in five out of five cases,
whereas sonar failed in two out of four cases, rendering maps that were slightly too
erroneous to be of practical use (1 m translational error). Fig. 10(b) depicts a map

constructed without the position correction mechanisms described here.

2.4. Dynamic environments

Our basic approach to sensor integration assumes that the world is static. In particular,
sensor readings at any two different points in time r and 7’ have the same weight in
determining Prob(occ,,,Is(‘), . . . , dT)), even if r precedes r’ by a large temporal mar-
gin. Intuitively, in dynamic environments more recent readings carry more information
than more distant ones. This intuition can be incorporated by decaying the influence of
individual sensor readings exponentially over time. Let y with 0 < y < 1 be the decay

factor.

36 S. Thrun/Artijicial Intelligence 99 (1998) 21-71

Fig. 10. (a) The challenge: A cyclic map of the size 60 by 20 meters, built using a laser range finder (instead

of sonar sensors). (b) A map obtained from the same data without position control. Some of the floor in
the testing environment is made of tiles, which introduces significant error in the robot’s odometry. Most

existing topological map building methods should have great difficulty building such maps, since most sensor

measurements look alike and am highly ambiguous.

S. ThrudArtijcial Intelligence 99 (1998) 21-71 3-l

Fig. 11. A dynamic environment. (a) The robot moves through aa open door. (b) The door is now close, in
response to which the robot changes its map and takes a different route.

Prob(,occ,,~Is”),s’*‘, . . . ,s(r))

Prob(occJs(‘))

1 - Prob(occX,Y(s(‘))

T

x r-J,,-,
Prob(occX,Y]s(7)) 1 - Prob(occ,,,,) --I

1 - Prob(occ,,,]s(7)) Prob(occ,,) > .
7=2

This modilied update rule (cf. (1)) weighs more recent sensor readings exponentially
stronger than more distant ones. If y is chosen appropriately, this approach prevents
Prob(occ,,,]s(*), . . . , dT)) from taking its extreme values. While in theory, the occu-
pancy probability Prob(occ,,,, I,(‘), . . . , dT)) may never attain its extreme values zero or

one, in practice the occupancy values may do so due to the limited numerical resolution
of digital computers. It is generally desirable to avoid these extreme values, since they

suggest that a robot is absolutely certain about the occupancy of a grid cell-which a
robot never can be due to the non-deterministic nature of its sensors.

Fig. 11 (depicts results obtained in a changing environment. Here the robot re-uses a
previously built map for navigating from our lab into the corridor. In Fig. 11 (b), the
door is closed. After acquiring some evidence that the door is closed, indicating by the
circular motion in front of the door shown in Fig. 11 (b), the model is revised and the
planning routines (described below) change the motion direction accordingly. Here y is
set to 0.9999. This decay factor is used in all our experiments.

The reader may notice that our approach does not fully model dynamic environments;
instead, it merely adapts to changes. For example, our approach is incapable of detecting
dynamic regularities in the environment, such as doors, which are either open or closed
and which change their status perpetually. As a consequence, once a door has been
recognized as being closed it will be assumed to be closed until the robot receives
evidence to the contrary. Modeling dynamic environments using metric representations
is largely an open research area. Schneider, in his M.Sc. thesis [951, has extended our

38 S. Thrun/Arh$cial Intelligence 99 (1998) 21-71

approach to detect certain types of regularities. His approach analyzed the variance and
the auto-correlation of interpretations over time, enabling it to reliably identify and label
regions in the map whose occupancy changed regularly over time. His approach was

successfully applied to detecting dynamic objects at static locations (such as doors);
however, it is not able to model moving objects such as humans.

2.5. Exploration

To autonomously acquire maps, the robot has to explore. The idea for (greedy)
exploration is to let the robot always move on a minimum-cost path to the nearest

unexplored grid cell. The cost for traversing a grid cell is determined by its occupancy
value. The minimum-cost path is computed using a modified version of value iteration,

a popular dynamic programming algorithm [4,45,86] :

(i) Inithization. Unexplored grid cells are initialized with 0, explored ones with 0;):

0
V-

if (x, y) unexplored,
XJ

cc if (x, y) explored

(ii)

Grid cells are considered explored if their occupancy value Prob(occX,Y) has
been updated at least once. Otherwise, they are unexplored.

Update loop. For all explored grid cells (x, y) do:

V w - min
.+-l,O,l, (=-l,O,l

{ V,+S,~+E + Prob (occX+~,Y+~) 1.

(iii)

Value iteration updates the value of all explored grid cells by the value of their
best neighbors, plus the costs of moving to this neighbor (just like A* [78] or

Dijkstra’s shortest path algorithm [61) . Cost is here equivalent to the probability
Prob(occX,J,) that a grid cell (x, y) is occupied. The update rule is iterated. When
the update converges, each value VX,! measures the cumulative cost for moving
to the nearest unexplored cell. However, control can be generated at any time
[27], long before value iteration converges. In the worst case, the computation
of V requires O(n*) steps with n being the number of grid cells.
Determine motion direction. To determine where to explore next, the robot
generates a minimum-cost path to the unexplored. This is done by steepest
descent in V, starting at the actual robot position. Determining the motion
direction is computationally cheap; it is the computation of V which requires
significant computation. Determining the motion direction is done in regular
time intervals and is fully interleaved with updating V.

12(a) shows V after convergence using the map shown in Fig. 12(b). All white
regions are unexplored, and the grey-level indicates the cumulative costs V for moving
towards the nearest unexplored point. Notice that all minima of the value function
correspond to unexplored regions-there are no local minima. For every point (x, y),
steepest descent in V leads to the nearest unexplored area.

Unfortunately, plain value iteration is too inefficient to allow the robot to explore
in real-time. Strictly speaking, the basic value iteration algorithm can only be applied

Fig.

S. ThndArtijicial Intelligence 99 (1998) 21-71 39

if the cost function does not increase (which frequently happens when the map is
updated). This is because if the cost function increases, previously adjusted values V

might becamme too small. While value iteration quickly decreases values that are too
large, increasing values can be arbitrarily slow [1041. Consequently, the basic value
iteration al,goritbm requires that the value function be initialized completely (Step i)
whenever the map-and thus the cost function-is updated. This is very inefficient,
since the map is updated almost constantly. To avoid complete re-initializations, and to
further increase the efficiency of the approach, the basic algorithm was extended in the

following way:
(iv) Selective reset phase. Every time the map is updated, only values Vx,y that are

too small are identified and reset. This is achieved by the following loop, which

is iterated:
For all explored (x, y) do:

V x,y - 00 if KY < min
I+-l,O,l, c=-LO,1

{ VX+&Y+5 + prob(occJZ+5.y+5) 1.

(VI BoJunding box. To focus value iteration, a rectangular bounding box [xhn, n-1

x [YIni”, Ymlxl is maintained that contains all grid cells in which Vx,r may change.
This box is easily maintained in the value iteration update. As a result, value
iteration focuses only on a small fraction of the grid, hence it converges much

faster.
Notice that the bounding box bears some similarity to prioritized sweep-

ing [721. Prioritized sweeping determines the order of updates according the
expected benefit of each particular update. Bounding boxes are a cheap imple-
mentation of the same idea. Their advantage lies in the fact that rectangular
arrays can be processed very efficiently; however, they are less selective, which
typically increases the total number of updates when compared to prioritized

sweeping.

Fig. 12 shows a snapshot of autonomous exploration in the environment depicted in

Fig. 9. Fig. 12(a) shows the value function after convergence. All white regions are

unexplored, and the grey-level indicates the cumulative costs for moving towards the
nearest unexplored point. Notice that all minima of the value function correspond to
unexplored regions-there are no local minima. Once value iteration converges, greedy
exploration simply amounts to steepest descent in the value function, which can be done
very efficiently. The right plot, Fig. 12(b), sketches the path taken during autonomous
exploration. At the current point, the robot has already explored the major hallways, and
is about to continue exploration of a room. Circular motion, such as found in the bottom
of this plot, occurs when two unexplored regions are about equally far away (=same
costs) or when the planner has not yet converged. Notice that the complete exploration
run shown here took less than 15 minutes. The robot moved constantly, and frequently
reached a velocity of 80 to 90cm/sec (see also [9,36,108]). The exploration of the
map shown in Fig. 4 required approximately 45 minutes.

Notice that the remaining V,,Y-values are not affected. Resetting the value table
in this way bears close resemblance to the value iteration algorithm described

above.

40 S. Thrun/Artificial Intelligence 99 (1998) 21-71

Fig. 12. Autonomous exploration. (a) Exploration values V, computed by value iteration. White regions are
completely unexplored. By following the grey-scale gradient, the robot moves to the next unexplored area on
a minimum-cost path. The large black rectangle indicates the global wall orientation f&u. (b) Actual path
traveled during autonomous exploration, along with the resulting metric map.

Value iteration is a very general procedure which has several properties that make it
attractive for real-time mobile robot navigation:

- Any-time algorithm. As mentioned above, value iteration can be used as an any-
time planner [27]. Any-time algorithms are able to make decisions regardless of
the time spent for computation. The more time that is available, however, the better
the results. Value iteration allows the robot to explore in real-time.

- Full exception handling. Value iteration pre-plans for arbitrary robot locations.
This is because V is computed for every location in the map, not just the current

location of the robot. Consequently, the robot can quickly react if it finds itself to
be in an unexpected location, and generate appropriate motion directions without

any additional computational effort. This is particularly important in our approach,
since the robot uses a fast routine for avoiding collisions with obstacles, which may
modify the motion direction commanded by the planner at its own whim [361.

- Multi-agent exploration. Since value iteration generates values for all grid-cells, it
can easily be used for collaborative multi-agent exploration.

- Point-to-point navigation. By changing the initialization of V (Step i), the same
approach is used for point-to-point navigation [1041.

S. Thrun/Art@cial Intelligence 99 (1998) 21-71 41

In grid malps of the size 30 by 30 meters, optimized value iteration, done from scratch,
requires approximately 2 to 10 seconds on a SUN Spare station. Planning point-to-
point navigation from scratch using the map shown in Fig. 4, which due to its many

small corridors poses a difficult real-time planning problem, requires up to 15 seconds
depending on the location of the target point(s). In cases where the selective reset
step does not reset large fractions of the map (which is the common situation), value
iteration converges in less than a second for the size maps shown here. For exam-
ple, the planning time in the map shown in Fig. 9 lies typically under a tenth of a
second. In the light of these results, one might be inclined to think that grid-based
maps are sufficient for autonomous robot navigation. However, value iteration (and
similar planning approaches) requires time quadratic in the number of grid cells, impos-
ing intrinsic scaling limitations that prohibit efficient planning in large-scale domains.

Due to their compactness, topological maps scale much better to large environments.
In what follows we will describe our approach for deriving topological graphs from

grid maps.

