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A Bayesian perspective is taken to quantify the amount of information learned from observing a stochastic process, 

X,, on the interval [ 0, T] which satisfies the stochastic differential equation, dX, = S( 0, t, X,) dt + u( t, X,) dB,. 

Information is defined as a change in expected utility when the experimenter is faced with the decision problem 

of reporting beliefs about the parameter of interest 0. For locally asymptotic mixed normal families we establish 

an asymptotic relationship between the Shannon information of the posterior and Fisher’s information of the 

process. In particular we compute this measure for the linear case (S( 0, t, X,) = f3S( t, X,) ), Brownian motion with 
drift, the Omstein-Uhlenbeck process and the Bessel process. 

Bayesian inference * local asymptotic normality * Jeffreys prior * Shannon information * Fisher information 
* entropy 

1. Introduction 

In this paper we consider the amount of information gain from observing a continuous time 

Markov process. An asymptotic relationship between the Shannon information of the pos- 

terior distribution of the parameter of interest 0~ 0 and Fisher’s information of the process 

is derived for classes of processes obeying suitable asymptotic normality properties. A 

utility based approach to quantifying information is taken and we apply it to the case where 

we have observations from a (possibly time-inhomogeneous) diffusion process. As exam- 

ples of our approach we consider Brownian motion with drift, the Omstein-Uhlenbeck 

process and a Bessel process. 

Suppose that we observe a set of observations from a stochastic process on the time 

interval [ 0, T] with observation set XT= (X,, 0 < t < r) and natural filtration .Tr= CT{X,~, 
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0 < s < T>. Let p( (3) andp( 81 Xr) denote the prior and posterior densities for the parameter 

of interest. We begin by considering the one-dimensional case although the results will be 

proved in a multivariate setting. The likelihood function at time T, denoted by L, ( 0)) of 

the SDE 

dX, = S( 0, t, X,) dr + (T( t, X,) dB, , 

is given by Girsanov’s formula (see, for example, Oksendal, 1985), 

(1) 

7 

L,( 13) = exp 
U 

S( 0, t, X,) 

02(r, X,) 
dX- ; i rz;;;))ldl) 

0 0 

with respect to the martingale measure (dX, = (T( t, X,) ti,). We restrict ourselves to SDE’s 

with unit diffusion coefficient due to the fact that the diffusion coefficient is determined 

exactly given 9,. 

Theorem 4.5 provides the main result of the paper and shows that, under suitable regularity 

conditions, 

= H(p) - f log( 2ne) , (2) 

where 

and H(p) = - p( 0) logp( 0) de. 

Here E,,, denotes expectation with respect to the joint density of (X’, e), i,( 0) is the 

observed Fisher information or quadratic variation of the score function, and H(p) is the 

entropy functional. The expected Fisher information, IT ( 0)) is defined as 

I,(e) =&,gr 17 1’ (e)i . 

We consider both the local asymptotic normal case (LAN) (see, for example, Le Cam, 

1986) and local asymptotic mixed normal (LAMN) (see, for example, Jeganathan, 1983) 

families. When our class of process is LAN, the ratio of the observed to expected Fisher 

information, i, ( 0) /IT ( 0)) converges in probability to unity and hence i, ( 0) and I= ( 0) are 

interchangeable in (2). 

The rest of the paper is outlined as follows. Section 2 introduces the utility based approach 

to information (Bemardo, 1979a; DeGroot, 1986) that provides the basis for our prepos- 

terior analysis. A logarithmic utility leads to the Shannon information of the posterior as a 

measure of information provided by an experiment, see Lindley ( 1956). Applications of 

this measure include: design of linear models (Stone, 1959; Smith and Verdinelli, 1980; 

design of nonlinear models (Parmigiani and Polson, 1992) ; characterisation of likelihoods 

(Polson, 1988) ; and noninformative priors (Bemardo, 1979b). 

Section 3 provides intuition for the asymptotic behaviour of the Shannon information of 

the posterior in the LAN and LAMN cases. An exact decomposition is also given in the 
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linear case S( 0, t, X,) = f3S( t, X,) . Crucial to our approach is a decomposition of the Shannon 

information of the posterior in terms of the Le Cam-Ibragimov Z-process (Le Cam, 1986). 

Section 4 formally derives the asymptotic relationship between the information gain and 

observed Fisher information for LAMN families. Section 5 illustrates our results with 

Brownian motion with drift, the Omstein-Uhlenbeck process and the Bessel process. 

