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Abstract 

Autonomous robots must be able to learn and maintain models of their environments. Research 
on mobile robot navigation has produced two major paradigms for mapping indoor environments: 
grid-based and topological. While grid-based methods produce accurate metric maps, their com- 
plexity often prohibits efficient planning and problem solving in large-scale indoor environments. 
Topological maps, on the other hand, can be used much more efficiently, yet accurate and con- 
sistent topological maps are often difficult to learn and maintain in large-scale environments, 
particularly if momentary sensor data is highly ambiguous. This paper describes an approach that 
integrates both paradigms: grid-based and topoIogica1. Grid-based maps are learned using artificial 
neural networks and naive Bayesian integration. Topological maps are generated on top of the 
grid-based maps, by partitioning the latter into coherent regions. By combining both paradigms, 
the approach presented here gains advantages from both worlds: accuracy/consistency and effi- 
ciency. The paper gives results for autonomous exploration, mapping and operation of a mobile 
robot in populated multi-room environments. @ 1998 Elsevier Science B.V. 
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1. Introduction 
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To efficiently carry out complex missions in indoor environments, autonomous mobile 
robots must be able to acquire and maintain models of their environments. The problem 

of acquiring models is difficult and far from being solved. The following factors impose 
practical limitations on a robot’s ability to learn and use accurate models: 

(i) Sensors. Sensors often are not capable of directly measuring the quantity of 
interest. For example, cameras measure color, brightness and saturation of light, 
whereas for navigation one might be interested in assertions such as “there is a 

door in front of the robot.” 

(ii) Perceptual limitations. The perceptual range of most sensors (such as ultrasonic 
transducers, cameras) is limited to a small range around the robot. To acquire 
global information, the robot has to actively explore its environment. 

(iii) Sensor noise. Sensor measurements are typically corrupted by noise. Often, the 
distribution of this noise is not known. 

(iv) Drift/slippage. Robot motion is inaccurate. Unfortunately, odometric errors accu- 
mulate over time. For example, even the smallest rotational errors can have huge 

effects on subsequent translational errors when estimating the robot’s position. 
(v) Complexity and dynamics. Robot environments are complex and dynamic, mak- 

ing it principally impossible to maintain exact models and to predict accurately. 
(vi) Real-time requirements. Time requirements often demand that internal models 

must be simple and easily accessible. For example, accurate fine-grain CAD 

models of complex indoor environments are often inappropriate if actions have 
to be generated in real-time. 

Recent research has produced two fundamental paradigms for modeling indoor robot en- 

vironments: the grid-based (metric) paradigm and the topological paradigm. Grid-based 
approaches, such as those proposed by Moravec and Elfes [ 3 1,32,73] and Borenstein 
and Koren [ 81 and many others, represent environments by evenly-spaced grids. Each 
grid cell may, for example, indicate the presence of an obstacle in the corresponding 
region of the environment. Topological approaches, such a those proposed by Kuipers 
and Byun, MatariC and others [ 34,56,59,68,84,111,118,121], represent robot envi- 
ronments by graphs. Nodes in such graphs correspond to distinct situations, places, or 
landmarks (such as doorways). They are connected by arcs if there exists a direct path 
between them. 

Both approaches to robot mapping exhibit orthogonal strengths and weaknesses. 
Occupancy grids are easy to construct and to maintain in large-scale environments 
[9,107,108]. Occupancy grid approaches disambiguate different places based on the 
robot’s geometric position within a global coordinate frame. The robot’s position is 
estimated incrementally, based on odometric information and sensor readings taken by 
the robot. Thus, occupancy grid approaches usually use an unbounded number of sensor 
readings to determine a robot’s location. To the extent that the position of a mobile robot 
can be tracked accurately, different positions for which sensors measurements look alike 
are naturally disambiguated. Nearby geometric places are recognized as such, even if the 
sensor measurements differ-which is often the case in dynamic environments where, 
e.g., humans can block a robot’s sensors. 
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Advantages and disadvantages of grid-based and topological approaches to map building 

Grid-based (metric) approaches Topological approaches 

easy to build, represent, and maintain + 
recognition of places (based on geometry) is non- 
ambiguou:s and view point-independent 
facilitates computation of shortest paths + 

+ 

planning inefficient, space-consuming (resolution - 
does not depend on the complexity of the envi- 
ronment) _ 

requires accurate determination of the robot’s po- 
sition _ 

poor interface for most symbolic problem solvers 

permits efficient planning, low space complexity 
(resolution depends on the complexity of the en- 
vironment) 
does not require accurate determination of the 
robot’s position 
convenient representation for symbolic plan- 
ner/problem solver, natural language 

difficult to construct and maintain in large-scale 
environments if sensor information is ambiguous 
recognition of places often difficult, sensitive to 
the point of view 
may yield suboptimal paths 

This is not the case for topological approaches. Topological approaches determine the 
position of the robot relative to the model primarily based on landmarks or distinct, mo- 
mentary sensor features. For example, if the robot traverses two places that look alike, 

topological approaches often have difficulty determining if these places are the same 
or not (particularly if these places have been reached via different paths). Also, since 

sensory input usually depends strongly on the view-point of the robot, topological ap- 
proaches may fail to recognize geometrically nearby places even in static environments, 
making it difficult to construct large-scale maps, particularly if sensor information is 
highly ambiguous. 

On the other hand, grid-based approaches suffer from their enormous space and time 
complexity. This is because the resolution of a grid must be fine enough to capture 
every important detail of the world. The key advantage of topological representation 
is their compactness. The resolution of topological maps corresponds directly to the 
complexity of the environment. The compactness of topological representations gives 

them three key advantages over grid-based approaches: (a) they permit fast planning, 
(b) they facilitate interfacing to symbolic planners and problem-solvers, and (c) they 
provide more natural interfaces for human instructions (such as: “go CO room A”). Since 

topological approaches usually do not require the exact determination of the geometric 
position of the robot, they often recover better from drift and slippage-phenomena that 
must constantly be monitored and compensated in grid-based approaches. To summarize, 
both paradigms have orthogonal strengths and weaknesses, which are summarized in 
Table 1. 

This paper advocates the integration of both paradigms to gain the best of both 
worlds (see also [ 151). The approach presented here combines grid-based (metric) 
and topological representations. To construct a grid-based model of the environment, 
sensor values are interpreted by an artificial neural network and mapped into probabil- 
ities for occupancy. Multiple interpretations are integrated over time using Bayes rule. 
On top of the grid representation, more compact topological maps are generated by 
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Fig. 1. The robots used in our research: RHINO (University of Bonn), XAVIER, and AMELIA (both CMU) 
The software has also been ported to RWI’s B14 robots. 

splitting the metric map into coherent regions, separated through critical lines. Critical 
lines correspond to narrow passages such as doorways. By partitioning the metric map 
into a small number of regions, the number of topological entities is several orders 
of magnitude smaller than the number of cells in the grid representation. Therefore, 

the integration of both representations has unique advantages that cannot be found for 
either approach in isolation: the grid-based representation, which is easy to construct 
and maintain in environments of moderate size and complexity, models the world con- 
sistently and disambiguates different positions. The topological representation, which 
is grounded in the metric representation, facilitates fast planning and problem solv- 

ing. The approach also inherits two disadvantages of grid-based approaches, namely 
the considerably larger memory requirements and the necessity for accurate localiza- 
tion. 

The robots used in our research are shown in Fig. 1. All robots are equipped with 
an array of sonar sensors, consisting of 24 or 16 sonars. Sonar sensors return the prox- 
imity of surrounding obstacles, along with noise. One of these robots (AMELIA) is 
also equipped with a laser range finder, which measures proximity of nearby objects 
with higher spatial resolution. Throughout this paper, we will restrict ourselves to the 
interpretation of proximity sensors, although the methods described here have (in a 
prototype version) also been operated using cameras and infrared light sensors in ad- 
dition to sonar sensors, using the image segmentation approach described in [ 9 1. The 

integrated approach to map building has been tested extensively using sonar sensors in 
various indoor environments. It is now distributed commercially by a leading mobile 

robot manufacturer (Real World Interface, Inc.) as the sole navigation software along 
with their B14 and B21 robots. 

The remainder of the paper is organized as follows: Section 2 describes our approach 
for building grid-based maps; followed by the description of our approach to building 
topological maps, described in Section 3; subsequently, Section 4 evaluates the utility 
of the integrated approach empirically; Section 5 reviews relevant literature; the paper 
is concluded by a discussion in Section 6. 
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2. Grid-based maps 

The metric maps considered here are discrete, two-dimensional occupancy grids, as 
originally proposed in [ 3 1,731. Occupancy grids have been implemented successfully 
in various systems. Each grid-cell (x, y) in a map has attached a value that mea- 
sures the subjective belief that this cell is occupied. More specifically, it contains the 
belief as to whether or not the center of the robot can be moved to the center of 
that cell (it thus represents the configuration space of the robot projected into the 
x-y-plane, see e.g., [ 61, 1121) . Occupancy values are determined based on sensor read- 

ings. 
This section describes the four major components of our approach to building grid- 

based maps [ 32,104] : 
(i) Interpretation. Sensor readings are mapped to occupancy values. 

(ii) Integration. Multiple sensor interpretations are integrated over time to yield a 

single, combined estimate of occupancy. 
(iii) Position estimation. The position of the robot is continuously tracked and odo- 

metric errors are corrected. 
(iv) Exploration. Shortest path through unoccupied regions are generated to move 

the robot greedily towards unexplored terrain. 

Examples of metric maps are shown in various places in this paper. 

2.1. Sensor interpretation 

To build metric maps, sensor reading must be “translated” into occupancy values 

OCCXJ for each grid cell (x, y). The idea here is to train an artificial neural network 
[ 921 using Back-Propagation to map sonar measurements to occupancy values [ 1041. 
As shown in Fig. 2, the input to the network consists of 

- two values that encode (x, y) in polar coordinates relative to the robot (angle to 

the first of the four sensors, and distance), and 
- the four sensor readings closest to (x, y). 

The output target for the network is 1, if (x, y) is occupied, and 0 otherwise. Train- 
ing examples can be obtained by operating a robot in a known environment, while 
recording its sensor readings. Notice that each sonar scan can be used to construct 

many training examples for different x-y coordinates. In our implementation, training 
examples are generated by a mobile robot simulator to facilitate the collection of the 

data. ’ 

.7 Our simu:lator simulates sonar sensors in the following way: The main sonar cone-and only this cone 

is considerecl-is approximated by a set of five rays. For each ray, one of the following options is chosen 

at random: I 1) a random short value is repotted, (2) the correct distance is returned, and (3) a random 
large value i:; returned. The probability of these events depends on the angle between the ray and the surface 

normal of the obstacle. The simulator returns the shortest of those five values. This model was adopted based 

on a series of empirical measurements [ 1141. The current simulator does not model (1) cones other than the 

main cone, (2) reflections involving more than one obstacle, (3) cross-sonar interference, and (4) temporal 

dependencies. in sensor noise (cf. [57] ). Nevertheless, the networks trained with our simulator generate good 

interpretations, as demonstrated throughout this paper. 
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f f f f an&LY) 
4 sensor values& t 

distance(x,y) 

Fig. 2. An artificial neural network maps sensor measurements to probabilities of occupancy. 

