FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer

Graphical Abstract

Highlights
- FOXC1 controls CSC properties in BLBC
- SMO-independent Gli2 activity mediates the regulation of CSC properties by FOXC1
- FOXC1 directly binds Gli2 and potentiates Gli2 DNA-binding activity
- FOXC1 renders BLBC cells refractory to anti-Hh inhibitors

Authors
Bingchen Han, Ying Qu, Yanli Jin, ..., Mien-Chie Hung, Armando E. Giuliano, Xiaojiang Cui

Correspondence
xiaojiang.cui@cshs.org

In Brief
Han et al. find that FOXC1 binds directly to Gli2, activating SMO-independent hedgehog signaling and leading to the induction of cancer stem cell properties and anti-SMO drug resistance in basal-like breast cancer cells.

Accession Numbers
GSE73234
FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer

Bingchen Han,1 Ying Qu,1 Yanli Jin,1 Yi Yu,1 Nan Deng,2 Kolja Wawrowsky,3 Xiao Zhang,2 Na Li,4 Shikha Bose,5 Qiang Wang,6 Suguandevi Sakkiah,3,6 Ravinder Abrol,3,6 Tor W. Jensen,7 Benjamin P. Berman,6 Hisashi Tanaka,1 Jeffrey Johnson,1 Bowen Gao,1 Jijun Hao,3 Zhenquiu Liu,6 Ralph Buttyan,4,9 Partha S. Ray,7 Mien-Chie Hung,10,11 Armando E. Giuliano,1 and Xiaojiang Cui1,12,*

1Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
2Biostatistics and Bioinformatics Research Center, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
3Department of BioMedical Sciences, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
4Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
5Department of Pathology, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
6Department of Medicine, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
7Department of Surgery, University of Illinois College of Medicine at Urbana Champaign, Urbana, IL 61801, USA
8College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
9Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
10Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
11Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 402, Taiwan
12Department of Obstetrics and Gynecology, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA

*Correspondence: xiaojiang.cui@cshs.org
http://dx.doi.org/10.1016/j.celrep.2015.09.063
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

The mesoderm- and epithelial-mesenchymal transition-associated transcription factor FOXC1 is specifically overexpressed in basal-like breast cancer (BLBC), but its biochemical function is not understood. Here, we demonstrate that FOXC1 controls cancer stem cell (CSC) properties enriched in BLBC cells via activation of Smoothened (SMO)-independent Hedgehog (Hh) signaling. This non-canonical activation of Hh is specifically mediated by Gli2. Furthermore, we show that the N-terminal domain of FOXC1 (aa 1–68) binds directly to an internal region (aa 898–1168) of Gli2, enhancing the DNA-binding and transcription-activating capacity of Gli2. FOXC1 expression correlates with that of Gli2 and its targets in human breast cancers. Moreover, FOXC1 overexpression reduces sensitivity to anti-Hedgehog (Hh) inhibitors in BLBC cells and xenograft tumors. Together, these findings reveal FOXC1-mediated non-canonical Hh signaling that determines the BLBC stem-like phenotype and anti-Hh sensitivity, supporting inhibition of FOXC1 pathways as potential approaches for improving BLBC treatment.

INTRODUCTION

Breast cancer is a heterogeneous disease that consists of multiple molecular subtypes characterized by distinct pathophysiological features. By using high-throughput technologies, breast cancer has been classified into at least four biologically distinct subtypes: luminal A, luminal B, human epidermal growth factor receptor 2-overexpressing (HER2+), and basal like (Koboldt et al., 2012). Basal-like breast cancer (BLBC) accounts for 15%–20% of all invasive breast cancers and is associated with high histologic grade, younger patient age, and poor prognosis (Rakha et al., 2009). Estrogen receptor-positive (ER+) tumors of the luminal subtype can be treated with endocrine therapy, whereas HER2+ tumors may benefit from antibody or small-molecule inhibitor drugs. In contrast, chemotherapy remains the only systemic treatment modality for BLBC.

Recent studies have shown that forkhead box C1 (FOXC1), a transcription factor involved in the development of mesoderm, brain, and eye during embryogenesis (Kume et al., 1998; Maclean et al., 2005), may serve as a key diagnostic biomarker specific for BLBC (Jensen et al., 2015; Ray et al., 2010). Elevated expression of FOXC1 also predicts poor overall survival in other cancers such as lung cancer (Wei et al., 2013) and hepatocellular carcinoma (Xia et al., 2013). A recent study has shown that NF-κB signaling mediates the function of FOXC1 in BLBC cell proliferation and invasion (Wang et al., 2012). Consistent with this result, matrix metalloprotease-7 (MMP7), which is regulated by NF-κB, mediates the invasion-promoting function of FOXC1 in BLBC (Sizemore and Keri, 2012).

