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SUMMARY

Although most tissues in an organism are genetically
identical, the biochemistry of each is optimized to
fulfill its unique physiological roles, with important
consequences for human health and disease.
Each tissue’s unique physiology requires tightly
regulated gene and protein expression coordinated
by specialized, phosphorylation-dependent intracel-
lular signaling. To better understand the role of phos-
phorylation in maintenance of physiological differ-
ences among tissues, we performed proteomic and
phosphoproteomic characterizations of nine mouse
tissues. We identified 12,039 proteins, including
6296 phosphoproteins harboring nearly 36,000 phos-
phorylation sites. Comparing protein abundances
and phosphorylation levels revealed specialized, in-
terconnected phosphorylation networks within each
tissue while suggesting that many proteins are
regulated by phosphorylation independently of their
expression. Our data suggest that the ‘‘typical’’
phosphoprotein is widely expressed yet displays
variable, often tissue-specific phosphorylation that
tunes protein activity to the specific needs of each
tissue. We offer this dataset as an online resource
for the biological research community.
INTRODUCTION

Despite sharing identical genomes and overlapping transcription

profiles, mammalian tissues exhibit diverse physiology. This

specialization arises via variable protein expression and differen-

tial posttranslational modifications that tune the activity of ubiq-

uitous proteins to each tissue’s needs. The resulting biochemical

idiosyncrasies can account for tissue-specific disease and drug

resistance, with consequences for human health (Goh et al.,
1174 Cell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc.
2007). Thus, although transcriptome and proteome profiling

uncover physiological differences among tissues due to differen-

tial gene expression (Su et al., 2004) or protein abundance

and subcellular localization (Kislinger et al., 2006), they do not

address tissue-specific effects of posttranslational regulation.

A fundamental mechanism for regulating protein activity is

covalent posttranslational modification of serine, threonine,

and tyrosine residues with phosphate. Because phosphorylation

is fast, reversible, and often highly specific, it is often employed

for temporary modulation of protein function, serving to alter-

nately induce or abolish enzyme activity, facilitate or disrupt

protein interactions, alter protein conformations, or target

proteins for destruction. Protein phosphorylation and dephos-

phorylation are catalyzed by over 500 kinases and 100 phospha-

tases and are themselves regulated by phosphorylation, reveal-

ing the interconnections among cellular signaling pathways.

Many phosphorylation networks have been elucidated using

model organisms and in vitro systems, providing generalized

models of signal transduction. However, such models cannot

account for specialized tissue physiology. Furthermore, these

studies have typically used targeted methods, precluding

exhaustive analysis of phosphorylation. Recently, phosphopro-

teomics has enabled large-scale identification of protein

phosphorylation sites, benefiting from advances in phosphopep-

tide enrichment (Pinkse et al., 2004; Villen and Gygi, 2008)

and improvements in mass spectrometry instrumentation and

methods. However, many previous surveys of protein phosphor-

ylation have used immortalized cell lines, which differ from their

tissues of origin in gene and protein expression (Lukk et al., 2010;

Pan et al., 2009). Furthermore, previous surveys have generally

examined only a few tissues such as liver (Villen et al., 2007)

and brain (Wisniewski et al., 2010), selected for their relevance

to human disease. Further complicating analysis of these

studies, observed phosphorylation changesmay reflect differen-

tial protein expression rather than truly modified phosphoryla-

tion. To distinguish these scenarios, the relative abundance

of each phosphorylation site must be compared with that of

its parent protein to verify differential phosphorylation. Thus,

a large-scale, multitissue survey of protein abundance combined
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with phosphorylation site identificationwould provide insight into

phosphorylation-dependent signaling pathways and could be

a critical first step in delineating the key proteins and pathways

underlying specific tissue physiology.

Here we report the most thorough characterization of tissue-

specific protein abundance and phosphorylation to date, includ-

ing 12,000 proteins and 36,000 phosphorylation sites from nine

mouse tissues. These data revealed distinctive and complemen-

tary protein and phosphoprotein expression profiles that support

each tissue’s unique physiology. Moreover, by combining

protein abundance measurements with phosphorylation obser-

vations, we could distinguish tissue-specific phosphorylation

of ubiquitous proteins from phosphorylation of tissue-specific

proteins. Furthermore, most phosphoproteins integrate input

from multiple kinases spanning diverse signaling pathways.

Overall, the ‘‘typical’’ phosphoprotein is broadly expressed

yet is variably phosphorylated to tune protein function to the

needs of each tissue. We now present these protein abundance

and phosphorylation data as a web-based resource (http://gygi.

med.harvard.edu/phosphomouse/index.php) to aid analysis

of existing biological data and inspire future biological

investigations.

RESULTS

Identification of 12,000 Proteins and 36,000
Phosphorylation Sites from Nine Mouse Tissues
To survey protein and phosphoprotein abundance, nine organs

were harvested from 3-week-old male Swiss-Webster mice:

brain, brown fat, heart, liver, lung, kidney, pancreas, spleen,

and testis. After tissue homogenization, proteins were either

digested in solution for subsequent strong cation exchange

chromatography and phosphopeptide enrichment via IMAC

(10 mg per tissue) or separated via SDS-PAGE (65 mg per tissue)

followed by in-gel digestion (Extended Experimental Procedures

and Figure S1 available online). Protein and phosphoprotein

extraction conditions were selected to minimize protease and

phosphatase activity (Castellanos-Serra and Paz-Lago, 2002;

Roche, 2004). This was most critical for pancreas, due to its

high levels of endogenous proteases and phosphatases.

Although assessing phosphatase activity is challenging, minimal

protein degradation was observed via SDS-PAGE (Figure S2).

Samples enriched with phosphopeptides (12 per tissue) were

analyzed in duplicate using a hybrid linear ion trap Orbitrap

mass spectrometer, whereas nonphosphorylated samples

(12 per tissue) were analyzed once (Extended Experimental

Procedures). The final dataset contained over 284,000 phos-

phopeptide identifications (Table S1), matching nearly 36,000

phosphorylation sites (Table S2) from 6296 proteins (Table S3)

at peptide- and protein-level false discovery rates (FDRs) of

0.15% and 1.7%, respectively.

Following peptide- and protein-level filtering, each site on

every phosphopeptide was scored using the AScore algorithm

to assess the confidence of phosphorylation site localization

(Beausoleil et al., 2006). Sites scoring above 13 were considered

localized (p < 0.05). 85% of sites were localized to a single amino

acid and ranged from 89%–93% for individual tissues (Fig-

ure 1B). A minimal list of phosphorylation sites was then assem-
C

bled. Localized sites were counted once; nonlocalized sites were

grouped when their regions of possible modification overlapped.

Groups of nonlocalized sites were counted only when no local-

ized sites could explain the observed phosphorylation.