2. Information 

Suppose that an experimenter is faced with a decision problem with decision space 9 and 

utility function U: 0 X 9 + W. The experimental wishes to maximise expected utility. Let 

Y be a set of random observations on ( R, 5, P) . We wish to compare the maximum expected 

utility with and without information about Y. Without observing data the optimal decision 

and the associated expected utility is given by supdrU E,[ U( 8, d) 1. Having observed data, 

the relevant maximisation is supdED Eel J U( 13, d) ] where E,, ,, denotes posterior expecta- 

tion. Therefore, from a preposterior perspective, the expected change in expected utility, 

EY[ I( Y) 1, can be defined by ( DeGroot, 1986) 

&[I( Y) 1 = Ey sup E,, y[ U( 0, d) I 
I 

- sup E,[ v( 8, d) ] , (3) 
dED dED 

where E, and E, denote expectation with respect to p( 0) and p(Y) = ]f( Y] 8)p( 0) de, 

respectively. From a Bayesian perspective (3) quantifies information. 

In particular, suppose that the decision is to report a probability density for the random 

variable 0. We take D = P( 13)) the space of probability measures on the set 0, and assume 

that the utility function is honest, that is 

In other words, before observing the data the optimal reported density is your a priori beliefs, 

p( 0). Similarly, after seeing data the optimal decision (that is attains sup,,&,,,[ U( 8, 

d)] ) is to report your posteriorp( 81 Y). One might view this as the definition of inference 

from a Bayesian perspective (de Finetti, 1979). The honesty property, together with a local 

property (that is, U( 8, d( . ) ) = U( 8, d( 0) ) ), characterises the family of logarithmic utility 

functions, U( 8, d( . ) ) =A log d( (3) + B( 0)) where d( . ) now denotes the reported density, 

see Seidler ( 1958), Bernard0 ( 1979a). The logarithmic utility, therefore, plays a natural 

role in Bayesian inference. The change in expected utility (3) is then given by 

(4) 

that is, the expected Kullback-Leibler distance (Kullback, 1959) between the posterior, 

p( 0 ] Y) and the prior, p( 0). 

The purpose of this paper is to consider the case where Y = X’, where X, satisfies ( 1) and 

to derive the properties of (4) for large T. Let I( XT; 0) denote the information, so 
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Z(XT; 0) = E,r,@ [10+-g)]. 

For conditions on the measures P,,,, Px,, P, for Z(X7; 0) to be well-defined see Liptser 

and Shiryayev ( 1977). 

To give some intuition into the limiting behaviour of this measure of information we 

consider the usual statistical setup of a sample of size n. Suppose that we have a sequence 

XCn)= (X,, . . . . X,,) of observations such that X, = 13-t E,, where E, are independent and 

identically distributed and 0~ W. Then, defining Z(X (n); 0) in a similar fashion to (6)) we 

have, under mild regularity conditions that (Ibragimov and H’asminsky, 1973) 

Z(X’“‘; o,=;log($$ + ~p(B)log($+))dB+o(l) 

as n + to, where If= I( cf ‘)‘/j) dp is Fisher’s information for one observation and 4(n) 

is a suitable normalisation sequence, typically 4,(n) =rz. This result generalises to the 

multivariate case (Ibragimov and H’asminsky, 1973)) and to non-identically distributed 

observations (Polson, 1992). For example, consider the nonlinear model, yi = 7(x;, 13) + E,, 

where ci are independent and identically distributed, xi are design points and 0 E Wk. Then, 

under suitable regularity conditions, 

Z(X(“); @)= ~p’B’log(“‘=~$,~)“‘*)ds_tklog(2iie)+o(l) 

as IZ --, M, where ( C?=, Z,( 0) 1 is the determinant of Fisher’s information and Z, ( 0) is Fisher’s 

information for the ith observation. 

For stochastic processes, however, one may learn at different rates about 8, depending 

on where we are in the state space. Heuristically, in the regular case, where Fisher’s 

information grows linearly in time, we are merely interested in the average rate at which 

we learn about 8, so that if our stochastic process is stationary and ergodic, it is intuitive 

that we might asymptotically learn at a rate that is an average taken over the stationary 

distribution for the process. However, we will also be concerned with the important non- 

ergodic case. 