3. Topological maps

3.1. Constructing topological maps

Topological maps are built on top of the grid-based maps. The key idea, which is
visualized in Fig. 13, is simple but effective: Grid-based maps are decomposed into

a small set of regions separated by narrow passages such as doorways. These narrow
passages, which are called critical lines, are found by analyzing a skeleton of the

environment. The partitioned map is mapped into an isomorphic graph, where nodes
correspond. to regions and arcs connect neighboring regions. This graph is the topological

map.
The precise algorithm works as follows:

(i) Thresholding. Initially, each occupancy value in the occupancy grid is thresh-
olded. Cells whose occupancy value is below the threshold are considered
free-space (denoted by C). All other points are considered occupied (denoted
by c).

(ii) Voronoi diagram. For each point in free-space (x, y) E C, there is one or more
nearest point(s) in the occupied space c. We will call these points the ba-

sis points of (x, y), and the distance between (x, y) and its basis points the
clearance of (x, y). The Voronoi diagram [16,59,6 1,801 is the set of points in
free-space that have at least two different (equidistant) basis-points. Fig. 13(b)

depicts a Voronoi diagram.
(iii) Critical points. The key idea for partitioning the free-space is to find “critical

points”. Critical points (x, y) are points on the Voronoi diagram that minimize
clearance locally. In other words, each critical point (n, y) has the following
two properties: (a) it is part of the Voronoi diagram, and (b) the clearance of
all points in an c-neighborhood of (x, y) is not smaller than the clearance of
the critical point itself. Fig. 13(c) illustrates critical points.

42 S. Thrun/Art@cial Intelligence 99 (1998) 21-71

Voronoi diagram

0
critical point

I

LU

0

critical line

I

.

.

r..ti

:’
_.:

-q

/
;
,

0 I
\ /V3 topological graph v1

/

v2\v4/v5

Fig. 13. Extracting topological maps. (a) Metric map, (b) Voronoi diagram, (c) critical points, (d) critical
lines, (e) topological regions, and (f) the topological graph.

(iv>

(v>

Critical lines. Critical lines are obtained by connecting each critical point with
its basis points (cf. Fig. 13(d)). Critical points have exactly two basis points
(otherwise they would not be local minima of the clearance function). Critical
lines partition the free-space into disjoint regions (see also Fig. 13(e)).
Topological graph. The partitioning is mapped into an isomorphic graph. Each
region corresponds to a node in the topological graph, and each critical line to
an arc. Fig. 13(f) shows an example of a topological graph.

S. Thrun/Art@cial Intelligence 99 (1998) 21-71 43

The particular definition of critical lines for decomposing the metric map is motivated
by two observations. First, when passing through a critical line, the robot is forced to

move through a region that is considerably narrow, when compared to the neighboring
regions. Hence, the loss in performance inferred by planning using the topological map

(as opposed to the grid-based map) is considerably smaller. Secondly, narrow regions
are more likely blocked by obstacles (such as doors, which can be open or closed). The
reader should note that these arguments are somewhat intuitive, as they are not backed

up with mathematical proofs.
Fig. 14 illustrates the topological map extracted from the grid-based map depicted in

Fig. 9. Fig. 14(a) shows the Voronoi diagram of the thresholded map, and Fig. 14(b)
depicts the critical lines (the critical points are on the intersections of critical lines and
the Voronoi diagram). The resulting partitioning and the topological graph are shown
in Figs. 14(c) and 14(d). As can be seen, the free-space has been partitioned into
67 regions. Additional examples of metric and topological maps are shown in Figs. 15

and 16. These maps are partitioned into 22 (Figs. 15(c) and 15 (d)) and 39 regions

(Figs. 16(c) and 16(d)).

3.2. Planning with topological maps

The compactness of topological maps-when compared to the underlying grid-based
map-facilitates efficient planning. To replace the grid-based planner by a topological
planner, the planning problem is split into three sub-problems, all of which can be
tackled separately and efficiently.

(i) Topological planning. First, paths are planned using the abstract, topological
ma.p. Shortest paths in the topological maps can easily be found using one of
the. standard graph search algorithms, such as Dijkstra’s or Floyd and War-
shal’s shortest path algorithm [61, A* [781, or dynamic programming. In our
implementation, we used the value iteration approach described in Section 2.5.

(ii) Triplet planning. To translate topological plans into motion commands, a triplet
planner generates (metric) paths for each set of three adjacent topological

reg:ions in the topological plan. More specifically, let Tl , T2, . . . , T, denote the
plan generated by the topological planner, where each T corresponds to a region
in the map. Then, for each triplet (I;, Ti+l, z+2) (i = 1,. . . , n - 1 and Tn+l :=
T,,:I, and each grid cell in z, the triplet planner generates shortest paths to the
cost-nearest point in Ti+2 in the grid-based map, under the constraint that the

robot exclusively moves through Ti and T+I. For each triplet, all shortest paths
can be generated in a single value iteration run: Each point in 7;.+2 is marked
as a (potential) goal point (just like the unexplored points in Section 2.5), and

value iteration is used to propagate costs through Ti+l to Ti just as described
in Section 2.5. Triplet plans are used to “translate” the topological plan into
concrete motion commands: When the robot is in Tip it moves according to the

triplet plan obtained for (Z, K+l, ,+2 T.). When the robot crosses the boundary of
two topological regions, the next triplet plan (Ti+l , Ti+z, Ti+3) is activated. Thus,

the triplet planner can be used to move the robot to the region that contains the
goal location.

44 S. Thrun/Art.@cial Intelligence 99 (1998) 21-71

(a) Voronoi diagram (b) Critical lines

(c) Regions (d) Topological graph

(e) Pruned regions (f) Pruned topological graph

Fig. 14. Extracting the topological graph from the map depicted in Fig. 9: (a) Voronoi diagram, (b) Critical
points and lines, (c) regions, and (d) the final graph. (e) and (f) show a pruned version (see text).

S. Thrun/ArtiJcial Intelligence 99 (1998) 21-71 45

(a) Grid-based map (b) Voronoi diagram and critical lines

(d) Topological graph (c) Region:s

(e) Pruned regions (f) Pruned topological graph

Fig. 15. Another example of an integrated grid-based, topological map.

(c) Regions

46 S. Thrun/Arti&ial Intelligence 99 (1998) 21-71

(b) Voronoi diagram and critical lines

. .

(d) Topological graph

(e) Pruned regions (f) Pruned topological graph

Fig. 16. A third example.

S. Thrun/Artifcial Intelligence 99 (1998) 21-71 41

‘I’he reason for choosing triples instead of pairs of topological regions is
that instead of moving to the nearest grid cell in q+l, the robot takes into
account where to move once T;+l is reached, and approaches T;+, accordingly.
A “duplet planner” would always make the robot move to the nearest grid cell in
the immediate next topological region. If this grid cell was temporarily blocked
(e.g., by a human), the robot would be stuck. This is not the case for the triplet
planner, since its “goal” is reached upon entering the middle region. The motion

generated by the triplet planner is generally smoother.
(iii) Fimal goal planning. The final step involves moving to the actual goal location,

which again is done with value iteration. Notice that the computational cost
for this final planning step does not depend on the size of the map. Instead, it
depends on the size and the shape of the final topological region T,,, and the

location of the goal.
The key advantage of this decomposition is that all computation can be done off-line,
for all path planning problems. For example, the map shown in Fig. 14, which is
the most complex map investigated here, has 67 topological nodes. Thus, there are only
67 x 66 = 4422 topological plans. Since mobile robot actions are assumed to be reversible,
topological plans are symmetric. Thus, only half of them must be memorized. The map
also has approximately 200 triplets, for which all triplet plans are easily computed. Thus,
by decomposing the planning in a topological planning problem and a triplet planning
problem, and by pre-computing and memorizing all topological and triplet plans, path
planning amounts to table-lookup.

However, it should be noted that the topological decomposition does not change the

(worst-case) complexity of the planning problem, so that all one can hope for is a
constant speed-up. Assuming that the number of topological regions grows linearly with

the size of the grid-based map, and assuming that the size of each region does not
depend on the size of the map, topological planning using value iteration is quadratic
in the size of the environment (just like planning using the grid-based map). The com-
putational complexity of computing all triplet plans is linear in the length of the path
and hence in the size of the map), as is the computation of all final goal-plans. In
fact, computing all triplet plans and all final goal plans is still linear in the size of
the grid-based map, so that the topological planner is the only non-linear component
in the approach proposed here. Although both-regular grid-based planning and topo-

logical planning-require in the worst case time quadratic in the size of the world,
the fact that topological maps are orders of magnitude more compact leads to a rel-

ative difference of several orders of magnitude. This huge difference is important in

practice.

4. Performance results

Topological maps are abstract representations of metric maps. As is generally the
case for abstract representations and abstract problem solving, there are three cri-
teria for assessing the appropriateness of the abstraction: consistency, loss, and efJ
ciency.

48 S. Thrun/Artificial Intelligence 99 (1998) 21-71

0 a 0 b

Fig. 17. Two examples in which the approach presented here yields suboptimal results. In both cases, the
problem is to plan a path from “A” to “B”. (a) The topological planner will chose a sub-optimal path,
since it leads only through two intermediate regions (as opposed to three). Such situations occur only if the
topological graph contains cycles (which correspond to isolated obstacles in the thresholded grid-based map).
(b) The triplet planner fails to move the robot on a straight line, since it looks only two topological regions
ahead.

(i) Consistency. Two maps are consistent with each other if every solution (plan)
in one of the maps can be represented as a solution in the other map.

(ii) Loss. The loss measures the loss in performance (path length), if paths are
planned in the more abstract, topological map as opposed to the grid-based
map.

(iii) ESJiciency. The efficiency measures the relative time complexity of problem
solving (planning).

Typically, when using abstract models, efficiency is traded off with consistency and
performance loss.

4.1. Consistency

The topological map is always consistent with the grid-based map. For every abstract
plan generated using the topological map, there exists a corresponding plan in the

grid-based map (in other words, the abstraction has the downward solution property
[931) . Conversely, every path that can be found in the grid-based map has an abstract
representation which is a admissible plan in the topological map (upward solution
property). Notice that although consistency appears to be a trivial property of the

topological maps, not every topological approach proposed in the literature generates
maps that are consistent with their corresponding metric representation.

4.2. Loss

Abstract representations lack detail. Thus, paths generated from topological maps
may not be as short as paths found using the metric representation. For example,

S. Thrun/Art@cial Intelligence 99 (1998) 21-71 49

Fig. 17(a)’ shows a situation in which a topological planner would chose a detour,
basically because of the different sizes and shapes of the topological regions. Fig. 17(b)
depicts a s,ituation in which the triplet-planner would give non-optimal results, since it
determines the motion direction based on a limited look-ahead.