Importantly, over 50% of observed sites and phosphoproteins

were previously unreported, based on comparison with the

PhosphoSite database of known phosphorylation sites (Horn-

beck et al., 2004) (Figure S3A). Similarly, most sites have not

been reported in the Phospho.ELM database (Diella et al.,

2008) (Figure S3B). Several factors contribute to the high propor-

tion of unreported sites. First, we included tissues (brown fat,

kidney) that have been less studied. Second, continual improve-

ments in instrumentation and methodology have enhanced the

sensitivity of phosphoproteomic analyses. Previously, our lab

surveyed the mouse liver phosphoproteome, using similar tech-

niques to characterize organs from mice of identical age, strain,

and sex as used in this study. This present work encompasses

far more phosphorylation sites, across all tissues and within

the liver itself (Figure S3C). Interestingly, though the present

study encompasses virtually all sites reported by Villen et al.,

some pTyr sites were not observed. These missing sites were

detected via immunoprecipitation of pTyr-containing peptides

from much larger amounts of digested peptides.

Without phosphopeptide enrichment, 894,041 peptide spec-

tral matches corresponding to 10,102 proteins were made at

peptide- and protein-level FDRs of 0.11% and 1.25%, respec-

tively (Table S3 and Table S4). Traditionally, control of peptide

and protein FDRs from large datasets has posed significant

challenges, risking accumulation of incorrect identifications to

unacceptably high FDRs. To reliably estimate protein FDRs, we

developed a method based on the target-decoy database

search strategy (Elias and Gygi, 2007). Peptide identifications

were filtered using a multivariate approach that used linear

discriminant analysis to distinguish valid identifications from

random matches, following training with target and decoy

peptides as positive and negative training data. Peptides were

subsequently assembled into proteins and filtered via several

protein quality metrics (Extended Experimental Procedures).

This extensive peptide- and protein-level filtering of both phos-

phorylated and nonphosphorylated data ensured the highest

quality of all identifications.

Tissue Distribution of Phosphorylation Sites
We first examined the number of phosphorylated peptide

spectral matches, the number of unique sites, and the total

phosphoproteins identified per tissue. These varied, reflecting

differences in complexity and variable intracellular signaling

within each tissue (Figure 1A). Although their heterogeneity

varies, each tissue contains many cell types that together

create specialized physiology. The reported phosphorylation

profiles are thus weighted averages that reflect signaling

within all cell types in each tissue. Highest numbers of phospho-

peptides, phosphorylation sites, and phosphoproteins were

identified in brain, highlighting its unique cellular diversity and

the specialized signaling networks that these cells employ. In

addition to brain, the tissues kidney, spleen, lung, and testis

each contained over 30,000 phosphopeptides and 10,000

localized sites. As spleen contains numerous immune cell
ell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc. 1175
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Figure 1. Overview of Tissue-Specific Phosphorylation

(A) Numbers of phosphopeptides, sites, and phosphoproteins.

(B) Numbers of localized and nonlocalized phosphorylation sites.

(C) Relative frequencies of Ser, Thr, and Tyr within all phosphoproteins and their relative likelihood of phosphorylation.

(D) Histogram depicting numbers of sites observed per protein.

(E) Box plots indicating the relative extents of modification for residues prone to phosphorylation within all observed phosphoproteins.

(F) Histogram indicating numbers of sites detected in multiple tissues.

(G) Distribution of tissue-specific sites across organs.

(H) Hierarchical clustering of sites and tissues based on spectral counts. Only the 11,414 sites containing 5 or more spectral counts in at least one tissue are

shown.

See also Figure S1, Figure S3, Figure S4, Figure S7, Table S1, Table S2, and Table S3.
populations, many phosphorylation-dependent signaling path-

ways are constitutively active, priming the young mice for rising

immune challenges. Similarly, immune cells in lung contribute to
1176 Cell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc.
its complex phosphorylation profile. Despite varying phospho-

peptide numbers, phosphoprotein counts were similar across

tissues, indicating that decreased phosphopeptide counts in



tissues such as pancreas and heart reflect true differences in

signaling and tissue heterogeneity, rather than varying instru-

ment performance.

The diverse cell populations contributing to each phosphopro-

teome profile include cells specific to each tissue, as well as red

blood cells and proteins within the vasculature of all tissues. To

identify proteins and phosphorylation sites whose levels could

be influenced by blood contamination, we compared our protein

and phosphoprotein profiles with a proteomic survey of murine

red blood cells (Pasini et al., 2008). A small fraction of proteins

in each tissue were also seen in red blood cells (see Figure S3D).

Overall, 445 of 12,000 proteins detected in this study with or

without phosphorylation were also seen in red blood cells.

Although some proteins such as hemoglobin are predominantly

found in red blood cells, most, including actins and glycolytic

enzymes, are found in virtually all cells, including cells within

the tissues in question.

We next examined patterns among identified phosphorylation

sites. Similar to previous studies (Olsen et al., 2006), we

observed mostly Ser phosphorylation (83%), followed by Thr

(15%) and Tyr (2%). This enrichment far exceeds the relative

abundance of Ser among residues subject to phosphorylation

within the phosphoproteins detected in this study, indicating

a strong preference for Ser phosphorylation (Figure 1C). We

then analyzed numbers of sites within each phosphoprotein.

Eighty percent of phosphoproteins contained multiple sites,

whereas 50% were phosphorylated on four or more residues

and 10% carried more than 14 sites (Figure 1D). Though these

multiple modifications do not necessarily occur simultaneously

on individual protein molecules, such multiple phosphorylation

could reflect regulation of a single protein function via multiple

pathways or could suggest that many of the protein’s cellular

activities and interactions are independently regulated via phos-

phorylation at distinct sites. Indeed, examination of predicted

structural elements within proteins using PsiPred (Jones, 1999)

and VSL2 (Peng et al., 2006) revealed that phosphorylated Ser,

Thr, and Tyr residues exhibited marked differences in structural

classification compared to their unmodified counterparts (Fig-

ure S3E). Phosphorylated sites were predominantly predicted

to reside in coiled and disordered regions rather than in

ordered secondary structures. Although phosphorylation usually

occurred in disordered regions, sites within kinase activation

loops were a notable exception: most of the 120 observed acti-

vation loop sites were ordered, with elevated levels classified as

strands. Virtually no phosphorylation sites were located in known

or predicted a helices.

Although many proteins were multiply phosphorylated, gener-

ally only a small portion of Ser, Thr, and Tyr residues within each

protein were modified (Figure 1E). Overall, 5% of these residues

were modified, with some variability for each residue: Ser, 8%;

