
Neuron

Review
Genomic Perspectives of Transcriptional
Regulation in Forebrain Development
Alex S. Nord,1,* Kartik Pattabiraman,2 Axel Visel,3,4,5 and John L.R. Rubenstein2
1Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and Behavioral Sciences, Center for Neuroscience,
University of California, Davis, Davis, CA 95618, USA
2Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA 94158-2324, USA
3Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
5School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
*Correspondence: asnord@ucdavis.edu
http://dx.doi.org/10.1016/j.neuron.2014.11.011

The forebrain is the seat of higher-order brain functions, andmany human neuropsychiatric disorders are due
to genetic defects affecting forebrain development, making it imperative to understand the underlying
genetic circuitry. Recent progress now makes it possible to begin fully elucidating the genomic regulatory
mechanisms that control forebrain gene expression. Herein, we discuss the current knowledge of how
transcription factors drive gene expression programs through their interactions with cis-acting genomic
elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into
gene expression states; and how these approaches yield insights into the evolution of the human brain.
Overview
Working at the turn of the twentieth century, Santiago Ramón y

Cajal demonstrated the variety of neuronal cell types and pro-

vided insights into the network of connections within the brain

using simple histological stains and light microscopes (Cajal,

1899). Over 100 years later, despite the availability of advanced

imaging, and molecular and functional analysis tools, much re-

mains unknown about the genetic factors controlling the devel-

opment, structure, and function of the intricate features that, in

their entirety, form the human central nervous system. The fore-

brain houses the neural structures that control higher-order brain

functions, including the pallium (cortex and hippocampus),

subpallium (striatum, pallidum, preoptic area, and septum), hy-

pothalamus, and thalamus. Understanding the development,

evolution, function, and dysfunction of the forebrain requires a

deep understanding of the genetic control of how its compo-

nents are assembled and interconnected.

At the core of the processes that regulate forebrain develop-

ment and function is the transcriptional circuitry. Over the past

25 years, numerous regional and cell type-specific transcription

factors (TFs) have been identified and characterized.We are now

aware of some components of TF networks that control region-

alizationwithin the embryonic brain. Although general paradigms

for identifying TFs and defining their cellular functions have been

established, studies are now needed to explore and understand

the molecular and genomic mechanisms through which net-

works of such TFs function during development. Of paramount

importance is elucidating the cis-regulatory genomic elements

where sets of TFs interact to control forebrain gene expression.

Recent technological advances, highlighted by the invention

and application of chromatin immunoprecipitation (ChIP)-based

and high-throughput sequencing assays, have enabled large-

scale efforts to functionally annotate the genome. The results

from studies that have applied these technologies to the devel-

oping brain reveal the essential role of neuronal TFs, the dynamic
gene expression landscapes in brain development, and the

extensive role of noncoding regulatory elements. These findings

point to complex regulatory systems underlying the diversifica-

tion of neuronal cell types and structural connectivity that Cajal

drew in his formative illustrations. While many of the details of

the emerging regulatory landscape of the brain remain to be

explored, recent advances highlight the role of transcriptional

control in normal development and in neurological disorders

and disease. In this review, we describe the interplay between

TFs, distal transcriptional enhancers, chromatin structure and

epigenomic features, and DNA-binding and chromatin remodel-

ing proteins in establishing the regulatory circuitry underlying

transcriptional control and development of the forebrain. In

addition, we describe approaches for the identification and char-

acterization of enhancers and other regulatory elements and

provide a perspective on emerging and exciting research on

the genomic and regulatory control of forebrain development,

evolution, and disease.

Annotating Regulatory Elements Active in Forebrain
Development
Metazoan Gene Regulation via cis-Regulatory Elements

Cis-regulatory control of gene expression during development is

a complex process, dependent on distal sequences, spatial or-

ganization of the chromosome, and chromatin or epigenetic

state (Figure 1A). For some genes, notably housekeeping genes,

the proximal regulatory sequence is sufficient for correctly acti-

vating transcription (Lenhard et al., 2012). In contrast, genes

with complex expression patterns can be acted on by many

distal transcriptional enhancers located in intronic, intergenic,

and even exonic sequence, with enhancers potentially located

far from target genes. Enhancers appear to be the most nu-

merous regulatory elements in mammalian genomes and exhibit

extensive tissue and stage specificity, suggesting that distal en-

hancers are required for the precise control of gene expression
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Figure 1. Types of Gene Regulatory Sequences and
Methods for Their Discovery and Characterization
(A) Schematic view of different chromatin states in genic and
intergenic regions, with characteristic classes of epigenomic
features and an overview of selected methods for their
genome-wide mapping.
(B) Track-style view of features commonly associated with
different types of regulatory sequences.
(C) Transgenic reporter assays enable the validation and
detailed characterization of enhancer activity patterns
in vitro and in vivo.
(D) Massive parallel reporter assays enable medium- and
large-scale function-based enhancer discovery screens.
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(ENCODE Project Consortium, 2012; Stamatoyannopoulos

et al., 2012; Nord et al., 2013; Shen et al., 2012). With the binding

of activating TFs, enhancers are brought within spatial proximity

of target promoters through the formation of loops in DNA (Ku-

laeva et al., 2012), with structural proteins such as mediator

and cohesin involved in this process (Kagey et al., 2010). It is

now clear that enhancers may interact with multiple promoters,

and clusters of coregulated genes may exhibit promoter interac-

tions, with the spatial aspects of gene regulation just now begin-

ning to be characterized (Zhang et al., 2013). Many of the details

regarding the mechanisms and timing of transcriptional control

via regulatory sequences remain uncertain. There is evidence

that enhancer-promoter looping may actually be very stable

and not reflect activation (DeMare et al., 2013; Kieffer-Kwon

et al., 2013). Additional classes of regulatory sequences are

also important in gene regulation, such as insulators and si-

lencers (Cuddapah et al., 2009). Significant progress in charac-

terizing the complexity of noncoding regulatory circuitry has

been made in model systems (Lagha et al., 2012), and in specific

lineages and developmental loci (Montavon et al., 2011; Stama-

toyannopoulos, 2005). It is increasingly recognized that tran-

scriptional regulation is achieved endogenously through a

complex interplay of cues that involve the binding of activating

and repressive TFs, chromatin state and structure, epigenomic

modifications and chromatin remodeling proteins, the activity

of long noncoding RNAs, and cis-regulatory elements that can

have activating or repressing function depending on develop-

mental context. Despite this complexity, new technologies

have enabled the identification and characterization of hundreds

of thousands of candidate regulatory elements in the human and

mouse genomes.

Early Approaches to Enhancer Identification in the Brain

Before the publication of the human and mouse reference

genome sequences, regulatory regions were typically found via

trial and error, such as through deconstructing BACs or other

large sequence fragments to determine subregions that con-

trolled expression patterns of target genes. The first genome-

wide predictions of regulatory elements were based on the pres-

ence of evolutionary sequence conservation (homology across

species) or constraint (relative local sequence conservation

across evolution) (Cooper et al., 2005; Frazer et al., 2004; Ovchar-

enko et al., 2004; Prabhakar et al., 2006b; Schwartz et al., 2000;

Siepel et al., 2005) coupled to functional screening via reporter

assays (Kothary et al., 1989; Nobrega et al., 2003; Pennacchio

et al., 2006). The combination of trial and error and comparative

genomics-guided screens, when applied to individual loci of in-

terest, led to the identification of regulatory elements with activity

in the developing forebrain near genes including Arx, Dach1,

Dlx1/2, Dlx5/6, Emx2, Fezf2,Meis1,Otx1/2, Pax6, and Sox2 (Ahi-

tuv et al., 2007; Colasante et al., 2008; Ghanem et al., 2007; Kam-

mandel et al., 1999; Kurokawa et al., 2004, 2014; Machon et al.,

2002; Mariani et al., 2012; Royo et al., 2012; Shim et al., 2012;

Suda et al., 2010; Theil et al., 2002; Zerucha et al., 2000) These

elegant and labor-intensive studies provided first insights into

the regulatory architecture of these key developmental loci. How-

ever, due to the required effort they were limited in the scope of

genomic regions covered and likely missed additional regulatory

elements, particularly those far from the genes of interest or lack-
ing strong cross-species conservation. Many additional em-

bryonic brain enhancers have been identified via large-scale

unguided genome-wide screens of extremely conserved non-

coding regions for sequences that drive reporter gene expression

at specific embryonic time points, with the results available in the

VISTA enhancer database (Visel et al., 2007). This database con-

tains over 2,100 tested human andmouse sequences, over 1,100

of which function as enhancers in vivo in embryonic mouse tis-

sues with whole-mount staining images available. The VISTA

enhancer set includes over 350 annotated to drive expression

in the forebrain at embryonic day 11.5 (E11.5), and 147 of these

enhancers additionally include high-resolution images of devel-

opmental brain sections that can be used to map the spatial ac-

tivity of forebrain enhancers (Visel et al., 2013).