To measure the average performance loss, we empirically compared shortest paths
found in a metric map with those generated using the corresponding topological ap-

proach, for each of the three maps shown in Figs. 9, 14, 15, and 16. The results
are summarized in Table 2. For example, for the map shown in Figs. 9 and 14(d),
we conducted a total of 23,881,062 experiments, each using a different starting and

goal position that were generated systematically with an evenly-spaced grid. Plan-
ning with the topological map increases the length of the paths by an average of
3.24%. In other words, the average length of a shortest path is 15.87 meters, which

increases on average by 0.51 meters if robot motion is planned using the topological
map. 0.28 meters (1.82%) are due to suboptimal choices by the topological plan-

ner, and the remaining 0.23 meters (1.42%) are due to suboptimal action choices
made by the triplet planner. It is remarkable that in 83.4% of all experiments, the
topological planner returns a loss-free plan. The largest loss that we found in our
experiments was 11.98 meters, which was observed in 6 of the 23,881,062 experi-
ments. Such loss was observed when the topological planner falsely assumed that the

shortest route led through the large “foyer” (region 7 and 18 in Fig. 14(c)). For

example, when moving from region 58 to region 4 in Fig. 14(c), the topological
plan ((58,50,39,31,18,7,2,8,3,4)) leads through the foyer, which is clearly a de-

tour.
Fig. 18 (a) shows the average loss as a function of the length of the shortest path. As

can be seen there, for shorter paths the loss is a monotonically increasing function of
the path length. As the path length exceeds 22.5 meters, the loss decreases. We attribute
the latter observation to the fact that these paths are among the longest possible paths

given the :size of the environment, thus even a topological planner cannot increase the
length of these paths any further.

The emlpirical loss for the maps shown in Fig. 15 and 16 is even smaller, partially

because there are fewer cycles in those maps. As summarized in Table 2, the average
loss for the map depicted in Fig. 15 is 1.19%, and the average loss for the map shown
in Fig. 16 is 1.3 1%. Figs. 19(a) and 20(a) depict the loss as a function of optimal path
length. Notice because there are no cycles in the second map (Fig. 15), the topological
planner always produces the optimal plan (i.e., a plan that includes the shortest path).

Consequently, the 1.19% loss can be exclusively attributed to suboptimal action choices
by the triplet planner. The 1.31% loss for the map shown in Fig. 16 is mostly due to
the triplet planner (1.23%), although rare topological detours infer an additional loss
of 0.03%. Graphs illustrating the relative loss as a function of shortest path length are
shown in Figs. 19(a) and 20(a).

We also investigated even more compact representations, such as those shown in

Figs. 14(e), 14(f), 15(e), 15(f), 16(e), and 16(f). These maps were obtained by
pruning the original topological map: Pairs of adjacent regions are combined into a
single region, if neither of them has more than two neighbors. Pruning subsumes series
of nodes in long corridors into a single node (such as nodes 4, 13, 21, and 24 in

50 S. Thrun/Artificial Intelligence 99 (1998) 21-71

Table 2

Results (regular maps)

grid cells

resolution
cycles

topological regions

triplets

average shortest path length

meters (using grid-map)

grid-cells

topological regions

meters (using topological map)

average loss

due to topological planning

due to triplet-planning

total loss
total experiments

complexity

grid-based planning

. topological planning

difference (factor)

map I (Figs. 9 and 14) map 2 (Fig. 15)

27,280 20,535

15cm 1Ocm

8 0

61 22

626 184

15.87 9.42

94.2 84.8

7.84 4.82

16.38 9.53

1.82% 0.00%

1.42% 1.19%

3.24% 1.19%

23,88 1,062 1,928,540

2.56. lo6 1.74. 106

525 106

4.89 ld 1.64 104

map 3 (Fig. 16)

19,236

15cm

1
39

352

11.55

68.5

6.99

11.65

0.03%

1.28%

1.31%

4.576.435

1.32. lo6

273

4.83 103

Table 3

Results (pruned maps)

grid cells

resolution
cycles

topological regions

triplets

average shortest path length

meters (using grid-map)

grid-cells
topological regions

meters (using topological map)

average loss

due to topological planning

due to triplet-planning

total loss

total experiments

map 1 (Figs. 9 and 14) map 2 (Fig. 15) map 3 (Fig. 16)

27,280 20,535 19,236

15 cm 1Ocm 15cm
8 0 1

40 10 19

222 30 166

15.87 9.42 11.55

94.2 84.8 68.5

6.12 3.25 4.65

16.51 9.45 12.20

3.11% 0.00% 0.83%

0.94% 0.37% 5.22%

4.05% 0.37% 6.05%

23,881,062 1.928.540 4576,435

complexity

grid-based planning 2.56. lo6 1.74. 106 1.32. lo6

topological planning 245 32.5 88.4

difference (factor) 1.05~104 5.36. lo4 1.49 104

S. ThrudArtijicial Intelligence 99 (1998) 21-71

Loss (mapl)

0%
300 600 906 1200 1500 1600 2100 24W 2706 3000 3300 3600 3900 42f

6.%

5.%

L 4.%
z
xi
= 3.%

2.%

I.%

0%

shortest path length

(a>

Loss (pruned map 1)

300 600 900 1200 ISW 1600 2100 2460 2700 3000 3300 3600 3900 42

51

shortest path length

(b)

Fig. 18. Loss for paths generated for the map shown in Figs. 9 and 14, using (a) the regular and (b) the

pruned topological map. They grey portion of the loss is due to suboptimal action choices by the topological

planner, while the white portion is due to the triplet representation.

Figs. 14(,c) and 14(d)), and also eliminates certain end-nodes (such as the region 17,
56, and 66, in Figs. 14(c) and 14(d)). The results of experiments measuring the
loss for t.hese pruned maps are summarized in Table 3. For example, in 23&X1,062
experiments using the pruned graph depicted in Figs. 14(e) and 14(f), the average
loss was 0.64 meters (4.05%), which is 26.1% larger than the loss inferred by the
unpruned graph. For the map shown in Figs. 15(e) and 15(f), pruning actually reduced
the overall loss to 0.37% (0.03 meters), which is only 31 .O% of the loss inferred by

52 S. ThrudArtifcial Intelligence 99 (1998) 21-71

Loss (map 2)
7.%

6.5%

6.%

5.5%

5%

4.5%

2 4.%

,o 3.5%

3 3.%

2.5%

2.96

1.5%

1.x

9% __p,ooocll,~_oo~_~o
0.5%

MO 699 9w 1290 1500 1599 2im 2499 27~

shortest path length

(4

Loss (pruned map 2)

shortest path length

@I

Fig. 19. Paths generated for the map shown in Fig. 15, using (a) the regular and (b) the pruned topological
map.

the unpruned map. Finally, the pruned map shown in Figs. 16(e) and 16(f) produces
an average detour of 5.18% (0.70 meter), which is significantly larger (361%) than the
loss inferred by the unpruned map-this difference is due to the fact that a long corridor
is pruned into a single topological entity in Figs. 16(e) and 16(f) . Figs. 18 (b) , 19(b) ,
and 20(b) depict the loss for the pruned map as a function of optimal path length.
The shape of the curves here are similar to those obtained for the unpruned maps.
Fig. 19 illustrates once again that pruning reduces the loss for the cycle-free second
map.

6.91

6.1

7.x

6.5%

B.%

6.6%

5%

4.6%

2 4.%

8 3.6%

= 3.%

2.6%

2.%

1.6%

1.1

0.6%

0%

S. Thrun/ArtQicial Intelligence 99 (1998) 21-71

Loss (map 3)

F

- 0 .ll~ll~~n~_o_o_ll~ooc
360 600 900 1200 1600 1600 2100 2400 2700 3000

shortest path length

(3)

Loss (pruned map 3)

shortest path length

(b)

2400 2706 3000

53

Fig. 20. Paths generated for the map shown in Fig. 16, using (a) the regular and (b) the pruned topological
map.

We conclude that the pruned graph is generally more compact. On the one hand,
pruning can decrease the loss of the triplet planner due to the increased size of the
topological regions, which typically yields improved triplet plans. On the other hand,
the smaller number of regions in pruned maps usually induces additional loss on the
topological planning level, if (and only if) the environment contains cycles. If the
environment is cycle-free, the topological plans are identical for pruned and unpruned

maps, since there exist only a single topological plan between each pair of points.
Empirically, the increased loss on the topological level when pruning a map was found

54 S. Thrun/Art$cial Intelligence 99 (1998) 21-71

to outweigh the reduction of loss on the topological level. Pruning was only found to
reduce the overall loss when the map is free of cycles.

4.3. Eficiency

The most important advantage of topological planning lies in its efficiency. Value

iteration is quadratic in the number of grid cells. For example, the map shown in Fig. 9

happens to possess 27,280 explored cells. In the average case, the number of iterations
of value iteration is roughly equivalent to the length of the shortest path, which in our
example map is on average 94.2 cells. Thus, in this example map, value iteration requires
on average 2.57 e lo6 backups. Planning using the topological representation is several
orders of magnitudes more efficient. The average topological path length is 7.84. Since
the topological graph shown in Fig. 14 (d) has 67 nodes, topological planning requires
on average 525 backups. Notice the enormous gain in efficiency! Planning using the
metric map is 4.89 . lo3 more expensive than planning with the topological map. In

other words, planning on the topological level increases the efficiency by more than
three orders of magnitude, while inducing a performance loss of only 3.24%.

The computational reduction is even more dramatic for the pruned maps, such as the

one shown in Figs. 14(e) and 14(f). This map consists of 40 nodes, and the average
topological path length is 6.12. Consequently, topological planning is 1.05 . lo4 more
efficient than planning with the metric map, which is more than twice as efficient as
planning with the unpruned map. However, as can be seen by comparing the results
shown in Tables 2 and 3, the performance loss induced by the pruned map is 25% larger
than the loss inferred by the unpruned map.

The map shown in Fig. 15, which is smaller than the other maps but was recoded with

a higher resolution, consists of 20,535 explored grid cells and 22 topological regions
(unpruned map), or 10 regions (pruned map). On average, paths in the grid-based map

lead through 84.8 cells. The average length of a topological plan is 4.82 (unpruned
map), or 3.25 (pruned map, averaged over 1,928,540 systematically generated path
planning problems). Here the complexity reduction is even more significant than in the

first example. Planning using the metric map is a factor of 1.64 . lo4 more expensive
than planning with the topological map when using the unpruned map. This factor
increases to 5.36 . lo4 when using the pruned map. Clearly, since the pruned map
exhibits a smaller loss, it is superior to the unpruned version in both categories: loss
and efficiency.

Similar results are obtained for the map depicted in Fig. 16. Here the planning
complexity is reduced by a factor of 4.83 . lo3 (unpruned map), or 1.49 . lo4 (pruned
map). While these numbers are empirical and only correct for the particular maps

investigated here, we conjecture that the relative quotient is roughly correct for other
maps as well.

It should be noted that in our implementation, every topological plan is pre-computed
and memorized in a lookup table. Our most complex example maps contain 67 nodes,
hence there are only 2,211 different plans that are easily generated and memorized. If
a new path planning problem arrives, topological planning amounts to looking up the
correct plan.