3. Asymptotic Shannon information 

Let (( 0, 9, (F,, t > 0), P.Y e) ; r3e O> be a class of probability spaces indexed by 

0 E @C Wk. On each of these spaces define a (possibly time-inhomogeneous) d-dimensional 

diffusion process, X = {X,, t > 0} by the SDE 

dX,=S(O, t,X,)dt+dB,, 
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where {B,, t>O} is a d-dimensional standard Brownian motion. Denote by Pxr, N the 

restriction of P, , H to Fr. We impose regularity conditions on the drift function S( . , . , . ) 

to ensure that the Pxr, @‘s are all absolutely continuous with respect to each other for each 

f > 0. Therefore, assume that 

T 

for all finite T and for all 0~ 0. For SDE’s, we define the likelihood of a process as the 

Radon-Nikodym derivative of its law, PXTIH, with respect to a dominating measure, the 

natural choice being Wiener measure, Pw. The diffusions we consider all have laws that are 

absolutely continuous with respect to Wiener measure and, under the usual regularity 

conditions, the likelihood is given by Girsanov’s formula 

where ’ denotes transpose. Define the marginal law for XT, P,x~ on (0, F-,} by 

P,r[A] = P,v,c,[Alp(@ do 

for all events A ~7,. More generally, we will write PXr,” [B] for possibly 8 dependent sets 

BCYt,X 0. 

In this section, we try to motivate the subsequent results. By Bayes theorem, 

P(elxT) dP,T, o =- 

P(e) dP,r ’ 

Therefore, the information gain can be rewritten as 

Z(XT; 0) = EXrH [los (yfy)] (6) 

Now consider the following identity that holds for all positive definite choices of the matrix 

QT( 0) : 

xp(@+Q,(0)-%)da, (7) 

where 1 Q,( 0) 1 is the modulus of the determinant of QT( 0). This follows from the definition 

of dP,r and the fact that the transformation 0++ 8+ QT( 0) ~ “2a has Jacobian 

1 QT( 0) 1 -“2. Now define 

zT,,( a) = 
LT( e+ !&<@ -“2d = dpxTls+QT(o)-1/2, (XT) . 

LT( 6) df’xr, e 
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Hence, (7) becomes 

z (X=1 = I QA 0) I -I” j- .&,,(a)~( 8+ QT( 0) ~ “*a) da . 
WA 

This identity is of fundamental use in establishing the asymptotic properties of (6). 

Heuristically, by choosing Q,( 0) carefully we can obtain a meaningful limit of the process 

Z,,,( cz) as T+ 30. Let us for the moment suppose that Z,,(a) * Z,( a), where =. denotes 

weak convergence, and that interchange of limits and uniformity of convergence are valid 

in the following: provided that Qr( 13) + 00, we have p( 8+ QT( 0) ~ “*a) +p( 0) as T+ CC 

and hence from ( 8), 

I QT( 0) I “* df’xr 
PC 0) dpxr, H 

(XT)- (Z,(cr)da. 

W” 

Combining (6) and (9)) we informally deduce that Z(X’; 0) asymptotically satisfies 

lim ( Z(XT; 0) - E,[ log I Q,( 0) I “*I ) 
T-m 

(9) 

(10) 

where H(p) is the entropy functional of the prior. We now consider specific families of 

limiting processes Z,(a). 

3.1. Local asymptotic normal families 

The typical scenario for the limit process Z,( a) is the following: there exists matrices Q,( 0) 

such that 

log Z,( (Y) = lim log 
dPxr,s+or1+~ja 

(XT) 
T--r_ dPxr,o 

=a’G”2(0)A-+‘G(8)cq (11) 

where ’ denotes transpose and A is a random vector and G( 0) is a possibly e-dependent 

random matrix. If A - N( 0, I) and A, G( 0) are independent then the family of measure 

{ PxT, @; 8 E O} are said to be locally asymptotically mixed normal (LAMN) and if G( 0) = Z 

they are said to be locally asymptotically normal (LAN). 

By direct evaluation, we can compute the final term in ( 10) under ( 11) as follows: 

I‘ 
Z,( cr) da = 

I 
exp( - icr’G( 8)a+&G”*( @)A) dcu 

Wk W” 

= (2~)~‘~ I G( 0) ( - “* exp( +A’A) . 