Thr, 3%; Tyr, 1%. Nevertheless, some proteins bore extensive

phosphorylation. Based on fractional modification (the number

of potential sites versus the number of observed phosphorylated

sites), the most heavily phosphorylated proteins included

hemoglobin b1 (94% phosphorylated) as well as Marcksl1 (also

known as MLP; 61% phosphorylated), which spans the protein

kinase C and calmodulin signaling networks, and Hmgn1 (60%

phosphorylated), which regulates DNA-histone interactions.
C

To assess overlap, we counted the number of tissues in

which each site was observed (Figure 1F). Fifty percent of sites

were observed exclusively in single tissues, whereas 3% were

found in all tissues and 18% were present in over half of exam-

ined tissues. Although tissue-specific sites were observed in all

organs, they were not evenly distributed (Figure 1G). Most

tissue-specific sites were found in brain (33%) and testis

(17%), whereas lung contained only 6% and liver contributed

3%. These differences are not due to lower phosphopeptide

counts in these tissues, as lung contained 95% of the total

number of phosphopeptides as testis. To better assess tissue

distributions, tissue enrichment was quantified for each site

using Shannon’s entropy (Experimental Procedures) (Shannon,

1948). Selected tissue-specific phosphorylation sites are

shown in Table 1. These sites come from variably abundant

proteins, including Bassoon and Mtap1a, which were highly ex-

pressed in brain, as well as Nexilin and the CXC chemokine

receptor, which were found in low abundance in heart and

spleen, respectively. Many sites were previously unknown,

with most of these sites identified in less frequently studied

tissues. For comparison, proteins bearing global phosphoryla-

tion sites are listed in Table 2. Examples include Huntingtin,

the protein implicated in Huntington’s disease, and kinases

Mapk3 and Gsk3b. Few global sites were previously uncharac-

terized, presumably due to their ubiquity. Though some sites

are globally modified, extensive tissue-specific phosphoryla-

tion underscores the importance of multitissue phosphopro-

teomics. First, even widely expressed proteins display dramat-

ically different phosphorylation profiles across tissues. Even

the heavily phosphorylated Srrm2 (310 sites) harbors an abun-

dant testis-specific site (S1434). Second, many proteins are

only expressed in a subset of tissues and could obviously

only be phosphorylated in tissues where they are expressed.

The proteins Speg (heart), calmegin (testis), and B-lymphocyte

antigen CD20 were only found in single tissues. Clearly,

comprehensive phosphoproteomics requires analysis of many

tissues.

To compare phosphorylation profiles for each tissue, we per-

formed hierarchical clustering (Figure 1H). Total spectral counts

(TSCs) were used to approximate each site’s abundance within

each tissue (Liu et al., 2004). Clustering of sites based on their

tissue distributions highlights tissue-specific phosphorylation,

especially in brain and testis. Furthermore, clustering tissues

based on their phosphorylation profiles reveals that lung and

spleen were most similar, likely reflecting immune cell signaling,

whereas brain was most dissimilar.

Multiple Kinases Modify Most Phosphoproteins
To investigate which kinase classes were likely responsible for

observed phosphorylation events, we used a decision tree to

examine the amino acid motifs surrounding each site and

broadly classified each as basic, acid, proline-directed, or tyro-

sine (Villen et al., 2007). Proline-directed sites were most

common (29% of sites) (Figure 2A), whereas only 2.5% of sites

corresponded to tyrosines. Statistically significant variations in

frequencies of these classes were found across tissues, sug-

gesting that specific tissues rely on distinct kinases to maintain

specialized signaling. Proline-directed sites were elevated
ell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc. 1177



Table 1. Abundant Tissue-Specific Phosphorylation Sites, as Determined by Spectral Counts
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Brain Camk2a Ca/Calmodulin-dependent

protein kinase type II

a chain

00621806

and

00420725

Low Yes N T334 O 0.05 146 0 0 0 0 0 0 0 0

N S331 B 0.08 88 0 0 0 0 0 0 0 0

N T337 A 0.08 86 0 0 0 0 0 0 0 0

Bsn Bassoon 00134093 Hi Yes N S1114 P 0.06 117 0 0 0 0 0 0 0 0

N S1108 P 0.07 96 0 0 0 0 0 0 0 0

Mtap1a Microtubule-associated

protein 1A

00408909 Hi Yes N S991 P 0.06 109 0 0 0 0 0 0 0 0

N S1008 P 0.09 69 0 0 0 0 0 0 0 0

Brown

Fat

Flg2 Filaggrin-2 00406870 Med No N S1204 A 0.22 0 25 0 0 0 0 0 0 0

N S1205 A 0.29 0 18 0 0 0 0 0 0 0

Nif3l1 ngg1-interacting

factor 3-like 1

00230615 Hi No Y T254 B 0.39 0 12 0 0 0 0 0 0 0

Y S258 O 0.42 0 11 0 0 0 0 0 0 0

Heart Pkp2 Uncharacterized protein 00132134 Low No N Y573 T 0.84 0 0 4 0 0 0 0 0 0

Speg Striated muscle-specific

Ser/Thr-protein kinase

00331223 Hi No Y S2171 O 0.35 0 0 14 0 0 0 0 0 0

Y T2488 P 0.42 0 0 11 0 0 0 0 0 0

Lrrfip2 Putative uncharacterized

protein

00659860 Low No Y S233 B 0.37 0 0 13 0 0 0 0 0 0

Y S261 B 0.42 0 0 11 0 0 0 0 0 0

Kidney Slc34a1 Na-dependent phosphate

transport protein 2A

00121337 Hi Yes Y S623 P 0.08 0 0 0 90 0 0 0 0 0

Y T621 P 0.09 0 0 0 73 0 0 0 0 0

Slco1a6 Solute carrier organic

anion transporter 1A6

00114950 Med No Y S634 A 0.14 0 0 0 43 0 0 0 0 0

Y T632 A 0.17 0 0 0 35 0 0 0 0 0

Y S635 A 0.20 0 0 0 28 0 0 0 0 0

Pdzk1 Na+/H+ exchange

regulatory cofactor

00228883 Hi Yes Y T503 B 0.22 0 0 0 25 0 0 0 0 0

N S510 O 0.23 0 0 0 24 0 0 0 0 0

Liver Hal Histidine ammonia-lyase 00118625 Hi Yes N S635 P 0.21 0 0 0 0 27 0 0 0 0

Hao1 Hydroxyacid oxidase 1 00123750 Hi Yes N S194 P 0.26 0 0 0 0 20 0 0 0 0

Mtus1 Mitochondrial tumor

suppressor 1 homolog

00480490 Med No N S385 A 0.33 0 0 0 0 15 0 0 0 0

Lung Ager Advanced glycosylation

end product-specific

receptor

00122231 Hi Yes Y S377 A 0.10 0 0 0 0 0 64 0 0 0

Y S390 A 0.73 0 0 0 0 0 5 0 0 0

Bcl11b B cell lymphoma/

leukemia 11B

00121608 Low Yes N T744 P 0.35 0 0 0 0 0 14 0 0 0

Prx Periaxin 00469952 Hi Yes Y S1331 P 0.35 0 0 0 0 0 14 0 0 0

Y S1337 P 0.35 0 0 0 0 0 14 0 0 0

N S1028 P 0.58 0 0 0 0 0 7 0 0 0

Pancreas Sytl1 Synaptotagmin-like

protein 1

00118188 Med Yes Y S397 P 0.25 0 0 0 0 0 0 21 0 0

Y S120 A 0.31 0 0 0 0 0 0 16 0 0

C77080 Uncharacterized protein

KIAA1522

00420527 Low No Y S17 P 0.29 0 0 0 0 0 0 18 0 0

Copa Coatomer subunit alpha 00229834 Hi No Y S402 O 0.35 0 0 0 0 0 0 14 0 0
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Table 1. Continued
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Spleen Ms4a1 B lymphocyte antigen

CD20

00115397 Hi Yes Y S29 B 0.24 0 0 0 0 0 0 0 23 0

Hemgn Hemogen 00458120 Hi Yes N S158 P 0.33 0 0 0 0 0 0 0 15 0

Cxcr5 C-X-C chemokine

receptor type 5

00108764 Low No Y S361 B 0.31 0 0 0 0 0 0 0 16 0

Testis Clgn Calmegin 00123699 Hi Yes Y S582 B 0.09 0 0 0 0 0 0 0 0 75

Y S592 P 0.09 0 0 0 0 0 0 0 0 74

Y S595 A 0.19 0 0 0 0 0 0 0 0 31

Srrm2 Serine/arginine repetitive

matrix protein 2

00225062 Med No N S1434 B 0.10 0 0 0 0 0 0 0 0 62

This table lists selected abundant phosphorylation sites that were only detected in one of the nine tissues characterized, grouped by protein and tissue

of origin. Representative tissue-specific sites are listed for all nine tissues. See also Table S1, Table S2, and Table S3.
a Protein levels (low, medium, high) assigned using spectral counts observed in proteome assays without phosphopeptide enrichment (Table S4).