S. ThrudArtijcial Intelligence 99 (1998) 21-71 5s

5. Related work

The current approach draws on existing work on various aspects of AI and robotics.

This section reviews related approaches in the areas of (1) map learning, (2) local-
ization, (3) motion planning, (4) abstraction, and (5) learning automata. It points out
various differences/commonalities to the work presented here and summarizes its main

contributions.

5.1. Mapping

The key contribution of this paper is a new map learning method that integrates
metric and topological representations. The vast majority of successful approaches to
learning maps from sensor data focuses on a single type map, metric or topological,
where topological maps are sometimes enriched by local metric information.

- Metric approaches. Occupancy grids, which form the basis of the metric compo-
nent of our approach, are probably the most successful metric approach to mobile
robot map acquisition to date. Occupancy grids have originally been proposed by
Elfes and Moravec [3 1,32,73] and since been adopted in numerous robotic sys-
tems (e.g., [8,9,41,95,119]). Our approach differs from previous ones in that
neural networks are used to learn the mapping from sensors to occupancy val-
ues; as a result, sensor readings are interpreted in the context of their neighbors,
which increases the accuracy of the resulting maps [1041. Occupancy grids, how-
ever, are not the only metric representation. Chatila and Laumond [151 proposed
to represent objects by polyhedra in a global coordinate frame. Cox [23] pro-
posed to construct probabilistic trees to represent different, alternative models of
the environment. In his work, Kalman filters and Bayesian methods are used for
handling uncertainty. Lu, Milios and Gutmann [40,66,67] presented an approach
that b’asically stores raw proximity sensor data in a metric coordinate system, using
an alignment procedure that compares multiple laser range scans. Jeeves [1061, an
award-winning robot at the 1996 AAAI Mobile Robot Competition [551, constructs

geometric maps incrementally by concatenating wall segments detected in temporal
sequences of sonar measurements. Jeeves’s design was strongly inspired by the
work presented here; its inability to handle dynamic environments and its strong
commitment to parallel/orthogonal walls make its software approach significantly
more brittle than the current approach.

- Topological approaches. Topological approaches represent maps as topological
graphs, where nodes correspond to places and arcs correspond to actions for moving
from one place to another. Often, topological graphs are enriched by local metric

information to facilitate the navigation from one place to another.
Among the earliest successful work in this field is an approach by Kuipers

and I3yun [58,591. In their approach, topological places are defined as points
that maximize the number of equidistant obstacles (a similar idea can be found in
Choset’s work, who refers to such as points as “meet points” [16-181). Topological
place:3 are connected by arcs, which contain metric information for locally moving
from one place to another. The approach disambiguates different places by local

56 S. Thrun/Art@cial Intelligence 99 (1998) 21-71

sensor information (taken at a single node or, if necessary, at a small number
of neighboring nodes). In systematic simulations, this approach has been found
to reliably learn large maps of indoor environments, even if sensor data is noisy.

However, in these experiments the robot was equipped with a compass, which

simplifies the localization problem significantly.

A similar approach was proposed by MatariC [681. Her algorithm acquires topo-
logical maps of the environment in which nodes correspond to pre-defined land-
marks such as straight wall segments. Neighboring topological entities are connected
by links. The topological representation is enriched by distance information to help
keeping track of the location of the robot. The approach was evaluated on a physical
robot and was found to be robust in practice. Its inability to maintain an exact posi-
tion estimate imposes intrinsic scaling limitations. Moreover, since the recognition
of landmarks in this approach involves robot motion, the approach might have se-
vere difficulties in recognizing previously visited locations when approaching them

from different directions (e.g., T-junctions).

Shatkay and Kaelbling proposed a method that learns topological map from
landmark observations [97]. Their work extends work by Koenig and Simmons
[531, who investigated the problem of learning topological maps if a topological
sketch of the environment is readily available. In Shatkay and Kaelbling’s work, no
such assumption is made. Their approach considers local topological information
along with some landmark information to disambiguate different locations. A key
feature of their approach is the use of a recursive estimation routine (the Baum-
Welch algorithm [871) that can refine position estimates backwards in time. As a
result, their approach has built fairly large topological maps. Unfortunately, it does
not properly take rotational error into account. It also violates a basic geometric

“additivity constraint,” as acknowledged by the authors.

Another approach was proposed by Yamauchi and Beer’s [1181. Their approach
adds places into a topological graph whenever the robot’s distance to previously
defined places exceeds a certain threshold. Metric maps are used for localizing the
robot (see discussion below). To determine the location of the robot within its
map, the robot has to return close to its initial starting location (using only its
wheel encoders), which imposes severe scaling limitations. Chown and colleagues
[191 proposed a cognitively motivated approach to map learning, called PLAN.
PLAN also learns a topological graph. Nodes in the topological graph are created
whenever the robot enters a “choice point” (such as an intersection), or when new
landmark comes into its field of view. At each of the nodes, the robot stores a
collection of local views taken there. PLAN assumes that landmarks are uniquely
identifiable, an assumption which simplifies the problem of place recognition (the

correspondence problem, see below). In our work, this assumption is usually not
fulfilled, due to the small amount of information conveyed by sonar measurements.
Other topological approaches can be found in [76,111,121].

A key problem in map learning is to establish correspondence between current and
past locations [7,221. This problem is particularly difficult during map acquisition. In
metric approaches, the correspondence problem is attacked exclusively through metric
information; if the robot is capable of accurately estimating its coordinates in a Cartesian

S. Thrun/Art$cial Intelligence 99 (1998) 21-71 51

coordinate frame, the correspondence problem is solved. External sensor information is
used to refne the metric position estimate. Topological approaches often take a different
route. Correspondence between different places is usually determined based on a short
history of sensor measurements. Some approaches, such as PLAN or the approaches in
[60,761, require that different places are uniquely identifiable by the momentary sensor
input. Oth’er approaches, such as those described in [16-19,X$59,68,121], weaken
this assum,ption by taking information from neighboring places and/or local metric

information into account. To make sensor input easier to compare, many topological
approaches require that the robot uses a specific navigation routine which ensures that

the robot moves to specific points (such as meet points) before attempting to establish
correspondence [58,59,68]. The accuracy required in metric approaches is usually
higher than that required in topological approaches, since topological maps are more
compact. There seems to be a tendency that topological approaches rely to a stronger
degree on the robot’s external sensors (such as cameras, sonars, compass or GPS), and

to a lesser degree on the robot’s odometry when compared to metric approaches. The
willingness to ignore odometric information in topological approaches to map building
becomes a severe scaling limitation when momentary sensor input is insufficient for the
disambiguation of places. In situations such as the one shown in Fig. 10, (odo)metric
information is the key in establishing correspondence between current and past locations.
Here topol.ogical approaches are typically at a disadvantage, since for robots equipped

with sonar sensors most of the environment looks alike and correspondence cannot be
established based on a short history of sensor measurements only. Metric approaches

can cope with such situations much better, as demonstrated by the empirical results
described in this paper. They can also take momentary perceptual information such as
landmark lmformation into account, just like topological approaches.

The importance of integrating metric and topological maps for scaling up mobile
robot operation has long been recognized. Among the first to propose this idea was
Elfes [321 and Chatila and Laumond [151. Elfes devised algorithms for detecting and

labeling occupied regions in occupancy maps, using techniques from computer vision
[3 1,321. He also proposed building large-scale topological maps, but he did not devise
an algorithm for doing so, Chatila and Laumond [151 proposed to represent objects

by polyhedra in a global coordinate frame. From those they propose to decompose the
free-space into a small number of cells that correspond to rooms, doors, corridors, and

so on. While their paper contains most of the principle ideas, it unfortunately is in a
proposal state where much of the algorithmic detail is missing. Neither of the above
approaches has been shown to build maps that are significantly larger than the perceptual
field of the robot, due to the difficulty of accurately determining a robot’s position during
mapping. ‘We believe that our work is the first to fully implement these idea, and to get
it to work for large-scale indoor environments. Because our approach integrates both
representations, it gains advantages that were previously not available within a single
approach, most notably: the ability to build large-scale maps even if sensor information
is highly ambiguous and efficiency in planning.

While this paper was being reviewed, the author developed an alternative approach
which also integrates topological and metric mapping [1091. This approach has been
demonstrated to yield additional robustness in complex and large-scale environments. In

58 S. Thrun/ArtiJicial Intelligence 99 (1998) 21-71

particular, it is applicable to environments with arbitrary wall configurations, and it can
correct large odometric errors backwards in time.

5.2. Localization

Localization, that is, the problem of finding out where a robot is relative to previous
locations and/or relative to its map, is one of the key problems in mobile robotics.
A recent survey by Borenstein and his colleagues [7] dedicated exclusively to this
topic illustrates the importance of localization and illustrates the large number of ex-
isting approaches. Cox [22] noted that “Using sensory information to locate the robot
in its environment is the most fundamental problem to providing a mobile robot with

autonomous capabilities”-an assessment that demonstrates the importance of the prob-

lem.
Algorithms for mobile robot localization can roughly be divided into two primary

classes of approaches:

- Landmark-based localization. Landmark-based approaches use landmarks as ref-
erences for determining a robot’s position. It comprises by far the most popular

family of approaches, partially because of its genuine computational simplicity,
partially because landmarks appear to play a major role in human navigation [191.
Examples of successful algorithms for landmark-based localization can be found

[5,21,47,51,53,77,79,83,100,117] and various chapters in [54].
- Model matching. Model matching algorithms extract geometric features from the

sensor readings and match those to a model of the environment in order to iden-
tify errors in the robot’s odometry [9-12,15,22,89,94,104,106,115]. Among the
earliest work in this field is that of Moravec, Elfes, and Chatila and Laumond.
Chatila and Laumond’s approach [151 extracts geometric features such as line
segments and polyhedral objects which are matched to a geometric map. Moravec
and Elfes, who pioneered the development of occupancy grids, were also the first
to use occupancy grids for localization [3 1,741. Just like the approach presented
here, they proposed building local maps from single sonar scans and matching
them to a previously learned (or hand-supplied) global map to identify errors in
odometry. Their approach was recently re-implemented with minor modifications
by Yamauchi and colleagues [118,119], who investigated its robustness to changes
in the environment. Model matching can be computationally very expensive. This is
because computing a single match requires many computations, prohibiting search-
ing the space of all possible odometric errors exhaustively. It is common practice
to search the space of odometric errors by hill-climbing [9,104,118,119].

Our approach falls into the second class: It is a version of model matching using
metric maps. It differs from previous approaches in that the correspondence function
is differentiable in the odometric error, which has two primary advantages: (1) The
odometric error can be estimated with arbitrary (sub-grid cell) resolution. (2) Gradient
descent is considerably faster. For example, Yamauchi and Langley [1191 report that
map matching using discrete hill climbing requires about 20 seconds (on a DECstation
3 100). Our approach works in real-time (in the order of 0.3 set on a 1OOMhz Pentium
computer), so that odometric errors can be corrected while the robot is in motion.