Once trained, the network generates values in [ 0, 1 ] that can be interpreted as prob- 
ability of occupancy. Formally, the interpretation of the network’s output as conditional 
probability of a binary event is justified if the network is trained to minimize cross- 
entropy; we refer the interested reader to page 167 of Mitchell’s textbook [70], which 
demonstrates that networks trained in this way approximate the maximum likelihood 

hypothesis [ 30,113]. 
Fig. 3 shows three examples of sonar scans (top row, bird’s eye view) along with 

their neural network interpretation (bottom row). The darker a value in the circu- 

lar region around the robot, the larger the occupancy value computed by the net- 
work. Figs. 3(a) and 3 (b) show situations in a corridor. Here the network predicts 
the walls correctly. Notice the interpretation of the erroneous long reading in the left 
side of Fig. 3(a), and the erroneous short reading in Fig. 3(b). For the area cov- 
ered by those readings, the network outputs roughly 0.5, which indicates maximum 
uncertainty. Fig. 3(c) shows a different situation in which the interpretation of the 
sensor values is less straightforward. This example illustrates that the network inter- 
prets sensors in the context of neighboring sensors. Long readings are only interpreted 
as free-space if the neighboring sensors agree. Otherwise, the network returns values 
close to 0.5, which again indicates maximal uncertainty. Situations such as the one 
shown in Fig. 3(c)-that defy simple interpretation-are typical for cluttered indoor 
environments. 

Training a neural network to interpret sonar sensors has two key advantages over 
previous hand-crafted approaches to sensor interpretation: 
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60 (b) 

Fig. 3. Sensor interpretation: Three sample sonar scans (top row) and local occupancy maps (bottom row), 

as generated by the neural network. Bright regions indicate free-space, and dark regions indicate walls and 

obstacles (enlarged by a robot diameter). 

(i> 

(ii) 

Since neural networks are trained based on examples, they can easily be adapted 
to new circumstances. For example, the walls in the competition ring of the 
1994 AAAI Robot Competition [ 991 were. much smoother than the walls in 
the building in which the software was originally developed. Even though time 
was short, the neural network could quickly be retrained to accommodate this 
new situation. Others, such as Pomerleau [ 851, also report a significant decrease 
in development time of integrated robotic systems through the use of machine 
learning algorithms. 
Multiple sensor readings are interpreted simultaneously. To the best of our 
knowledge, all current approaches interpret each sensor reading individually, 
one at a time (see, e.g., [ 8,31,32,73] ). Interpreting sensor readings in the 
context of their neighbors generally yields more accurate results. For exam- 
ple, the reflection properties of most surfaces depends strongly on the an- 
gle of the surface to the sonar beam, which can be detected by interpreting 
multiple sonar sensors simultaneously. The neural networks take such phe- 
nomena into account. For example, they ignore long readings if their neigh- 
bors suggest that the angle between the sonar cone and the surface normal is 

large. 

2.2. Integration over time 

Sonar interpretations must be integrated over time to yield a single, consistent map. 
To do so, it is convenient to interpret the network’s output for the tth sensor reading 
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(denoted by s(‘) ) as the probability that a grid cell (x, y) is occupied conditioned on 
the sensor reading s(‘): 

Prob(occ,,,Is(‘)). 

A map is obtained by integrating these probabilities for all available sensor readings, 

denoted by s(l), d’), . . . , dT). In other words, the desired occupancy value for each grid 
cell (x, y) can be written as the probability 

Prob(occ,,!,Is(1),s(2), . . . ,dT)), 

which is conditioned on all sensor readings. A straightforward approach to estimating 

this quantity is to apply Bayes rule. To do so, one has to assume independence of the 
noise in different readings. More specifically, given the true occupancy of a grid cell 
(x, y), the conditional probability Prob( s(‘) ~occ,,~) must be assumed to be independent 

of Prob(s(“)[occ,,) if t # t’. This assumption is not implausible-in fact, it is com- 
monly made in approaches to building occupancy grids. It is important to note that the 
conditional independence assumption does not imply the independence of Prob(s(‘)) 
and Prob(s(“)). The latter two random variables are usually dependent. 

The desired probability can be computed in the following way: 

Prob(occ,,YIs(1),s(2), . . . , dT)) 

Prob(occ,,,ls(‘)) r 
rI 

Prob(occ,,#‘)) 1 - Prob(occ,,,,) -’ 

1 - Prob(occ,,,ls(‘)) 7=2 1 - Prob(occx,YIs(‘)) Prob(occ,,Y) > ’ 

(1) 

Here Prob(occx,Y) denotes the prior probability for occupancy (which, if set to 0.5, can 

be omitted in this equation). 
The update formula ( 1) follows directly from Bayes rule and the conditional inde- 

pendence assumption. According to Bayes rule, 

Prob(occ,,,,Is(‘), . . . , dT)) 

Prob( ~occ,,, Is(‘), . . . , dT’ ) 

Prob(s(T)locc,,Y, s(l), . . . , dT-‘)) Prob(occ,&(‘), . . . , dT-‘)) 

= Prob(s(T)I~occ,,y,s(l), . . . , s(r-I)) Prob(loccx,YIs(l), . . . ,dT-‘)) 

which can be simplified by virtue of the conditional independence assumption to 

Prob(s(r)locc,,) Prob(occ,,ls(‘), . . . , dT-‘)) 

= Prob(s(r)ITocc,,,) Prob(yocc,,,ls(i), . . . ,dT-‘)) * 

Applying Bayes rule to the first term leads to 

Prob(occx,YIs(T)) Prob(locc,,Y) Prob(occ,,~js(‘), . . . , s(~-‘)) 

= Prob(~occ,,,Is (r)) Prob(occx,Y) Prob(~occ,,,ls(‘), . . . , scT--l)) ’ 
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Fig. 4. If there were no odometric errors, huge maps could be built with ease. Shown here is a map of the size 
105 by 63 meters, which the robot learned fully autonomously in approximately 45 minutes, using the map 
building and exploration algorithms described in this paper. The higher a point in the map, the more likely it 
is to be occupied. This map has been built using a simulator. The simulator uses a fairly realistic sonar noise 
model, but here it does not model odometric error. 

Induction over T yields: 

Rob(occx,y) ’ rI 
Prob(occ,,_,,]s(r)) 

= 
1 - Prob( occ,,Y) 

1 - Prob(dcc,,y) ,._, 1 - Prob(occ,,Js(r)) Prob(acc,,,) . 
(2) 

The update equation ( 1) is now obtained by solving (2) for Prob( occ,,,, Is(‘), . . . , dT) ) , 
using the fact that Prob(loccX,ujs(l), . . . , dT)) = 1 - Prob(occX,Y]s(‘), . . . ,#). This 
probabilistic update rule, which is sound given our conditional independence assumption, 
is frequently used for the accumulation of sensor evidence [ 73,821. It differs from Bayes 
networks [ 821 in that albeit the fact that occupancy causally determines sensor readings 
{~(~)},i,,.,,r and not the other way round, the networks represent the inverse conditional 
probability: Prob(occ,,,,Is(‘)). Notice that Eq. ( 1) can be used to update occupancy 
values incrementally, i.e., at any point in time r it suffices to memorize a single value 
per grid cell: Prob(occX,Yls(l), s(*), . . . , dT)). Technically speaking, this single value is 

a sufJicientstatistic for s(i),s(*),...,sC7) [113]. 
Fig. 4 shows an example map. Although this figure appears to be three-dimensional, 

the actual map is two-dimensional: The higher a point, the more likely it is to be 
occupied. This map was built using a simulator in order to investigate map building in 
the absence of odometric errors-all other maps shown in this paper were constructed 
using a real robot. In this particular run, the simulator did not introduce odometric errors; 
it did, however, model noise in perception. The map shown in Fig. 4 is approximately 105 
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by 63 meters in size and was acquired in 45 minutes of autonomous robot exploration. 
The algorithm used for exploration is described below. As can be seen in Fig. 4, the 
neural network approach to interpreting sensor data combined with the probabilistic 
method for integrating them yield quite accurate maps. In the presence of odometric 
errors maps are usually less accurate. 

2.3. Localization 

The accuracy of the metric map depends crucially on the alignment of the robot with 

its map. Unfortunately, slippage and drift can have devastating effects on the estimation 
of the robot position. Identifying and correcting for slippage and drift (odometric error) 
is therefore an important issue in map building [7,22,89]. 

Figs. 5 and 10 give examples that illustrate the importance of position estimation 

in grid-based robot mapping. For example, in Fig. 5(a) the position is determined 
solely based on dead-reckoning. After approximately 15 minutes of robot operation, 

the position error is approximately 11.5 meters. Obviously, the resulting map is too 
erroneous to be of practical use. The map shown in Fig. 5(b), constructed from the 
identical data, is the result of exploiting and integrating three sources of information: 

(9 

(ii) 

Wheel encoders. Wheel encoders measure the revolution of the robot’s wheels. 
Based on their measurements, odometry yields an estimate of the robot’s position 
at any point in time. We will denote this estimate by (~&,r, y,&,r, tYk&. As 
can be seen from Fig. 5(a) and 10(b), odometry is very accurate over short 
distances, but it is inaccurate in the long run. 
Map matching. Whenever the robot interprets an actual sensor reading, it con- 
structs a “local” map (such as the ones shown in Fig. 3). The correlation of 
the local and the corresponding section of the global map is a measure of their 
correspondence. Obviously, the more correlated the two maps are, the more 
alike the local map looks to the global one, hence the more plausible it is. The 
correlation is a function of the robot’s position (~r~,,~r, ~p~~,,r, O&,ot). Thus, the 
correlation of the local with the global map gives a second source of information 
for aligning the robot’s position. 

Technically, local maps are computed in local, robot-centered coordinates, 
whereas global maps are computed in a global coordinate system. As a result, 
each grid cell of the global map that overlaps with the local map, overlaps 
almost always with exactly four grid cells of the local map, as shown in Fig. 7. 
Let (x, y) be the coordinates of a cell in the global map which overlaps with 
the local map, and let (x’, y’) denote the corresponding coordinates in the local 

map. Let (x;, y;) with i = 1, . . . ,4 denote the coordinates of the four grid points 
in the local map that are nearest to (x’, y’) (which are unique with probability 
1) . The global occupancy occ,?, is then matched with the local occupancy value 
obtained using the following interpolation: 

c;, 1.x - &I IY - Yil lococcx,.v, 

c;~~I~-xillY-Yil . 
(3) 
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tb) 

Fig. 5. Map constructed (a) without and (b) with the position estimation mechanism described in this paper. 

In (a), only the wheel encoders are used to determine the robot’s position. The positional error accumulates to 

more than 1 1 meters, and the resulting map is clearly unusable. This illustrates the importance of sensor-based 

position estimation for map building. 
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Fig. 6. Wall, detected by considering five adjacent sonar measurements. Wall orientations are used to correct 
for dead-reckoning errors in the robot orientation 8rOb,,t. 

Local Map (grey) 

Global Map (black) - 

global map, grid-cell center 

Fig. 7. Map matching. Since local maps are recorded in local robot coordinates and global maps are recorded 
in global coordinates, each cell in the global occupancy grid usually overlaps with four local grid cell. The 
values of these four cells are interpolated to yield a single occupancy value. 

where lococc denotes the local occupancy grid. In other words, the coordinate 
of a global grid cell is projected into the local robot’s coordinates, and the local 
occupancy value is obtained by interpolation. The interpolating function is simi- 
lar in spirit to Shepard’s interpolation [ 981. It has several interesting properties, 
most notably it is smooth [continuous) and almost everywhere differentiable in 

Kclbot 9 Y&X * %&3J * 
The key advantage of interpolating between occupancy values, instead of 

simply picking the nearest one, lies in the fact that gradient ascent can be 
employed to maximize the correlation between the global and the local map. 
The correlation of the two maps is a differentiable function of the interpolated 
local map values, which themselves are differentiable functions of the robot’s 
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Fig. 8. The function (T and its derivative. (T is most sensitive to values close to zero. Thus, small deviations 
of the expected and observed wall orientation have the strongest effect. If this deviation is larger than W, it 

is completely ignored. Consequently, walls that deviate from the expected wall orientation by more than 1Y 

have no effect. 