Values correspond to the 0–33rd percentiles (0–5 counts), 34–66th percentiles (6–33 counts), and 67–100th percentiles (>33 counts).
b Tissue-enriched expression (yes/no) defined by those proteins whose spectral counts correspond to entropies less than 0.84 for both phosphory-

lation and nonphosphorylation datasets (see Experimental Procedures).
c Novelty per phosphorylation site (yes/no) was assigned according to whether the site is included in the PhosphoSite database of literature references

to mouse protein posttranslational modifications (www.phosphosite.org; 11/4/09).
d Site classes assigned using a decision tree algorithm: A = acidic; B = basic; O = other; P = proline-directed; T = tyrosine.
e Entropy measured as described in Experimental Procedures.
in spleen, testis, and pancreas, whereas brown fat exhibited

increased basic sites. Furthermore, when sites were divided

into tissue-specific, moderate, and globally abundant groups

based on entropy filtering, each showed distinct proportions of

the five site classes (Figure 2D). Proline-directed sites were

more frequently classified as either tissue-specific or global,

whereas basic sites were enriched among global events. Both

tyrosine sites and those classified as ‘‘other’’ were decreased

among tissue-specific and global phosphorylation events.

We next examined the distribution of phosphorylation

classes within each phosphoprotein (Figure 2B). Hierarchical

clustering revealed that Ser/Thr classes were similar, whereas

Tyr sites diverged. Sixty-six percent of phosphoproteins con-

tained sites from multiple kinase classes and 4% harbored

sites from all classes (Figure 2C). Two variably phosphorylated

proteins are Mark1, a kinase involved with cytoskeletal

dynamics (Timm et al., 2008b), and Dennd1a, a protein that

acts in synaptic endocytosis (Allaire et al., 2006) (Figure 2E).

Each was phosphorylated across its length and contained sites

targeted to four site classes (neither contained pTyr). Individual

sites showed distinct tissue profiles. In some cases, pairs of

sites within the same class showed similar phosphorylation

patterns; however, even within the same protein, different sites

within the same class often showed variable patterns of modi-

fication. Overall, the presence of multiple site classes and the

distinctive tissue-specific profiles seen across sites within
C

most phosphoproteins suggest that the ‘‘typical’’ phosphopro-

tein sits at the crossroads of multiple signaling pathways,

where its activity depends upon many intracellular and extra-

cellular influences.

A representative protein spanning multiple signaling

networks is the kinase GSK3b, which regulates glycogen

synthesis, microtubule dynamics, apoptosis, and cell prolifera-

tion (Forde and Dale, 2007). We found four sites on GSK3b,

from three classes: S9 (basic), S25 (other), Y216 (tyrosine),

and S219 (other). Multiple kinases catalyze these phosphoryla-

tions, allowing multiple networks to modulate GSK3b activity.

Specifically, Y216 phosphorylation activates GSK3b and

results from autocatalytic activity or Pyk2 action. In contrast,

S9 phosphorylation inhibits GSK3b and results from activity

of PKB, PKA, and S6K, as well as through autoinhibition

(Forde and Dale, 2007). Though sites S25 and S219 have

been seen in multiple previous studies (Hornbeck et al.,

2004), the kinase(s) responsible for their phosphorylation are

unknown.

Combining Protein Abundance and Phosphorylation
Measurement Identifies True Differential Protein
Phosphorylation
Differential phosphorylation can reflect changes in protein abun-

dance, as well as changes in a particular site’s phosphorylation.

To distinguish these factors, we also performed a proteomic
ell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc. 1179

http://www.phosphosite.org


Table 2. Abundant ‘‘Global’’ Phosphorylation Sites

Name Annotation IPI

Protein

Abundancea Novel?b Site Entropyc Classd Brain

Brown

Fat Heart Kidney Liver Lung

Pan-

creas Spleen Testis

Trim28 Transcription

intermediary

factor 1-b

00312128 Hi N S473 2.17 B 10 9 7 12 10 7 5 10 9

Srrm1 Serine/arginine

repetitive matrix

protein 1

00605037 Low N S758 2.13 P 48 57 19 78 66 49 28 75 54

N S756 2.13 P 55 64 19 109 90 76 58 92 60

N S461 2.11 A 4 2 3 7 5 8 3 6 8

N S220 2.10 P 8 8 3 16 10 17 7 16 15

N S915 2.08 A 13 18 6 21 27 13 16 13 40

N S624 2.08 P 8 6 8 17 14 17 6 17 28

N S626 2.06 P 9 6 8 19 14 17 4 15 27

N S574 2.06 P 58 41 15 97 83 64 35 81 144

N S572 2.05 P 58 41 15 104 83 67 35 82 145

N S463 2.04 A 4 2 2 4 3 8 1 5 8

N T913 2.04 B 9 12 8 25 40 16 24 18 47

Ahsg Alpha-2-HS-

glycoprotein

00128249 Hi N S309 2.15 A 22 52 43 47 59 38 44 27 27

N S312 2.14 O 30 54 53 48 27 74 27 43 29

N S314 2.07 A 20 60 57 42 30 50 8 27 19

Nucks1 Nuclear ubiquitous

casein and cyclin-

dependent kinase

substrate

00341869 Med N S181 2.06 P 9 4 1 11 10 13 11 16 17

N S19 2.05 A 49 20 22 58 96 36 41 75 17

Sdpr Serum deprivation-

response

protein

00135660 Hi N S359 2.06 B 7 67 26 27 18 46 29 46 24

Nfia Nuclear factor 1

A-type

00131415 Low N S310 2.16 P 13 25 16 19 22 16 13 24 10

N S323 2.12 P 9 5 6 10 5 8 2 11 8

N S342 2.12 P 3 5 3 7 4 6 2 7 8

N S303 2.10 B 9 10 18 12 16 9 3 15 5

Htt Huntingtin 00271166 Hi N S397 2.15 B 11 6 8 9 17 15 8 12 15

N S412 2.14 P 7 5 8 7 12 8 3 11 7

Mapk3 Mitogen-activated

protein kinase 3

00230277 Hi N T203 2.10 A 3 6 4 5 2 4 1 3 2

N Y205 2.10 T 3 6 4 5 2 4 1 3 2

Gsk3b Glycogen synthase

kinase-3 b

00125319 Hi N S219 2.15 O 7 6 4 5 5 7 2 4 4

N Y216 2.13 T 16 24 6 18 9 17 23 14 12

Vim Vimentin 00227299 Hi N S51 2.12 B 2 4 2 1 2 2 1 2 3

N S39 2.09 B 2 6 4 3 1 4 2 5 2

Mtmr2 Myotubularin-

related protein 2

00128196 Med Y S74 2.16 B 12 14 8 13 11 13 6 15 8

N S77 2.08 O 10 9 4 6 5 5 2 4 2

Mia3 Melanoma inhibitory

activity protein 3

00850156 Hi N S1767 2.17 O 4 4 4 5 3 4 4 5 2

N S1755 2.08 A 3 1 2 3 1 2 1 1 4

Phf14 PHD finger

protein 14

00137250 Low N S283 2.18 O 4 5 3 4 4 4 2 4 4

N T280 2.13 A 4 5 3 4 6 4 1 5 4

This table lists selected abundant phosphorylation sites that were detected in most or all of the mouse tissue characterized, grouped by protein. See

also Table S1, Table S2, and Table S3.
a Protein levels (low, medium, high) assigned using spectral counts observed in proteome assays without phosphopeptide enrichment (Table S4).