Accumulating evidence indicates that cancer stem cells (CSCs) contribute to tumor growth, metastasis, and relapse, and that FOXC1 contributes to the CSC phenotype. Gene expression profiles suggest a less differentiated progenitor cell phenotype or a stem cell origin for BLBC (Ben-Porath et al., 2008; Zvelebil et al., 2013). In addition, BLBC is enriched with cells of the CD44+/CD24− phenotype (Honeth et al., 2008), which possess tumor-initiating stem-like properties (Al-Hajj et al.,...
A recent study showed that the FOXC1 protein is exclusively expressed in basal cells but that FOXC1 mRNA is enriched in luminal progenitor cells (Sizemore et al., 2013). In line with this finding, FOXC1 induces a progenitor-like phenotype in differentiated mammary epithelial cells (Bloushtain-Qimron et al., 2008). In tumor cells, FOXC1 can induce epithelial-mesenchymal transition (EMT) (Xia et al., 2013; Yu et al., 2013), a cellular feature associated with CSCs (Mani et al., 2008). Most recently, FOXC1 is reported to be a key regulator for development and maintenance of the mesenchymal niches for hematopoietic stem and progenitor cells (Omatsu et al., 2014). To date, it is unclear how FOXC1 interacts with or orchestrates signaling pathways involved in BLBC cell function and stem-like properties. To address this question, we explored the effects of FOXC1 on CSC properties in vivo and in vitro and the potential underlying mechanisms.

RESULTS

FOXC1 Increases CSC Properties in BLBC Cells In Vivo and In Vitro

Because FOXC1 emerges as a critical biomarker for BLBC and induces the CSC-associated EMT phenotype, we set out to directly test the effect of FOXC1 on CSC properties in vivo by performing limiting dilution injection experiments. FOXC1 was stably overexpressed in MDA-MB-231 cells (Figure S1A). Serial dilutions of control or FOXC1-overexpressing cells were injected orthotopically into the fourth mammary glands of BALB/c nude mice, and tumor growth was examined. As presented in Figure 1A, there were no differences in the tumor incidence when 100,000 or 10,000 cells were injected. However, when as few as 1,000 or 100 cells were inoculated, seven or three out of eight injections of FOXC1-overexpressing cells developed tumors respectively, as opposed to two or zero out of eight injections of control cells. Notably, when FOXC1-knockdown BT549 cells were injected into the mouse mammary glands, tumorigenesis was completely inhibited (Figure 1B).

CSC can also be identified by specific biomarkers in vitro in many types of cancer. Widely used biomarkers for characterizing breast CSC include elevated aldehyde dehydrogenase (ALDH) activity (Ginestier et al., 2007), CD133+ (Wright et al., 2008), and CD44+/CD24− (Al-Hajj et al., 2003). Breast CSC can also be propagated in vitro as mammospheres, which are spherical clusters of cells in non-adherent culture conditions (Ponti et al., 2005). Using the ALDEFLUOR assay followed by flow cytometry, we observed that ALDH activity was enhanced greater than 3-fold in FOXC1-overexpressing cells (Figure 1C). Conversely, when we knocked down FOXC1 using shRNAs in BT549 cells (Figure S1A), which express high levels of endogenous FOXC1, ALDH activity was dramatically reduced (Figure 1D). To further validate the effect of FOXC1 on ALDH activity in BLBC cells, we also overexpressed FOXC1 in SUM159 and MDA-MB-468 cells (Figure S1A). As expected, ALDH activity was significantly increased by FOXC1 in these two cell lines (Figure S1B).
agreement, knockdown of endogenous FOXC1 in SUM149 cells markedly inhibited ALDH activity (Figures S1A and S1B). The mammosphere formation ability of MDA-MB-231 cells was substantially increased by FOXC1 overexpression (Figure 1E). Similar results were found in FOXC1-overexpressing SUM159 cells (Figure S1C). Of note, mammosphere growth was abolished by FOXC1 knockdown in BT549 cells (Figure 1F). Likewise, mammosphere formation in FOXC1-knockdown SUM149 cells was also repressed (Figure S1C).

We also examined the effect of FOXC1 expression on the CD133+ population. As shown in Figure S1D, overexpression of FOXC1 increased the CD133+ population in both MDA-MB-231 and SUM159 cells, whereas knockdown of FOXC1 reduced the CD133+ population in both BT549 and SUM149 cells. We further explored the regulation of the CD44+CD24− breast CSC marker. Although no changes were observed in FOXC1-overexpressing MDA-MB-468 or FOXC1-knockdown BT549 cells, the CD44+CD24− population was indeed increased by FOXC1 overexpression in SUM159 cells (Figure S1E). Conversely, knockdown of FOXC1 reduced the population in SUM149 cells (Figure S1E). Of note, parental BT549 and MDA-MB-231 cells showed high CD44+CD24− populations (Figure S1E), as described previously (Ricardo et al., 2011), suggesting that these subpopulations may not represent CSCs in the two cell lines. Taken together, these results demonstrate that FOXC1 positively regulates CSC properties of BLBC cells in vivo and in vitro.