Therefore, 
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E,,[log 1 -G(a) da] =E&logIG(@ 1 -“2] +;E,,,[A’A] -;klog(2~) . 

IfA-N(O,Z) then 

E,,,[log i.&(a) da] =Ex,s[log~G(B)~-“2]+~klog(2~e), 

which implies from ( 10) that 

lim ( Z(X7; 0) - EH[ log I QT( 0) I “*I ) 
T--r= 

=H(p) +E,,,[logJ G( 0) ) I/*] - iklog(2ne) . 

In the LAN case, this reduces to 

lim (Z(XT; @)-E,[log)Q,(0)~“2])=H(p)-~klog(2~e). 
T--r% 

(12) 

(13) 

The formal asymptotics of the above are derived in Section 4. 

3.2. The linear case S(0, t, X,) = t?S(t, X,) 

The expected information I( XT; 0) in the linear case S( 8, t, X,) = I%( t, X,) can be evaluated 

explicitly for all T when a priori 8 - N( $, ug) where 8~ W. The likelihood can be taken 

to be 
T T 

dpxr, gr 
dP(~7)=exp S’(t,XJdX,-i02 

W 
0 0 

The posterior is directly computable, via Bayes Theorem, as 

(14) 

whereA(T)=I~JIS(t,X,)l12dt+~~ and T~=PO_~. The information I(XT; 0) is analyti- 

cally computable, for all values of T, as follows: first, note that 

Z(X’; 0) = -E,r[H(p(. IX’))] +H(p) . 

Secondly, the entropy of a univariate normal with arbitrary mean and variance ST, is given 

by 4 log( 2Te) + log s,. Following ( 14)) we obtain 

I 

Ils(c XI II2 dt+ d 11 +H(p) - f log(2ve) (15) 

0 
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for all T. Here the observed Fisher information is i, ( 13) = 1: IjS( t, X, ) II2 dt. The decompo- 

sition is equivalent to ( 12) as long as ir( 0) lIT( 13) + G( 0) and ZT( 0) +a as T-+ M. 

3.3. A continuous time analogue of Jeffreysprior 

We can re-express (12) as follows: 

[(XT; B)=lp(H)log(“~(~)““)d, 

0 

+ p(8) G,,[log IG(@ l”2l -to(l) 
8 

(16) 

as T-+ ‘~j. It is interesting to note that when ) QT( f3) \ “2 exp(E,, ,[log) G( 0) ) “2] ) E 

L ’ ( 0)) the right hand side is bounded by 

log I IQA@ I”‘exp(E,,,[loglG(8) l”21) de 

with equality if and only if 

pi(o)a: IQ,(e)l’“exp(E,,,[log IG(@1”21). (17) 

Therefore, the experimenter who expects to learn the most from experimentation has prior 

beliefs given by ( 17). We will see that the natural choice for QT( (3) is Fisher information 

I,( 0). Moreover, in the LAN case I G( 0) I = 1 and in this case we obtain a continuous time 

analogue of Jeffreys prior, that ispr( 0) a I I,( 0) I “2. It should be noted that the use of such 

automatic rules for prior specification should be taken with great caution and that Jeffreys 

never proposed their use in the context of continuous time models. 

4. Formal asymptotics 

Theorem 4.1. Suppose that Z,,( CY) converges weakly to Z,(a) in Px, e measure for all 

8 E @ and that the following conditions hold: 

(A 1) The prior density p( 0) is uniformly Holder continuous; there exist positirle con- 

stants k,, E, such that 

IP(e,)-PI Gkl 10, -e,i&l ye,, e,E@. 

(A2) The following uniformity conditions are satisfied: 

(i) There exists a constant k2 such that VO, 8+ QT( f3) -“2~,, f3+ Q7( 0) -“2cy2 E 0, 

T 

-f&q 0+ Qr( 0) - ‘47, 
U 

IIS(e+Q,c@-“2Q,2, t, x,1 

0 
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(ii) There exists positive constants +, k3 such that Q,( 0) ‘I2 > k,T R11’ t/T> 0, 8~ 0, 

where 1 is a row vector ofones. 

(A3) For each 9, one of the following holds: either, 

in P,r, ,-measure as A + 00 for all T> 0, or 

sup p(9) <cc, and 
I 

Z,,(a) da-+01 
BE@ 

lel >A 

in Px~, H- measure as A + 00. 

The proof of this result requires the following lemma. 