Values correspond to the 0–33rd percentiles (0–5 counts), 34–66th percentiles (6–33 counts), and 67–100th percentiles (>33 counts).
b Novelty per phosphorylation site (yes/no) was assigned according to whether the site is included in the PhosphoSite database of literature references

to mouse protein posttranslational modifications (www.phosphosite.org; 11/4/09).
c Entropy measured as described in Experimental Procedures.
d Site classes assigned using a decision tree algorithm: A = acidic; B = basic; O = other; P = proline-directed; T = tyrosine.
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Figure 2. Distribution of Phosphorylation Site Classes across Tissues and Phosphoproteins

Phosphorylation sites were classified as acidic, basic, proline-directed, tyrosine, or other as described (Villen et al., 2007).

(A) The relative frequencies with which each class is observed overall and for each tissue are plotted as pie charts. p values reflect the likelihood that the tissue-

specific sites were drawn randomly from a population with frequencies matching the entire dataset (c2 test).

(B) The heat map presents the numbers of sites of each class observed for 6296 phosphoproteins. Proteins and site classes have been clustered to highlight

similarities.

(C) Histogram indicating proportions of phosphoproteins containing phosphorylation sites from variable numbers of classes.

(D) Bar graph indicating relative proportions of tissue-specific, moderate, and global phosphorylation sites in each class.

(E) Heat maps indicating the tissue distributions and relative abundances of phosphorylation sites along the lengths of proteins Mark1 and Dennd1a. Sites are

labeled according to their classes: A = acidic; B = basic; O = other; p = proline-directed; T = tyrosine.

See also Figure S3, Figure S4, Figure S7, Table S1, Table S2, and Table S3.
analysis of the nine tissues examined in our phosphoproteomic

experiments. Altogether we identified 12,039 proteins, 36% of

which were identified both with and without phosphopeptide

enrichment (Figure 3A), an overlap that was consistent across

tissues (Figure 3B). 5,745 proteins were only identified without

phosphopeptide enrichment, whereas 1,937 proteins were

detected in the phosphorylation data alone, indicating that nor-

mally, these proteins are of low abundance, resisting detection

via our shotgun proteomic approach. Phosphopeptide enrich-
C

ment provides an excellent means to access proteins that are

invisible to other fractionation methods.

To explore their expression and phosphorylation, proteins

were clustered based on spectral counts within each tissue,

with and without phosphopeptide enrichment and plotted

as a heat map (Figure 3C). As with individual sites (Fig-

ure 1H), phosphorylated and nonphosphorylated protein profiles

ranged from tissue-specific to global expression. Again, most

tissue specificity was in brain and testis; however, unmodified
ell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc. 1181



Figure 3. Cross-Tissue Comparison of Protein and Phosphoprotein Expression
Overlap among phosphoproteins and proteins, overall (A) and in each tissue (B).

(C) Clustering of proteins based on spectral counts with and without phosphopeptide enrichment. Columns represent 12,000 observed proteins, and rows repre-

sent tissues with or without phosphopeptide enrichment.

(D) Phosphorylated and nonphosphorylated abundance profiles for selected proteins.

(E) Bar charts reflecting proportions of global, moderate, and tissue-specific proteins identified in nonphosphorylated form.

(F) Western blotting confirms spectral counting quantification of proteins and phosphorylation sites (Figure S4).

(G) Heat maps depicting spectral counts observed across tissues for sites along the length of each protein, revealing variable phosphorylation within proteins

(Figure S3F). Abundances for each nonphosphorylated protein are also displayed. See http://gygi.med.harvard.edu/phosphomouse for plots of all proteins.

See also Figure S2, Figure S4, Figure S5, Figure S6, Figure S7, Table S1, Table S2, Table S3, and Table S4.
proteins were more consistently expressed across tissues,

indicating that protein expression is less variable than

phosphorylation.
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Perhaps most striking are differences among phosphorylated

and nonphosphorylated profiles. Though many abundant, ubiq-

uitous proteinswere identified in the nonphosphorylated dataset,

http://gygi.med.harvard.edu/phosphomouse


these proteins showed little phosphorylation. Similarly, the most

abundant and globally phosphorylated proteins were sparsely

observedwithout phosphorylation. Generally, there is little corre-

lation between protein abundance and phosphorylation levels,

either for the entire dataset or for individual proteins. After spec-

tral counts were normalized, comparison of each protein’s

expression and phosphorylation profiles frequently revealed

large differences. For example, the abundances of Nck1 with

and without phosphorylation were very distinct (Figure 3D-1). In

contrast, high concordance was observed for phosphorylated

and nonphosphorylated Acaca (Figure 3D-2). Nevertheless,

considerable heterogeneity was observed for both proteins’ indi-

vidual sites across tissues (Figure 3G), indicating that these fluc-

tuations are not due to changes in substrate protein abundance

and thus reflect true differential tissue-specific phosphorylation.

Because this analysis relies upon accurate quantitation of

proteins and phosphoproteins via spectral counting, we investi-

gated its reproducibility by comparing duplicate analyses of non-

phosphorylated brown fat (Figure S4A) and found strong agree-

ment. We also confirmed agreement between TSC and protein

abundance using western blots of selected proteins and their

phosphorylation sites (Figure 3F; Figure S4B). Finally, we

compared our protein expression profiles with those reported in

a previous proteomic survey of several mouse tissues (Kislinger

et al., 2006). Though only a subset of tissues was included in

this prior study, excellent agreement was observed for the 3202

proteins shared among these datasets (Figures S4C–S4E).

Tissue-Specific Phosphorylation Does Not Imply
Tissue-Specific Expression
To assess the relationship between tissue-specific phosphoryla-

tion and protein expression, proteins identified without phos-

phopeptide enrichment were classified as ‘‘tissue-specific,’’

‘‘moderate,’’ or ‘‘global’’ based on entropy filtering (Figure 3E,

‘‘All Proteins’’). Next, those proteins also identified with one or

more phosphorylation sites were selected (‘‘All Phosphopro-

teins’’). Phosphoproteins were more likely to be ‘‘globally’’

expressed in their nonphosphorylated forms (24% to 37%;

p < 10�112, c2 test). When this list was further filtered to

include only proteins for which one or more tissue-specific

sites were observed (‘‘Proteins with Tissue-Specific Sites’’),

a subtle increase in the fraction of tissue-specific proteins was

observed (13% to 15%; p < 10�6, c2 test). Thus proteins

containing tissue-specific sites are only slightly more likely to

display tissue-specific expression in nonphosphorylated form.