S. Thrun/Artifcial Intelligence 99 (1998) 21-71 59

The vast majority of literature investigates mobile robot mapping and mobile robot
localization separately. Interleaving mapping and localization is significantly more diffi-
cult than either task in isolation [891. There are several attempts to integrate localization
and mapping. For example, Leonard, Durrant-Whyte, and Cox [63] proposed a method
that interleaves localization and mapping using Kalman filters [49] for position track-
ing. In their experiments, however, only the mapping component of their approach is
demonstrated, leaving open the question as to whether these methods work well together
in practice. A remarkable approach to concurrent mapping and localization was recently
proposed by Lu, and Milios [66,671. This approach was with minor modifications also
implemented by Gutmann, who obtained results for a cyclic environment [40]. Similar
to our approach, it corrects bounded odometric error by comparing sensor readings to
a previously built map. Unlike ours, it is capable of estimating locations backwards in

time, i.e., it can use future data to estimate past locations. Yamauchi and Beer [1181
also interleave both localization and mapping. In their approach, the robot can only
be localized at its starting location, forcing the robot to regularly return to its initial

location. The approaches in [58,59,68] also interleave mapping and localization. They
rely on landmarks to localize a robot, and also provide strategies for actively finding out

if two places are the same if landmarks are ambiguous.
To the .best of our knowledge, the maps presented here are among the largest ever

built autonomously using wide-angle sonar sensors and without a hardware mechanism
for global positioning (such as a compass or GPS). The significance of this statement
should be taken with a grain of salt, since different mapping approaches cannot be
compared easily due to the different hardware and experimental conditions involved.
Also, the reader should note that our approach rests on the orthogonal wall assumption,
without which the approach might fail to map environments of the same size.

The reader should note that the current approach is only able to localize the robot
when its initial position is known. It is not able to localize a robot under global un-

certainty, .a problem which is also known as the “kidnaped robot problem” [331. Only
a small number of localization methods are capable of localizing a robot under global
uncertainty, and all of those require (for obvious reasons) that the robot be equipped

with a map of the environment [7,10-12,105].

5.3. Decomposition and robot motion planning

The topological map extraction algorithm extracts a coarse-grained representation from
high-resolution maps. Within the robot motion planning community, such algorithms are
usually re-ferred to as cell decomposition methods [61,961. Within artificial intelligence,
algorithms of this type are usually referred to as abstraction algorithms [44,52,93].

There i:j a huge body of literature on cell decomposition for robot motion planning.
For example, Schwartz and Sharir published a series of five seminal papers in which the
motion planning problem for various simple objects (such as ladders and disks) were

solved in two- and three-dimensional spaces (see [96]). In several of these papers, the
free-space is divided into a finite number of coherent regions, similar to the approach
proposed in this paper. Once the free-space is partitioned, the robot motion planning
problem can be solved by search over a (finite) graph. Similar cell decomposition

60 S. Thrun/Art@cial Intelligence 99 (1998) 21-71

methods and further references can also be found in Latombe’s book [611, which

provides an excellent survey on this topic. Most of these approaches assume that an
accurate map of the environment is available prior to robot operation, in which obstacles
are represented by polygons or circles. Most of the work on motion planning focuses on
consistency (also called: completeness), that is, it seeks to establish algorithms which
generate a solution if one exists, and returns a failure if no solution exists. Research
on robot motion planning has also addressed issues of efficiency. A key difficulty arises
from the observation that robot motion planning, in its general definition, is worst-
case exponential in the number of degrees of freedom [13,881. Due to the strong

focus on consistency, O()-type complexity, worst case analysis and robots with many
degrees of freedom, existing cell decomposition methods usually decompose the free-

space in odd ways, which, if applied to mobile robot motion planning, do not at
all maximize the run-time efficiency. Our method for extracting topological maps is
specifically targeted at minimizing the performance loss for circular mobile robots.
Therefore, boundaries of topological regions typically coincide with narrow regions
such as doors, in which the robot is given little choice as to where to move. The triplet
planner derives locally optimal plans, which have been designed to minimize the amount
of loss suffered when planning topologically. We believe that the cell decomposition
method proposed here yields more efficient control of a mobile robot than any of
the other decomposition methods proposed in the robot motion planning literature.
However, our method is currently restricted to the motion of a circular robot in a two-
dimensional environment, whereas many of the methods listed above are applicable in

higher-dimensional spaces.
Voronoi diagrams have previously been proposed for robot motion planning and mo-

bile robot navigation [16,17,58,59,80]. These approaches use Voronoi diagrams as
road-maps [14,611, i.e., they force a robot to move along the Voronoi diagram. While
traditional work on motion planning using Voronoi diagram rests on the assumption

that an accurate model of the environment is available [61,801, Kuipers and Byun, and
Choset [16,18,58,59] have extended this framework to sensor-based motion planning.
Their approaches enables robots to operate in the absence of a world model. Just like
ours, their work assumes that the robot can sense the proximity of nearby obstacles (in
Choset’s approach the sensors must be noise-free). One of the striking advantages of
Choset’s work is that it can be applied in high-dimensional configuration spaces. How-
ever, forcing the robot to move along the Voronoi diagram yields suboptimal trajectories.
The approach proposed here uses Voronoi diagrams for cell decomposition. To the best

of our knowledge, this use of Voronoi diagrams is new, yet it has an obvious advantage
of increased efficiency.

5.4. Abstraction and dynamic programming

As mentioned above, the topological maps described in this paper are a form of
abstraction [93] and as such relate to the rich literature on abstraction in AI. The
most closely related work on abstraction can be found in the literature on dynamic
programming [4,45,86] and reinforcement learning [2,48,102]. In fact, our motion
planning algorithm can be viewed as a model-based version of reinforcement learning

S. ThrudArrifcial Intelligence 99 (1998) 21-71 61

[24,103,1:20]; however, for the sake of consistency with the literature we will refer to
it as dynamic programming (there is no learning involved at the planning level).

In recent years, several researchers have proposed methods for solving dynamic pro-

gramming problems by decomposing the state space into smaller subspaces. Dynamic
programming is then applied hierarchically (1) to the subspaces and (2) on a more ab-
stract level, where those subspaces are considered “abstract states.” Existing approaches
can roughly be divided into two classes, those that rely on a fixed decomposition, and
those that decompose the state space by themselves during problem solving.

- Fixed decomposition. In [64,101,116] algorithms are presented that first learn
solutieons to sub-problems (using model-free reinforcement learning), then combine
these solutions using a reinforcement learning algorithm. Sub-problems are specified
through “sub-goals” or certain sub-reward functions, which have to be provided

manually by the human designer.
Da:yan and Hinton [26] proposed a hierarchical reinforcement learning archi-

tecture which recursively decomposes the state space into squares of fixed size.

At each level of control, policies are generated for moving from one square to
a nei,ghboring square. Their abstraction may be inconsistent. At higher levels of

abstraction perceptual detail is omitted, which can turn a Markovian problem into
a non-Markovian one for which no solution may exist.

Dean and Lin [28] derived more general algorithms for solving dynamic pro-
gramming algorithms efficiently given arbitrary partitions of the state space. One of
their algorithms, called Hierarchical Policy Construction method, generates policies
for transitioning from one region in the state space to another. On a more abstract
level, those regions are considered “abstract states” just like in Dayan and Hin-
ton’s work, and dynamic programming is applied in this abstract (and potentially
non-Tvlarkovian) state space. This paper goes beyond most of the work in the field
in that it presents some useful formal convergence results for learning hierarchical

control.
- On-line decomposition. Recently, Kaelbling [46] proposed an approach that de-

composes the state space automatically based on a small set of randomly chosen

“land.mark states.” In her approach, each landmark state defines a region and states
other than landmark states are members of the region defined by the nearest land-
mark state. This approach is a version of Delaunay triangulation [29,391, a family
of methods that decompose the state space through Voronoi diagrams. Just like in
Daya.n and Hinton’s and Dean and Lin’s approach, Kaelbling’s approach applies
dynamic programming at multiple levels: At the lower lever, local controllers are
learned for moving from one region to another. On the higher level, an abstract
control policy is learned which uses regions as abstract state descriptions. Her de-
composition approach is similar to the one proposed here. The key difference lies in

the way the state space is decomposed. By selecting landmark states at random, the
resulting decomposition is somewhat random. In contrast, our decomposition places
topological transitions at narrow places of the environment. The practical implica-
tions of these different decompositions are formally not well understood. However,
when applied to mobile robot navigation, we believe that the performance loss
in our approach is smaller due to the more sensitive choice of the cross-region

62 S. Thrun/ArtiJicial Intelligence 99 (1998) 21-71

boundaries. A path planning approach for robots with excessive degrees of freedom

that, similar to Kaelbling’s approach, decomposes robot planning problems into sets
of smaller problems by selecting a small number of random points can be found
in [501.

Similar to Dayan and Hinton [261, Moore [71] recently proposed an approach
for decomposing space into a set of rectangles, called parti-game. In his approach,
the resolution of the decomposition is variable. It is maximal along the boundary
between obstacles and free-space. One of the nice properties of Moore’s approach
is its ability to deal with continuous spaces, just like most of the robot motion
planning algorithms reviewed above. The parti-game algorithm does not take the
actual path length into account during motion planning.

A method which attempts to find an optimal cell decomposition during problem

solving is found in [1 IO]. The SKILLS approach identifies regions in the state
space (skills) in which the same policy can be used across different problems
(tasks). This work makes a minimum of assumptions on the nature of the state

space. For example, it differs from the work described in this paper in that it does
not assume the availability of a model and in that it does not rely on a model
of the environment or its geometry. Currently, its computational complexity limits
its applicability to large state spaces. In fact, an initial attempt to use this method
for generating a topological description of metric maps was less successful due to
its enormous computational complexity. In principle, however, this approach can
generate decompositions which might infer smaller losses than those described here.

Obviously, our approach falls into the second category, that is, it decomposes the state
space automatically. The decomposition method proposed in this paper is specifically
tailored towards mobile robot navigation, by placing the boundaries between adjacent
topological regions at the narrow parts of the original state space. Neither of the existing
approaches does this. With the exception of the SKILLS approach [1 lo], none of the
above-mentioned approaches takes optimality into account when selecting the boundaries

between different regions.
Several of the aforementioned approaches [26,28,46,7 11 bear close similarity to the

planning approach proposed in this paper: At the base level, dynamic programming is
employed to generate plans for moving from a region to a neighboring region. At a
more abstract level, regions are treated as states, and dynamic programming is applied
for finding global solutions to this (possibly non-Markovian) abstract model. Such
hierarchical planning is very similar to the approach taken here in which a triplet planner
solves local navigation problems and the topological planner generates global plans in the
more abstract topological map. On the planning level, the only difference arises from the
fact that the triplet planner considers three consecutive regions, whereas other approaches
consider only two. By considering three adjacent regions, the performance loss is usually
smaller, which comes at the expense of increased computational complexity.