Epigenomic Approaches to Study Gene Regulation

Two parallel developments have resulted in rapid expansion of

the catalog of regulatory elements in mammalian genomes and

in annotation of their function. The first is the availability of next-

generation sequencing technologies that cost-effectively ge-

nerate enough sequence coverage to enable genome-wide

enrichmentmaps in a single experiment. The second is the knowl-

edge about interpreting epigenomic marks that emerged from

early studies in the area of cellular and chromatin biology, with

additional traction from ENCODE pilot studies (Birney et al.,,

2007). Current proxy signatures of regulatory element activity

and chromatin state include coactivator binding (e.g., p300), his-

tone modifications, binding of TFs or other DNA-associated pro-

teins, chromatin accessibility, DNA methylation, and nongenic

RNA transcription (Figures 1A and 1B). Using approaches to

assay these signals, it is possible to identify and differentiate clas-

ses of regulatory elements and thus to identify enhancers that are

active in particular cell lines or tissues. There are also emerging

genome-scale tools to map interactions between regulatory se-

quences and their target genes (e.g., ChIA-PET; Fullwood et al.,

2009) and for generating genome-wide interaction maps (e.g.,

chromosome capture assays such as HiC; Lieberman-Aiden

et al., 2009). There is support for sequential chromatin modifi-

cations that are associated with repressed, poised, and active

enhancers (Creyghton et al., 2010; Rada-Iglesias et al., 2011).

For example, the histone modification H3K27me3, shown in

Figure 2B, can be indicative of a repressed region whereas

H3K27ac can indicate active enhancers (Creyghton et al., 2010;

Rada-Iglesias et al., 2011). Despite the general correlation be-

tween specific chromatin modification patterns and activity

states, no specific signatures that have been reported appear to

capture function exactly (Cotney et al., 2012; Visel et al., 2009b).

Although the resources generated by large-scale centralized

efforts, such as the ENCODE and Epigenomics Roadmap initia-

tives, have significantly advanced our understanding of cis-reg-

ulatory elements, there are limitations in using these data sets to

characterize regulatory elements active in the developing brain

due to the incomplete representation of representative cell lines

and tissue types. Nonetheless, application of functional geno-

mics to identify regulatory circuits controlling brain function

has already produced major insights. There are now many

publicly available genomic data sets relevant to the developing

brain (see Table 1 for a partial list). These resources can be of

tremendous value to researchers. For example, the Brainspan
Neuron 85, January 7, 2015 ª2015 Elsevier Inc. 29



Figure 2. TFs with Known Roles in Forebrain Development
(A and B)Models of transcriptional pathways in the developingmouse basal ganglia based on RNA expression analyses in the embryonic brain of loss-of-function
TF mutants. Green arrows, activation; red stop signal, repression.
(A) Pathways in the caudal, lateral, and medial ganglionic eminences (CGE, LGE, MGE) based on data in references in main text.
(B) Pathways in the medial ganglionic eminence (MGE) based on data in references in main text.
(C) Expression of TFs in the basal ganglia ofGsx2�/�, Dlx1�/�Dlx2�/�, andGsx2�/�Dlx1�/�Dlx2�/� mutant mice. Expression changes are reported separately for
two different developmental stages (E12.5 and E15.5) in the ventricular zone (VZ), subventricular zone (SVZ), and mantle zone (MZ) of the CGE, LGE, MGE, and
Septum. Colors indicate the effect of each mutation on TF expression: black or no square, not analyzed; gray, no obvious expression change in mutant; white, no
detectable expression; magenta, severe reduction in expression; orange, moderate/mild reduction in expression; green, ectopic expression; blue, increased
expression. In diagonally divided boxes, the top part represents the dorsal region and the bottom the ventral region. Modified from Wang et al. (2013).
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expression data sets have been instrumental in mapping the

expression networks of genes perturbed in autism and schizo-

phrenia (Gulsuner et al., 2013; Parikshak et al., 2013; Willsey

et al., 2013).

Functional Characterization of Enhancer Activity

in the Brain

Although a number of epigenomic markers, signatures, and as-

says are now available to predict the genomic location of en-

hancers, a continued major challenge is validation of functional

predictions and determination of the exact activity of noncoding
30 Neuron 85, January 7, 2015 ª2015 Elsevier Inc.
sequences. Reporter-based enhancer assays (Kothary et al.,

1989) have been used extensively to map enhancer activity of

both human and mouse regulatory sequences in vivo, and have

been extended via library-based screening to examine hundreds

to thousands of sequences in parallel. In comparison to assays

performed in cell lines, in vivo functional enhancer analyses

reveal specific cell types, tissue subregions, and developmental

stages at which an enhancer drives expression (Pennacchio

et al., 2006; Visel et al., 2013). Enhancer assays further differ in

how the DNA is delivered, the size of fragment that is introduced,



Table 1. Functional Genomics Data Sets Relevant to Gene Regulation in the Developing Brain

Resource Name URL Description

Genomic Data Sets Focusing on the Brain

Allen brain atlas http://www.brain-map.org developmental transcriptomes, microarray, and

in situ hybridization

Brainspan http://www.brainspan.org mouse and human developmental brain gene expression

MethylomeDB http://www.neuroepigenomics.org/methylomedb mouse and human brain methylome data sets

Nord et al., 2013 http://enhancer.lbl.gov/mouse_time course mouse forebrain developmental H3K27ac data sets

Brain Expression Resources (In Situ, Enhancer, BAC)

VISTA http://enhancer.lbl.gov whole-mount E11.5 mouse activity data for human/mouse

enhancers

Gensat http://www.gensat.org/index.html BAC-driven reporter assays/mice and in situ data

Large-Scale Centralized Functional Genomics Initiatives

ENCODE http://www.genome.gov/encode many data types, expanding to developmental brain tissues

Roadmap epigenomics http://www.roadmapepigenomics.org many data types, numerous brain samples

Blueprint epigenome http://www.blueprint-epigenome.eu population level epigenomic data, no brain relevant

samples to date

FANTOM http://fantom.gsc.riken.jp CAGE expression data for limited human brain/neuronal

cell lines

Shen et al., 2012 http://chromosome.ucsd.edu/mouse/download.html mouse ENCODE project as described in Shen et al., 2012
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the number of copies or constructs per cell, stable or transient

integration, and whether the readout is image or sequence

based, as reviewed recently (Shlyueva et al., 2014). Beyond as-

saying in vivo activity, reporter assays have been used to docu-

ment the functional autonomy of distal enhancers (Visel et al.,

2009a), changes in enhancer activity due to sequence variation

associated with evolution and human disease (Poitras et al.,

2010; Prabhakar et al., 2008), and to label cells in fate mapping

experiments (Chen et al., 2013; Pattabiraman et al., 2014; Visel

et al., 2013). Reporter-based approaches have been further

adapted to discover new enhancers in the genome (e.g.,

enhancer trappingmethods (Hill andWurst, 1993)), generatemo-

lecular reagents for regional/cell-type specific expression in the

brain (Gong et al., 2003), and used in high-throughput function-

based identification and characterization of enhancers (Arnold

et al., 2013; Dickel et al., 2014; Kheradpour et al., 2013; Murtha

et al., 2014; Patwardhan et al., 2012; White et al., 2013). Similar

methods have been used in simpler and more distant model

organisms, which offer the trade-off of lower cost but larger dif-

ferences in brain anatomy and function compared to humans

(Ariza-Cosano et al., 2012). The combination of single-enhancer

studies that producedetailed spatial and temporalmapsof in vivo

enhancer activity complemented by sequence-based assays of

function have the potential to greatly expand understanding

of regulatory element activity and the effects of regulatory se-

quence variation on brain development. Considering the results

from traditional single gene studies alongside genome-wide or

high-throughput approaches, we next attempt to synthesize cur-

rent understanding of how transcriptional regulation orchestrates

forebrain development, evolution, and function.

TFs Controlling Forebrain Development
Elucidating the transcriptional networks in the developing fore-

brain requires the marriage of defining the cellular and develop-
mental functions of individual TFs with their genome-wide

molecular functions. In the telencephalic region of the forebrain

(cerebral hemispheres), this has begun through the identification

of TFs with region and cell-type specific expression patterns.