(iii) 

coordinates. Thus, given the interpolation described here, the correlation function 
is differentiable in the robot’s position. Gradient ascent is an efficient search 
sclheme for searching large spaces, which usually suffers from the danger of 
local minima. If the robot’s error is small, which is typically the case when 
tracking a robot’s position (since odometric errors are small), gradient ascent 
search usually leads to the correct solution. 

Wzll orientation. A third component memorizes the global wall orientation 
[ 25,431. This approach rests on the restrictive assumption that walls are either 
parallel or orthogonal to each other or differ by more than 15 degrees from 
these canonical wall directions. In the beginning of map building, the global 
orientation of walls is estimated by analyzing consecutive sonar scans (cf. 
Fig. 6). This is done by searching straight lines that connect the endpoints of 
five or more adjacent sonar measurements. Once the global wall orientation 
(denoted by C&ii) has been determined, subsequent sonar scans are used to 
realign the robot’s orientation. More specifically, suppose the robot detects a 
line in a sonar scan. Let 8 be the angle of this line relative to the robot. 
Then-in the ideal case- 

a ( &,bot 38, &a11 > := ( erobot + 8 - &a~ > module 90” 

should be zero, i.e., the detected wall should be orthogonal or parallel to &a~i. If 
this is not the case, the robot corrects its orientation accordingly, by maximizing 

(+(a) := 
(la] - 151”)~ if ]cr] < 15”, 

0 if Icy] > 15” 
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using gradient ascent. The function (+ and its first derivative is shown in Fig. 8. 
Walls whose orientation differ from the global wall orientation by 15” or more 
have no effect. This is because the derivative of cr with respect to Brobot is 
zero if ILY 2 15”. If JLY] is smaller than lS’, the gradient of (+ with respect 

to &,bOr is non-zero and increases linearly as a approaches 0’. Thus, the more 
similar the global and the observed wall orientation, the larger the gradient, 
and the stronger the effect on the estimated robot orientation &&,i. This graded 
scheme was empirically found to yield the best results in various populated 
indoor environments. In particular, it was found to be robust to noise, errors in 
wall detection, obstacles such as desks and chairs, and people walking by. 

The exact function that is being minimized when calculating the robot’s position is: 

J := pl [ (X;&,t - Xrobot ) * + (&b,,t - Yrobot ) 2 1 

+ p2 (o;obot - erobot > * 

- P3COd&obot > Yrobot 9 hobot > 

- P40.(a(e,bot,8,e,,ll)). (4) 

Here pi, &, &, and p4 are gain parameters that trade off the different sources of 
information. The first two terms in (4) correspond to the odometry of the robot. The 
third term measures the correlation between the global and the local map, and the 
fourth term relates the global wall orientation to the observed wall orientation. Eq. (4) 
is differentiable, and gradient descent is employed to minimize J. Gradient descent 

is an iterative search scheme, whose accuracy usually increases with the number of 
iterations. When a new sonar reading arrives, the previous gradient search is terminated 
and its result is incorporated into the current position estimation. Consequently, the 
position tracking algorithm is an anytime algorithm [27] whose accuracy depends on 
the available computation time. 

An example map of a competition ring constructed at the 1994 AAAI Autonomous 
Robot Competition is shown in Fig. 9. This map contains an open area, which was 
intentionally created by the competition organizers to test the robot’s ability to navigate 

in large open spaces [99]. In [ 1081, occupancy maps are constructed using stereo 
vision for depth estimation [ 37,381. As shown there, sonar and stereo information have 
somewhat orthogonal sensor characteristics and thus can complement each other. 

Position control based on odometry and map correlation alone (items 1 and 2 above) 
works well if the robot travels through mapped terrain [ 1041, but fails to localize the 
robot if it explores and maps unknown terrain. The third mechanism, which arguably 
relies on a restrictive assumption concerning the nature of indoor environments, has 
proven extremely valuable when autonomously exploring and mapping large-scale indoor 
environments. Notice that all maps shown in this paper (with the exception of the maps 
shown in Figs. 5(a) and 10(b)) have been generated using this position estimation 
mechanism. 

A difficult challenge for any localization method-and in fact any approach for learn- 
ing maps-is a large circular environment, where local sensor readings or short histories 
thereof are insufficient to disambiguate the robot’s location. Fig. 10 depicts such an 
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. 32.2 meters 

Fig. 9. Grid-based map, constructed at the 1994 AAAI Autonomous Mobile Robot Competition with the 
techniques described here. 

environment. Here the robot starts in a corner of a circular corridor, and after traversing 
more than 160m of unmapped corridor it reaches the same location. The map shown 
in Fig. 10 has been obtained using a laser range finder to measure proximity. The laser 
range finder is more accurate and has an increased angular resolution (0.5” instead of 
W), which leads to more accurate localization results. In nine experiments using sonar 
and laser sensors, laser was found to generate an accurate map in five out of five cases, 
whereas sonar failed in two out of four cases, rendering maps that were slightly too 
erroneous to be of practical use ( 1 m translational error). Fig. 10(b) depicts a map 

constructed without the position correction mechanisms described here. 

2.4. Dynamic environments 

Our basic approach to sensor integration assumes that the world is static. In particular, 
sensor readings at any two different points in time r and 7’ have the same weight in 
determining Prob(occ,,,Is(‘), . . . , dT)), even if r precedes r’ by a large temporal mar- 
gin. Intuitively, in dynamic environments more recent readings carry more information 
than more distant ones. This intuition can be incorporated by decaying the influence of 
individual sensor readings exponentially over time. Let y with 0 < y < 1 be the decay 

factor. 



36 S. Thrun/Artijicial Intelligence 99 (1998) 21-71 

Fig. 10. (a) The challenge: A cyclic map of the size 60 by 20 meters, built using a laser range finder (instead 

of sonar sensors). (b) A map obtained from the same data without position control. Some of the floor in 
the testing environment is made of tiles, which introduces significant error in the robot’s odometry. Most 

existing topological map building methods should have great difficulty building such maps, since most sensor 

measurements look alike and am highly ambiguous. 
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Fig. 11. A dynamic environment. (a) The robot moves through aa open door. (b) The door is now close, in 
response to which the robot changes its map and takes a different route. 

Prob(,occ,,~Is”),s’*‘, . . . ,s(r)) 

Prob(occJs(‘)) 

1 - Prob(occX,Y(s(‘)) 

T 

x r-J,,-, 
Prob(occX,Y]s(7)) 1 - Prob(occ,,,,) --I 

1 - Prob(occ,,,]s(7)) Prob(occ,,) > . 
7=2 

This modilied update rule (cf. ( 1)) weighs more recent sensor readings exponentially 
stronger than more distant ones. If y is chosen appropriately, this approach prevents 
Prob(occ,,,]s(*), . . . , dT)) from taking its extreme values. While in theory, the occu- 
pancy probability Prob( occ,,,, I,(‘), . . . , dT)) may never attain its extreme values zero or 

one, in practice the occupancy values may do so due to the limited numerical resolution 
of digital computers. It is generally desirable to avoid these extreme values, since they 

suggest that a robot is absolutely certain about the occupancy of a grid cell-which a 
robot never can be due to the non-deterministic nature of its sensors. 

Fig. 11 (depicts results obtained in a changing environment. Here the robot re-uses a 
previously built map for navigating from our lab into the corridor. In Fig. 11 (b), the 
door is closed. After acquiring some evidence that the door is closed, indicating by the 
circular motion in front of the door shown in Fig. 11 (b), the model is revised and the 
planning routines (described below) change the motion direction accordingly. Here y is 
set to 0.9999. This decay factor is used in all our experiments. 

The reader may notice that our approach does not fully model dynamic environments; 
instead, it merely adapts to changes. For example, our approach is incapable of detecting 
dynamic regularities in the environment, such as doors, which are either open or closed 
and which change their status perpetually. As a consequence, once a door has been 
recognized as being closed it will be assumed to be closed until the robot receives 
evidence to the contrary. Modeling dynamic environments using metric representations 
is largely an open research area. Schneider, in his M.Sc. thesis [ 951, has extended our 
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approach to detect certain types of regularities. His approach analyzed the variance and 
the auto-correlation of interpretations over time, enabling it to reliably identify and label 
regions in the map whose occupancy changed regularly over time. His approach was 

successfully applied to detecting dynamic objects at static locations (such as doors); 
however, it is not able to model moving objects such as humans. 

2.5. Exploration 

To autonomously acquire maps, the robot has to explore. The idea for (greedy) 
exploration is to let the robot always move on a minimum-cost path to the nearest 

unexplored grid cell. The cost for traversing a grid cell is determined by its occupancy 
value. The minimum-cost path is computed using a modified version of value iteration, 

a popular dynamic programming algorithm [4,45,86] : 

(i) Inithization. Unexplored grid cells are initialized with 0, explored ones with 0;): 

0 
V- 

if (x, y) unexplored, 
XJ 

cc if (x, y) explored 

(ii) 

Grid cells are considered explored if their occupancy value Prob(occX,Y) has 
been updated at least once. Otherwise, they are unexplored. 

Update loop. For all explored grid cells (x, y) do: 

V w - min 
.+-l,O,l, (=-l,O,l 

{ V,+S,~+E + Prob ( occX+~,Y+~ ) 1. 

(iii) 

Value iteration updates the value of all explored grid cells by the value of their 
best neighbors, plus the costs of moving to this neighbor (just like A* [78] or 

Dijkstra’s shortest path algorithm [ 61) . Cost is here equivalent to the probability 
Prob(occX,J,) that a grid cell (x, y) is occupied. The update rule is iterated. When 
the update converges, each value VX,! measures the cumulative cost for moving 
to the nearest unexplored cell. However, control can be generated at any time 
[27], long before value iteration converges. In the worst case, the computation 
of V requires O(n*) steps with n being the number of grid cells. 
Determine motion direction. To determine where to explore next, the robot 
generates a minimum-cost path to the unexplored. This is done by steepest 
descent in V, starting at the actual robot position. Determining the motion 
direction is computationally cheap; it is the computation of V which requires 
significant computation. Determining the motion direction is done in regular 
time intervals and is fully interleaved with updating V. 

12(a) shows V after convergence using the map shown in Fig. 12(b). All white 
regions are unexplored, and the grey-level indicates the cumulative costs V for moving 
towards the nearest unexplored point. Notice that all minima of the value function 
correspond to unexplored regions-there are no local minima. For every point (x, y), 
steepest descent in V leads to the nearest unexplored area. 