Lemma 4.1. Suppose (A2) holds, then Z,,(a) satisfies the uniform Lipschitz condition, 

&r,f/[ IZ,,(a,) --%,,(a,) II <Cl% -aI I 

for some constant c, uniformly in 0, T and (Y,, a2 E Wk. 

Proof. Writing J( 0, (Y, T) = log Z,,,( cr), then Exr, B [ (Z,,( a, ) - Z,,,( (Ye) I ] can be rewrit- 

ten as 

,&J (eJ’o.,l.n _eJ(o.4.T))~(A,) ] +E,~, @[ (eJ’“,e~.T) _e”‘(‘.“.T’)[(&)] , 

whereI is the indicator of the set A, = {Z,,( a,) -Z,,( LYE) <O} and A, is the comple- 

ment of A,. This can be bounded by 

&T, 6, 
[eJ’““I.r’(J((j, a,, T)-J(& (~2, T))+l 

+ExrIH[e ‘( H.a2.T) (J( 8, a,, T) - J( 8, a2, T) ) + ] , 

where ( . ) + denotes positive part. Therefore, 

.%,s[ IZ,,(a,) -zT,,(a2) II 

~EE,~,,I(ZT,,((Y,)+ZT.B((Y~)))J(~, cf,,T)-J(@, (~2, 7311 . (18) 

SinceZT.d~,) =dPx~ls+a7-~sj~~~~n, ldf’xr, d we have 

Exr,stZ,,(a,)lJ(& (~1. W-J(@ (~2, VII 

=Exq~+mw~/~rr, [IJ(8,(Y,,T)-J(8,(Y2,T)Il. 

Similarly for the second term on the right hand side of ( 18). We will prove the uniform 

Lipschitz condition for these two terms. Now, 

Exr,~+~rcHj-l”~, 1 IJ(R (~1, T) -J(O, (~2, T) II 

&%~H+Q~w-I~z~~ [K(@ aI> (~2, Ul +&T,H+~~(wI/~,, 
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T 

X 
8 

(S’(8+&(~)-“2~2, t,xr)-s’(6+Q7 

0 

-(w”2a,, 4X,)) a, , II 

= J IlS( e+QT( e) -“*ff2, t,X,)-S(0+QT(0)~“2cq,t,X,)~~2dt. 

0 

In turn, by Cauchy-Schwarz and the isometry for Brownian integrals, 

E X71B+Q~(H)-“?a,[IJ(8, alr T)-J(@ a2t T)Il 

G(Exqti+QT(~)r”*cw [KC@ al, ff2, n1)“2 

+~Exr,s+a~~w~liz,,[K(e, al> a23 n1 . 

However, using (A2) (i) , 

E X’IB+QT(O)-~~Z,, rKce, aI, a21 T)l <k2 Ia, -a2 12. 

Hence, from ( 18), we have 

for I a2 - a, I < 1. By the triangle inequality the above identity holds globally as well, 

completing the proof. 0 

Proof of Theorem 4.1. It remains to show that 

z 
T, 0 da* 

s 
Z,(a) da, 

and that the random variables 

(a) P(w&<w’“d da 

pw 

are uniformly integrable, that is for the sets 

B, = 
z 

T.0 

we have 

going uniformly to zero as k -+ 00 for 8 E 0, TE [ 0, ~0). 
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However, these conditions will be satisfied by a straightforward modification of Theorem 

3.1 of Ibragimov and H’asminsky ( 1973), if we can show the uniform Lipschitz condition 

EH[ IZ,,(~,) -Z&a,) II =GCI% -% I 

However, this is assured by Lemma 4.1. The full proof will not be duplicated here. 0 

4.1. Local asymptotic normality 

Definition 4.1 (local asymptotic normality (LAN) ). The set of measures {Px~, #, 0e @} 

is said to be locally asymptotically normal at 0~ 0 if there exists matrices Q,( 0) such that 

the following holds: 

1% ZT,,( a) = 1% 
@x7, Hf Qr( oj I& 

dpx,, o 
(XT) 

= a’AT( 8, XT) - ~CX’CI+ &( CX, XT, 6) , 

where & ( (Y, X,, 0) -+ 0 in PXr, ,-measure and 

A,(@, XT) *A-N(O,I) 

asT+a. 

To make sense of LAN in the present context, we need the following notion of differ- 

entiation, necessary for the linearisation of Z,,( (Y). 