For instance, telencephalic expression of TFs such as Emx1,

Emx2, Fezf2, Ngn1, Ngn2, Pax6, Satb2, Tbr1, and Tbr2 are

largely restricted to cortically derived glutamatergic progenitors

and neurons (Lai et al., 2013; MacDonald et al., 2013), whereas

Dlx1, Dlx2, Dlx5, Dlx6, Gsx1, Gsx2, Lhx6, Lhx8, and Nkx2-1 are

largely restricted to subcortically derived GABAergic and cholin-

ergic progenitors and neurons (Rubenstein and Campbell,

2013). Note that interneurons of cortical structures (neocortex,

hippocampus, and olfactory bulb) are believed to be largely

generated by subcortical progenitors (Batista-Brito and Fishell,

2013; Rubenstein and Campbell, 2013). Other telencephalic

TFs are jointly expressed by cortical and subcortical regions,

such as Arx, Ascl1 (Mash1), Brn1, Brn2, COUPTFI, COUPTFII,

CTIP1, CTIP2, Cux1, Cux2, Foxg1, Lhx2, Pbx1, Pbx2, Satb1,

Sox5, Sox6, Sp8, and Zfhx1b (Sip1; Zeb2) (Lai et al., 2013; Mac-

Donald et al., 2013; Rubenstein and Campbell, 2013; Ruben-

stein and Rakic, 2013; Thompson et al., 2014), suggesting that

they may share similar functions in both cortical and basal

ganglia development. Many other TFs are likely to be centrally

involved in forebrain development and defining these factors

and their roles is an active area of research. Below we highlight

two signaling pathways active in the developing subcortical

forebrain as examples of how understanding these transcription

factor networks reveals the transcriptional control of neurode-

velopment.

Analysis of Forebrain Development Using TFs Mutants

Many of the TFs involved in forebrain development have been

studied in loss-of-functionmousemutants with the goal to define

their individual and combined in vivo functions (Figure 2). For

instance, analysis of Dlx1�/�, Dlx2�/�, Dlx5�/�, and Dlx6�/�
Neuron 85, January 7, 2015 ª2015 Elsevier Inc. 31
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single mutants demonstrated distinct selective phenotypes in

subsets of neurons in lineages that express theDlx genes (Cobos

et al., 2005; Long et al., 2009a, 2009b; Qiu et al., 1995; Ruben-

stein and Campbell, 2013; Wang et al., 2010, 2011), such as de-

fects in dendrite innervating cortical interneurons (Cobos et al.,

2005; Howard et al., 2014; Mao et al., 2009; Seybold et al.,

2012). On the other hand, the double mutants have earlier and

more pervasive phenotypes that affect regional and cell type

identity, differentiation, and cell migration (Anderson et al.,

1997a, 1997b; Cobos et al., 2007; Wang et al., 2010; Yun

et al., 2002).

Dlx1&2-Associated Network

Systematic analysis by RNA expression arrays and RNA in situ-

hybridization showed that Dlx1�/�Dlx2�/� mice have altered

expression of tens of TFs in the embryonic subpallium (Cobos

et al., 2007; Long et al., 2009a, 2009b). Dlx1�/�Dlx2�/� mice

have overexpression of Ascl1, Gsx1, Gsx2, and Olig2, suggest-

ing that some of the Dlx1&2mutant phenotype is due to overex-

pression of these TFs (Figures 2A and 2C). This hypothesis has

been tested by generating Dlx1&2 triple mutants with Ascl1

(Mash1), Gsx1, Gsx2, and Olig2. For instance, Dlx1&2 promote

neuronogenesis and repress oligodendrogenesis; Dlx1�/�

Dlx2�/� mutants generate excessive oligodendrocytes; this

phenotype is reversed in the Dlx1�/�Dlx2�/�Olig2�/� triple

mutant, and exacerbated in the Dlx1�/�Dlx2�/�Ascl1�/�mutant

(Petryniak et al., 2007). LikeOlig2,Olig1 represses Dlx-mediated

neurogenesis (Silbereis et al., 2014). Triple mutant analyses also

provided evidence that Dlx1/2, together with Ascl1 and Gsx2,

promote neurogenesis and fundamental subcortical properties,

such as expression of GAD1, the gene encoding the GABA syn-

thesizing enzyme (Long et al., 2009a, 2009b; Wang et al., 2013)

(see Figure 2C for an approach to annotate TF expression

changes in Dlx1/2, Gsx2, and Dlx1/2;Gsx2 mutants).

Dlx1�/�Dlx2�/�mutants have reduced expression of a distinct

set of TFs, including Arx, Sp8, and Zfhx1b (Figures 2A and 2C)

(Long et al., 2009b; McKinsey et al., 2013). Analysis of Arx,

Sp8, and Zfhx1b single mutants has given insights into their

individual contributions to the Dlx1�/�Dlx2�/� phenotype. Arx

mutants have a time-dependent block in the maturation and

migration of neurons from basal ganglia progenitor zones (Co-

lombo et al., 2007), similar to Dlx1�/�Dlx2�/� mutants, which

have a progressive accumulation of nonmigrated immature cells

in the subventricular zone (Anderson et al., 1997b; Yun et al.,

2002). Sp8 mutants (Waclaw et al., 2006), as well as Dlx single

and compound mutants (Long et al., 2003, 2007; Qiu et al.,

1995), have olfactory bulb interneuron differentiation defects.

Zfhx1b mutants have abnormal migration of interneurons ge-

nerated by the MGE subcortical progenitor region. Zfhx1b and

Dlx1�/�Dlx2�/� mutants both fail to repress expression of

Nkx2-1 (Figure 2B) (McKinsey et al., 2013; van den Berghe

et al., 2013), a TF that is essential for MGE identity (Sussel

et al., 1999). Nkx2-1 expression needs to be turned off during

maturation of interneurons that migrate to the cortex (Nóbrega-

Pereira et al., 2008). In Zfhx1b mutants, Nkx2-1 expression per-

sists, leading to an accumulation of MGE-derived interneurons in

the striatum, suggesting that Zfhx1b regulates the switch be-

tween the generation of cortical and striatal interneurons, and

is required for the expression of Maf (cMaf) in migrating cortical
32 Neuron 85, January 7, 2015 ª2015 Elsevier Inc.
interneurons (Figure 2A) (McKinsey et al., 2013). Furthermore,

there is evidence that Zfhx1b regulates the expression of the

Unc5b receptor, which contributes to the migration defect (van

den Berghe et al., 2013).

Nkx2-1-Associated Network

Nkx2-1 functions in part parallel to the Dlx-driven TF hierarchy

(Figure 2B). Nkx2-1 has a fundamental role in specification of

MGE progenitor cell identity—in its absence, the MGE changes

fate, taking on the more dorsal properties of the LGE and CGE

(Butt et al., 2008; Flandin et al., 2010; Sussel et al., 1999).

Nkx2-1 drives the expression of Lhx6 and Lhx8 (Du et al., 2008;

Sussel et al., 1999), which together with their cofactor Ldb1

(Zhao et al., 2014) are required for the differentiation of

GABAergic (Lhx6) and cholinergic (Lhx8) neurons (Fragkouli

et al., 2005, 2009; Liodis et al., 2007; Zhao et al., 2003, 2008). In-

terneurons lacking Lhx6, have reduced expression of the Arx,

MafB, Npas1, and Sox6 TFs (Figure 2B) (Denaxa et al., 2012;

Zhao et al., 2008) Satb1 function has been linked to activity-

dependent differentiation of cortical interneurons (Close et al.,

2012; Denaxa et al., 2012). Arx function was noted above;

Npas1 represses the generation of a specific set of cortical inter-

neurons (Stanco et al., 2014); Sox6 is required in the MGE to

repress pallial proneural gene expression and to promote inter-

neuron development (Azim et al., 2009; Batista-Brito and Fishell,

2013; Batista-Brito et al., 2009). MafB function in the telenceph-

alon is currently under study. To identify the role of individual

molecules that are downregulated in the Lhx6 mutant, we used

a novel complementation approach (Vogt et al., 2014). For

instance, to test whether reduced Arx expression contributes

to the Lhx6mutant phenotype, lentiviral transduction introduces

Arx downstream of a Dlx1&2 enhancer into dissociated MGE

cells in vitro; these are then transplanted into a wild-type cortex,

and the derived interneurons are phenotyped. In this case,

restoring Arx expression partially restored interneuron expres-

sion of parvalbumin (Vogt et al., 2014).