In contrast, the vast majority (85%) of proteins that contained

tissue-specific sites were expressed across multiple tissues in

nonphosphorylated form, and 36% were globally expressed.

Most tissue-specific phosphorylation is not due to tissue-

specific protein expression and instead reflects the independent

influence of tissue-specific signaling.

Biological Classification of Global and Tissue-Specific
Proteins and Phosphoproteins
To explore their biological roles, proteins and phosphoproteins

were classified as ‘‘global’’ or ‘‘tissue-enriched’’ via entropy

filtering. Each of these classes was then compared, using DAVID,

withall identifiedproteinsandphosphoproteins todetectenriched
C

GeneOntology (GO) categories andProtein InformationResource

(PIR) classifications (Dennis et al., 2003). Enriched GO categories

(Ashburner et al., 2000) and PIR classifications (Wu et al., 2003)

were then clustered based on p values reflecting enrichment in

each class, following log transformation and z-transformation

(Figure S5). Global proteins were enriched for protein synthesis

and degradation as well as mitochondrial function, nucleotide

binding, and ligase activity, whereas ubiquitin ligase activity and

phosphoproteins were enriched among global phosphoproteins.

GO and PIR enrichments for each tissue generally agreed with

expectations. Brain-specific proteins and phosphoproteins were

enrichedwith neuron differentiation and vesicle transport classes,

whereas heart-specific proteins and phosphoproteins were en-

riched with classes specific to muscle and cardiac tissue. Some

tissue-specific proteins and phosphoproteins displayed comple-

mentary enrichment patterns. Testis-specific phosphoproteins

were enriched in meiosis and cell cycle as well as DNA damage

and repair, whereas testis-specific nonphosphorylated proteins

were enriched in spermatogenesis andmicrotubule-basedmove-

ment. This suggests that distinct regulatory strategies govern

these testis-specific functions.

Tissue-Specific Expression of Phosphotransfer Proteins
To better understand variable phosphorylation across tissues,

we examined proteins involved with phosphotransfer: kinases,

kinase inhibitory proteins, phosphatases, and phosphatase

inhibitory proteins (Figures S6A and S6B). Proteins were classi-

fied based on GO classifications and clustered. We identified

416 of 556 kinases (Figure S6A), with 57% detected in both

phosphorylated and nonphosphorylated forms, as well as 11 of

21 kinase inhibitory proteins. Though mostly globally expressed,

tissue-specific kinases were found in brain, lung, spleen, and

testis. In contrast, notwithstanding a few brain-specific inhibi-

tors, most kinase inhibitory proteins were widely expressed. Of

151 phosphatases, we identified 112 (Figure S6B), with tissue-

specific phosphatases observed in brain and testis. A significant

fraction (43%) of phosphatases were not detected in phosphor-

ylated form, despite nearly ubiquitous expression. We also iden-

tified 17 of 18 phosphatase inhibitory proteins, with most being

widely expressed across tissues.

Tissue-Specific Expression and Phosphorylation
within Protein Interaction Networks
One effect of phosphorylation is to regulate physical interactions

among proteins. Therefore, mapping phosphoproteomic data

onto networks of known interacting proteins can reveal tandem

phosphorylation that regulates the proteins’ shared biological

activities. We used protein-protein interactions in the STRING

database to create a high-confidence interaction map of the

mouse proteome (Jensen et al., 2009) and superimposed onto

this network protein phosphorylation and abundance data

from each tissue. Figure 4 shows three networks composed

of the nearest neighbor interactors for the proteins spleen tyro-

sine kinase (Syk), Vamp1, and Bcl2-associated agonist of cell

death (Bad).

Each interaction network in Figure 4 displays distinct protein

expression and phosphorylation patterns. Syk and its interactors

display tissue-specific phosphorylation that mostly correlates
ell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc. 1183



Figure 4. Mapping Protein Expression and Phosphorylation Data onto Protein Interaction Networks

Protein observations with and without phosphopeptide enrichment were mapped onto the mouse STRING database of known protein interactions (Jensen et al.,

2009). Only high confidence interactions (score > 0.7) were considered. Proteins that interact with Syk, Vamp, and Bad are depicted in networks above. Labeled

diagrams are provided on the left and indicate the identities of all proteins. Each network is displayed twice for each tissue: the network on the left reflects phos-

phorylation, whereas the network on the right depicts protein expression. Proteins detected in phosphorylated or nonphosphorylated form in each tissue are

represented as colored nodes, with colored edges connecting detectable proteins. Interacting proteins within the STRING database that were not detected

in each tissue are shown in gray. See also Table S1, Table S2, Table S3, and Table S4.
with protein expression. Syk is a tyrosine kinase that is active in B

and T cells during immune responses and is also expressed in

kidney, heart, brain, and lung (Duta et al., 2006; Ulanova

et al., 2005). Accordingly, the most phosphorylation was found

in spleen and lung, which also contain the most expressed
1184 Cell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc.
proteins from this network; in contrast, liver, pancreas, brown

fat, and testis show low network expression and phosphoryla-

tion. The high phosphorylation observed for Syk and its interac-

tors in spleen and lung reflects immune activities of splenic

lymphocytes and airway epithelia. Furthermore, many network



proteins, including Syk, were expressed and phosphorylated in

heart, whereas kidney showed both expression and phosphory-

lation of network proteins, but not Syk itself.

In contrast to Syk, Vamp1 and its interactors are expressed in

all tissues, though brain shows dramatically increased network

phosphorylation. Various Vamp isoforms are expressed in nearly

every tissue, where they participate in vesicular trafficking;

however, Vamp1 and Vamp2 are specific to brain and participate

in neurotransmitter release (Chen andScheller, 2001). The exten-

sive phosphorylation of Vamps and interacting proteins in brain

suggests that phosphoregulation has enabled adaptation of

widely distributed cellular machinery to support neural functions.

Whereas the previous networks display variable and tissue-

specific protein expression and phosphorylation, Bad (Bcl2-

associated agonist of cell death) and its interactors exhibit

remarkably consistent expression and phophorylation. Bad is

a proapoptotic protein that regulates mitochondrial metabolism

and, when unphosphorylated, can trigger cell death (Danial,

2009). Because apoptotic machinery is found in essentially every

cell type, ubiquitous detection of this network is not surprising.

Furthermore, the uniformly high phosphorylation is consistent

with healthy, mature tissues whose cells are unlikely to undergo

apoptosis.
Combining Phosphorylation Data with Signaling
Network Maps Reveals Tissue-Specific Differences
Most cellular signaling networks rely on sequential and coordi-

nated phosphorylation of constituent pathway proteins to relay

and amplify the initial signal; these pathways are found in virtually

all cells and are required for sensing and responding to environ-

mental cues. We investigated one of the most ubiquitous kinase

cascades, the MAP kinase pathway, as it mediates cellular

responses to growth factors and other survival and proliferation

cues. To survey differences in MAPK signaling among tissues,

we overlaid each tissue’s phosphoproteomic profile onto the

KEGGdatabase (Kanehisa et al., 2010) MAPK pathway (Figure 5).