Definition 4.2. A collection of random functionsf( c, t) indexed by t E [ 0, T] , is said to be 

differentiable in c in probability in L’[O, T] , if there exists a function f( U, t), t E [0, T] 

such that 

T f(L’+t, I) -f(L), t) I( 6 
-&I, t)r dt-0 

0 

in probability. 

A vector random function with a vector parameter is said to be differentiable in probability 

with respect to the parameter, if each component of the random function is differentiable in 

probability with respect to each component of the parameter. Denote by $( 8, t, X,) the 

k X d matrix of derivatives in probability. 

Suppose that the following additional conditions hold: 

(A4) S( 0, t, X,) is differentiable in 8 in PX, @-measure in L2 [ 0, T] , for all HE 0. 

(A.5) There exists a class of matrices { QT( 0)) Ta 0} of order k x k such that 

QA 0) - "'(j~~e,t,X,)S~(R.t,X,)dt)QT(e)-"'~~ 
0 
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in P XI 0-measure as T+ m, where Z is the k X k identity matrix. 

Following the statistical case, it is necessary to introduce the score function. Define, the 

score function, UT ( 0)) by 
T 

u,( 6) = $, log L,( 6) = I‘ SW r, X,) dB,, 
0 

where the partial derivative is the derivative in probability as in Definition 4.2. The scaling 

factor QT ( 0) will be taken to be the quadratic variation of the score function: 

that is, QT( 0) = I, ( 0). The score function U, ( 0) is a Px, ,-martingale (see Feigin, 1976), 

heuristically acting as Brownian motion in the time scale of Fisher’s information. 

We can rewrite Z,,( (Y) (defined in ( 11) ) in the following way: 

i0g z,,( a) = deT( e) - 1’2 Sy 8, t, x,) dzq 

0 

-t IIw+e,w I “2cx, t, x,) -s(e, t, X,)112dt 

0 

+ (s’( ef QT( e) -“2a, t, x,) 

0 

where B is the XI 0 Brownian motion. Write 

i”gzT.o(a) =JT.I(e) +JT.2(@ +-km . 

Now, by (A 1) and (A2), JT,3( f3) tends to 0 as T + 00, and .I,,( 0) converges to f II alI2 in 

Px, 0-measure. The interesting term is .I,, ( 0). By definition of the score function, 

J,,( 0) =OL’QT( 0) P”2&( 0) . 

The condition (A2) is exactly the right condition to allow the martingale central limit 

theorem to apply to JT,, ( 0). We give a version applicable to SDE’s. 

Theorem 4.2. Let Y, be the Brownian martingale given by, Y,=jg (T( t, Y,) dB,, and 

suppose that there exists matrices {Q, T 2 0} such that 

T 

QF”* U 
(~(t, Y,)a’(t, Y,) Q;“2 +I 

0 
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in probability as T+ 03. Then, 

Q,‘“Y,*N,(O, I) as T-m. 0 

Recalling condition (A5), we have proved the following: 

Corollary 4.1. Under the conditions (A4) and (A.5) the family of measures is UN with 

QT(@ =I,(@. 0 

Theorem 4.3. Suppose that (A 1 )-( A5) hold. Then 

lim (Z(XT; 0)-E,[log]Z,(8)]“2])=H(p)=~klog(21re). 0 (19) 
r-m 

4.2. Locally asymptotic mixed normal 

Definition 4.3 (local asymptotic mixed normality (LAMN)). The set of measures 

{PXTIH, (3~ @} is said to be locally asymptotically mixed normal at 0~ 0 if there exists 

matrices QT( 0) such that the following holds: 

log -G./A a) = log 
dPxr,s+prcwa 

dPxT, o 
(XT) 

=~‘G:‘2(e)A,(8,X,)-~a’G,(8)~+~r(~,Xr, e), 

where &( (Y, X,, 0) + 0 in Pxr, @- measure. Moreover, GT( 0) converges a.s. to G( 0), and 

(A,(e,X,),G,(B))~(A,G(e)) 

as T+ ~0, where A N N( 0, I) and G( 0) is a positive definite matrix random variable. 