5.5. Learning jinite state automata

Within the AI community, research has been conducted on general methods that can
reverse-engineer (learn) finite state automata based on their input-output behavior (see

S. Thrun/ArtiJkial Intelligence 99 (1998) 21-71 63

e.g., [3,20: 69,75,81,90,91]). Finite state automata (FSAs) are learned by observing
the result of sequences of actions. Often, algorithms capable of learning FSAs require

a pre-given “homing sequence,” i.e., a sequence that resets the state of the finite state

machine (a routine that carries a robot to a unique location), or a sequence that produces
observations that uniquely identify the resulting state. Some of these approaches require
the FSA (tlhe environment and robot’s sensors) to be deterministic, whereas others can
cope with certain types of stochasticity.

Approaches to learning FSAs differ from the approach taken here in
(1) the:y make much fewer assumptions and hence can model a much larger variety

of automata, and
(2) the;y therefore scale poorly to environments of the size considered here.

Scaling problems arise primarily because of three reasons:
(i) First, both the configuration space and the action space of a robot are continuous.

Thus, the problem of map learning is not a problem of identifying a finite state

machine. However, special-purpose navigation routines that safely carry the
robot to a small number of geometrically distinguishable locations can make
FM learning algorithms applicable [3,591. The reader should notice that the
wolrk described here assumes discrete configuration spaces, too, but allows for
continuous actions.

(ii) Second, work on learning finite state automata is usually not based in geometry.
The work here assumes that the robot operates in a plane, for which basic
geometric relations apply. For example, it is assumes that turning right 90’

four times results (approximately) in the same state. In the absence of such
assumption, an approach that reconstructs the laws of motion by experimentation
has to re-discover geometry.

(iii) Third, even if there were only finitely many states (e.g., as many as there are
grid cells), in environments of the size described here, visiting every state is not

pra’ctically feasible. In our approach, the robot uses its sensors to infer knowledge
about states other than the current one. Existing work on the identification of
finite state automata assumes that each state is visited at least once (in fact,
states often have to be visited many times).

The reader should note that our approach is highly specialized to learning spatial maps,
whereas methods for learning FSAs are targeted at different, more general problems of
system identification [651. Thus, while our approach is clearly better suited for learning
maps, it lacks the generality of the FSA identification algorithms.

6. Discussion

This paper proposes an integrated approach to mapping indoor robot environments.
It combines the two major existing paradigms: grid-based and topological. Grid-based
maps are learned using artificial neural networks and Bayes rule. Topological maps are
generated by partitioning the grid-based map into critical regions.

The major contribution of the current paper is a working method for integrating metric
and topological maps in map learning. Previous successful approaches to map learning

64 S. Thrun/Artificial Intelligence 99 (1998) 21-71

with mobile robots were either metric or topological (sometimes enriched by metric
information). While the idea of integrating metric and topological representations is
not new [15,3 1,321, it has not yet been demonstrated that this can actually be done
robustly in environments that are significantly larger than the perceptual range of a
robot’s sensors. Thus, the major contribution of the current paper is that it establishes
a methodology for learning mixed metric-topological maps, one which is demonstrated
to work robustly in practice. The approach is demonstrated to inherit advantages from
either paradigm: metric and topological. It inherits from metric maps the ability to
robustly map large-scale environments, even if external sensor data is insufficient to
establish correspondence between locations at different points in time. It inherits from
topological maps the ability to plan orders of magnitude more efficiently, exploiting the

fact that topological maps are more compact than grid-based maps.
Building occupancy maps is a fairly standard procedure, which has proven to yield ro-

bust maps at various research sites. Since neural networks interpret sonar readings in the
context of adjacent sensor measurements, they do not assume conditional independence
between adjacent sensor measurements-resulting in more accurate interpretations of
sonar measurements. This paper also demonstrates that by integrating multiple sources
of information, the robot position can be tracked accurately and in real-time in environ-
ments of moderate size-which is crucial for building metric maps.

The most important technical aspect of this research, however, is the way topolog-
ical graphs are constructed. Previous approaches have constructed topological maps
from scratch, memorizing only partial metric information along the way. This often
led to problems of disambiguation (e.g., different places that look alike), and prob-

lems of establishing correspondence (e.g., different views of the same place). This
paper advocates to integrate both, grid-based and topological maps. As a direct conse-
quence, different places are naturally disambiguated, and nearby locations are detected
as such. In the integrated approach, landmarks play only an indirect role, through the
grid-based position estimation mechanisms. Integration of landmark information over
multiple measurements at multiple locations is automatically done in a consistent way.
Visual landmarks, which often come to bear in topological approaches, can certainly
be incorporated into the current approach to further improve the accuracy of position
estimation (see e.g., [56,105]) . In fact, sonar sensors can be understood as landmark
detectors that indirectly-through the grid-based map-help determine the actual posi-
tion in the topological map (cf. [1001) .

One of the key empirical results of this research concerns the cost-benefit analysis of
topological representations. While grid-based maps yield more accurate control, planning
with more abstract topological maps is several orders of magnitude more efficient. A
series of experiments showed that in a map of moderate size, the efficiency of planning
can be increased by three to four orders of magnitude, while the loss in performance
is negligible (e.g., 1.82%). We believe that the topological maps described here will
enable us to control an autonomous robot in multiple floors in our university building-
complex mission planning in environments of that size was intractable with our previous
methods.

Despite these encouraging results, there is a variety of important open questions that
warrant future research:

S. ThrudArtijcial Intelligence 99 (1998) 21-71 65

- Sensor dynamics. The current approach does not account for sensor drift or sensor
failure. Once trained, the weights of the interpretation network are frozen. However,
in principle it is possible to use a map to generate targets for the interpretation
network. As a result, the robot could constantly re-adjust its own interpretations.
Empirically, we have found our approach to be surprisingly robust with respect to
the failure of sensors.

- Other sensors. A second goal of future research is to incorporate other types of
sensors; in particular, sensors that do not measure proximity. In an initial study,
we extended the current approach by using a camera for floor segmentation and 24
infrared light sensors that measure proximity by measuring the intensity of reflected
light [9]. The Bayesian approach to sensor integration described in this paper is

flexible enough to accommodate other types of sensor information as well. In fact,
in our initial experiments we found that the grid-based maps were more accurate
when additional sensors were incorporated [1081.

- Dynamic environments. While the current approach robustly handles dynamics in
the environment (such as people, doors), it does not model them. It is an open
question as to how to incorporate models of moving objects into a grid-base rep-
resentation. A recent study [95] has demonstrated that “semi-dynamic obstacles”
(these. are obstacles such as doors, whose presence might change but which are
tight LO a certain location) can be modeled by a variance analysis of grid-cell
values. Further research is warranted to evaluate the robustness and utility of such
approaches, and to model moving objects such as humans.

A key disadvantage of grid-based methods, which is inherited by the approach presented
here, is the need for accurately determining the robot’s position. Since the difficulty of
position control increases with the size of the environment, one might be inclined

to think that grid-based approaches generally scale poorly to large-scale environments
(unless they are provided with an accurate map). Although this argument is convincing,
we are optimistic concerning the scaling properties of the approach taken here. The
largest cycle-free map that was generated with this approach was approximately 100
meters long; the largest single cycle measured approximately 60 by 20 meters. We are
not aware ‘of any purely topological approach to robot mapping that would have been
demonstrated to be capable of producing consistent maps of comparable size. Moreover,
by using more accurate sensors (such as laser range finders), and by re-estimating
robot positions backwards in time (which would be mathematically straightforward, but
is currently not implemented because of its enormous computational complexity), we
believe that maps can be learned and maintained for environments that are an order of

magnitude larger than those investigated here (cf. [1091) .
The app:roach described here has become part of a larger software package that is

now distributed through one of the major mobile robot suppliers in the US (Real World
Interface, Inc.) as the sole navigation software along with their B14 and B21 robots. It
is already in use at more than 10 academic and industrial sites, where it has successfully
mapped m,any different environments. An essential part of the software package is
a fast, reactive collision avoidance routine, which is described elsewhere [36]. The
advantage ‘of integrating a fast collision avoidance routine is that dynamic obstacles
and inaccuracies in the map do not lead to collisions. This module, combined with the

66 S. Thnm/Art$cial Intelligence 99 (1998) 21-71

mapping and planning approach described here, has found to navigate the robot reliably
and with a speed of up to 90cm/sec even in dynamic and cluttered environments. The
University of Bonn’s entry “RHINO” at the 1994 AAAI Mobile Robot Competition,
which won second price in the category “clean-up an office” and which was only
defeated by a team of three collaborating robots [11, relied crucially on the mapping
and exploration algorithms described in this paper (see [9,107,108]).

While this paper was being reviewed, the approach became part of the software
controlling a “museum tour-guide,” a mobile robot that was installed in cooperation

with the University of Bonn at the Deutsches Museum in Bonn. The robot’s task here
was to interact with and to provide tours to visitors. The robot successfully navigated
at an average speed of 35 cm/set and a maximum sped of 80 cm/set through a densely
crowded environment, traversing more than 18.5 km in six days. The robot’s ability
to map its environment in real-time and to re-plan concurrently, using some of the
techniques described in this paper, turned out to be essential for the robot’s success in
this highly dynamic environment.

Acknowledgements

The author wishes to thank the RHINO mobile robot group at the University of Bonn,

in particular Arno Bucken, Joachim Buhmann, Wolfram Burgard, Armin B. Cremers,
Dieter Fox, Dirk Hahnel, Dirk Schulz, Markus Giesenschlag, Thomas Hofmann, and

Wolli Steiner for inspiring discussion and their contributions to the RHINO project.
He specifically thanks Arno Bticken for re-implementing the techniques described in
Section 3 and verifying the results. Some of the low-level software (TCX [351 and
device drivers) were provided by the XAVIER mobile robot group at Carnegie Mellon
University, which is gratefully acknowledged. The author thanks Ben Kuipers and two
anonymous reviewers for helping him improving the presentation of the material. He
also thanks Torsten Ihle and one anonymous reviewer for pointing out two errors in
previous versions of this paper, and he acknowledges the steady and helpful support by

Real World Interface, Inc.

References

[I] T. Balch, G. Boone, T. Collins, H. Forbes, D. MacKenzie, J.C. Santamaria, 10, Ganymede and Callisto-

a multiagent robot janitorial team, AI Magazine 16 (1) (1995).

[21 A.G. Barto, S.J. Bradtke, S.P. Singh, Learning to act using real-time dynamic programming, Artificial

Intelligence 72 (1995) 81-138.
[31 K. Basye, T. Dean, L.P. Kaelbling, Learning dynamics: system identification for perceptually challenged

agents, Artificial Intelligence 72 (1995) 139-17 I.
[4] R.E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

[5] M. Betke, L. Gurvits, Mobile robot localization using landmarks, Technical Report SCR-94-TR-474,
Siemens Corporate Research, Princeton, NJ, 1993; also: IEEE Trans. Robotics and Automation (to

appear).
]6] J. Bondy, U. Murty, Graph Theory with Applications, Elsevier, New York, 1976.