It has been reported that transformation from a luminal primary to a basal-like recurrence is more likely than the opposite phenomena (Castaneda et al., 2012). Recent studies showed that FOXC1 is associated with mesenchymal circulating tumor cells from both ER+ and ER− breast cancer and may induce EMT in ER+ breast cancer cells (Yu et al., 2013). Thus, we explored the effect of FOXC1 on CSC properties in two ER+ cell lines, MCF7 and T47D, which harbor undetectable FOXC1 levels (Figure S1A). Likewise, FOXC1 overexpression in these cells increased ALDH activity (Figure S1B), mammosphere formation (Figure S1C), and the CD44+CD24− population (Figure S1E), but not the CD133+ cell percentage (Figure S1D). Together, these results further substantiate a role of FOXC1 in CSCs.

FOXC1 Activates SMO-Independent Hedgehog Signaling in BLBC Cells

Studies have shown that CSCs share many features with normal stem cells, including self-renewal and differentiation as well as the signaling mechanisms governing the stemness property (Magee et al., 2012). Three well-known classical signaling pathways involved in the normal stem cell function are the Wnt, Hh, and Notch pathways, which are also implicated in breast cancer development and CSC maintenance (Lobo et al., 2007). Hence, we first examined whether FOXC1 can activate these pathways. To do this, we performed pathway-specific binding site luciferase reporter assays, which measure the extent of activation of these three pathways. As shown in Figure 2A, FOXC1 potently induced Hh-responsive luciferase (8 x 3 Gli-binding site [BS]-luciferase) activity in different BLBC cell lines. Similar results were observed in MCF7 and T47D cells (Figure S2A). In contrast, FOXC1 did not significantly induce Wnt or Notch pathway-specific luciferase activity (Figures S2B and S2C).

To confirm the activation of Hh signaling by FOXC1, we examined the expression of genes known to be induced by the activation of the Hh signaling. Using real-time PCR assays, we found that the mRNA levels of human hedgehog interacting protein (Hhip) and Patched1 (Ptc1) were significantly upregulated by FOXC1 in different BLBC cell lines (Figure 2B). In support of these observations, higher levels of endogenous FOXC1 were found to be associated with more robust Gli-BS luciferase activity in multiple breast cancer cell lines, which were transfected with the same amount of the 8 x 3 Gli-BS-luciferase construct (Figure 2C). Taken together, these results demonstrate that FOXC1 activates the Hh signaling pathway in BLBC cells.

In canonical mammalian Hh signaling, SMO is the central signal transducer (Robbins et al., 2012). Surprisingly, SMO mRNA and protein were not detected in MDA-MB-231 or HCC1500 cells, even though FOXC1 activates Hh signaling in these two cell lines (Figure 2D). On the other hand, although SUM159 and SUM1315 cells express readily detectable SMO (Figure 2D), FOXC1-induced Gli-BS-luciferase activity was not affected by small interfering RNA (siRNA)-mediated SMO knockdown (Figures 2E and 2F). Similar results were found in luminal MCF7 and T47D cells (Figures S2D and S2E). To substantiate these results, we examined the effects of the two SMO inhibitors GDC-0449 (Vismodegib) and LDE225 (Sonidegib) on FOXC1-induced Hh signaling. As expected, neither of them reduced FOXC1-induced Gli-BS-luciferase activity in SMO-positive (SUM159 and T47D) or SMO-negative (MDA-MB-231 and MCF7) breast cancer cells (Figures 2G, 2H, S2F, and S2G). On the contrary, when the cells were treated with another Hh pathway inhibitor, GANT61, which directly targets the DNA-binding ability of Gli proteins (Lauth et al., 2007), FOXC1-induced Gli-BS-luciferase activity was considerably attenuated (Figures 2I and S2H). To further verify that FOXC1 activates SMO-independent Hh signaling, we treated SHH-Light2, a clonal NIH 3T3 cell line stably transfected with 8 x 3 Gli-BS-luciferase construct (Taipale et al., 2000), with Hh signaling agonist amnion-terminal domain of SHH (SHH-N). FOXC1 significantly induced luciferase activity when SMO was inhibited by GDC-0449 (Figure 2J) or LDE225 (Figure 2K). These results demonstrate that FOXC1-induced activation of Hh signaling in BLBC cells is SMO independent.