Mapping TF Function, Combinatorial Activity, and

Genomic Binding in the Forebrain

Thus, even examining these two networks, loss of function ana-

lyses of over 20 TFs have enabled the field to perform detailed

histological, cellular, and molecular analyses of the mutant de-

veloping subpallium and its derivatives, including cortical and ol-

factory bulb interneurons. Similar progress has been made in

defining TF function during pallial development, including its

regionalization and generation of projection neuron subtypes,

although due to space constraints, we will not amplify upon

this important subject (MacDonald et al., 2013; O’Leary et al.,

2013). However, very little is known about how these TFs fit

into the transcriptional circuitry orchestrating such processes,

including the combinatorial activity of TFs. Models based on co-

transcription (Ravasi et al., 2010) and DNase I footprinting (Neph

et al., 2012) to predict co-occurrence of transcription factor bind-

ing sites show that there are robust combinatorial sets of tran-

scription factors that are associated with specific lineages and

tissues, including in the brain. Understanding this combinatorial

functionality of TFs will likely be essential to understanding neu-

rodevelopment. In a functional study of odorant receptor (OR)

regulation in sensory neurons in Drosophila, it was shown via

systematic RNAi-based TF knockdown that combinations of
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seven TFs accomplish OR regulation via transcriptional activa-

tion and repression to prevent ectopic expression (Jafari et al.,

2012). This study highlights how combinatorial TF activity via dif-

ferential expression and binding can drive neurodevelopmental

processes and suggests that integrative models of TF activity

will be necessary to understand the complex developmental

architecture of the forebrain. Several additional critical gaps of

knowledge remain to be filled, including identifying all of the

TFs that may participate, the gene regulatory elements (en-

hancers), and the genomic regions where TFs bind.

As noted above, there are now expression databases that

define the spatial and temporal expression patterns of most

TFs (Table 1). Careful annotation of this information, and addi-

tional analyses using RNA expression arrays and RNA-seq in

specific cell types, will greatly facilitate defining the sets of TFs

that are candidates for contributing to TF circuitries. What re-

mains perhaps the largest unmet gap, is the mapping of TFs to

their in vivo genomic binding sites. One method to obtain this in-

formation is ChIP-seq; however, performing TF ChIP-seq on em-

bryonic brain tissue has lagged, in part because the identification

of high-affinity antibodies that specifically bind to a given TF that

is bound to fixed chromatin has been problematic. Nonetheless,

there are examples where inroads have been made. For

instance, there is ChIP-qPCR evidence that DLX2 directly binds

to and regulates the Dlx1&2, Dlx5&6, and Zfhx1b loci (Colasante

et al., 2008; McKinsey et al., 2013; Potter et al., 2009; Zhou et al.,

2004), that NKX2-1 directly binds to and regulates the Lhx6 locus

(Du et al., 2008), and that LHX6 directly binds to and regulates

the Arx locus (Vogt et al., 2014). Genome-wide analyses of

ASCL1 promoter binding in the embryonic brain and in neural

stem cell cultures demonstrated that ASCL1 is bound to pro-

moters of genes regulating cell cycle progression (Castro et al.,

2011). Ongoing studies are now making progress using ChIP-

seq to define the genome-wide landscape of TF binding in the

developing forebrain.

The Regulatory Circuitry Underlying Forebrain
Development
Forebrain Development Is Characterized by Dynamic

Transcription

Analysis of TF expression and effects of loss-of-function in

neuronal stem cell proliferation, differentiation, andmigration, re-

viewed elsewhere (Hébert and Fishell, 2008; Kohwi and Doe,

2013; Molyneaux et al., 2007), have led to models of sequential

or combinatorial expression of TFs in the regulation of these pro-

cesses. The dynamic expression profiles of key TFs are mirrored

by genome-wide transcription patterns generated frommicroar-

rays and more recently, RNA-seq approaches. Transcriptome

analysis of multiple brain regions across multiple developmental

stages revealed extensive regional and temporal differences

(Kang et al., 2011; Miller et al., 2014; Pletikos et al., 2014). These

expression differences coalesce into transcriptional modules of

coexpressed genes that are involved in stage-specific pro-

cesses in specific structures, such as opposing expression pat-

terns of genes associated with neuronal differentiation (at early

stages) and ion channels (at later stages) in the developing

neocortex and hippocampus. To achieve tightly regulated dy-

namic expression profiles, it is likely that cis-regulatory elements
represent a substrate for TF binding, enabling precise control via

localization of transcriptional machinery to target promoters,

activate transcription, and recruit chromatin-remodeling pro-

teins that together direct specific spatiotemporal expression of

target genes.

Enhancers Drive Subregional Expression Patterns in the

Developing Forebrain

Gene-centric studies demonstrated that some genes, such as

Arx (Ahituv et al., 2007; Colasante et al., 2008), Dlx1&2, and

Dlx5&6 (Ghanem et al., 2007; Zerucha et al., 2000), have multiple

enhancers with similar activity patterns, raising the possibility

of enhancer redundancy. In addition, some loci (e.g., in the Dlx

family) had multiple enhancers with overlapping, yet distinct

activity patterns, suggesting that a given gene may be regulated

by many enhancers with distinct temporal and spatial activities.

A recent study examined in vivo activity patterns of 145 human

enhancer sequences at high spatial resolution in the mouse

telencephalon at E11.5 using reporter assays and serial histolog-

ical sectioning to generate a digital atlas of enhancer function in

the developing brain (Figures 3A–3D) (Visel et al., 2013).

In addition to generating activity maps for enhancers that are

located nearby genes with key functions in brain development

and neurological disorders, this analysis identified several recur-

rent characteristic features of enhancers active in the develop-

mental brain. First, individual enhancers drove highly reproduc-

ible, spatially restricted enhancer patterns, with large variation

in patterns of expression observed across the sampled en-

hancers that represent all the major subregions of the E11.5

telencephalon (Figures 3A, 3B, and 3D). Generation of stable

transgenic lines for 15 pallial enhancers enabled fate mapping

analysis, showing that enhancers with activity in distinct pallial

progenitor domains generate distinct cortical regions (Pattabira-

man et al., 2014), consistent with the protomap hypothesis

(Rakic, 1988).

Second, when combined to form a composite pattern, the

expression patterns of individual enhancers recapitulate gene

expression patterns as mapped via in situ hybridization, consis-

tent with observations in other organ systems (e.g., Schwartz

and Olson, 1999) that the combined activity of discrete en-

hancer sequences drives complex endogenous gene expres-

sion patterns. For example, four distant-acting enhancer

sequences were described located in the extended locus con-

taining Arx, a gene that regulates pallial and subpallial develop-

ment and is associated with mental deficiency and epilepsy

(Colasante et al., 2008; Friocourt and Parnavelas, 2010; Kita-

mura et al., 2002, 2009; Marsh et al., 2009; Olivetti and Noe-

bels, 2012). Together, these enhancers recapitulate endo-

genous Arx expression (Figure 3C). Third, enhancers that

activated gene expression in the same anatomical structures

were enriched for shared sequence motifs, indicating that high-

ly specific enhancer activity is, at least in part, due to the pres-

ence of binding sites for particular transcriptional regulators

active in the brain. This and other in vivo studies of enhancer

activity in the developing forebrain establish that the cis-regula-

tory landscapes guiding tissue-specific expression patterns are

complex, with the combined action of multiple, sometimes

redundant, enhancers likely involved in regulation of specific

loci.
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Functional Genomics Reveal Regulatory Circuits

in the Brain

Experiments that characterize neuronal cis-regulation one

element at a time have revealed many aspects of the regulatory

control of forebrain development, yet these studies fail to cap-

ture global patterns of enhancer use and chromatin state during

forebrain development. Early attempts to fill this gap involved

ChIP-seq experiments targeting p300-binding sites in the devel-

opingmouse brain and targeting various histonemodifications in

neuronal cell lineages (Creyghton et al., 2010; Visel et al., 2009b).

More recent genome-wide studies in human and mouse tissues,

including across brain regions, assaying p300 and histone mod-

ifications, DNase hypersensitivity, enhancer [e]RNA, and DNA

hypomethylation are in line with results from in vivo transgenic

assays showing that enhancers are highly tissue-specific (An-

dersson et al., 2014; Shen et al., 2012; Stergachis et al., 2013;

Visel et al., 2007; Zhu et al., 2013).