Unfortunately, plain value iteration is too inefficient to allow the robot to explore 
in real-time. Strictly speaking, the basic value iteration algorithm can only be applied 

Fig. 
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if the cost function does not increase (which frequently happens when the map is 
updated). This is because if the cost function increases, previously adjusted values V 

might becamme too small. While value iteration quickly decreases values that are too 
large, increasing values can be arbitrarily slow [ 1041. Consequently, the basic value 
iteration al,goritbm requires that the value function be initialized completely (Step i) 
whenever the map-and thus the cost function-is updated. This is very inefficient, 
since the map is updated almost constantly. To avoid complete re-initializations, and to 
further increase the efficiency of the approach, the basic algorithm was extended in the 

following way: 
(iv) Selective reset phase. Every time the map is updated, only values Vx,y that are 

too small are identified and reset. This is achieved by the following loop, which 

is iterated: 
For all explored (x, y) do: 

V x,y - 00 if KY < min 
I+-l,O,l, c=-LO,1 

{ VX+&Y+5 + prob( occJZ+5.y+5 ) 1. 

(VI BoJunding box. To focus value iteration, a rectangular bounding box [ xhn, n-1 

x [YIni”, Ymlxl is maintained that contains all grid cells in which Vx,r may change. 
This box is easily maintained in the value iteration update. As a result, value 
iteration focuses only on a small fraction of the grid, hence it converges much 

faster. 
Notice that the bounding box bears some similarity to prioritized sweep- 

ing [ 721. Prioritized sweeping determines the order of updates according the 
expected benefit of each particular update. Bounding boxes are a cheap imple- 
mentation of the same idea. Their advantage lies in the fact that rectangular 
arrays can be processed very efficiently; however, they are less selective, which 
typically increases the total number of updates when compared to prioritized 

sweeping. 

Fig. 12 shows a snapshot of autonomous exploration in the environment depicted in 

Fig. 9. Fig. 12(a) shows the value function after convergence. All white regions are 

unexplored, and the grey-level indicates the cumulative costs for moving towards the 
nearest unexplored point. Notice that all minima of the value function correspond to 
unexplored regions-there are no local minima. Once value iteration converges, greedy 
exploration simply amounts to steepest descent in the value function, which can be done 
very efficiently. The right plot, Fig. 12(b), sketches the path taken during autonomous 
exploration. At the current point, the robot has already explored the major hallways, and 
is about to continue exploration of a room. Circular motion, such as found in the bottom 
of this plot, occurs when two unexplored regions are about equally far away (=same 
costs) or when the planner has not yet converged. Notice that the complete exploration 
run shown here took less than 15 minutes. The robot moved constantly, and frequently 
reached a velocity of 80 to 90cm/sec (see also [9,36,108] ). The exploration of the 
map shown in Fig. 4 required approximately 45 minutes. 

Notice that the remaining V,,Y-values are not affected. Resetting the value table 
in this way bears close resemblance to the value iteration algorithm described 

above. 
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Fig. 12. Autonomous exploration. (a) Exploration values V, computed by value iteration. White regions are 
completely unexplored. By following the grey-scale gradient, the robot moves to the next unexplored area on 
a minimum-cost path. The large black rectangle indicates the global wall orientation f&u. (b) Actual path 
traveled during autonomous exploration, along with the resulting metric map. 

Value iteration is a very general procedure which has several properties that make it 
attractive for real-time mobile robot navigation: 

- Any-time algorithm. As mentioned above, value iteration can be used as an any- 
time planner [27]. Any-time algorithms are able to make decisions regardless of 
the time spent for computation. The more time that is available, however, the better 
the results. Value iteration allows the robot to explore in real-time. 

- Full exception handling. Value iteration pre-plans for arbitrary robot locations. 
This is because V is computed for every location in the map, not just the current 

location of the robot. Consequently, the robot can quickly react if it finds itself to 
be in an unexpected location, and generate appropriate motion directions without 

any additional computational effort. This is particularly important in our approach, 
since the robot uses a fast routine for avoiding collisions with obstacles, which may 
modify the motion direction commanded by the planner at its own whim [ 361. 

- Multi-agent exploration. Since value iteration generates values for all grid-cells, it 
can easily be used for collaborative multi-agent exploration. 

- Point-to-point navigation. By changing the initialization of V (Step i), the same 
approach is used for point-to-point navigation [ 1041. 
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In grid malps of the size 30 by 30 meters, optimized value iteration, done from scratch, 
requires approximately 2 to 10 seconds on a SUN Spare station. Planning point-to- 
point navigation from scratch using the map shown in Fig. 4, which due to its many 

small corridors poses a difficult real-time planning problem, requires up to 15 seconds 
depending on the location of the target point(s). In cases where the selective reset 
step does not reset large fractions of the map (which is the common situation), value 
iteration converges in less than a second for the size maps shown here. For exam- 
ple, the planning time in the map shown in Fig. 9 lies typically under a tenth of a 
second. In the light of these results, one might be inclined to think that grid-based 
maps are sufficient for autonomous robot navigation. However, value iteration (and 
similar planning approaches) requires time quadratic in the number of grid cells, impos- 
ing intrinsic scaling limitations that prohibit efficient planning in large-scale domains. 

Due to their compactness, topological maps scale much better to large environments. 
In what follows we will describe our approach for deriving topological graphs from 

grid maps. 

3. Topological maps 

3.1. Constructing topological maps 

Topological maps are built on top of the grid-based maps. The key idea, which is 
visualized in Fig. 13, is simple but effective: Grid-based maps are decomposed into 

a small set of regions separated by narrow passages such as doorways. These narrow 
passages, which are called critical lines, are found by analyzing a skeleton of the 

environment. The partitioned map is mapped into an isomorphic graph, where nodes 
correspond. to regions and arcs connect neighboring regions. This graph is the topological 

map. 
The precise algorithm works as follows: 

(i) Thresholding. Initially, each occupancy value in the occupancy grid is thresh- 
olded. Cells whose occupancy value is below the threshold are considered 
free-space (denoted by C). All other points are considered occupied (denoted 
by c). 

(ii) Voronoi diagram. For each point in free-space (x, y) E C, there is one or more 
nearest point(s) in the occupied space c. We will call these points the ba- 

sis points of (x, y), and the distance between (x, y) and its basis points the 
clearance of (x, y). The Voronoi diagram [ 16,59,6 1,801 is the set of points in 
free-space that have at least two different (equidistant) basis-points. Fig. 13(b) 

depicts a Voronoi diagram. 
(iii) Critical points. The key idea for partitioning the free-space is to find “critical 

points”. Critical points (x, y) are points on the Voronoi diagram that minimize 
clearance locally. In other words, each critical point (n, y) has the following 
two properties: (a) it is part of the Voronoi diagram, and (b) the clearance of 
all points in an c-neighborhood of (x, y) is not smaller than the clearance of 
the critical point itself. Fig. 13(c) illustrates critical points. 
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Fig. 13. Extracting topological maps. (a) Metric map, (b) Voronoi diagram, (c) critical points, (d) critical 
lines, (e) topological regions, and (f) the topological graph. 

(iv> 

(v> 

Critical lines. Critical lines are obtained by connecting each critical point with 
its basis points (cf. Fig. 13(d)). Critical points have exactly two basis points 
(otherwise they would not be local minima of the clearance function). Critical 
lines partition the free-space into disjoint regions (see also Fig. 13(e)). 
Topological graph. The partitioning is mapped into an isomorphic graph. Each 
region corresponds to a node in the topological graph, and each critical line to 
an arc. Fig. 13(f) shows an example of a topological graph. 
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The particular definition of critical lines for decomposing the metric map is motivated 
by two observations. First, when passing through a critical line, the robot is forced to 

move through a region that is considerably narrow, when compared to the neighboring 
regions. Hence, the loss in performance inferred by planning using the topological map 

(as opposed to the grid-based map) is considerably smaller. Secondly, narrow regions 
are more likely blocked by obstacles (such as doors, which can be open or closed). The 
reader should note that these arguments are somewhat intuitive, as they are not backed 

up with mathematical proofs. 
Fig. 14 illustrates the topological map extracted from the grid-based map depicted in 

Fig. 9. Fig. 14(a) shows the Voronoi diagram of the thresholded map, and Fig. 14(b) 
depicts the critical lines (the critical points are on the intersections of critical lines and 
the Voronoi diagram). The resulting partitioning and the topological graph are shown 
in Figs. 14(c) and 14(d). As can be seen, the free-space has been partitioned into 
67 regions. Additional examples of metric and topological maps are shown in Figs. 15 

and 16. These maps are partitioned into 22 (Figs. 15(c) and 15 (d) ) and 39 regions 

(Figs. 16(c) and 16(d)). 

3.2. Planning with topological maps 

The compactness of topological maps-when compared to the underlying grid-based 
map-facilitates efficient planning. To replace the grid-based planner by a topological 
planner, the planning problem is split into three sub-problems, all of which can be 
tackled separately and efficiently. 

(i) Topological planning. First, paths are planned using the abstract, topological 
ma.p. Shortest paths in the topological maps can easily be found using one of 
the. standard graph search algorithms, such as Dijkstra’s or Floyd and War- 
shal’s shortest path algorithm [ 61, A* [ 781, or dynamic programming. In our 
implementation, we used the value iteration approach described in Section 2.5. 

(ii) Triplet planning. To translate topological plans into motion commands, a triplet 
planner generates (metric) paths for each set of three adjacent topological 

reg:ions in the topological plan. More specifically, let Tl , T2, . . . , T, denote the 
plan generated by the topological planner, where each T corresponds to a region 
in the map. Then, for each triplet (I;, Ti+l, z+2) (i = 1,. . . , n - 1 and Tn+l := 
T,,:I, and each grid cell in z, the triplet planner generates shortest paths to the 
cost-nearest point in Ti+2 in the grid-based map, under the constraint that the 

robot exclusively moves through Ti and T+I. For each triplet, all shortest paths 
can be generated in a single value iteration run: Each point in 7;.+2 is marked 
as a (potential) goal point (just like the unexplored points in Section 2.5), and 

value iteration is used to propagate costs through Ti+l to Ti just as described 
in Section 2.5. Triplet plans are used to “translate” the topological plan into 
concrete motion commands: When the robot is in Tip it moves according to the 

triplet plan obtained for (Z, K+l, ,+2 T. ). When the robot crosses the boundary of 
two topological regions, the next triplet plan (Ti+l , Ti+z, Ti+3) is activated. Thus, 

the triplet planner can be used to move the robot to the region that contains the 
goal location. 
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(a) Voronoi diagram (b) Critical lines 

(c) Regions (d) Topological graph 

(e) Pruned regions (f) Pruned topological graph 

Fig. 14. Extracting the topological graph from the map depicted in Fig. 9: (a) Voronoi diagram, (b) Critical 
points and lines, (c) regions, and (d) the final graph. (e) and (f) show a pruned version (see text). 
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(a) Grid-based map (b) Voronoi diagram and critical lines 

(d) Topological graph (c) Region:s 

(e) Pruned regions (f) Pruned topological graph 

Fig. 15. Another example of an integrated grid-based, topological map. 



(c) Regions 
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(b) Voronoi diagram and critical lines 

. . 