Gli2 Mediates FOXC1-Induced CSC Properties

The ultimate effectors in the mammalian Hh signaling are the three transcription factors Gli1, Gli2, and Gli3. They bind directly to gene promoters through zinc-finger motifs and regulate the expression of target genes involved in diverse cell functions (Hui and Angers, 2011). To determine their individual role in the FOXC1-induced activation of Hh signaling, we knocked down the expression of Gli1, Gli2, or Gli3 in MDA-MB-231 cells using siRNAs (Figure S3A). Interestingly, only Gli2, but not Gli1 or Gli3 knockdown, decreased FOXC1-induced Gli-BS-luciferase activity (Figure 3A; Figures S3B and S3C) as well as Hhip and Ptc1 mRNA expression levels (Figure 3B). To corroborate that Gli2 is responsible for the activation of Hh signaling by FOXC1, we treated cells with arsenic trioxide (ATO), which inhibits Hh signaling by preventing Gli2 ciliary accumulation and promoting its degradation (Kim et al., 2010). As illustrated in Figures S3D
Figure 2. FOXC1 Activates SMO-Independent Hh Signaling in BLBC Cells

(A) Cells were transfected with vector or FOXC1 plasmids and wild-type or mutant 8×3’Gli-BS-luciferase plasmids. Luciferase assay was performed. The bar graph indicates mean ± SD. ***p < 0.001.

(legend continued on next page)
and S3E, ATO inhibited FOXC1-induced Gli-BS-luciferase activity and Hhip and Ptc1 mRNA expression. These results implicate Gli2 as a mediator of FOXC1-induced activation of Hh signaling.

We proceeded to determine whether the induction of CSC properties by FOXC1 in BLBC cells is mediated by Gli2. For this purpose, we repressed Gli2 expression using shRNAs in FOXC1-overexpressing MDA-MB-231 cells (Figure S3F). The ALDEFLUOR assay showed that elevated ALDH activity and mammosphere formation capacity in FOXC1-overexpressing cells were markedly suppressed by Gli2 knockdown (Figures 3C and 3E). Likewise, when Gli2 was knocked down in BT549 cells (Figure S3G), ALDH activity and mammosphere growth were markedly reduced (Figures 3D and 3F), which resembles the effects of FOXC1 knockdown on ALDH activity and mammosphere growth in BT549 cells (Figures 1D and 1F). We next re-expressed mouse Gli2, whose expression was not affected by human Gli2 shRNA, in the Gli2-knockdown FOXC1-overexpressing MDA-MB-231 cells. As shown in Figures S3H and S3I, the Gli2-knockdown-induced decrease of ALDH activity and mammosphere growth was partially rescued by mouse Gli2 overexpression. Next, we injected different numbers of control or Gli2-knockdown FOXC1-overexpressing MDA-MB-231 cells into the mammary fat pads of BALB/c nude mice. The results showed that Gli2 knockdown attenuated FOXC1-induced tumorigenicity (Figure 3G). Taken together, these results suggest that Gli2 is a critical mediator of the effects of FOXC1 on tumorigenesis and CSC properties of breast cancer cells.

FOXC1 Interacts with Gli2 in BLBC Cells

Next, we investigated how FOXC1 engages Gli2 in its regulation of breast CSC properties. Because activation of SMO-independent Hh signaling can be induced by upregulation of Gli expression (Lauth and Toftgård, 2007), we first tested whether FOXC1 regulates Gli2 expression in breast cancer cells. Real-time PCR and western blotting analysis showed that FOXC1 did not affect Gli2 mRNA or protein levels in MDA-MB-231 cells (Figures S4A and S4B). Furthermore, western blotting of cytoplasmic and nuclear lysates and immunofluorescence staining indicated that FOXC1 did not alter the intracellular distribution of the Gli2 protein, which was mainly localized in the nucleus in both control and FOXC1-overexpressing MDA-MB-231 cells (Figures S4C and S4D).

Given that both FOXC1 and Gli2 are transcription factors, we assessed whether these two proteins can interact with each other. To address this question, we transfected both FOXC1 and Gli2 constructs into HEK293T cells and performed immunoprecipitation (IP) assays. As shown in Figure 4A, overexpressed FOXC1 and Gli2 were co-immunoprecipitated from HEK293T cells with anti-FOXC1 or anti-Gli2 antibodies. Similar results were found in FOXC1-overexpressing MDA-MB-231 cells with relatively high levels of endogenous Gli2 (Figure 4B). In addition, coimmunoprecipitation (coIP) of the two proteins was also detected in BT549 cells, which possess high levels of both endogenous FOXC1 and Gli2 (Figure 4C). Consistent with our results, coIP of FOXC1 and Gli2 has been recently reported in a study of endochondral ossification (Yoshida et al., 2015).