Two recent studies have directly interrogated temporal

changes in enhancer and epigenomic landscapes by profiling

mouse and human forebrain tissues across developmental

stages. In one approach, ChIP-seq targeting H3K27ac, a histone

modification strongly associated with active enhancers, was

performed on mouse forebrain collected across fetal and post-

natal development (Nord et al., 2013) (Figures 3E–3G). This study

generated in depth maps of enhancer activity in vivo across

development in the forebrain, identifying over 50,000 candidate

enhancers active across development in the forebrain, with the

majority of enhancers predicted to be transiently active. The pre-

dicted activity of a set of enhancers was validated in vivo using

transgenic assays (Figures 3F and 3G). Dynamic enhancer activ-

ity was associated with genes expressed in the control of stage-

specific biological processes such as neuronal proliferation at

early embryonic time points and synapse development and plas-

ticity later. In another time course study, Methyl-seq was per-

formed on cortical tissues from the human and mouse at three

time points to profile dynamic methylation at cytosine residues,

with additional examination of 5-hydroxymethylcytosine in

selected samples (Lister et al., 2013). Hypomethylation was

indicative of enhancer activity, and differentially methylated re-

gions were detected that indicate extensive turnover in enhancer

activity consistent with the H3K27ac signatures observed in

the developing mouse brain. As further evidence of the dynamic

activity of enhancers in the developing brain, comparison of

embryonic stem cells, neural stem cells, and neural progenitors

showed that enhancer-promoter interactions are specific to

each cell population (Zhang et al., 2013). In a finding suggestive
Figure 3. Spatial and Temporal Specificity of Enhancers Active in the D
(A) Subset of forebrain enhancers with a spectrum of subregional specificities at
(B) Examples of enhancers with restricted pallial activity in the mouse telenceph
(C) Multiple enhancers in the larger region surrounding the Arx gene show sub
expression in the mouse forebrain. Notably, enhancer activities show partial spa
(D) Example of an enhancer with activity across multiple developmental stages,
MGE, through the LGE, to the cortex (white arrows).
(E) Developmental dynamics of enhancer-associated histone mark H3K27ac at
brain development. Most sites show temporally restricted H3K27ac marks.
(F and G) Examples of in vivo validated temporally dynamic enhancer activity in
choroid plexus; Cx, cortex; CxP, cortical plate; DP, dorsal pallium; LGE, lateral ga
medial pallium; MZ, marginal zone; VP, ventral pallium.
(A)–(D) modified from Visel et al. (2013); (E)–(G) modified from Nord et al. (2013).
of how some noncoding regions act to control lineage speci-

fication, it was recently observed that there are large domains

exhibiting chromatin modifications consistent with regulatory

sequence that are particularly responsive to essential lineage

specification or pluripotency factors. These loci, referred to as

‘‘super-enhancers’’ (Chapuy et al., 2013; Hnisz et al., 2013;

Whyte et al., 2013) or ‘‘stretch enhancers’’ (Parker et al., 2013)

have been predicted to exist in brain tissues as well, with initial

analysis suggesting that TFs such as NKX2-2, OLIG1, BRN2,

SOX10, and SOX2 are master regulators that interact with these

regulatory regions in the brain (Hnisz et al., 2013). It is unclear

whether these larger domains represent regulatory elements

that act in a cooperative way that is qualitatively different from

enhancers as previously described, or if they instead are simply

regions that are densely packed with regulatory sequences.

In parallel to gene activation, cis-regulatory sequences and

chromatin state are also involved in the repression of transcrip-

tion. Specific TFs can have activating or repressing effects

depending on context. For example, REST/NRSF is a master

regulator of neurogenesis that acts to repress transcription of

neuronal genes in nonneuronal lineages by recruiting chromatin

remodeling proteins (Ballas et al., 2005). Major markers of

repressive remodeling in the brain include H3K27me3 and DNA

hypermethylation at gene bodies and distal enhancers (Lister

et al., 2013; Zhu et al., 2013). Likely due to extensive repressive

chromatin in intergenic regions and nonexpressed genes in

mature neuronal lineages, the majority of enhancers active in

the adult brain were found within gene bodies of neuronal genes

or near the transcription start site in two independent studies

(Nord et al., 2013; Zhu et al., 2013). These studies indicate that

chromatin state dynamics are an important factor in brain devel-

opment, a finding paralleled by recent studies of neurodevelop-

mental disorders discussed below.

Enhancers as Tools for Analysis of Forebrain

Development

Enhancer elements generally maintain correct temporal-spatial

control when ectopically positioned in the genome (e.g., (Gha-

nem et al., 2007; Visel et al., 2013; Zerucha et al., 2000)). Thus,

these elements canbe used experimentally to drive spatiotempo-

rally restricted gene expression in specific brain regions and cell

types. For instance, enhancers driving Cre expression have been

used for fate mapping experiments of the subpallium (Potter

et al., 2009; Waclaw et al., 2010) or pallium (Pattabiraman et al.,

2014). Figure 4 illustrates the use of an enhancer (hs636) with ac-

tivity in ventral parts of the pallial primordium (GFP expression

in Figure 4D, schematically summarized in Figure 4C) to fate
eveloping Forebrain
whole-mount resolution.
alon at E11.5.
regional forebrain activity patterns that recapitulate endogenous Arx mRNA
tial redundancy.
labeling cell populations whose location is consistent with migration from the

candidate forebrain enhancers analyzed by ChIP-seq across seven stages of

the forebrain, as predicted by temporally dynamic H3K27ac signatures. CP,
nglionic eminence; LP, lateral pallium; MGE, medial ganglionic eminence; MP,
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Figure 4. Enhancers as Tools for Analyzing Forebrain Development
(A) PAX6 ChIP-seq analysis from E12.5 cortex showing a peak directly over endogenous enhancer 636 (black bar).
(B) GFP pallial expression driven by enhancer hs636 in E11 cortex and reduced pallial GFP expression in Pax6�/�.
(C) Schema showing approximate position of GFP expression (red) within flattened view of E11.5 pallial progenitor zones.
(D) Enhancer hs636 activity in E10.5 telencephalon in stable transgenics (yellow arrowheads: ventrolateral pallial neurons; red arrowheads: ventrolateral pallial
progenitors 24127591).
(E and F) Fate mapping using enhancer hs636. Cre recombination was tamoxifen-induced at E9.5 and brains were analyzed at E17.5 for tdTomato staining (F).
Results are summarized in a schematic map showing dtTomato expression within a flattened view of E17.5 pallial subdivisions, color-coded according to
approximate density of tdTomato+ cells (E).
(A)–(F) modified from Pattabiraman et al. (2014). Abbreviations according to region: ventral pallium (VPall, allopallium): AO, anterior olfactory nuclei; OB, olfactory
bulb; Pir/EPir, piriform and ectopiriform; LERh, lateral entorhinal; MERh, medial entorhinal. Lateral pallium (LPall, mesopallium): Ins/Cl, insula/claustrum; LO,
lateral orbital; PRh, perirhinal; Orb, orbitofrontal. Dorsal pallium (DPall; neopallium): AU (A), auditory; DPF, dorsal prefrontal; F, frontal; LPF, lateral prefrontal; M,
motor; SS, somatosensory; V, visual. Dorsomedial pallium (DMPall): Cing (C), cingulate gyrus; IL, infralimbic (and PrL, prelimbic); MOrb, medial orbital; RSP,
retrosplenial; PoRh, postrhinal. Medial pallium (MPall): CA1-3, CA fields 1–3; DG, dentate gyrus; fi (F), fimbria; IG, indusium griseum; Sub (S), subiculum; PaS,
parasubiculm; PrS, presubiculum; TT, tenia tecta. Dorsal midline: bac, brachium of the anterior commissure; bcc, brachium of the corpus callosum; bhc,
brachium of the hippocampal commissure; ch, choroid plexus; PSe (PS), pallial septum. Pallial amygdala (Pall Amygd): AA, anterior amygdala; Ahi, amygda-
lohippocampal area; BM, basomedial; BLA, basolateral; LA, lateral. Subpallium: Acb, accumbens; CGE, caudal ganglionic eminence; Dg, Diagonal area; LGE,
lateral ganglionic eminence; MGE, medial ganglionic eminence; Pal, pallidum; SPSe, subpallial septum; St, striatum. Hypothalamus: hp1, 2, hypothalamic
prosomere 1 and 2; PHy, peduncular; Thy, hypothalamus. Diencephalon: Hb, habenula; p2, p3, prosomeres 2 and 3; Thy, terminal hypothalamus; PThE, pre-
thalamic eminence; Th, thalamus.
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Figure 5. Insights and Challenges in
Deciphering the Regulatory Architecture of
Forebrain Development
(A) Comparative functional genomic studies, such
as large-scale studies of gene expression patterns
in the developing brain by RNA in situ hybridiza-
tion, provide insight into general and human-spe-
cific aspects of molecular pathways involved in
brain development.
(B) Comparative genomic studies reveal a deeply
conserved regulatory framework associated with
brain development, but can also identify specific
changes in regulatory sequences that underlie
structural and functional innovations in the brain
observed in vertebrate evolution. Remarkably,
regulatory sequences active during early stages of
brain development (midgestation inmouse) tend to
be under higher evolutionary constraint than those
active later in development and in the adult brain.
(C) Genome-wide association, exome sequencing,
copy number variation, and whole-genome se-
quencing studies of patient cohorts are powerful
tools for identifying genes and noncoding se-
quences associated with neurodevelopmental
disorders. These studies have revealed a major
role for proteins involved in chromatin remodeling,
DNA methylation processes, histone modification,
and other transcriptional regulatory pathways and
processes, with individual genes reported in hu-
man genetic studies offered as examples.
(D) Systems-level analysis integrating expression,
genetic, epigenomic, and functional data has the
potential to elucidate genetic and functional net-
works required for normal brain development and
function, which are thought to be disrupted in
neurodevelopmental and neuropsychiatric disor-
ders.
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map its derivatives (Cre-mediated induction of tdTomato expres-

sion in Figure 4F, schematically summarized in Figure 4E).