(d) Topological graph 

(e) Pruned regions (f) Pruned topological graph 

Fig. 16. A third example. 
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‘I’he reason for choosing triples instead of pairs of topological regions is 
that instead of moving to the nearest grid cell in q+l, the robot takes into 
account where to move once T;+l is reached, and approaches T;+, accordingly. 
A “duplet planner” would always make the robot move to the nearest grid cell in 
the immediate next topological region. If this grid cell was temporarily blocked 
(e.g., by a human), the robot would be stuck. This is not the case for the triplet 
planner, since its “goal” is reached upon entering the middle region. The motion 

generated by the triplet planner is generally smoother. 
(iii) Fimal goal planning. The final step involves moving to the actual goal location, 

which again is done with value iteration. Notice that the computational cost 
for this final planning step does not depend on the size of the map. Instead, it 
depends on the size and the shape of the final topological region T,,, and the 

location of the goal. 
The key advantage of this decomposition is that all computation can be done off-line, 
for all path planning problems. For example, the map shown in Fig. 14, which is 
the most complex map investigated here, has 67 topological nodes. Thus, there are only 
67 x 66 = 4422 topological plans. Since mobile robot actions are assumed to be reversible, 
topological plans are symmetric. Thus, only half of them must be memorized. The map 
also has approximately 200 triplets, for which all triplet plans are easily computed. Thus, 
by decomposing the planning in a topological planning problem and a triplet planning 
problem, and by pre-computing and memorizing all topological and triplet plans, path 
planning amounts to table-lookup. 

However, it should be noted that the topological decomposition does not change the 

(worst-case) complexity of the planning problem, so that all one can hope for is a 
constant speed-up. Assuming that the number of topological regions grows linearly with 

the size of the grid-based map, and assuming that the size of each region does not 
depend on the size of the map, topological planning using value iteration is quadratic 
in the size of the environment (just like planning using the grid-based map). The com- 
putational complexity of computing all triplet plans is linear in the length of the path 
and hence in the size of the map), as is the computation of all final goal-plans. In 
fact, computing all triplet plans and all final goal plans is still linear in the size of 
the grid-based map, so that the topological planner is the only non-linear component 
in the approach proposed here. Although both-regular grid-based planning and topo- 

logical planning-require in the worst case time quadratic in the size of the world, 
the fact that topological maps are orders of magnitude more compact leads to a rel- 

ative difference of several orders of magnitude. This huge difference is important in 

practice. 

4. Performance results 

Topological maps are abstract representations of metric maps. As is generally the 
case for abstract representations and abstract problem solving, there are three cri- 
teria for assessing the appropriateness of the abstraction: consistency, loss, and efJ 
ciency. 



48 S. Thrun/Artificial Intelligence 99 (1998) 21-71 

0 a 0 b 

Fig. 17. Two examples in which the approach presented here yields suboptimal results. In both cases, the 
problem is to plan a path from “A” to “B”. (a) The topological planner will chose a sub-optimal path, 
since it leads only through two intermediate regions (as opposed to three). Such situations occur only if the 
topological graph contains cycles (which correspond to isolated obstacles in the thresholded grid-based map). 
(b) The triplet planner fails to move the robot on a straight line, since it looks only two topological regions 
ahead. 

(i) Consistency. Two maps are consistent with each other if every solution (plan) 
in one of the maps can be represented as a solution in the other map. 

(ii) Loss. The loss measures the loss in performance (path length), if paths are 
planned in the more abstract, topological map as opposed to the grid-based 
map. 

(iii) ESJiciency. The efficiency measures the relative time complexity of problem 
solving (planning). 

Typically, when using abstract models, efficiency is traded off with consistency and 
performance loss. 

4.1. Consistency 

The topological map is always consistent with the grid-based map. For every abstract 
plan generated using the topological map, there exists a corresponding plan in the 

grid-based map (in other words, the abstraction has the downward solution property 
[ 931) . Conversely, every path that can be found in the grid-based map has an abstract 
representation which is a admissible plan in the topological map (upward solution 
property). Notice that although consistency appears to be a trivial property of the 

topological maps, not every topological approach proposed in the literature generates 
maps that are consistent with their corresponding metric representation. 

4.2. Loss 

Abstract representations lack detail. Thus, paths generated from topological maps 
may not be as short as paths found using the metric representation. For example, 
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Fig. 17(a)’ shows a situation in which a topological planner would chose a detour, 
basically because of the different sizes and shapes of the topological regions. Fig. 17(b) 
depicts a s,ituation in which the triplet-planner would give non-optimal results, since it 
determines the motion direction based on a limited look-ahead. 

To measure the average performance loss, we empirically compared shortest paths 
found in a metric map with those generated using the corresponding topological ap- 

proach, for each of the three maps shown in Figs. 9, 14, 15, and 16. The results 
are summarized in Table 2. For example, for the map shown in Figs. 9 and 14(d), 
we conducted a total of 23,881,062 experiments, each using a different starting and 

goal position that were generated systematically with an evenly-spaced grid. Plan- 
ning with the topological map increases the length of the paths by an average of 
3.24%. In other words, the average length of a shortest path is 15.87 meters, which 

increases on average by 0.51 meters if robot motion is planned using the topological 
map. 0.28 meters (1.82%) are due to suboptimal choices by the topological plan- 

ner, and the remaining 0.23 meters ( 1.42%) are due to suboptimal action choices 
made by the triplet planner. It is remarkable that in 83.4% of all experiments, the 
topological planner returns a loss-free plan. The largest loss that we found in our 
experiments was 11.98 meters, which was observed in 6 of the 23,881,062 experi- 
ments. Such loss was observed when the topological planner falsely assumed that the 

shortest route led through the large “foyer” (region 7 and 18 in Fig. 14(c)). For 

example, when moving from region 58 to region 4 in Fig. 14(c), the topological 
plan ((58,50,39,31,18,7,2,8,3,4)) leads through the foyer, which is clearly a de- 

tour. 
Fig. 18 (a) shows the average loss as a function of the length of the shortest path. As 

can be seen there, for shorter paths the loss is a monotonically increasing function of 
the path length. As the path length exceeds 22.5 meters, the loss decreases. We attribute 
the latter observation to the fact that these paths are among the longest possible paths 

given the :size of the environment, thus even a topological planner cannot increase the 
length of these paths any further. 

The emlpirical loss for the maps shown in Fig. 15 and 16 is even smaller, partially 

because there are fewer cycles in those maps. As summarized in Table 2, the average 
loss for the map depicted in Fig. 15 is 1.19%, and the average loss for the map shown 
in Fig. 16 is 1.3 1%. Figs. 19(a) and 20(a) depict the loss as a function of optimal path 
length. Notice because there are no cycles in the second map (Fig. 15), the topological 
planner always produces the optimal plan (i.e., a plan that includes the shortest path). 

Consequently, the 1.19% loss can be exclusively attributed to suboptimal action choices 
by the triplet planner. The 1.31% loss for the map shown in Fig. 16 is mostly due to 
the triplet planner ( 1.23%), although rare topological detours infer an additional loss 
of 0.03%. Graphs illustrating the relative loss as a function of shortest path length are 
shown in Figs. 19(a) and 20(a). 

We also investigated even more compact representations, such as those shown in 

Figs. 14(e), 14(f), 15(e), 15(f), 16(e), and 16(f). These maps were obtained by 
pruning the original topological map: Pairs of adjacent regions are combined into a 
single region, if neither of them has more than two neighbors. Pruning subsumes series 
of nodes in long corridors into a single node (such as nodes 4, 13, 21, and 24 in 
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Table 2 

Results (regular maps) 

grid cells 

resolution 
cycles 

topological regions 

triplets 

average shortest path length 

meters (using grid-map) 

grid-cells 

topological regions 

meters (using topological map) 

average loss 

due to topological planning 

due to triplet-planning 

total loss 
total experiments 

complexity 

grid-based planning 

. topological planning 

difference (factor) 

map I (Figs. 9 and 14) map 2 (Fig. 15) 

27,280 20,535 

15cm 1Ocm 

8 0 

61 22 

626 184 

15.87 9.42 

94.2 84.8 

7.84 4.82 

16.38 9.53 

1.82% 0.00% 

1.42% 1.19% 

3.24% 1.19% 

23,88 1,062 1,928,540 

2.56. lo6 1.74. 106 

525 106 

4.89 ld 1.64 104 

map 3 (Fig. 16) 

19,236 

15cm 

1 
39 

352 

11.55 

68.5 

6.99 

11.65 

0.03% 

1.28% 

1.31% 

4.576.435 

1.32. lo6 

273 

4.83 103 

Table 3 

Results (pruned maps) 

grid cells 

resolution 
cycles 

topological regions 

triplets 

average shortest path length 

meters (using grid-map) 

grid-cells 
topological regions 

meters (using topological map) 

average loss 

due to topological planning 

due to triplet-planning 

total loss 

total experiments 

map 1 (Figs. 9 and 14) map 2 (Fig. 15) map 3 (Fig. 16) 

27,280 20,535 19,236 

15 cm 1Ocm 15cm 
8 0 1 

40 10 19 

222 30 166 

15.87 9.42 11.55 

94.2 84.8 68.5 

6.12 3.25 4.65 

16.51 9.45 12.20 

3.11% 0.00% 0.83% 

0.94% 0.37% 5.22% 

4.05% 0.37% 6.05% 

23,881,062 1.928.540 4576,435 

complexity 

grid-based planning 2.56. lo6 1.74. 106 1.32. lo6 

topological planning 245 32.5 88.4 

difference (factor) 1.05~104 5.36. lo4 1.49 104 
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Fig. 18. Loss for paths generated for the map shown in Figs. 9 and 14, using (a) the regular and (b) the 

pruned topological map. They grey portion of the loss is due to suboptimal action choices by the topological 

planner, while the white portion is due to the triplet representation. 

Figs. 14(,c) and 14(d)), and also eliminates certain end-nodes (such as the region 17, 
56, and 66, in Figs. 14(c) and 14(d)). The results of experiments measuring the 
loss for t.hese pruned maps are summarized in Table 3. For example, in 23&X1,062 
experiments using the pruned graph depicted in Figs. 14(e) and 14(f), the average 
loss was 0.64 meters (4.05%), which is 26.1% larger than the loss inferred by the 
unpruned graph. For the map shown in Figs. 15(e) and 15(f), pruning actually reduced 
the overall loss to 0.37% (0.03 meters), which is only 31 .O% of the loss inferred by 
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Fig. 19. Paths generated for the map shown in Fig. 15, using (a) the regular and (b) the pruned topological 
map. 

the unpruned map. Finally, the pruned map shown in Figs. 16(e) and 16(f) produces 
an average detour of 5.18% (0.70 meter), which is significantly larger (361%) than the 
loss inferred by the unpruned map-this difference is due to the fact that a long corridor 
is pruned into a single topological entity in Figs. 16(e) and 16(f) . Figs. 18 (b) , 19(b) , 
and 20(b) depict the loss for the pruned map as a function of optimal path length. 
The shape of the curves here are similar to those obtained for the unpruned maps. 
Fig. 19 illustrates once again that pruning reduces the loss for the cycle-free second 
map. 
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Fig. 20. Paths generated for the map shown in Fig. 16, using (a) the regular and (b) the pruned topological 
map. 

We conclude that the pruned graph is generally more compact. On the one hand, 
pruning can decrease the loss of the triplet planner due to the increased size of the 
topological regions, which typically yields improved triplet plans. On the other hand, 
the smaller number of regions in pruned maps usually induces additional loss on the 
topological planning level, if (and only if) the environment contains cycles. If the 
environment is cycle-free, the topological plans are identical for pruned and unpruned 

maps, since there exist only a single topological plan between each pair of points. 
Empirically, the increased loss on the topological level when pruning a map was found 
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to outweigh the reduction of loss on the topological level. Pruning was only found to 
reduce the overall loss when the map is free of cycles. 