To test whether the binding between these two proteins is direct, which no other factors are involved, we expressed His-tagged-FOXC1 and glutathione S-transferase (GST) tagged-Gli2 in E. coli BL21 (DE3) and performed GST and His pull-down assays. As presented in Figure 4D (left), the GST-Gli2 bait interacted directly with His-FOXC1. Reciprocally, the His-FOXC1 bait captured GST-Gli2 (Figure 4D, right). To confirm the direct interaction of these two proteins, we performed the fluorescence resonance energy transfer (FRET) assay, which is commonly used to assess the proximity of two proteins. As demonstrated in Figure 4E, a significant increase in donor fluorescence was found after bleaching acceptor fluorescence, suggesting that FRET occurred between FOXC1 and Gli2. We measured FRET efficiency for each individual cell. The measured FRET efficiency was 50% ± 3% (n = 15) (Table S1), indicating consistently high proximity of the proteins in the cells. In agreement with the above results, colocalization was observed in the nucleus of HEK293T cells transfected with FOXC1 and Gli2 (Figure S4E). These data suggest that FOXC1 and Gli2 bind directly to each other in BLBC cells.

Next, we aimed to identify the FOXC1 domain that participates in this interaction. With this in view, we constructed His-tagged expression vectors for truncated FOXC1 mutants comprising the N-terminal, DNA-binding, transcription-inhibitory, and C-terminal domains (Berry et al., 2002) (Figure 4F, left). These constructs and GST-Gli2 were expressed in E. coli BL21 (DE3), and proteins were purified, followed by coIP assays. Western blotting results showed that only the FOXC1 mutants containing the N-terminal domain (aa 1–68), but not other mutants, bind directly to the Gli2 protein (Figure 4F, right). We also constructed mammalian expression vectors for Myc-tagged truncated FOXC1 mutants and ectopically expressed them in MDA-MB-231 cells (Figure S4F). Likewise, the FOXC1 fragment of aa 1–178, which contains the N-terminal domain (aa 1–68), was
found to interact with endogenous Gli2 (Figure S4G). Of note, the expression of the N-terminal domain (aa 1–68) was not detectable in MDA-MB-231 cells. Alternatively, this fragment was fused with GFP and successfully overexpressed in MDA-MB-231 cells (Figure S4H). As expected, the FOXC1 protein fragment was co-immunoprecipitated with Gli2 (Figure S4H). In line with these results, luciferase assays revealed that the FOXC1 mutants comprising aa 1–68 induced Gli-BS-luciferase activity similar to the full-length FOXC1 (Figure S4I). Taken together, these data demonstrate that FOXC1 directly interacts with Gli2 via its N-terminal domain (aa 1–68).

We then proceeded to identify the Gli2 domain involved in the binding to FOXC1. The Gli2 protein consists of an N-terminal domain, a zinc finger DNA-binding domain, and a C-terminal domain (Figure 4G, left) (Li et al., 2014). We constructed mammalian expression vectors for Myc-tagged truncated Gli2 mutants. These constructs were transfected into HEK293T cells together with FOXC1, followed by coIP assays. Western blotting results indicated that only the Gli2 constructs containing aa 898–1168, but not other constructs, bound to FOXC1 (Figure 4G, right). Using site-directed mutagenesis, we also generated a mutant mouse Gli2 that lacks aa 891–1154, corresponding to human Gli2 aa 898–1168. As expected, this Gli2 deletion mutant could not rescue the Gli2-knockdown-elicited phenotypes of ALDH activity and mammosphere formation (Figures S3H and S3I). These results suggest that the aa 898–1168 region in Gli2 mediates its binding to FOXC1.

Gli1 and Gli2 are the two major mediators for Hh-induced gene transcription. We have shown that Gli1 is not involved in the effect of FOXC1 on transcriptional activity of Gli proteins (see Figure 3A), suggesting that FOXC1 may not interact with Gli1. To corroborate this, we transfected HEK293T cell with both FOXC1 and Gli1 and then performed coIP assay. As shown in
Figure S4J, no interaction was detected between the two proteins. We also compared the sequence of Gli2 (aa 898–1168) with the corresponding region of Gli1 and found no significant homology between the two regions (**Figure S4K**).

Structural Model of FOXC1-Gli2 Interaction

We then used the above interaction information to construct an atomistic model of the interaction interface in the proposed FOXC1-Gli2 complex (see Supplemental Experimental Procedures for details). The top four interaction poses by energy of FOXC1–684 with Gli2898–1168 are shown in **Figure S5A** (referred to as 4_10, 4_64, 4_68, 4_77). **Table S2** lists all the favorable interactions seen in these four interaction models. Models 4_64, 4_68, and 4_77 are similar to each other and different from model 4_10. Model 4_77 was chosen for mutagenesis experiments because, of the four best models chosen by energy, it had the most interactions (**Table S2**). The residues chosen for mutation are shown in **Figure S5B** by gray boxes. To validate the computational structural model of the interaction, we constructed the mutant shown in **Figure S5B** based on model 4_77 and performed coIP assays. As predicted, no interaction was observed between FOXC1 and mutant Gli2 (aa 898–1168) when FOXC1 and Myc tag antibodies were used to immunoprecipitate the FOXC1 protein and the Gli2 fragment, respectively (**Figure S5E**), indicating the critical role of the mutated residues in the FOXC1-Gli2 interaction. These residues provide structural hints and complex 4_77 provides an informative structural model for the direct interaction observed in this study between FOXC1 and Gli2.