]7] J. Borenstein, B. Everett, L. Feng, Navigating Mobile Robots: Systems and Techniques, A.K. Peters,

Ltd., Wellesley, MA, 1996.

S. ThrudArtQicial Intelligence 99 (1998) 21-71 61

[S] J. Borenstein and Y. Koren, The vector field histogram-fast obstacle avoidance for mobile robots,

IEEE .I. Robotics and Automation 7 (3) (1991) 278-288.

[9] J. Buhmann, W. Burgard, A.B. Cremers, D. Fox, T. Hofmann, F. Schneider, J. Strikos, S. Thrun, The

mobile robot Rhino, AI Magazine 16 (1) (1995).

[10 1 W. Burgard, D. Fox, D. Hennig, T. Schmidt, Estimating the absolute position of a mobile robot using

positicsn probability grids, in: Proceedings AAAI-96, Portland, OR AAAI Press/MIT Press, Menlo

Park, CA, 1996.

[1 I] W. Burgard, D. Fox, D. Hennig, T. Schmidt, Position tracking with position probability grids, in:

Proceedings 1st Euromicro Workshop on Advanced Mobile Robots, IEEE Computer Society Press,

1996.

[121 W. Burgard, D. Fox, S. Thrun, Active mobile robot localization, in: Proceedings IJCAI-97, Nagoya,

Japan, 1997.

[131 J. Canny, The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, 1987.

[14 1 J.F. Canny, B.R. Donald, Simplified Voronoi diagrams, Discrete Comput. Geom. 3 (1988) 219-236.

[151 R. Chatila, J.-P. Laumond, Position referencing and consistent world modeling for mobile robots, in:

Proceedings 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, 1985.

[161 H. Choset, Sensor based motion planning: the hierarchical generalized Voronoi graph, Ph.D. Thesis,

California Institute of Technology, Pasadena, CA, 1996.

[171 H. Choset, I. Konuksven, J.W. Burdick, Sensor based planning for a planar rod robot, in: Proceedings

IEEE/SICE/RSJ International Conference on Multisensor Fusion on Multisensor Fusion and Integration

for Intelligent Systems, Washington, DC, 1996.

1181 H. Choset, I. Konuksven, A. Rizzi, Sensor based planning: a control law for generating the generalized

Voronoi graph, in: Proceedings IEEE International Conference on Advanced Robotics, Washington,

DC, 1’396 (submitted).

[191 E. Chown, S. Kaplan, D. Kortenkamp, Prototypes, location, and associative networks (plan): towards

a unified theory of cognitive mapping, Cognitive Sci. 19 (1995) 1-51.

[20] L. Chrisman, Reinforcement learning with perceptual aliasing: the perceptual distinction approach, in:

Proceedings AAAI-92, San Jose, CA, AAAI Press/MIT Press, Menlo Park, CA, 1992.

[21] T.S. Collet, B.A. Cartwright, Landmark learning in bees, J. Comparative Physiology (January 1985).

[22] I.J. Cox, Blanche-an experiment in guidance and navigation of an autonomous robot vehicle, IEEE

Trans. Robotics and Automation 7 (2) (1991) 193-204.

[23] I.J. Cox, Modeling a dynamic environment using a bayesian multiple hypothesis approach, Artificial

Intelligence 66 (1994) 31 l-344.

1241 R.H. C&es, A.G. Barto, Improving elevator performance using reinforcement learning, in: D. Touretzky,

M. Mozer, M.E. Hasselmo (Ed%), Advances in Neural Information Processing Systems, Vol. 8, MIT

Press, Cambridge, MA, 1996.

[251 J. Crowley, World modeling and position estimation for a mobile robot using ultrasonic ranging, in:

Proceedings 1989 IEEE International Conference on Robotics and Automation, Scottsdale, AZ, 1989,

pp. 674680.

1261 P. Dayan, G.E. Hinton, Feudal reinforcement learning, in: J.E. Moody, S.J. Hanson, R.P. Lippmann

(Eds.), Advances in Neural Information Processing Systems, Vol. 5, Morgan Kaufmann, San Mateo,

CA, 1993.

[27] T.L. Clean, M. Boddy, An analysis of time-dependent planning, in: Proceeding AAAI-92, San Jose,

CA, AAAI Press/MIT Press, Menlo Park, CA, 1988, pp. 49-54.

[28] T.L. Dean, S.-H. Lin, Decomposition techniques for planning in stochastic domains, in: Proceedings

IJCAI-95, Montreal, Canada, 1995.

[291 B.N. Delaunay, Sur la sphere vide, Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka

Nauk ~:Bull. Acad. Sci. USSR) 7 (1934) 793-800.

[301 R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973.

1311 A. Elf&, Sonar-based real-world mapping and navigation, IEEE J. Robotics and Automation 3 (3)
(1987) 249-265.

[321 A. Elfes, Occupancy grids: a probabilistic framework for robot perception and navigation, Ph.D. Thesis,

Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 1989.

68 S. Thrun/Art$cial Intelligence 99 (1998) 21-71

[331 S. Engelson, Passive map learning and visual place recognition, Ph.D. Thesis, Department of Computer

Science, Yale University, New Haven, CT, 1994.

[341 S. Engelson, D. McDermott, Error correction in mobile robot map learning, in: Proceedings 1992 IEEE

International Conference on Robotics and Automation, Nice, France, 1992, pp. 2555-2560.

[35) C. Fedor, TCX. An interprocess communication system for building robotic architectures. Programmer’s

guide to version lO.xx, Carnegie Mellon University, Pittsburgh, PA, 1993.

1361 D. Fox, W. Burgard, S. Thrun, The dynamic window approach to collision avoidance, IEEE Robotics

and Automation (to appear); also: Technical Report IAI-TR-95-13, University of Bonn, 1995.

[37] T. Frohlinghaus, J.M. Buhmann, Real-time phase-based stereo for a mobile robot, in: Proceedings 1st

Euromicro Workshop on Advanced Mobile Robots, IEEE Computer Society Press, 1996.

[381 T. Frohlinghaus, J.M. Buhmann, Regularizing phase-based stereo, in: Proceedings 13th International

Conference on Pattern Recognition, Vienna, Austria, 1996.

[39] L.J. Guibas, D.E. Knuth, M. Sharir, Randomized incremental construction of Delaunay and Voronoi

diagrams, Algorithmica 7 (1992) 381-413; also in: Proceedings 17th International Colloquium on

Automata, Languages and Programming, Warwick, England, 1990, pp. 414-431.

1401 J.-S. Gutmann, Vergleich von Algorithmen zur Selbstlokalisierung eines mobilen Roboters, Master’s

[411

1421

L431

[441

[451

L461

[471

1481

1491

l501

1511

1521

[531

1541

[551

1561

Thesis, University of Ulm, Ulm, Germany, 1996.

D. Guzzoni, A. Cheyer, L. Julia, K. Konolige, Many robots make short work, Al Magazine 18 (1)

(1997) 55-64.

J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley,

Redwood City, CA, 1991.

R. Hinkel, T. Knieriemen, Environment perception with a laser radar in a fast moving robot, in:

Proceedings Symposium on Robot Control, Karlsruhe, Germany, 1988, pp. 68.1-68.7.

R. Holte, T. Mkadmi, R.M. Zimmer, A.J. MacDonald, Speeding up problem solving by abstraction: a

graph oriented approach, Artificial Intelligence 85 (1996) 321-361.

R.A. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA/Wiley, New

York, 1960.

L.P. Kaelbling, Hierarchical learning in stochastic domains: preliminary results, in: P.E. Utgoff (Ed.),

Proceedings 10th International Conference on Machine Learning, Amherst, MA, Morgan Kaufmann,

San Mateo, CA, 1993, pp. 167-173.

L.P. Kaelbling, A.R. Cassandra, J.A. Kurien, Acting under uncertainty: Discrete bayesian models for

mobile-robot navigation, in: Proceedings of the lEEE/RSJ International Conference on Intelligent

Robots and Systems, 1996.

L.P. Kaelbling, M.L. Littman, A.W. Moore, An introduction to reinforcement learning, in: L. Steels

(Ed.), The Biology and Technology of Intelligent Autonomous Agents, Springer, Berlin, 1995, pp. 90-

127.

R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME J. Basic

Engineering 82 (1960) 3545.

L. Kavraki, J.-C. Latombe, Randomized preprocessing of configuration space for fast path planning,

in: lEEE International Conference on Robotics and Automation, San Diego, CA, 1994, pp. 2138-2145.

S. King, C. Weiman, Helpmate autonomous mobile robot navigation system, in: Proceedings SPIE

Conference on Mobile Robots, Boston, MA, 1990, Vol. 2352, pp. 190-198.

C.A. Knoblock, Automatically generating abstractions for planning, Artificial Intelligence 68 (1994)

243-302.

S. Koenig, R. Simmons, Passive distance learning for robot navigation, in: L. Saitta (Ed.), Proceedings

13th International Conference on Machine Learning, Bari, Italy, 1996.

D. Kortenkamp, R.P. Bonassi, R. Murphy (Eds.), Al-based Mobile Robots: Case Studies of Successful

Robot Systems, MIT Press, Cambridge, MA (to appear).

D. Kortenkamp, I. Nourbakhsh, D. Hinkle, The 1996 AAAI Mobile Robot Competition and Exhibition,

Al Magazine 18 (1) (1997) 25-32.

D. Kortenkamp, T. Weymouth, Topological mapping for mobile robots using a combination of sonar

and vision sensing, in: Proceedings AAAI-94, Seattle, WA, AAAI Pm&MIT Press, Menlo Park, CA,

1994, pp. 979-984.

S. Thrun/Artificial Intelligence 99 (1998) 21-71 69

[57] R. Kuc, M.W. Siegel, Physically based simulation model for acoustic sensor robot navigation, IEEE

Trans. Pattern Recognition Machine lntell. (1987).

[S8] B. Kuipers, Y.-T. Byun, A robust qualitative method for spatial learning in unknown environments, in:

Proceedings AAAI-88, St. Paul, MN, AAAI Press/MIT Press, Menlo Park, CA, 1988.

[59] B.J. Kuipers, Y.-T. Byun, A robot exploration and mapping strategy based on a semantic hierarchy of

spatial representations, Robotics and Autonomous Systems 8 (1991) 47-63.

1601 B.J. Kuipers, T.S. Levitt, Navigation and mapping in large-scale space, Al Magazine 9 (2) (1988)

2543.

[61] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, MA, 1991.

[621 J.J. Leonard, H.F. Durrant-Whyte, Directed Sonar Sensing for Mobile Robot Navigation, Kluwer
Academic Publishers, Boston, MA, 1992.

[63] J.J. Leonard, H.F. Durrant-Whyte, I.J. Cox, Dynamic map building for an autonomous mobile robot,

Intern&. J. Robotics Res. 11 (4) (1992) 89-96.