4.3. Eficiency 

The most important advantage of topological planning lies in its efficiency. Value 

iteration is quadratic in the number of grid cells. For example, the map shown in Fig. 9 

happens to possess 27,280 explored cells. In the average case, the number of iterations 
of value iteration is roughly equivalent to the length of the shortest path, which in our 
example map is on average 94.2 cells. Thus, in this example map, value iteration requires 
on average 2.57 e lo6 backups. Planning using the topological representation is several 
orders of magnitudes more efficient. The average topological path length is 7.84. Since 
the topological graph shown in Fig. 14 (d) has 67 nodes, topological planning requires 
on average 525 backups. Notice the enormous gain in efficiency! Planning using the 
metric map is 4.89 . lo3 more expensive than planning with the topological map. In 

other words, planning on the topological level increases the efficiency by more than 
three orders of magnitude, while inducing a performance loss of only 3.24%. 

The computational reduction is even more dramatic for the pruned maps, such as the 

one shown in Figs. 14(e) and 14(f). This map consists of 40 nodes, and the average 
topological path length is 6.12. Consequently, topological planning is 1.05 . lo4 more 
efficient than planning with the metric map, which is more than twice as efficient as 
planning with the unpruned map. However, as can be seen by comparing the results 
shown in Tables 2 and 3, the performance loss induced by the pruned map is 25% larger 
than the loss inferred by the unpruned map. 

The map shown in Fig. 15, which is smaller than the other maps but was recoded with 

a higher resolution, consists of 20,535 explored grid cells and 22 topological regions 
(unpruned map), or 10 regions (pruned map). On average, paths in the grid-based map 

lead through 84.8 cells. The average length of a topological plan is 4.82 (unpruned 
map), or 3.25 (pruned map, averaged over 1,928,540 systematically generated path 
planning problems). Here the complexity reduction is even more significant than in the 

first example. Planning using the metric map is a factor of 1.64 . lo4 more expensive 
than planning with the topological map when using the unpruned map. This factor 
increases to 5.36 . lo4 when using the pruned map. Clearly, since the pruned map 
exhibits a smaller loss, it is superior to the unpruned version in both categories: loss 
and efficiency. 

Similar results are obtained for the map depicted in Fig. 16. Here the planning 
complexity is reduced by a factor of 4.83 . lo3 (unpruned map), or 1.49 . lo4 (pruned 
map). While these numbers are empirical and only correct for the particular maps 

investigated here, we conjecture that the relative quotient is roughly correct for other 
maps as well. 

It should be noted that in our implementation, every topological plan is pre-computed 
and memorized in a lookup table. Our most complex example maps contain 67 nodes, 
hence there are only 2,211 different plans that are easily generated and memorized. If 
a new path planning problem arrives, topological planning amounts to looking up the 
correct plan. 
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5. Related work 

The current approach draws on existing work on various aspects of AI and robotics. 

This section reviews related approaches in the areas of ( 1) map learning, (2) local- 
ization, (3) motion planning, (4) abstraction, and (5) learning automata. It points out 
various differences/commonalities to the work presented here and summarizes its main 

contributions. 

5.1. Mapping 

The key contribution of this paper is a new map learning method that integrates 
metric and topological representations. The vast majority of successful approaches to 
learning maps from sensor data focuses on a single type map, metric or topological, 
where topological maps are sometimes enriched by local metric information. 

- Metric approaches. Occupancy grids, which form the basis of the metric compo- 
nent of our approach, are probably the most successful metric approach to mobile 
robot map acquisition to date. Occupancy grids have originally been proposed by 
Elfes and Moravec [ 3 1,32,73] and since been adopted in numerous robotic sys- 
tems (e.g., [ 8,9,41,95,119]). Our approach differs from previous ones in that 
neural networks are used to learn the mapping from sensors to occupancy val- 
ues; as a result, sensor readings are interpreted in the context of their neighbors, 
which increases the accuracy of the resulting maps [ 1041. Occupancy grids, how- 
ever, are not the only metric representation. Chatila and Laumond [ 151 proposed 
to represent objects by polyhedra in a global coordinate frame. Cox [23] pro- 
posed to construct probabilistic trees to represent different, alternative models of 
the environment. In his work, Kalman filters and Bayesian methods are used for 
handling uncertainty. Lu, Milios and Gutmann [ 40,66,67] presented an approach 
that b’asically stores raw proximity sensor data in a metric coordinate system, using 
an alignment procedure that compares multiple laser range scans. Jeeves [ 1061, an 
award-winning robot at the 1996 AAAI Mobile Robot Competition [ 551, constructs 

geometric maps incrementally by concatenating wall segments detected in temporal 
sequences of sonar measurements. Jeeves’s design was strongly inspired by the 
work presented here; its inability to handle dynamic environments and its strong 
commitment to parallel/orthogonal walls make its software approach significantly 
more brittle than the current approach. 

- Topological approaches. Topological approaches represent maps as topological 
graphs, where nodes correspond to places and arcs correspond to actions for moving 
from one place to another. Often, topological graphs are enriched by local metric 

information to facilitate the navigation from one place to another. 
Among the earliest successful work in this field is an approach by Kuipers 

and I3yun [ 58,591. In their approach, topological places are defined as points 
that maximize the number of equidistant obstacles (a similar idea can be found in 
Choset’s work, who refers to such as points as “meet points” [ 16-181). Topological 
place:3 are connected by arcs, which contain metric information for locally moving 
from one place to another. The approach disambiguates different places by local 
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sensor information (taken at a single node or, if necessary, at a small number 
of neighboring nodes). In systematic simulations, this approach has been found 
to reliably learn large maps of indoor environments, even if sensor data is noisy. 

However, in these experiments the robot was equipped with a compass, which 

simplifies the localization problem significantly. 

A similar approach was proposed by MatariC [ 681. Her algorithm acquires topo- 
logical maps of the environment in which nodes correspond to pre-defined land- 
marks such as straight wall segments. Neighboring topological entities are connected 
by links. The topological representation is enriched by distance information to help 
keeping track of the location of the robot. The approach was evaluated on a physical 
robot and was found to be robust in practice. Its inability to maintain an exact posi- 
tion estimate imposes intrinsic scaling limitations. Moreover, since the recognition 
of landmarks in this approach involves robot motion, the approach might have se- 
vere difficulties in recognizing previously visited locations when approaching them 

from different directions (e.g., T-junctions). 

Shatkay and Kaelbling proposed a method that learns topological map from 
landmark observations [97]. Their work extends work by Koenig and Simmons 
[ 531, who investigated the problem of learning topological maps if a topological 
sketch of the environment is readily available. In Shatkay and Kaelbling’s work, no 
such assumption is made. Their approach considers local topological information 
along with some landmark information to disambiguate different locations. A key 
feature of their approach is the use of a recursive estimation routine (the Baum- 
Welch algorithm [ 871) that can refine position estimates backwards in time. As a 
result, their approach has built fairly large topological maps. Unfortunately, it does 
not properly take rotational error into account. It also violates a basic geometric 

“additivity constraint,” as acknowledged by the authors. 

Another approach was proposed by Yamauchi and Beer’s [ 1181. Their approach 
adds places into a topological graph whenever the robot’s distance to previously 
defined places exceeds a certain threshold. Metric maps are used for localizing the 
robot (see discussion below). To determine the location of the robot within its 
map, the robot has to return close to its initial starting location (using only its 
wheel encoders), which imposes severe scaling limitations. Chown and colleagues 
[ 191 proposed a cognitively motivated approach to map learning, called PLAN. 
PLAN also learns a topological graph. Nodes in the topological graph are created 
whenever the robot enters a “choice point” (such as an intersection), or when new 
landmark comes into its field of view. At each of the nodes, the robot stores a 
collection of local views taken there. PLAN assumes that landmarks are uniquely 
identifiable, an assumption which simplifies the problem of place recognition (the 

correspondence problem, see below). In our work, this assumption is usually not 
fulfilled, due to the small amount of information conveyed by sonar measurements. 
Other topological approaches can be found in [ 76,111,121]. 

A key problem in map learning is to establish correspondence between current and 
past locations [ 7,221. This problem is particularly difficult during map acquisition. In 
metric approaches, the correspondence problem is attacked exclusively through metric 
information; if the robot is capable of accurately estimating its coordinates in a Cartesian 
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coordinate frame, the correspondence problem is solved. External sensor information is 
used to refne the metric position estimate. Topological approaches often take a different 
route. Correspondence between different places is usually determined based on a short 
history of sensor measurements. Some approaches, such as PLAN or the approaches in 
[ 60,761, require that different places are uniquely identifiable by the momentary sensor 
input. Oth’er approaches, such as those described in [16-19,X$59,68,121], weaken 
this assum,ption by taking information from neighboring places and/or local metric 

information into account. To make sensor input easier to compare, many topological 
approaches require that the robot uses a specific navigation routine which ensures that 

the robot moves to specific points (such as meet points) before attempting to establish 
correspondence [58,59,68]. The accuracy required in metric approaches is usually 
higher than that required in topological approaches, since topological maps are more 
compact. There seems to be a tendency that topological approaches rely to a stronger 
degree on the robot’s external sensors (such as cameras, sonars, compass or GPS), and 

to a lesser degree on the robot’s odometry when compared to metric approaches. The 
willingness to ignore odometric information in topological approaches to map building 
becomes a severe scaling limitation when momentary sensor input is insufficient for the 
disambiguation of places. In situations such as the one shown in Fig. 10, (odo)metric 
information is the key in establishing correspondence between current and past locations. 
Here topol.ogical approaches are typically at a disadvantage, since for robots equipped 

with sonar sensors most of the environment looks alike and correspondence cannot be 
established based on a short history of sensor measurements only. Metric approaches 

can cope with such situations much better, as demonstrated by the empirical results 
described in this paper. They can also take momentary perceptual information such as 
landmark lmformation into account, just like topological approaches. 

The importance of integrating metric and topological maps for scaling up mobile 
robot operation has long been recognized. Among the first to propose this idea was 
Elfes [ 321 and Chatila and Laumond [ 151. Elfes devised algorithms for detecting and 

labeling occupied regions in occupancy maps, using techniques from computer vision 
[ 3 1,321. He also proposed building large-scale topological maps, but he did not devise 
an algorithm for doing so, Chatila and Laumond [ 151 proposed to represent objects 

by polyhedra in a global coordinate frame. From those they propose to decompose the 
free-space into a small number of cells that correspond to rooms, doors, corridors, and 

so on. While their paper contains most of the principle ideas, it unfortunately is in a 
proposal state where much of the algorithmic detail is missing. Neither of the above 
approaches has been shown to build maps that are significantly larger than the perceptual 
field of the robot, due to the difficulty of accurately determining a robot’s position during 
mapping. ‘We believe that our work is the first to fully implement these idea, and to get 
it to work for large-scale indoor environments. Because our approach integrates both 
representations, it gains advantages that were previously not available within a single 
approach, most notably: the ability to build large-scale maps even if sensor information 
is highly ambiguous and efficiency in planning. 

While this paper was being reviewed, the author developed an alternative approach 
which also integrates topological and metric mapping [ 1091. This approach has been 
demonstrated to yield additional robustness in complex and large-scale environments. In 
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particular, it is applicable to environments with arbitrary wall configurations, and it can 
correct large odometric errors backwards in time. 