Furthermore, structural modeling showed that the binding of FOXC1 to Gli2 can allosterically change (open) the DNA binding domain of Gli2 (**Figure S5F**), providing a structural hypothesis for how FOXC1 binding to Gli2 can potentially promote the DNA binding capacity of Gli2.

FOXC1 Promotes the DNA-Binding Ability of Gli2 in BLBC Cells

Next, we examined whether FOXC1 enhances the DNA-binding ability of Gli2. It was noted that there is a consensus Gli2-binding
or mutant Gli2-binding site in the FAM38B promoter were used as the probes. As shown in Figure 5B, FOXC1 overexpression led to an upward mobility shift of oligos in gels, reflecting increased binding of Gli2 to the biotin-labeled oligos. FOXC1-induced augmentation of Gli2 DNA-binding capacity was further substantiated by the biotinylated oligonucleotide precipitation assay. Using the biotin-labeled oligonucleotides comprising the Gli2 binding site from the FAM38B promoter, Gli2 was found to be pulled down with FOXC1 in FOXC1-overexpressing MDA-MB-231 cells (Figure 5C, left). Similar result was found when MDA-MB-231 cells were transfected with the FOXC1 fragment (aa 1–178), which comprises the Gli2-binding (aa 1–68) and DNA-binding (forkhead) domains (Figure 5C, right). However, overexpression of the FOXC1 fragment of aa 367–553, which is not involved in the binding of FOXC1 to Gli2, did not induce the binding of Gli2 to the biotin oligos (Figure 5C, right). These data indicate that FOXC1 promotes the DNA-binding capacity of Gli2 in breast cancer cells.

Expression of FOXC1 Correlates with the Activation of the Hedgehog Signaling in Clinical Samples

To assess the clinical significance of FOXC1-induced activation of the Hh signaling, we evaluated the expression levels of FOXC1 and Gli2 using immunohistochemistry (IHC) in human breast cancers. Because FOXC1 is specifically expressed in BLBC or triple-negative breast cancer (TNBC), and the majority of TNBCs display a basal-like phenotype (Han et al., 2013), we performed IHC staining on TNBC tissue microarrays. FOXC1 and Gli2 were readily detectable in 54.2% and 81.3% of cases, respectively, and a strong correlation between the expressions of the two proteins was found (Figures 6A and 6B). We also evaluated the expression of Ptch1 and Hhip proteins. Significant correlations were also observed between FOXC1 and Ptch1 as well as between FOXC1 and Hhip (Figures 6A, 6C, and 6D). Analysis of The Cancer Genome Atlas (TCGA) database and Curtis data set (Curtis et al., 2012) showed that the mRNA levels of FOXC1 strongly correlate with those of Gli2 and Ptch1 in breast cancer samples (Figures 6E and S6A). Even though the correlation between FOXC1 and Hhip was not statistically significant in TCGA samples, a significant association between them was observed in a Singapore cohort data set (Figure S6C). We also performed multiple regression analysis, which incorporated 13 Hh pathway-associated genes (see Statistics in Supplemental Experimental Procedures) in the three cohort data sets. A strong correlation between FOXC1 levels and Hh pathway activation was found in all three data sets (Figures 6F, S6B, and S6D). We further tested whether the Hh gene signature correlates with breast cancer prognosis. Using K-means clustering, two groups of patients with either positively (n = 378) or negatively (n = 1,608) enriched Hh pathway-associated genes were found in the Curtis data set. As illustrated in Figure 6G, the former group was associated with elevated FOXC1 expression levels (47.03 ± 2.98 versus 8.54 ± 0.36, p < 0.0001) and decreased disease-specific survival that was statistically significant compared to the latter group (hazard ratio [HR] = 1.973, 95% confidence interval [CI] = 1.802–2.961, p < 0.0001). Taken together, these data suggest a positive correlation between FOXC1 and the activation of Hh signaling in clinical samples.