1641 L.-J. Lin, Self-supervised learning by reinforcement and artificial neural networks, Ph.D. Thesis,

Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, 1992.

1651 L. Ljung, System Identification-Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[66] F. Lu, E. Milios, Globally consistent range scan alignment for environment mapping, Autonomous

Robots 4 (1997) 333-349.

[67] F. Lu, E. Milios, Robot pose estimation in unknown environments by matching 2d range scans, J.

Intelligent and Robotic Systems (to appear).

1681 M.J. Ma&ii, A distributed model for mobile robot environment-learning and navigation, Master’s

Thesi:r, MIT, Cambridge, MA, 1990; also: MIT, Al Lab, Technical Report AITR-1228.

[69] R.A. McCallum, Instance-based state identification for reinforcement learning, in: G. Tesauro, D.

Touretzky, T. Leen (Ed%), Advances in Neural Information Processing Systems, Vol. 7, MIT Press,

Camt’ridge, MA, 1995.

[70] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.

[711 A.W. Moore, The parti-game algorithm for variable resolution reinforcement learning in

multidimensional state-spaces, in: J.D. Cowan, G. Tesauro, J. Alspector (Eds.), Advances in Neural

Information Processing Systems, Vol. 6, Morgan Kaufmann, San Mateo, CA, 1994, pp. 71 l-718.

[721 A.W. Moore, C.G. Atkeson, Prioritized sweeping: reinforcement learning with less data and less time,

Machine Learning 13 (1993) 103-130.

1731 HP. Moravec, Sensor fusion in certainty grids for mobile robots, Al Magazine 9 (2) (1988) 61-74.

[741 H.P. Moravec, A. Elfes, High resolution maps from wide angle sonar, in: Proceedings IEEE International

Conference on Robotics and Automation, St. Louis, MO, 1985, pp. 116-121.

[75] M.C. Mozer, J.R. Bachrach, Discovering the structure of a reactive environment by exploration,

Technical Report CU-CS-451-89, Department of Computer Science, University of Colorado, Boulder,

co, 1989.

[76] U. Nehmzow, T. Smithers, J. Hallam, Location recognition in a mobile robot using self-organizing

feature maps, in: G. Schmidt (Ed.), Information Processing in Autonomous Mobile Robots, Springer,

Berlin, 1991.

1771 H. Neven, G. Schliner, Dynamics parametrically controlled by image correlations organize robot

navigation, Biological Cybernetics (to appear).

[781 N.J. Vilsson, Principles of Artificial Intelligence, Springer, Berlin, 1982.

[79] 1. Nourbakhsh, R. Powers, S. Birchfield, DERVISH an office-navigating robot, Al Magazine 16 (2)

(1995) 53-60.

[80] C. O’Ddnlaing, C.K. Yap, A retraction method for planning the motion of a disk, J. Algorithms 6

(1982) 104-111.

[Sl] C.W. Omlin and CL. Giles, Constructing deterministic finite-state automata in recurrent neural

netwl>rks, J. ACM 45 (6) (1996) 937.

1821 J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan
Kaufmann, San Mateo, CA, 1988.

1831 L. Peters, H. Surmann, S. Guo, K. Beck, J. Huser, Moria fuzzy Logik gesteuertes, autonomes Fahrzeug,

1994.

70 S. Thrun/Art@cial Intelligence 99 (1998) 21-71

(841 D. Pierce, B.J. Kuipers, Learning to explore and build maps, in: Proceedings AAAI-94, Seattle, WA,
AAAI Press/MIT Press, Menlo Park, CA, 1994, pp. 1264-1271.

[85 1 D.A. Pomerleau, Knowledge-based training of artificial neural networks for autonomous robot driving,

in: J.H. Connell, S. Mahadevan (Eds.), Robot Learning, Kluwer Academic Publishers, Dordrecht, 1993,

pp. 19-43.

]86] M.L. Puterman, Markov Decision Processes, John Wiley & Sons, New York, 1994.

[87 I L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, in:
Proc. IEEE, 1989 (IEEE Log Number 8825949).

[88] J.H. Reif, Complexity of the mover’s problem and generalizations, in: Proceedings 20th Annual IEEE
Symposium on Foundations of Computer Science, 1979, pp. 421-427.

[891 W.D. Rencken, Concurrent localisation and map building for mobile robots using ultrasonic sensors, in:
Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan,

1993, pp. 2129-2197.

1901 R.L. Rivest, R.E. Schapire, Diversity-based inference of finite automata, in: Proceedings 28th Annual
IEEE Symposium on Foundations of Computer Science, Los Angeles, CA, 1987.

]9 I 1 R.L. Rivest, R.E. Schapire, A new approach to unsupervised learning in deterministic environments,

in: P. Langley (Ed.), Proceedings 4th International Workshop on Machine Learning, Irvine, CA, 1987,

pp. 364375.

1921 D.E. Rumelhart, GE. Hinton, R.J. Williams, Learning internal representations by error propagation, in:

D.E. Rumelhart, J.L. McClelland, and the PDP Research Group (Eds.), Parallel Distributed Processing,

Vols. I and II, MIT Press, Cambridge, MA, 1986.

1931 S. Russell, P. Norvig, Artificial Intelligence: A Modem Approach, Prentice-Hall, Englewood Cliffs, NJ,

1995.

[941 B. Schiele, J. Crowley, A comparison of position estimation techniques using occupancy grids, in:

Proceedings IEEE International Conference on Robotics and Automation, San Diego, CA, 1994,

pp. 162X-1634.

195 1 F.E. Schneider, Sensorinterpretation und Kartenerstellung fur mobile Roboter, Master’s Thesis,
Department of Computer Science III, University of Bonn, 1994.

1961 J.T. Schwartz, M. Scharir, J. Hopcroft, Planning, Geometry and Complexity of Robot Motion, Ablex

Publishing Corporation, Norwood, NJ, 1987.

[97] H Shatkay, L. Kaelbling, Learning topological maps with weak local odometric information, in:

Proceedings IJCAI-97, Nagoya, Japan, 1997.

1981 D. Shepard, A two-dimensional interpolation function for irregularly spaced data, in: Proceedings 23rd

National Conference of the ACM, 1968, pp. 517-523.

[991 R. Simmons, The 1994 AAAI Robot Competition and Exhibition, AI Magazine 16 (1) (1995).

[1001 R. Simmons, S. Koenig, Probabilistic robot navigation in partially observable environments, in:

Proceedings IJCAI-95, Montreal, Quebec, 1995, pp. 1080-1087.

[1011 S.P. Singh, Transfer of learning by composing solutions for elemental sequential tasks, Machine

Learning 8 (1992).

[1021 R.S. Sutton (Ed.), Reinforcement Learning, Kluwer Academic Publishers, Boston, MA, 1992.

[1031 G.J. Tesauro, Practical issues in temporal difference learning, Machine Learning 8 (1992).

[1041 S. Thrun, Exploration and model building in mobile robot domains, in: E. Ruspini (Ed.), Proceedings
ICNN-93, IEEE Neural Network Council, San Francisco, CA, 1993, pp. 175-180,

[1051 S. Thrun, A Bayesian approach to landmark discovery and active perception for mobile robot
navigation, Technical Report CMU-CS-96-122, Carnegie Mellon University, School of Computer

Science, Pittsburgh, PA, 1996.

[1061 S. Thrun, To know or not to know: on the utility of models in mobile robotics, AI Magazine 1X (1)
(1997) 47-54.

[1071 S. Thrun, A. Btlcken, Integrating grid-based and topological maps for mobile robot navigation, in:
Proceedings AAAI-96, Portland, OR, AAAI Press/MIT Press, Menlo Park, CA, 1996.

[10X] S. Thrun, A. Bbcken, W. Butgard, D. Fox, T. Frijhlinghaus, D. Hennig, T. Hofmann, M. Krell, T.
Schimdt, Map learning and high-speed navigation in RHINO, in: D. Kortenkamp, R.P. Bonasso, R.

Murphy (Eds.), Al-based Mobile Robots: Case Studies of Successful Robot Systems. MIT Press,
Cambridge, MA (to appear),

S. Thrun/Art$cial Intelligence 99 (1998) 21-71 11

{ 1091 S. Thrun, D. Fox, W. Burgard, A probabilistic approach to concurrent mapping and localization for

mobile robots, Machine Learning and Autonomous Robots (joint issue), to appear.

[1 IO] S. Thrun, A. Schwartz, Finding structure in reinforcement learning, in: G. Tesauro, D. Touretzky, T.

Leen (Eds.), Advances in Neural Information Processing Systems, Vol. 7, MIT Press, Cambridge, MA,

1995.

[Ill] M.C. Torrance, Natural communication with robots, Master’s Thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, 1994.

[1121 S. U&pa, Collision detection and avoidance in computer controlled manipulators, Ph.D. Thesis,

Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA, 1977.

[1131 V. Vapnik, Estimations of Dependences Based on Statistical Data, Springer, Berlin, 1982.

[1 14] P. Wallossek, Realistische Simulation eines mobilen Roboters in Echtzeit, Master’s Thesis, Department

I1151

I1161

[1171

[1181

(1191

11201

11211

of Computer Science III, University of Bonn, 1995.

G. WeiS, C. Wetzler, E. von Puttkamer, Keeping track of position and orientation of moving indoor

systems by correlation of range-finder scans, in: Proceedings International Conference on Intelligent

Robots and Systems, 1994, pp. 595-601.

S. Whitehead, J. Karlsson, J. Tenenberg, Learning multiple goal behavior via task decomposition and

dynamic policy merging, in: J.H. Connell, S. Mahadevan (Eds.), Robot Learning, Kluwer Academic

Publishers, Dordrecht, 1993, pp. 45-78.

E. Wolfart, R.B. Fisher, A. Walker, Position refinement for a navigating robot using motion information

based. on honey bee strategies, in: Proceedings International Symposium on Robotic Systems (SIR 95),

Pisa, Italy, 1995; also: DA1 Research Paper No 751, Department of Artificial Intelligence, University

of Edinburgh, ScotIand.

B. Yamauchi, R. Beer, Spatial learning for navigation in dynamic environments, in: Learning

Autonomous Robots (special issue), IEEE Trans. Systems Man Cybemet.-Part B: Cybernetics (1996);

also: http://www.aic.nrl.navy.miI/-yamauchi/.

B. Yamauchi, P. Langley, Place recognition in dynamic environments, in: Mobile Robots (special

issue), J. Robotic Systems (to appear); also: http://www.aic.nrl.navy.mil/~yamauchi/.

W. Zhang, T.G. Dietterich, High-performance job-shop scheduling with a time-delay td(lambda)

network, in: D. Touretzky, M. Mozer, M.E. Hasseimo (Eds.), Advances in Neural Information

Processing Systems, Vol. 8, MIT Press, Cambridge, MA, 1996, pp. 1024-1030.

U.R. Zimmer, Robust world-modeling and navigation in a real world, Neurocomput. 13 (24) (1996).