5.2. Localization 

Localization, that is, the problem of finding out where a robot is relative to previous 
locations and/or relative to its map, is one of the key problems in mobile robotics. 
A recent survey by Borenstein and his colleagues [7] dedicated exclusively to this 
topic illustrates the importance of localization and illustrates the large number of ex- 
isting approaches. Cox [22] noted that “Using sensory information to locate the robot 
in its environment is the most fundamental problem to providing a mobile robot with 

autonomous capabilities”-an assessment that demonstrates the importance of the prob- 

lem. 
Algorithms for mobile robot localization can roughly be divided into two primary 

classes of approaches: 

- Landmark-based localization. Landmark-based approaches use landmarks as ref- 
erences for determining a robot’s position. It comprises by far the most popular 

family of approaches, partially because of its genuine computational simplicity, 
partially because landmarks appear to play a major role in human navigation [ 191. 
Examples of successful algorithms for landmark-based localization can be found 

[5,21,47,51,53,77,79,83,100,117] and various chapters in [54]. 
- Model matching. Model matching algorithms extract geometric features from the 

sensor readings and match those to a model of the environment in order to iden- 
tify errors in the robot’s odometry [9-12,15,22,89,94,104,106,115]. Among the 
earliest work in this field is that of Moravec, Elfes, and Chatila and Laumond. 
Chatila and Laumond’s approach [ 151 extracts geometric features such as line 
segments and polyhedral objects which are matched to a geometric map. Moravec 
and Elfes, who pioneered the development of occupancy grids, were also the first 
to use occupancy grids for localization [ 3 1,741. Just like the approach presented 
here, they proposed building local maps from single sonar scans and matching 
them to a previously learned (or hand-supplied) global map to identify errors in 
odometry. Their approach was recently re-implemented with minor modifications 
by Yamauchi and colleagues [ 118,119], who investigated its robustness to changes 
in the environment. Model matching can be computationally very expensive. This is 
because computing a single match requires many computations, prohibiting search- 
ing the space of all possible odometric errors exhaustively. It is common practice 
to search the space of odometric errors by hill-climbing [ 9,104,118,119]. 

Our approach falls into the second class: It is a version of model matching using 
metric maps. It differs from previous approaches in that the correspondence function 
is differentiable in the odometric error, which has two primary advantages: ( 1) The 
odometric error can be estimated with arbitrary (sub-grid cell) resolution. (2) Gradient 
descent is considerably faster. For example, Yamauchi and Langley [ 1191 report that 
map matching using discrete hill climbing requires about 20 seconds (on a DECstation 
3 100). Our approach works in real-time (in the order of 0.3 set on a 1OOMhz Pentium 
computer), so that odometric errors can be corrected while the robot is in motion. 
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The vast majority of literature investigates mobile robot mapping and mobile robot 
localization separately. Interleaving mapping and localization is significantly more diffi- 
cult than either task in isolation [ 891. There are several attempts to integrate localization 
and mapping. For example, Leonard, Durrant-Whyte, and Cox [63] proposed a method 
that interleaves localization and mapping using Kalman filters [49] for position track- 
ing. In their experiments, however, only the mapping component of their approach is 
demonstrated, leaving open the question as to whether these methods work well together 
in practice. A remarkable approach to concurrent mapping and localization was recently 
proposed by Lu, and Milios [ 66,671. This approach was with minor modifications also 
implemented by Gutmann, who obtained results for a cyclic environment [40]. Similar 
to our approach, it corrects bounded odometric error by comparing sensor readings to 
a previously built map. Unlike ours, it is capable of estimating locations backwards in 

time, i.e., it can use future data to estimate past locations. Yamauchi and Beer [ 1181 
also interleave both localization and mapping. In their approach, the robot can only 
be localized at its starting location, forcing the robot to regularly return to its initial 

location. The approaches in [ 58,59,68] also interleave mapping and localization. They 
rely on landmarks to localize a robot, and also provide strategies for actively finding out 

if two places are the same if landmarks are ambiguous. 
To the .best of our knowledge, the maps presented here are among the largest ever 

built autonomously using wide-angle sonar sensors and without a hardware mechanism 
for global positioning (such as a compass or GPS). The significance of this statement 
should be taken with a grain of salt, since different mapping approaches cannot be 
compared easily due to the different hardware and experimental conditions involved. 
Also, the reader should note that our approach rests on the orthogonal wall assumption, 
without which the approach might fail to map environments of the same size. 

The reader should note that the current approach is only able to localize the robot 
when its initial position is known. It is not able to localize a robot under global un- 

certainty, .a problem which is also known as the “kidnaped robot problem” [ 331. Only 
a small number of localization methods are capable of localizing a robot under global 
uncertainty, and all of those require (for obvious reasons) that the robot be equipped 

with a map of the environment [7,10-12,105]. 

5.3. Decomposition and robot motion planning 

The topological map extraction algorithm extracts a coarse-grained representation from 
high-resolution maps. Within the robot motion planning community, such algorithms are 
usually re-ferred to as cell decomposition methods [ 61,961. Within artificial intelligence, 
algorithms of this type are usually referred to as abstraction algorithms [44,52,93]. 

There i:j a huge body of literature on cell decomposition for robot motion planning. 
For example, Schwartz and Sharir published a series of five seminal papers in which the 
motion planning problem for various simple objects (such as ladders and disks) were 

solved in two- and three-dimensional spaces (see [96]). In several of these papers, the 
free-space is divided into a finite number of coherent regions, similar to the approach 
proposed in this paper. Once the free-space is partitioned, the robot motion planning 
problem can be solved by search over a (finite) graph. Similar cell decomposition 
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methods and further references can also be found in Latombe’s book [ 611, which 

provides an excellent survey on this topic. Most of these approaches assume that an 
accurate map of the environment is available prior to robot operation, in which obstacles 
are represented by polygons or circles. Most of the work on motion planning focuses on 
consistency (also called: completeness), that is, it seeks to establish algorithms which 
generate a solution if one exists, and returns a failure if no solution exists. Research 
on robot motion planning has also addressed issues of efficiency. A key difficulty arises 
from the observation that robot motion planning, in its general definition, is worst- 
case exponential in the number of degrees of freedom [ 13,881. Due to the strong 

focus on consistency, O()-type complexity, worst case analysis and robots with many 
degrees of freedom, existing cell decomposition methods usually decompose the free- 

space in odd ways, which, if applied to mobile robot motion planning, do not at 
all maximize the run-time efficiency. Our method for extracting topological maps is 
specifically targeted at minimizing the performance loss for circular mobile robots. 
Therefore, boundaries of topological regions typically coincide with narrow regions 
such as doors, in which the robot is given little choice as to where to move. The triplet 
planner derives locally optimal plans, which have been designed to minimize the amount 
of loss suffered when planning topologically. We believe that the cell decomposition 
method proposed here yields more efficient control of a mobile robot than any of 
the other decomposition methods proposed in the robot motion planning literature. 
However, our method is currently restricted to the motion of a circular robot in a two- 
dimensional environment, whereas many of the methods listed above are applicable in 

higher-dimensional spaces. 
Voronoi diagrams have previously been proposed for robot motion planning and mo- 

bile robot navigation [ 16,17,58,59,80]. These approaches use Voronoi diagrams as 
road-maps [ 14,611, i.e., they force a robot to move along the Voronoi diagram. While 
traditional work on motion planning using Voronoi diagram rests on the assumption 

that an accurate model of the environment is available [ 61,801, Kuipers and Byun, and 
Choset [ 16,18,58,59] have extended this framework to sensor-based motion planning. 
Their approaches enables robots to operate in the absence of a world model. Just like 
ours, their work assumes that the robot can sense the proximity of nearby obstacles (in 
Choset’s approach the sensors must be noise-free). One of the striking advantages of 
Choset’s work is that it can be applied in high-dimensional configuration spaces. How- 
ever, forcing the robot to move along the Voronoi diagram yields suboptimal trajectories. 
The approach proposed here uses Voronoi diagrams for cell decomposition. To the best 

of our knowledge, this use of Voronoi diagrams is new, yet it has an obvious advantage 
of increased efficiency. 

5.4. Abstraction and dynamic programming 

As mentioned above, the topological maps described in this paper are a form of 
abstraction [93] and as such relate to the rich literature on abstraction in AI. The 
most closely related work on abstraction can be found in the literature on dynamic 
programming [4,45,86] and reinforcement learning [ 2,48,102]. In fact, our motion 
planning algorithm can be viewed as a model-based version of reinforcement learning 
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[24,103,1:20]; however, for the sake of consistency with the literature we will refer to 
it as dynamic programming (there is no learning involved at the planning level). 

In recent years, several researchers have proposed methods for solving dynamic pro- 

gramming problems by decomposing the state space into smaller subspaces. Dynamic 
programming is then applied hierarchically ( 1) to the subspaces and (2) on a more ab- 
stract level, where those subspaces are considered “abstract states.” Existing approaches 
can roughly be divided into two classes, those that rely on a fixed decomposition, and 
those that decompose the state space by themselves during problem solving. 

- Fixed decomposition. In [64,101,116] algorithms are presented that first learn 
solutieons to sub-problems (using model-free reinforcement learning), then combine 
these solutions using a reinforcement learning algorithm. Sub-problems are specified 
through “sub-goals” or certain sub-reward functions, which have to be provided 

manually by the human designer. 
Da:yan and Hinton [26] proposed a hierarchical reinforcement learning archi- 

tecture which recursively decomposes the state space into squares of fixed size. 

At each level of control, policies are generated for moving from one square to 
a nei,ghboring square. Their abstraction may be inconsistent. At higher levels of 

abstraction perceptual detail is omitted, which can turn a Markovian problem into 
a non-Markovian one for which no solution may exist. 

Dean and Lin [28] derived more general algorithms for solving dynamic pro- 
gramming algorithms efficiently given arbitrary partitions of the state space. One of 
their algorithms, called Hierarchical Policy Construction method, generates policies 
for transitioning from one region in the state space to another. On a more abstract 
level, those regions are considered “abstract states” just like in Dayan and Hin- 
ton’s work, and dynamic programming is applied in this abstract (and potentially 
non-Tvlarkovian) state space. This paper goes beyond most of the work in the field 
in that it presents some useful formal convergence results for learning hierarchical 

control. 
- On-line decomposition. Recently, Kaelbling [46] proposed an approach that de- 

composes the state space automatically based on a small set of randomly chosen 

“land.mark states.” In her approach, each landmark state defines a region and states 
other than landmark states are members of the region defined by the nearest land- 
mark state. This approach is a version of Delaunay triangulation [ 29,391, a family 
of methods that decompose the state space through Voronoi diagrams. Just like in 
Daya.n and Hinton’s and Dean and Lin’s approach, Kaelbling’s approach applies 
dynamic programming at multiple levels: At the lower lever, local controllers are 
learned for moving from one region to another. On the higher level, an abstract 
control policy is learned which uses regions as abstract state descriptions. Her de- 
composition approach is similar to the one proposed here. The key difference lies in 

the way the state space is decomposed. By selecting landmark states at random, the 
resulting decomposition is somewhat random. In contrast, our decomposition places 
topological transitions at narrow places of the environment. The practical implica- 
tions of these different decompositions are formally not well understood. However, 
when applied to mobile robot navigation, we believe that the performance loss 
in our approach is smaller due to the more sensitive choice of the cross-region 
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boundaries. A path planning approach for robots with excessive degrees of freedom 

that, similar to Kaelbling’s approach, decomposes robot planning problems into sets 
of smaller problems by selecting a small number of random points can be found 
in [ 501. 