Figure 5. FOXC1 Promotes Gli2 DNA-Binding Capacity
(A) ChIP assay for the binding of Gli2 to the FAM38B gene promoter in control, FOXC1-overexpressing, and Gli2-knockdown FOXC1-overexpressing MDA-MB-231 cells. DNA protein complexes immunoprecipitated by Gli2 antibody and immunoglobulin G (IgG) were analyzed by RT-PCR and real-time PCR. The bar graph indicates mean ± SD (n = 3). **p < 0.01; ***p < 0.001.
(B) EMSA assay for the binding of Gli2 to the FAM38B gene promoter in control and FOXC1-overexpressing MDA-MB-231 cells. The biotin-labeled Gli-binding DNA or mutant Gli-binding DNA was used. Epstein-Barr virus nuclear antigen (EBNA) binding sequence was used as a positive control.
(C) Biotinylated oligonucleotide precipitation assay for the binding of Gli2 to the FAM38B gene promoter in control and FOXC1-overexpressing MDA-MB-231 cells (left) and in MDA-MB-231 cells transfected with FOXC1 truncates (right). The biotin-labeled Gli-binding DNA was used.
FOXC1 Reduces Sensitivity to Anti-SMO Drugs in BLBC Cells

Since the Hh signaling is critically involved in tumorigenesis and CSC function, many efforts have gone into developing anti-Hh inhibitors for anti-cancer therapy. GDC-0449, a SMO-targeting inhibitor, has been approved by FDA for the treatment of basal cell carcinoma. Hh inhibition is also in clinical trials for triple-negative breast cancers (https://clinicaltrials.gov/, NCT01757327). Because FOXC1 activates Hh signaling via a SMO-independent manner, we reasoned that elevated expression of FOXC1 may render cancer cells refractory to SMO-targeting inhibitors. To address this question, we analyzed the effects of GDC-0449 on cell viability in control and FOXC1-overexpressing BLBC cells. Cell viability assays showed that elevated expression of FOXC1 reduced the sensitivity to GDC-0449 in different SMO-positive BLBC cell lines (Figures 7A–7D). In agreement with this result, the mRNA expression levels of Ptc1 and Hhip were inhibited by GDC-0449 in these cells, and this GDC-0449 effect was attenuated by FOXC1 overexpression (Figure S7A). We also generated GDC-0449-resistant BLBC sublines by long-term culture of parental cells in the presence of increasing concentrations of GDC-0449. As illustrated in Figure 7E, the derived GDC-0449-resistant cells possessed higher expression levels of FOXC1. Interestingly, when FOXC1 was repressed by siRNAs in these cells, the acquired GDC-0449 resistance was attenuated (Figures S7B–S7E). We then tested the effect of FOXC1 on GDC-0449-induced tumor growth inhibition in vivo by orthotopic injection of control and FOXC1-overexpressing MDA-MB-468 cells into the mouse mammary glands. As shown in Figure 7F, GDC-0449 impeded the growth of control group tumors, whereas overexpression of FOXC1 abolished this inhibitory effect. Taken together, these results indicate that the expression of FOXC1 renders cancer cells refractory to SMO-targeting drugs, which has clinical implications for ongoing investigations of anti-Hh inhibitors in breast cancer therapy.

DISCUSSION

BLBC has been shown to possess intrinsic CSC properties (Ben-Porath et al., 2008; Honeth et al., 2008), which may explain in part the aggressive clinical behavior of this breast cancer subtype. The findings reported in this study provide a mechanism underlying the aggressiveness and poor prognosis of BLBC and establish FOXC1 as a promising therapeutic target for BLBC treatment. Interestingly, FOXC2, another member of the FOX family, has also been shown to regulate CSCs in...
breast cancer (Holler et al., 2013), emphasizing the involvement of FOXC members in the regulation of breast CSCs.

One novel aspect of our study is the finding that FOXC1 activates SMO-independent Hh signaling through direct interaction with Gli2, mediating the effect of FOXC1 on CSC properties in BLBC cells. A more in-depth mechanism of how FOXC1 binding elicits enhanced Gli2 DNA-binding ability remains to be determined. Previous studies have reported that Hh signaling is associated with BLBC (O'Toole et al., 2011) and breast cancer progression (Kubo et al., 2004). It is also essential for maintenance of CSCs (Coni et al., 2013) and is hyperactive in breast CSCs with the CD44+/CD24– phenotype (Liu et al., 2006). On the basis of these studies, we propose a model of the FOXC1-Gli2 signaling axis as a key regulator for breast CSCs (Figure 7G).