As expected for a central signaling pathway, much of the network

was globally utilized; however, tissue-specific patterns were also

apparent. Although signaling from Mras to Erk1 was found in

almost all tissues, Mek1 was phosphorylated in brain and kidney,

and Mek2 was modified in liver, lung, pancreas, and testis. These

differencesareposttranslationally controlled, asunmodifiedMek1

and Mek2 were detected in most tissues. These observations

suggest avenues for future study that will elucidate how tissue-

specific phenotypes are achieved through ubiquitous pathways.
DISCUSSION

After comparing expression and phosphorylation for thousands

of proteins and phosphorylation sites across several mammalian

tissues, several trends emerged.
Most Phosphoproteins Span Multiple Phosphorylation
Networks
Most phosphoproteins contain several independent sites that

frequently belong to different structural classes and display

dramatically different phosphorylation across tissues. Multiple
C

events allow modulation of each protein’s activity by kinases

integrating multiple signaling pathways.

One example is Mark1, a kinase that phosphorylates Tau and

other microtubule-associated proteins and regulates cytoskel-

etal dynamics (Figure 2E). Mark1 is alternately induced by phos-

phorylation at T215 by Markk/Tao-1 (Timm et al., 2003) or LKB1

(Lizcano et al., 2004) and inhibited by GSK3b-catalyzed phos-

phorylation at S219 (Timm et al., 2008a). We observed 13 sites

within Mark1, spanning 4 site classes with variable phosphoryla-

tion across tissues. Its activation site, T215, was nearly ubiqui-

tously phosphorylated, suggesting wide activity. Because the re-

maining sites occupy distinct motifs and display dramatically

different phosphorylation profiles, Mark1 activity is likely

regulated by multiple kinases representing discrete signaling

networks.

Tissues Possess Specialized Phosphorylation Networks
When phosphorylation profiles are compared across tissues, the

differences are striking. (1) Half of all sites are unique to a single

tissue, and few sites are globally phosphorylated. (2) Classes of

sites are differentially enriched in different tissues. (3) Distinct

kinases and phosphatases are present in each tissue. (4) Both

individual proteins and entire protein complexes show tissue-

specific phosphorylation. Clearly, phosphorylation networks

have been optimized to support each tissue’s unique physiolog-

ical functions.

Some of the most obvious evidence of tissue-specific phos-

phorylation appears when phosphorylation data are mapped

onto protein interaction networks (Figure 4). Yet even individual

proteins show combinations of tissue-specific and global phos-

phorylation. The proteins Mtap1a, Mtap2, and Tau have been

primarily studied in neurons, where they bind to microtubules

and regulate their stability and interactions with numerous cyto-

skeletal, membrane-bound, and enzymatic cellular components

(Dehmelt and Halpain, 2005; Halpain and Dehmelt, 2006).

However, we detected phosphorylation and expression of these

proteins in nearly all tissues. The majority of Mtap1a’s 97 sites

are brain specific, though some were also seen in other tissues.

Mtap2 also displays extensive brain-specific phosphorylation,

though several C-terminal sites are widely phosphorylated. In

contrast to Mtap1a and Mtap2, Tau displays few brain-specific

phosphorylation events. The more widespread phosphorylation

of Mtap2 and especially Tau suggests that these proteins play

general roles regulating cytoskeletal dynamics. Although all cells

rely upon microtubules, neurons have adapted them for their

unique structural, transport, and signal transduction needs;

thus it is appropriate that these proteins demonstrate a mixture

of multitissue and brain-specific phosphorylation.

Tissue-Specific Protein Expression
and Phosphorylation Are Independent
Phosphorylated and nonphosphorylated proteins display mark-

edly different expression patterns. Phosphoproteins are more

often expressed globally, suggesting that tissue-specific phos-

phorylation allows tuning of ubiquitous proteins to optimize

cell performance. Together, complementary protein expression

and phosphorylation maintain the unique properties of distinct

tissues.
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Figure 5. Integrating Phosphorylation Data with Known Signaling Pathways

Shown above are all members of the MAPK pathway as recorded in KEGG (Kanehisa et al., 2010). Each protein is represented as a node containing up to nine

squares, each indicating presence of phosphorylation in one tissue. Edges represent interactions among proteins in the MAP kinase pathway and are colored

when their proteins were phosporylated in each tissue. See also Table S1, Table S2, Table S3, and Table S4.
Although phosphorylation is generally specific and tightly

regulated, it has been proposed that some phosphorylation

events may be nonfunctional byproducts of aberrant kinase

activity (Lienhard, 2008). Although we cannot directly address

questions of biological function for individual sites from our

data, the phosphorylation patterns we observe within individual

proteins and across the proteome strongly suggest that nonspe-

cificmodifications account for little of observed phosphorylation.

First, only the minority of residues prone to modification were

observed to be phosphorylated. Among proteins that were phos-

phorylated at least once and thus were demonstrably accessible

for kinase activity, only 5% of serines, threonines, and tyrosines

were modified (Figure 1E). Even allowing for some potential sites

to be inaccessible due to protein topology, if nonspecific phos-

phorylation were rampant, onewould expectmore even distribu-

tion of modifications across the surfaces of accessible proteins.
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The strongest evidence against nonspecific phosphorylation

is the independence among protein abundance and phosphory-

lation. Nonspecific phosphorylation would occurmost frequently

on highly abundant and accessible proteins. The minimal phos-

phorylation we observe among the most abundant proteins

suggests that aberrant kinase activity accounts for little mamma-

lian phosphorylation.

Complementary Protein Expression and
Phosphorylation Maintain Tissue-Specific Signaling
Together, complementary protein expression and phosphoryla-

tion maintain the unique biochemistry of each tissue, as demon-

strated by the kinase PKA and several of its substrates.

We detected multiple sites on PKA, as well as its unmodified

form. Because PKA phosphorylation at Thr198 is required for

activity (Steinberg et al., 1993), our data suggest that PKA is



active in all tissues, with highest activity in brain and brown fat.

Within brown fat, PKA mediates hormone-stimulated lipolysis

under fasting conditions. By phosphorylating Perilipin (Miyoshi

et al., 2007), PKA enables HSL and ATGL to initiate lipolysis

(Watt and Steinberg, 2008). Furthermore, PKA phosphorylates

HSL, potentiating its activity. Using these proteins’ phosphoryla-

tion profiles, together with predictive kinasemotif software (Obe-

nauer et al., 2003), we identified several known PKA sites on

each protein, along with numerous predicted PKA sites that

have not been reported (Figure S7). Each of these sites is most

abundant in brown fat, matching each protein’s expression

as well as PKA expression and activity. Intriguingly, though

no direct link has been identified between PKA and ATGL,

the rate-limiting enzyme for initiation of triglyceride lipolysis

(Haemmerle et al., 2006), we identified a putative PKA phosphor-

ylation site on ATGL (Ser406) that could participate in lipolytic

regulation.