By direct computation we obtain: 

Theorem 4.4. If LAMN and (A 1 )-( A3) hold, then 

lim (Z(XT; 0) -fcH[iOgpT(e) 1”2]) 
T-z 

=H(p)+E,,[log]G(8)]“2]-~klog(2~e). 0 (20) 

We note here that typically G( 0) depends on initial conditions of the process. A useful 

recombination of the result can be obtained by noting that if iT( 0) /Zr( 0) + G( 0) then we 

have 

lim (Z(Xr; 0)-E,,,[log]i,(e)]“2])=H(p)-~klog(2rre) 
7+= 

for the LAMN class. The asymptotic Shannon information gain in this case is therefore 
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governed by observed Fisher information rather than expected Fisher information as in 

Theorem 4.3. 

5. Examples 

We now consider Brownian motion with drift, the Ornstein-Uhlenbeck process, and the 

Bessel process. 

5. I. Brownian motion with drift 

Consider the process that is the solution of the stochastic differential equation, 

dX, = 8 dt + dB, where 0 is given a prior density t?- N( $, vi?)) where rg = 1 /a;. Now X, 

is a sufficient statistic for 0. Therefore, by Bayes theorem, the posterior p( 81XT) = 

~(81X,)ap(X,I8)p(8),whereX,-N(8T,T)andsoasin(14), 

By (15), wehave 

I(XT; 0) = f log(T+ 7;) +H(p) - 1 log(2ne) 

and the limiting result agrees with Theorem 4.3 with Q7( 0) = T. 

5.2. Ornstein-Uhlenbeck process 

Consider the Ornstein-Uhlenbeck ( 1, 0) process, that is, the solution to dX, = OXtdt + dB,, 

where B, is a Brownian motion. The likelihood is given by 

T T 

The score function by 

By the isometry of Brownian integral (1; X, dB,)2 = 1: X: dt and hence the observed Fisher 

information is iT( 0) = /gX: dt. Therefore, by ( 15) the expected information gain is given 

for all T by 

Z(X’; 0) = $E,7,,[log(i,( 0) +z$)] +H(p) - ilog(2ne) . (21) 

where i,( 0) is observed Fisher information. 

We now discuss the limiting properties of iT( 0) as T + a. It is convenient to consider 



the ergodic ( 8 < 0) and transient ( 8 > 0) cases separately due to the asymptotic properties 

of X, in each case. 

(i) Ergo& case, 8 < 0. The behaviour of observed Fisher information can be determined 

as follows: the ergodic theorem ensures that, 

in P,, g measure. Therefore, 

1 
lim (log i,( 0) -log T) + log ( 1 - - 
T+- 28 

The result in (21) agrees with the asymptotic result of Theorem 4.3. 

(ii) Transient case, 8> 0. We can write 

e 
0 

Since E[(e-HTXT-X,,)2] = (1 -e-2eT)/(2f3), which is bounded, eCeTX, is a uniformly 

integrable martingale, and so converges to Y, say. Moreover, Y -N(X,, l/( 20)). The 

behaviour of i, ( 0) follows from the fact that 
T 

e 2tr 
--(X;dt+Y2 
28 

0 

in P,, @- measure as T + ~0. Therefore, 

e 2KT X; dt-,&20X;) 

0 

where x:( . ) denotes a non-central chi-squared distribution. 

The ratio of observed to expected Fisher information, iT( 13) /I, ( 0)) converges weakly to 

G(0)=(1+2eX:,)-‘,&20X;). 

This model falls into the LAMN class as Y and A,are asymptotically independent. Therefore 

the behaviour of asymptotic Shannon information is given by ( 15). 

5.3. Bessel process 

Another non-regular situation occurs with the following Bessel(k) process which is defined 

as the solution of the SDE 

dX,= 
k-l 

2(X, - 0) 
dt+dB,. 
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It is straightforward to show that the observed Fisher information is given by 
7 

iT(O) = a(/?- 1)2 I 1 

(X, - 0)” 
dt . 

0 
(22) 

The behaviour depends on the starting value X,, and whether 1 < k < 3 or k 2 3. In the case 

when 1 <k < 3 the Bessel process is recurrent, so that when it hits 8 it is easy to check that 

ir( 0) becomes almost surely infinite, giving infinite information in a finite time interval. 

Therefore no analogue of Theorem 4.4 holds. In the case when k > 3 the Bessel process is 

transient. Provided that X,, + 8 we have lim,, JT( 0) < CC and the information is bounded 

for all T violating (A2) (ii) in Theorem 4.1. 
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