Much effort has been directed toward the development of anti-Hh drugs for cancer therapy. One of the most widely used drugs for targeting the Hh pathway is GDC-0449, the first drug approved by the FDA to treat basal cell carcinoma (BCC). Several other small-molecule inhibitors such as LDE225 and IPI-926 (Saridegib) are also being evaluated in clinical trials (Low and de Sauvage, 2010). It merits mentioning that all of these drugs target SMO and, to date, appear to be largely ineffective in solid tumors other than BCC (Kaye et al., 2012). Our study demonstrates that FOXC1 activates Hh signaling independently of SMO and thereby induces resistance to SMO inhibitors in BLBC cells. As such, agents that target the Hh pathway downstream of SMO by directly blocking Gli function may be effective to reverse the SMO inhibitor resistance driven by SMO-independent Gli activation. Indeed, Gli-inhibiting compounds itraconazole and arsenic trioxide retain Hh-inhibitory activity in anti-SMO-resistant tumors (Kim et al., 2013), consistent with our finding that GANT61 and ATO inhibit FOXC1-elicited Hh signaling activation. Moreover, our findings that FOXC1 is upregulated in SMO inhibitor-resistant BLBC...
cell models and involved in clinical drug resistance further implicate FOXC1 in SMO inhibitor treatment failure.

It is noted that LDE225 is already undergoing clinical trials for ER+ and HER2+ breast cancers (https://clinicaltrials.gov/, NCT01757327). However, current findings allow for reasonable speculation that LDE225 and other similar drugs may not be effective against cancers expressing high levels of FOXC1. Because FOXC1 is also overexpressed in other cancers, it may serve as a marker for selecting patients who do not benefit from anti-SMO therapies, and as a target for overcoming anti-Hh drug resistance.

In summary, we have uncovered a FOXC1-mediated, SMO-independent Hh signaling mechanism that regulates CSC properties and anti-Hh/SMO drug resistance. These data further support a critical role of FOXC1 in BLBC and warrant continued investigation of FOXC1 as a new avenue for BLBC treatment.

EXPERIMENTAL PROCEDURES

Cell Culture
Human breast cancer cell lines and HEK293T cells were acquired from American Type Culture Collection (ATCC) and maintained according to ATCC instructions.

Flow Cytometry
Approximately 2 × 10⁶ cells were suspended in fluorescence-activated cell sorting (FACS) buffer (1 x PBS, 1% BSA) and incubated with antibodies at 4°C for 30 min. Detection of ALDH activity was performed using the ALDEFLUOR Assay Kit (STEMCELL Technologies) according to the manufacturer’s instructions. Please see the Supplemental Experimental Procedures for detailed information.

Chromatin Immunoprecipitation
Approximately 5 × 10⁶ cells were collected, and ChIP assays were performed using the EZ-ChIP Chromatin Immunoprecipitation Kit (EMD Millipore) according to the manufacturer’s instructions. Gli2 antibody (sc-28674, Santa Cruz Biotechnology)–immunoprecipitated DNA was analyzed by RT-PCR and real-time PCR. The primers were FAM38B-forward: 5′- TACA TACGTTGGAAGTCTCAG-3′ and FAM38B-reverse: 5′-CAAGATTCCCAAG CAGGTTG-3′.

Immunofluorescence and Fluorescence Resonance Energy Transfer
Cells were placed into chamber slides (Thermo Scientific) at 70%–80% confluence. Cells were fixed, permeabilized and incubated with primary and secondary antibodies. Images were acquired with Leica SP5 X confocal microscope (Leica Microsystems). Please see the Supplemental Experimental Procedures for detailed information.

Biotinylated Oligonucleotide Precipitation Assay
The 5′-biotinylated oligonucleotides were synthesized from Invitrogen. Complementary oligonucleotides were annealed. Nuclear proteins were extracted using NE-PER Nuclear and Cytoplasmic Extraction Reagents (Thermo Scientific). Biotinylated double-stranded oligonucleotides were incubated with nuclear proteins. DNA-bound proteins were precipitated using Streptavidin Agarose Beads (Thermo Scientific). Please see the Supplemental Experimental Procedures for detailed information.

ACCESSION NUMBERS
The accession number for the microarray data reported in this paper is GEO: GSE73294.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, seven figures, and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.09.063.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS
We thank Sandra Orsulic for providing the pEGFP-C3 plasmid, Wolf Wiedemeyer for providing the pBABE-puro plasmid, Hiroshi Sasaki for providing wild-type and mutant 8 x 3′ Gli-BF2-luciferase constructs (Kumamoto University), and Xianghong Zhou and Shuli Kang for bioinformatics support. This work was supported by the NIH (CA151610), the Avon Foundation (02-2014-063), David Salomon Translational Breast Cancer Research Fund, the Fashion Footwear Charitable Foundation of New York, Inc., and the Margie and Robert E. Petersen Foundation. X.C. and P.R. are named inventors on patent applications regarding the role of FOXC1 in cancer. P. Ray has stock ownership in Onconostics Technologies, Inc.

Received: April 6, 2015
Revised: August 18, 2015
Accepted: September 22, 2015
Published: October 22, 2015

REFERENCES