PKA is also active in developing murine brain, where it phos-

phorylates cAMP response element-binding protein (CREB),

which mediates transcription of genes essential for nervous

system development. PKA also phosphorylates proteins in-

volved in neurotransmitter release and cytoskeletal organization,

including microtubule-associated protein 2 (Mtap2) and

synapsin 1 (Syn1). Phosphorylation of Mtap2 by PKA alters

dendritic tree morphology, possibly modifying its physiological

activity (Itoh et al., 1997), whereas synapsins are the primary

presynaptic targets of PKA and represent one of several

substrates that enable PKA to modulate synaptic transmission

(Kao et al., 2002).We identified several known sites of PKA phos-

phorylation, along with numerous predicted PKA phosphoryla-

tion sites within each protein (Figure S7). PKA and its substrates

demonstrate how ubiquitous kinases can participate in tissue-

specific biological processes through carefully regulated activity

coupledwith tissue-specific protein expression. Asmost kinases

and phosphatases are widely expressed (Figure S6), suchmech-

anisms likely play an important role maintaining tissue-specific

phosphorylation.

Future Applications for Protein Expression
and Phosphorylation Data
Our proteomic survey ranks among the largest reported in mice,

and our phosphorylation survey is among the largest accrued.

Furthermore, all data have been collected and analyzed using

the same state-of-the-art techniques, ensuring results of consis-

tently highquality. Thesedata represent a comprehensivemurine

phosphorylation atlas, recording patterns of expression and

phosphorylation for thousands of proteins in healthy tissues. By

providing detailed views of protein expression and phosphoryla-

tion across several mammalian tissues via an intuitive online

interface, these data will provide a firm basis for future targeted

research to better understand thebiological roles of eachprotein.

In addition to providing insight into biology of individual

proteins, these phosphorylation data will also be a valuable

resource to the bioinformatics community. Recently, algorithms

have been developed to predict phosphorylation sites andmotifs

in uncharacterized proteins based on amino acid sequence and

other properties (Miller et al., 2008; Schwartz et al., 2009). Many

of these algorithms must be trained using known sites and are
C

only as reliable and comprehensive as their training data allow;

our phosphorylation survey, including many previously unre-

ported sites from several tissues, will enable better training of

models, ultimately providing better predictions.

Challenges Remain for Mammalian Phosphoproteomics
Although this investigation has expanded knowledge ofmamma-

lian phosphorylation, some aspects cannot yet be measured

comprehensively from intact tissues via bottom-up proteomics

techniques. One of these is connectivity: which phosphorylation

sites occur simultaneously on the same protein molecules. This

information is largely lost during tryptic digestion, leaving only

connectivities among sites within the same peptides to be

observed. The second aspect is site occupancy: what fraction

of each site is phosphorylated. Previously, phosphorylation

site occupancy was measured using targeted techniques.

However, a proteomic strategy formeasurement of phosphoryla-

tion site occupancies from cultured cells has been reported

(Olsen et al., 2010). Measuring these properties in intact tissues

would further advance our understanding of tissue-specific

phosphorylation.

Although this survey has provided an expansive view ofmurine

phosphorylation, it has not addressed many biological variables

that influence phosphorylation. Our intention was to provide an

overview of phosphorylation, initially focusing on a homoge-

neous population of relatively young and healthy male mice.

However, it remains to be determined how physiological vari-

ables such as age, sex, strain, and diurnal cycles influence the

phosphoproteome. Furthermore, many diseases alter phosphor-

ylation. Although it does not directly address these issues, our

present work provides a foundation for subsequent studies by

demonstrating effective methods for large-scale multitissue

surveys of phosphorylation. This phosphoproteomic profile can

also serve as a basis of comparison to explore changes in phos-

phorylation that occur in many physiological and pathological

states.

We have presented a large-scale survey of protein expression

and phosphorylation spanning multiple murine tissues and have

mined these data to better understand the biochemical basis of

tissue specificity. These data suggest that the ‘‘typical’’ phos-

phoprotein is widely expressed across tissues yet displays vari-

able, often tissue-specific phosphorylation sites from multiple

kinases that tune protein activity to the specific needs of each

tissue. We now offer these data as a resource, in the hope that

they will inspire further targeted research.

EXPERIMENTAL PROCEDURES

Brief descriptions of key experimental procedures are provided below. For

complete details, see Extended Experimental Procedures. Datamay be down-

loaded from the ProteomeCommons.org Tranche network. Specific Tranche

keys for each dataset are listed in the Extended Experimental Procedures.

Phosphopeptide Enrichment and Mass Spectrometry

Nine organs were harvested from 3-week-old male Swiss-Webster mice:

brain, brown fat, heart, liver, lung, kidney, pancreas, spleen, and testis. Mice

were sacrificed after overnight feeding, 6 hr after lights were turned on and

eating ceased. Following tissue homogenization and protein extraction,

samples containing 10 mg of protein per tissue were digested with trypsin
ell 143, 1174–1189, December 23, 2010 ª2010 Elsevier Inc. 1187
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and the resulting peptides fractionated via strong cation exchange chromatog-

raphy, prior to phosphopeptide enrichment via immobilizedmetal affinity chro-

matography (Villen and Gygi, 2008). Phosphopeptides were analyzed in dupli-

cate via LC-MS/MS on an LTQ-Orbitrap mass spectrometer. Peptides were

identified using Sequest (Eng et al., 1994) and filtered to a 1% peptide FDR

via the target-decoy approach, using a linear discriminant function to score

each peptide based on parameters such as Xcorr, DCn, and precursor mass

error (E.L.H. et al., unpublished data). Individual phosphorylation sites were

scored using AScore (Beausoleil et al., 2006) and the resulting dataset was

further filtered to achieve an estimated 1.7% final protein FDR (final peptide

FDR: 0.15%). MS/MS spectra have been annotated for all 36,000 phos-

phorylation sites and are available online (http://gygi.med.harvard.edu/

phosphomouse) with matching SEQUEST.out files.

Protein Isolation and Mass Spectrometry

Protein extracts from nine tissues were separated via SDS-PAGE (65 mg per

tissue) and digested in-gel with trypsin. The resulting peptides were then

analyzed via LC-MS/MS on an LTQ-Velos-Orbitrap mass spectrometer. As

before, peptides were identified by Sequest and filtered to a 1% peptide

FDR. Proteins were further filtered to achieve a 1.25% final protein FDR (final

peptide FDR: 0.11%).

Identification of Tissue-Enriched and Global Proteins and

Phosphorylation Sites

The extent to which proteins and phosphorylation sites exhibited tissue-en-

riched or global tissue distributions was quantified using Shannon’s entropy

(Shannon, 1948). A single pseudocount was divided across tissues for all sites

to avoid problems with counts of zero. Sites predominantly found in a single

tissue give small entropies, whereas sites that are evenly expressed across

tissues give large entropies. We define sites with entropy values below

0.838 as tissue enriched; this corresponds to a site with 4 spectral counts

observed in one tissue and 0 in all others. Those with entropies above 2.038,

corresponding to observation in at least seven of nine tissues, are globally

expressed.

Hierarchical Clustering

Unless noted otherwise, clustering was performed using centroid linkage with

Pearson correlation as a distance metric.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and four tables and can be found with this article online at doi:10.1016/

j.cell.2010.12.001.
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