Enhancer hs636 is bound by PAX6 in vivo (Figure 4A), and de-

pends on Pax6 function for its expression (Figure 4B). Enhancers

driving markers such as GFP can be used in stem cell differenti-

ation experiments to indicate when particular telencephalic cell

states differentiate and for cell purification using FACS (Chen

et al., 2013). Given their small size, they can also be used in viral

vectors to confer cell type-specific gene expression, and have

recently been used to drive expression in cortical interneurons

(Lee et al., 2014; Vogt et al., 2014).

Evolutionary Conservation and Novelty of Gene

Regulation in the Brain

Ongoing studies of various vertebrate species, including human,

are defining the transcription factors and enhancers that control

cortical development (Miller et al., 2014; Shim et al., 2012). These

analyses are expected to shed light on the genetic mechanisms

that have contributed to cortical evolution and disease (Willsey

et al., 2013). Comparative transcriptomic analyses have demon-

strated differences in expression of genes in the developing

brain across primates (Khaitovich et al., 2004; Konopka et al.,

2009; Nowick et al., 2009) and between mice and humans (Miller
Neuron
et al., 2014) (Figure 5A). Evolutionary dif-

ferences in the structure and represen-

tative cell types and connectivity of the

forebrain are observed across verte-
brates, with the six-layered laminar structure arising in mammals

and the expansion in cortical surface area producing complex in-

volutions observed in a number of species, including humans.

These differences may be associated with changes in the

expression patterns of and the interactions between specific

transcription factors in the developing brain. Studies on the evo-

lution of regulatory control systems and cis-regulatory elements

have produced paradoxical findings highlighting both extreme

evolutionary constraint and human-specific regulatory changes

as strong forces in shaping the forebrain. King and Wilson

demonstrated high levels of coding sequence conservation be-

tween human and chimpanzee and postulated that noncoding

changes account for the majority of sequence level differences

between the species (King and Wilson, 1975). The availability

of sequenced genomes has enabled comparisons of noncoding

sequence homology across the vertebrate evolutionary tree and

recently, between humans and extinct hominins (Green et al.,

2010). Perhaps surprisingly, very high levels of sequence conser-

vation have been observed at regulatory sequences active in the

developing forebrain across the vertebrate lineage, with ultra-

conserved regulatory elements enriched for forebrain activity in

transgenic assays compared to other tissues in E11.5 mice
85, January 7, 2015 ª2015 Elsevier Inc. 37
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and increased constraint levels observed genome-wide for fore-

brain enhancers relative to other tissues (Blow et al., 2010; Nord

et al., 2013; Pennacchio et al., 2006). Interestingly, the level of

constraint on stage-specific forebrain enhancers decreases

significantly from midgestation to adult (Nord et al., 2013)

(Figure 5B), a pattern also observed across various develop-

mental lineages (Bogdanovi�c et al., 2012; Stergachis et al.,

2013). This pattern is observable in the constraint of gene

expression patterns and general morphology (Domazet-Lo�so

and Tautz, 2010; Kalinka et al., 2010; Quint et al., 2012), in line

with the hourglass model of evolutionary constraint on develop-

ment (Casci, 2011). Further supporting the conservation of

neuronal regulatory networks, a study of transcription factor co-

expression and interaction comparing human and mouse identi-

fied a number of transcription factor networks that appear

conserved between mouse and human in the developing brain

(Ravasi et al., 2010). These findings suggest that cis-regulatory

landscapes controlling early forebrain development are gener-

ally relatively ancient.

Despite the observation of strong evolutionary constraint at

brain enhancers, other studies examining sequence and func-

tional conservation of enhancers suggest that human regulatory

elements exhibit high levels of evolutionary innovation both in

sequence and function. One locus that has been examined in

detail is AUTS2, a gene implicated in human evolution and

in neurological disorders. Sequence comparisons at this locus

between human and Neanderthal genomes identified one of

the strongest signals for human-specific noncoding sequence

changes (Green et al., 2010), and noncoding sequences at this

locus exhibiting human-specific changes drove expression in

the developing brain (Oksenberg et al., 2013). A second

approach has been to look for regulatory regions that have

high levels of evolutionary constraint but where there are hu-

man-specific changes, also known as human-accelerated re-

gions (HARs) or accelerated conserved noncoding sequences

(aCNSs), or where there is no mappable human homolog

(McLean et al., 2011; Pollard et al., 2006; Prabhakar et al.,

2006a). HARs and aCNSs are enriched near TFs and near genes

associated with neuronal cell adhesion and human-specific de-

letions are similarly associated with neural functions, findings

suggestive of sequence-level changes that drive human-specific

aspects of brain development. Genome-wide comparison of

functional conservation of enhancers as assayed by p300 inter-

action revealed evidence that sequences exhibiting significant

homology between human and mouse can show functional dif-

ferences in the developing brain. This comparison only included

a single developmental time point at which mouse and human

brains should be relatively stage matched (Clancy et al., 2007)

and candidate enhancers identified using only a single epige-

nomic mark (Visel et al., 2013), and further experiments are

necessary to elucidate functional conservation across tissues

and developmental stages. While not in a neuronal tissue, recent

work comparing functional conservation using epigenomic as-

says in hepatocytes (Odom et al., 2007) and developmental

limb tissue (Cotney et al., 2013) demonstrate significant lack of

functional conservation between humans and other vertebrate

lineages. These findings are supported by functional enhancer

assays comparing activity in Drosophila lineages (Arnold et al.,
38 Neuron 85, January 7, 2015 ª2015 Elsevier Inc.
2013). Finding of limited functional conservation of noncoding el-

ements in the brain is in line with studies directly comparing TF

binding and H3K27ac across evolution in other tissues, which

suggest substantial turnover in TF binding sites and evolution

of new enhancers via functional modification or co-option of en-

hancers active in other tissues (Lettice et al., 2011; Schmidt

et al., 2010; Stefflova et al., 2013). Annotated maps of human

forebrain enhancers will be required to determine the balance

between evolutionary conservation and innovation in cis-regula-

tory control of human forebrain development.

Gene Regulation and Neurodevelopmental Disorders
Loss of Function of Regulatory Genes in Forebrain

Development

Mouse knockout models are now available for thousands of

genes, including many genes known or proposed to be involved

in transcriptional regulation during brain development. Studies

using these models have revealed severe neuroanatomical con-

sequences and frequently embryonic lethal phenotypes associ-

ated with loss of function of neuronal transcriptional regulators,

as described above. In parallel, some of the first successful ef-

forts to map human monogenic neurodevelopmental disorders

implicate transcriptional regulation and chromatin remodeling

in synapse development and plasticity, such as MECP2 in Rett

syndrome and FMR1 in fragile X syndrome (Amir et al., 1999; Ver-

kerk et al., 1991). A growing body of evidence supports that mul-

tiple human neurodevelopmental disorders are associated with

mutations in TFs, including Arx, Pax6, Six3, and Tbr1 (Bhatia

et al., 2013; Hehr et al., 2010; Olivetti and Noebels, 2012; van

Heyningen and Williamson, 2002; Willsey et al., 2013).

Human Genetic Studies of Forebrain Transcriptional

Regulation

There has been a leap forward in understanding the genetic com-

ponents of complex neurodevelopmental disorders in recent

years (McCarroll and Hyman, 2013). While the relative contri-

bution to these traits across the spectrum of allele frequency

remains an active discussion (McClellan and King, 2010), repli-

cated findings at specific loci have established a role for both

common and rare variants via genome-wide association studies

(GWAS), rare or de novoCNV screening, and exome sequencing,

as reviewed recently (Krystal and State, 2014; McCarroll and Hy-

man, 2013). The findings from human genetics studies point to

polygenicity and a significant role for genes involved in transcrip-

tional regulation and chromatin remodeling in the developing

forebrain in the etiology of disorders such as autism, schizo-

phrenia, and intellectual disability (Figure 5C). Studies of autism

and schizophrenia have highlighted pathways required for tran-

scriptional regulation and chromatin remodeling, as well as other

functional classes, such as calcium channels and synaptic plas-

ticity genes (Krystal and State, 2014; McCarroll and Hyman,

2013). Evidence is mounting for dosage effects or haploin-

sufficiency of developmental TFs, such as TBR1, and chromatin

remodeling proteins, such as CHD8, as a mechanism in these

disorders (O’Roak et al., 2011, 2012a, 2012b). It is also likely

that regulatory sequence variation contributes to these traits

because regions around many of the replicated GWAS signals

as well as rare disease-associated CNVs do not contain coding

sequence variants. Furthermore, disease-linked variants have
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been identified within enhancers active in the developing brain

that result in changes in enhancer activity (Poitras et al., 2010).