Similar to Dayan and Hinton [ 261, Moore [71] recently proposed an approach 
for decomposing space into a set of rectangles, called parti-game. In his approach, 
the resolution of the decomposition is variable. It is maximal along the boundary 
between obstacles and free-space. One of the nice properties of Moore’s approach 
is its ability to deal with continuous spaces, just like most of the robot motion 
planning algorithms reviewed above. The parti-game algorithm does not take the 
actual path length into account during motion planning. 

A method which attempts to find an optimal cell decomposition during problem 

solving is found in [ 1 IO]. The SKILLS approach identifies regions in the state 
space (skills) in which the same policy can be used across different problems 
(tasks). This work makes a minimum of assumptions on the nature of the state 

space. For example, it differs from the work described in this paper in that it does 
not assume the availability of a model and in that it does not rely on a model 
of the environment or its geometry. Currently, its computational complexity limits 
its applicability to large state spaces. In fact, an initial attempt to use this method 
for generating a topological description of metric maps was less successful due to 
its enormous computational complexity. In principle, however, this approach can 
generate decompositions which might infer smaller losses than those described here. 

Obviously, our approach falls into the second category, that is, it decomposes the state 
space automatically. The decomposition method proposed in this paper is specifically 
tailored towards mobile robot navigation, by placing the boundaries between adjacent 
topological regions at the narrow parts of the original state space. Neither of the existing 
approaches does this. With the exception of the SKILLS approach [ 1 lo], none of the 
above-mentioned approaches takes optimality into account when selecting the boundaries 

between different regions. 
Several of the aforementioned approaches [ 26,28,46,7 11 bear close similarity to the 

planning approach proposed in this paper: At the base level, dynamic programming is 
employed to generate plans for moving from a region to a neighboring region. At a 
more abstract level, regions are treated as states, and dynamic programming is applied 
for finding global solutions to this (possibly non-Markovian) abstract model. Such 
hierarchical planning is very similar to the approach taken here in which a triplet planner 
solves local navigation problems and the topological planner generates global plans in the 
more abstract topological map. On the planning level, the only difference arises from the 
fact that the triplet planner considers three consecutive regions, whereas other approaches 
consider only two. By considering three adjacent regions, the performance loss is usually 
smaller, which comes at the expense of increased computational complexity. 

5.5. Learning jinite state automata 

Within the AI community, research has been conducted on general methods that can 
reverse-engineer (learn) finite state automata based on their input-output behavior (see 
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e.g., [3,20: 69,75,81,90,91] ). Finite state automata (FSAs) are learned by observing 
the result of sequences of actions. Often, algorithms capable of learning FSAs require 

a pre-given “homing sequence,” i.e., a sequence that resets the state of the finite state 

machine (a routine that carries a robot to a unique location), or a sequence that produces 
observations that uniquely identify the resulting state. Some of these approaches require 
the FSA (tlhe environment and robot’s sensors) to be deterministic, whereas others can 
cope with certain types of stochasticity. 

Approaches to learning FSAs differ from the approach taken here in 
( 1) the:y make much fewer assumptions and hence can model a much larger variety 

of automata, and 
(2) the;y therefore scale poorly to environments of the size considered here. 

Scaling problems arise primarily because of three reasons: 
(i) First, both the configuration space and the action space of a robot are continuous. 

Thus, the problem of map learning is not a problem of identifying a finite state 

machine. However, special-purpose navigation routines that safely carry the 
robot to a small number of geometrically distinguishable locations can make 
FM learning algorithms applicable [ 3,591. The reader should notice that the 
wolrk described here assumes discrete configuration spaces, too, but allows for 
continuous actions. 

(ii) Second, work on learning finite state automata is usually not based in geometry. 
The work here assumes that the robot operates in a plane, for which basic 
geometric relations apply. For example, it is assumes that turning right 90’ 

four times results (approximately) in the same state. In the absence of such 
assumption, an approach that reconstructs the laws of motion by experimentation 
has to re-discover geometry. 

(iii) Third, even if there were only finitely many states (e.g., as many as there are 
grid cells), in environments of the size described here, visiting every state is not 

pra’ctically feasible. In our approach, the robot uses its sensors to infer knowledge 
about states other than the current one. Existing work on the identification of 
finite state automata assumes that each state is visited at least once (in fact, 
states often have to be visited many times). 

The reader should note that our approach is highly specialized to learning spatial maps, 
whereas methods for learning FSAs are targeted at different, more general problems of 
system identification [ 651. Thus, while our approach is clearly better suited for learning 
maps, it lacks the generality of the FSA identification algorithms. 

6. Discussion 

This paper proposes an integrated approach to mapping indoor robot environments. 
It combines the two major existing paradigms: grid-based and topological. Grid-based 
maps are learned using artificial neural networks and Bayes rule. Topological maps are 
generated by partitioning the grid-based map into critical regions. 

The major contribution of the current paper is a working method for integrating metric 
and topological maps in map learning. Previous successful approaches to map learning 
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with mobile robots were either metric or topological (sometimes enriched by metric 
information). While the idea of integrating metric and topological representations is 
not new [ 15,3 1,321, it has not yet been demonstrated that this can actually be done 
robustly in environments that are significantly larger than the perceptual range of a 
robot’s sensors. Thus, the major contribution of the current paper is that it establishes 
a methodology for learning mixed metric-topological maps, one which is demonstrated 
to work robustly in practice. The approach is demonstrated to inherit advantages from 
either paradigm: metric and topological. It inherits from metric maps the ability to 
robustly map large-scale environments, even if external sensor data is insufficient to 
establish correspondence between locations at different points in time. It inherits from 
topological maps the ability to plan orders of magnitude more efficiently, exploiting the 

fact that topological maps are more compact than grid-based maps. 
Building occupancy maps is a fairly standard procedure, which has proven to yield ro- 

bust maps at various research sites. Since neural networks interpret sonar readings in the 
context of adjacent sensor measurements, they do not assume conditional independence 
between adjacent sensor measurements-resulting in more accurate interpretations of 
sonar measurements. This paper also demonstrates that by integrating multiple sources 
of information, the robot position can be tracked accurately and in real-time in environ- 
ments of moderate size-which is crucial for building metric maps. 

The most important technical aspect of this research, however, is the way topolog- 
ical graphs are constructed. Previous approaches have constructed topological maps 
from scratch, memorizing only partial metric information along the way. This often 
led to problems of disambiguation (e.g., different places that look alike), and prob- 

lems of establishing correspondence (e.g., different views of the same place). This 
paper advocates to integrate both, grid-based and topological maps. As a direct conse- 
quence, different places are naturally disambiguated, and nearby locations are detected 
as such. In the integrated approach, landmarks play only an indirect role, through the 
grid-based position estimation mechanisms. Integration of landmark information over 
multiple measurements at multiple locations is automatically done in a consistent way. 
Visual landmarks, which often come to bear in topological approaches, can certainly 
be incorporated into the current approach to further improve the accuracy of position 
estimation (see e.g., [ 56,105 ] ) . In fact, sonar sensors can be understood as landmark 
detectors that indirectly-through the grid-based map-help determine the actual posi- 
tion in the topological map (cf. [ 1001) . 

One of the key empirical results of this research concerns the cost-benefit analysis of 
topological representations. While grid-based maps yield more accurate control, planning 
with more abstract topological maps is several orders of magnitude more efficient. A 
series of experiments showed that in a map of moderate size, the efficiency of planning 
can be increased by three to four orders of magnitude, while the loss in performance 
is negligible (e.g., 1.82%). We believe that the topological maps described here will 
enable us to control an autonomous robot in multiple floors in our university building- 
complex mission planning in environments of that size was intractable with our previous 
methods. 

Despite these encouraging results, there is a variety of important open questions that 
warrant future research: 
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- Sensor dynamics. The current approach does not account for sensor drift or sensor 
failure. Once trained, the weights of the interpretation network are frozen. However, 
in principle it is possible to use a map to generate targets for the interpretation 
network. As a result, the robot could constantly re-adjust its own interpretations. 
Empirically, we have found our approach to be surprisingly robust with respect to 
the failure of sensors. 

- Other sensors. A second goal of future research is to incorporate other types of 
sensors; in particular, sensors that do not measure proximity. In an initial study, 
we extended the current approach by using a camera for floor segmentation and 24 
infrared light sensors that measure proximity by measuring the intensity of reflected 
light [9]. The Bayesian approach to sensor integration described in this paper is 

flexible enough to accommodate other types of sensor information as well. In fact, 
in our initial experiments we found that the grid-based maps were more accurate 
when additional sensors were incorporated [ 1081. 

- Dynamic environments. While the current approach robustly handles dynamics in 
the environment (such as people, doors), it does not model them. It is an open 
question as to how to incorporate models of moving objects into a grid-base rep- 
resentation. A recent study [95] has demonstrated that “semi-dynamic obstacles” 
(these. are obstacles such as doors, whose presence might change but which are 
tight LO a certain location) can be modeled by a variance analysis of grid-cell 
values. Further research is warranted to evaluate the robustness and utility of such 
approaches, and to model moving objects such as humans. 

A key disadvantage of grid-based methods, which is inherited by the approach presented 
here, is the need for accurately determining the robot’s position. Since the difficulty of 
position control increases with the size of the environment, one might be inclined 

to think that grid-based approaches generally scale poorly to large-scale environments 
(unless they are provided with an accurate map). Although this argument is convincing, 
we are optimistic concerning the scaling properties of the approach taken here. The 
largest cycle-free map that was generated with this approach was approximately 100 
meters long; the largest single cycle measured approximately 60 by 20 meters. We are 
not aware ‘of any purely topological approach to robot mapping that would have been 
demonstrated to be capable of producing consistent maps of comparable size. Moreover, 
by using more accurate sensors (such as laser range finders), and by re-estimating 
robot positions backwards in time (which would be mathematically straightforward, but 
is currently not implemented because of its enormous computational complexity), we 
believe that maps can be learned and maintained for environments that are an order of 

magnitude larger than those investigated here (cf. [ 1091) . 
The app:roach described here has become part of a larger software package that is 

now distributed through one of the major mobile robot suppliers in the US (Real World 
Interface, Inc.) as the sole navigation software along with their B14 and B21 robots. It 
is already in use at more than 10 academic and industrial sites, where it has successfully 
mapped m,any different environments. An essential part of the software package is 
a fast, reactive collision avoidance routine, which is described elsewhere [36]. The 
advantage ‘of integrating a fast collision avoidance routine is that dynamic obstacles 
and inaccuracies in the map do not lead to collisions. This module, combined with the 
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mapping and planning approach described here, has found to navigate the robot reliably 
and with a speed of up to 90cm/sec even in dynamic and cluttered environments. The 
University of Bonn’s entry “RHINO” at the 1994 AAAI Mobile Robot Competition, 
which won second price in the category “clean-up an office” and which was only 
defeated by a team of three collaborating robots [ 11, relied crucially on the mapping 
and exploration algorithms described in this paper (see [9,107,108]). 

While this paper was being reviewed, the approach became part of the software 
controlling a “museum tour-guide,” a mobile robot that was installed in cooperation 

with the University of Bonn at the Deutsches Museum in Bonn. The robot’s task here 
was to interact with and to provide tours to visitors. The robot successfully navigated 
at an average speed of 35 cm/set and a maximum sped of 80 cm/set through a densely 
crowded environment, traversing more than 18.5 km in six days. The robot’s ability 
to map its environment in real-time and to re-plan concurrently, using some of the 
techniques described in this paper, turned out to be essential for the robot’s success in 
this highly dynamic environment. 
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