Transcriptional Regulation and Chromatin Remodeling

in Autism and Schizophrenia

While there are now many genes identified via rare and de novo

CNV screening and exome sequencing, it will take larger

screening efforts and functional follow-up to establish the causal-

ity and pathophysiology of thesemutations. An approach to learn

more about these networks that has yielded success for autism

and schizophrenia is to identify brain subregions and develop-

mental stages at which the implicated gene networks are coex-

pressed using publicly available brain transcriptome data (Kang

et al., 2011) (Figure 5D). In autism, coexpression networks pre-

sent in midfetal layer 5/6 cortical projection neurons were identi-

fied that were organized around high-confidence ‘‘seed’’ genes

that are mutated in autism (Willsey et al., 2013). A similar study

linked rare de novo coding mutations in autism to coregulated

highly expressed genes during early neuronal fate determination,

migration, and establishment of the cortical layers, providing

suggestive evidence of a gene set that contributes to autism

via haploinsufficiency (Parikshak et al., 2013). The same study

identified glutamatergic neurons in superficial cortical layers

(layer 2–4) as a potential cell type where autism-associated

expression networks may be critical. These two studies describe

different specific cortical layers as relevant, but the develop-

mental regulatory processes affected by both sets of gene

network analyses are highly convergent. An earlier study of

gene expression in autism-associated cortical regions from

autistic subjects versus controls identified differentially ex-

pressed genes and expression networks in autism,with a number

of genes that overlap the two recent studies (Voineagu et al.,

2011). A study examining de novo mutations in schizophrenia

linked genes with predicted deleterious coding mutations in

cases to expression networks in the fetal dorsolateral and ventro-

lateral prefrontal cortex (Gulsuner et al., 2013). While a complex

combination of genetic and environmental factors is likely to

influence these phenotypes, these studies illustrate how human

genetic studies in tandem with functional genomics data can

reveal the pathophysiology of neurodevelopmental disorders

and the causal role that loss of endogenous gene expression

and transcriptional regulatory circuits during brain development

plays.

Knockout Models of Enhancer Function

Noncoding sequence variation is predicted to represent a sub-

stantial proportion of disease-associated variants (ENCODE

Project Consortium, 2012), yet the requirement for specific en-

hancers during development remains largely unclear. There are

examples of sequence variation at enhancers that are linked to

developmental phenotypes, with one of the most well-known

instances being mutations in the ZRS enhancer of Shh that

lead to limb malformations (Lettice et al., 2003). There are a

few examples of enhancers whose deletion was shown to cause

clear neurodevelopmental phenotypes. For instance, deletion of

an enhancer regulating Fezf2 resulted in loss of Fezf2 expression

and anatomical changes in the brain characterized by loss of

specification of corticospinal neurons (Shim et al., 2012). On

the other hand, a study that targeted four ultraconserved

enhancers, which included enhancers predicted to regulate
brain-expressed genes that produced severe phenotypes

when knocked out, found that mice homozygous for the en-

hancer deletion allele for each of the four enhancers did not

have gross neurodevelopmental or neurological phenotypes

(Ahituv et al., 2007), indicating that even the evolutionarily most

conserved enhancers may not necessarily have functions at

the organism level that that are required for viability.

Two related explanations may account for the mixed conse-

quences of enhancer loss of function in these mouse models.

The first is that there is a high level of functional redundancy in

enhancers that regulate a specific locus. In this model, loss of

function of a single enhancer is masked by the activity of another

enhancer that drive a similar expression pattern, as has been

observed for ‘‘shadow’’ enhancers in Drosophila (Lagha et al.,

2012). In a similar model, enhancers may not be functionally

redundant, but they act in a combinatorial manner where each

enhancer acts to fine tune the expression of a gene. In this

model, careful phenotyping would be necessary to identify the

changes caused by loss of enhancer function. Outside the brain,

this general paradigm was recently demonstrated in a study

where deletions of craniofacial enhancers produced subtle

morphological changes (Attanasio et al., 2013). While there

remain a small number of regulatory loss-of-function models in

mouse, results from human genetic studies, especially GWAS,

suggest a significant role for regulatory variation across pheno-

types, including in neurodevelopmental disorders (Ripke et al.,

2013). It is quite possible that each regulatory circuit will be

different, with strong effects possible for loss of function at

some enhancers and weak or no observable phenotypes seen

when other enhancers are deleted or when sequence variation

changes enhancer activity.

Conclusions and Major Outstanding Questions
The combination of detailed functional dissection of the roles of

individual TFs with genome-wide approaches to mapping gene

expression, enhancer activity, and chromatin dynamics reveal

an emerging picture of the role of transcriptional regulation in

forebrain development. These studies link cell-specific expres-

sion of TFs during processes such as proliferation, differentia-

tion, migration, and synapse development to target genes via

binding at TF binding motifs found in promoter-proximal se-

quences and distal enhancers. These regulatory circuits are

emerging as tightly linked to the evolution of the human brain

and to human neurodevelopmental disorders, with initial indica-

tions of specific developmental cortical subregions and neuronal

classes that may be affected by mutations that contribute to dis-

orders such as autism and schizophrenia. Figure 5 summarizes

findings from recent studies highlighting the role of gene regula-

tion in evolution and neurodevelopmental disorders.

With the availability of new technologies for epigenomic and

functional profiling of regulatory sequences, availability of pa-

tient-specific models such as induced pluripotent stem cells

and precision-engineered animal models, where is the field

headed?We nowdiscussmajor challenges for three areas: basic

biological mechanisms underlying gene regulation, the role of

regulatory elements and chromatin structure in brain develop-

ment, and linking findings from human genetic studies to biolog-

ical mechanisms focusing on gene regulation.
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Challenge 1: Basic Mechanisms

General models of gene regulation via TF binding and activation

or repression through cofactor recruitment, changes in chro-

matin accessibility, and DNA looping are becoming clearer, yet

many of the basic mechanisms required for this process are still

poorly defined. TF binding sites can be predicted based on

various experimental methods and can be validated using direct

measures of interaction; however, it appears that a large pro-

portion of the validated binding sites of many TFs may not be

functionally relevant (White et al., 2013), and that combinatorial

binding of TFs may govern function (Teng et al., 2014). Consis-

tent with these observations, levels of individual TF expression

do not have extensive global effects as measured by TF knock-

down and expression profiling (Cusanovich et al., 2014). There

are additionally unresolved questions regarding regulatory func-

tion and the balance of conservation versus binding site turnover

within enhancers across evolution (Villar et al., 2014), the order

and spacing of binding sites within enhancers (Smith et al.,

2013), the requirement for specific TF binding interactions within

enhancers (Teng et al., 2014), and the relationship between

structural contact through looping and transcriptional activation

(DeMare et al., 2013; Kieffer-Kwon et al., 2013).

A second major mechanistic question is how enhancers drive

expression of a specific gene or set of target genes given the

observation that many enhancers appear to skip nearby tran-

scription start sites to interact with more distal targets (Zhang

et al., 2013). Although recent advances mapping chromatin in-

teractions enable mapping of enhancer-promoter interactions,

the mechanism for establishing specificity has been studied

only for a very small number of loci. It is clear that enhancers

vastly outnumber their transcribed targets. Themodel of specific

enhancers driving cell-type or tissue-specific expression pat-

terns is attractive and is true at a genomic scale, yet it appears

that many genes are controlled by complex landscapes of

potentially redundant regulatory elements and that loss of func-

tion of even highly conserved enhancers near critical genes may

not produce significant phenotypic effects (Ahituv et al., 2007).

Recent studies suggest that enhancer redundancy is required

to maintain robust expression patterns (Lagha et al., 2012) and

that arrays of regulatory elements with correlated activity may

enable tighter quantitative or qualitative regulation of expression

(Whyte et al., 2013); however, this remains a relatively unex-

plored area especially in mammalian systems.

At this time, no single known epigenomic signature is sufficient

to identify all enhancers and distinguish enhancers that are

active with perfect specificity (Cotney et al., 2012), and an active

area of research is honing prediction algorithms that are based

on regulatory sequence composition, epigenomic signatures,

and genomic structure, and in developing methods to enable

function-based screening of regulatory element activity as

described above. A central assumption to the current models

is that the census of TFs present combined with the relevant reg-

ulatory sequence substrate represents the information neces-

sary for interpreting endogenous enhancer function, yet the field

remains a long way from determining the rules that govern the

processes involved in the establishment and function of

mammalian regulatory circuitry and in predicting the effects of

perturbations to these systems.
40 Neuron 85, January 7, 2015 ª2015 Elsevier Inc.
Challenge 2: GeneRegulation in Forebrain Development

The framework and major actors in many TF signaling networks

active in control of differentiation across a variety of neuronal

subtypes are becoming clearer, with emerging Dlx1/2 and

Nkx2-1 networks in the LGE/CGE/MGE detailed above. How-

ever, these existing pictures are likely to represent a gross

simplification of the intrinsic and external factors directing devel-

opmental processes in the brain. Moving from single genes to

networks will require systems level analysis of brain develop-

ment. Efforts are already underway to map the transcriptome

(Kang et al., 2011; Miller et al., 2014) and connectome (Oh

et al., 2014) of developing brains, and significant resources will

be developed toward developing new technologies. Genomic

analysis has led the way, with major accomplishments using

RNA-seq to understand transcriptional differences underlying

normal and pathogenic brain development (Kang et al., 2008;

Miller et al., 2014; Voineagu et al., 2011). In the future, the direct

and indirect regulatory interactions that drive brain development

will be revealed at a systems level with the level of rigor and detail

that is currently only possible via in depth examination of individ-

ual circuits.

In contrast to the substantial effort dedicated to mapping TF

activity in the developing brain, other aspects of the regulatory

circuitry orchestrating normal and pathogenic neurodevelop-

mental processes remain underexplored. While genome-wide

studies have established that the dynamic activity of tens of

thousands of enhancers orchestrates spatiotemporal gene

expression in forebrain development, mapping and epigenomic

and functional characterization of these elements in the human

genome remains a priority. Furthermore, technology exists to

establish enhancer-promoter interactions (Fullwood and Ruan,

2009; Lieberman-Aiden et al., 2009), which will be critical to un-

derstanding the control of loci involved in specific processes or

implicated in specific disorders. Of the tens of thousands of en-

hancers predicted in functional genomics studies of brain devel-

opment, only a fraction of the target genes have been predicted

with experimental confirmation of required regulatory activity

available for only a small subset of these predictions (e.g.,

Shim et al., 2012). It is unlikely that current centralized efforts

will have the bandwidth to profile all of the multidimensional

axes of brain subregions, temporal stages across differentiation

and development, and the different lineages represented in the

brain. Nonetheless, the technology required to map and charac-

terize regulatory elements is accessible and individual research

groups can now profile specific systems of interest. Through

these combined efforts, a more complete picture of the location,

function, and targets of neural regulatory elements should

emerge.

Complementary to characterizing the activity of individual reg-

ulatory elements genome-wide across the multidimensional

space of brain development is the less studied role of chromatin

remodeling and epigenetic marking in brain development. Early

studies in this area suggest a central role for chromatin remodel-

ing factors in forebrain development, substantial transcriptional

control via chromatin restriction as lineage specification pro-

ceeds in the brain, and widespread changes in DNA methylation

patterns across brain development (Lister et al., 2013; Ronan

et al., 2013; Zhu et al., 2013). Further studies are necessary to
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understand themechanism and requirement for these processes

in neurodevelopment. Finally, the availability of genomic data

sets, functional genomic assays, and efficient genomemodifica-

tion technology will enable deeper exploration of the regulatory

circuits and activities of specific TFs in brain development.

With new technologies for precision genome engineering

emerging (Bedell et al., 2012; Christian et al., 2010; Jinek et al.,

2012; Mali et al., 2013), we foresee rapid expansion in the under-

standing of the interplay of specific genes that control neural

lineage specification, regionalization, and function. Through the

results of these studies, it will be possible to ask more detailed

questions regarding the role of regulatory sequences and chro-

matin remodeling processes in the development and function

of the brain and potentially in the role of noncoding sequence

in the evolution of the human brain and cognitive capacity.

Challenge 3: Gene Regulation in Neurodevelopmental

Disorders

As described above, neurodevelopmental disorders appear to

be driven in part by changes in gene expression levels during

development, highlighted by the dosage sensitivity observed in

genes identified by CNV and exome screening. The compelling

evidence generated by recent attempts to intersect neurodeve-

lopmental transcriptome data with genes linked to autism and

schizophrenia is, as of now, more suggestive than conclusive

regarding the pathophysiology of these disorders (Parikshak

et al., 2013; Voineagu et al., 2011; Willsey et al., 2013). Further

work is required to map the affected cell types and document

the molecular changes and cell biology associated with changes

in expression of susceptibility genes. Additionally, there are two

major unexplored potential driver mechanisms behind neurode-

velopmental disorders. First is the effect of noncoding sequence

variation. As regulatory elements are predicted to direct robust

expression patterns in the developing brain, it is likely that

sequence variation that changes the function of these elements

has the potential to drive changes in gene expression and down-

stream dosage-sensitivity-driven effects. Although many GWAS

have identified noncoding regions as associated with pheno-

types such as autism and schizophrenia, the causal variants

have yet to be characterized. In a recent example of a large effect

noncoding variant with severe phenotypic consequences in the

brain, a short deletion in regulatory sequence was identified in

subjects exhibiting gyral abnormalities (Bae et al., 2014). The

deletion variant disrupted the regulatory function, leading to a

change of expression of isoforms of GPR56 and resulting in

changes in the cortical expression pattern of this gene, which re-

sulted in restricted polymicrogyria surrounding the Sylvan fissure

that is linked to intellectual and language difficulty and seizures.

Another suggestive finding is the duplication of the region con-

taining VIPR2 in schizophrenia, where a minimal duplication of

noncoding sequence was observed in cases (Vacic et al., 2011).

The current list of characterized causal variants found in non-

coding regions appears exceptionally small when viewed in light

of the current prominence and success of screening coding

sequence (e.g., exome sequencing). In the future, whole genome

analysis will enable unbiased examination of noncoding se-

quences as well, but there will be major challenges connected

to the expected large number of variants and the difficulty of pre-

dicting functionality of affected noncoding sequence (Jiang
et al., 2013). The expansion of regulatory element mapping and

characterization described above will enable screening of non-

coding regions. In the meantime, targeted examination of non-

coding regions may be a viable intermediate approach, where

predicted functional or conserved noncoding elements around

susceptibility genes could be screened at a volume sufficient

to start to dissect differences between case and control popula-

tion variation at these loci.

An area poised for large-scale growth in the near future is the

characterization of epigenomic or epigenetic changes in the

brain (or in induced pluripotent stem cell-derived differentiated

neurons) of individuals afflicted with neurological and neurode-

velopmental disorders. These studies are confounded by the dif-

ficulty of assigning causal relationships for observed differences

in driving original pathophysiological processes or in contrib-

uting to later manifestations of the traits. Nonetheless, the emer-

gence of consistent patterns associated with specific pheno-

types has the potential to provide evidence for a role of stable

epigenetic changes that will ultimately lead to better understand-

ing of the forces contributing to neurodevelopmental disorders

and could provide a link between environmental factors and

long-term changes in gene regulation.

The identification of specific regulatory elements or of wide-

spread epigenetic changes will additionally generate novel tar-

gets for therapeutic intervention. Already, major changes are

underway in the molecular diagnosis of neurodevelopmental

disorders that enable better clinical care (Krystal and State,

2014), as well as the development of promising targeted thera-

peutic approaches (Gross et al., 2012). The ability to target the

CRISPR/Cas9 or TALE systems to specific sequences has been

harnessed to build synthetic regulatory proteins that can act to

change gene expression or epigenomic markings at specific

regulatory elements (Mendenhall et al., 2013). In the not-too-

distant future, it may be possible to use synthetic regulators

to modify gene dosage of target genes involved in key pro-

cesses in specific neuronal cell populations implicated via

studies of transcriptional regulation in normal and pathogenic

brain development. With the combination of new technologies

and the rapidly growing understanding of the role of transcrip-

tional regulation in neurodevelopment, this is an exciting and

rapidly changing field that has the potential to transform our un-

derstanding of the evolution, development, and function of the

human brain.
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Bogdanovi�c, O., Fernandez-Miñán, A., Tena, J.J., de la Calle-Mustienes, E.,
Hidalgo, C., van Kruysbergen, I., van Heeringen, S.J., Veenstra, G.J., and Gó-
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