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Abstract

Given two sequencesM1 andM2 of positive numbers, we give necessary and sufficient condit
under which the inclusions

Λ{M1} ⊂ {(
f (j)(0)

)
j∈N0

: f ∈ D{M2}
([−1,1])},

Λ(M1) ⊂ {(
f (j)(0)

)
j∈N0

: f ∈ D(M2)

([−1,1])}
hold, by means of explicit constructions. This answers a question raised by Chaumat and
(Math. Ann. 298 (1994) 7–40). We also consider the case when[−1,1] is replaced by[−1,1]m as
well as the possibility to get ultraholomorphic extensions.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The sequencesM1 andM2 and the numbersλp,s for p, s ∈ N. Throughout this pape
m1 = (m1,p)p∈N0 andm2 = (m2,p)p∈N0 designate sequences of real numbers submitte
the following requirements:
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(a) m1,0 = m2,0 = 1;
(b) m1,p � m1,p+1 andm2,p � m2,p+1 for everyp ∈ N0;
(c) m1,p � m2,p for everyp ∈ N0;
(d) limp→∞ p/ p

√
m1,0 . . .m1,p = 0;

(e)
∑∞

p=0 1/m2,p < ∞.

As usual we then setM1,p = m1,0 . . .m1,p andM2,p = m2,0 . . .m2,p for everyp ∈ N0
and get the sequencesM1 = (M1,p)p∈N0 andM2 = (M2,p)p∈N0.

Definition. For everyp, s ∈ N, we set

λp,s := sup
0�j<p

(
M1,p

spM2,j

) 1
p−j

and say thatthe condition(∗) holds fors ∈ N if

sup
p∈N

λp,s

p

∞∑
k=p

1

m2,k

< ∞.

Now we set up notations used throughout the case of the interval[−1,1]. In the fifth
paragraph, we adapt them and treat the[−1,1]m setting. In the last one we indicate how
get ultraholomorphic extensions of the jets.

The spacesΛ{M1},r andΛ{M1}. Givenr > 0, Λ{M1},r is the following Banach space: i
elements are the sequencesa = (ap)p∈N0 of C such that

|a|r := sup
p∈N0

|ap|
rpM1,p

< ∞

and it is endowed with the norm| · |r . We then introduce the Hausdorff (LB)-spaceΛ{M1}
as the inductive limit of these Banach spaces.

The spacesD{M2},r ([−1,1]) andD{M2}([−1,1]). Given r > 0, D{M2},r ([−1,1]) is the
following Banach space: its elements are the complex-valuedE∞-functionsf on R with
support contained in[−1,1] and such that

|f |r := sup
p∈N0

sup
x∈R

|f (p)(x)|
rpM2,p

< ∞

and it is endowed with the norm| · |r . We then introduce the Hausdorff (LB)-spa
D{M2}([−1,1]) as the inductive limit of these Banach spaces.

The spaceΛ(M1). The Fréchet spaceΛ(M1) is the vector space of the sequencesa =
(ap)p∈N0 of complex numbers such that

‖a‖r := sup
p∈N0

rp|ap|
M1,p

< ∞, ∀r ∈ N,

endowed with the systems of norms{‖ · ‖r : r ∈ N}.
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The spaceD(M2)([−1,1]). The Fréchet spaceD(M2)([−1,1]) is the vector space of th
complex-valuedE∞-functionsf on R with support contained in[−1,1] and such that

‖f ‖r := sup
p∈N0

sup
x∈R

rp|f (p)(x)|
M2,p

< ∞, ∀r ∈ N,

endowed with the systems of norms{‖ · ‖r : r ∈ N}.

Main result. The main aim of this paper is to prove the following result, an immed
consequence of Theorems 3.2, 3.5, 4.2 and 4.4.

Theorem 1.1. The following assertions are equivalent:

(a) the condition(∗) holds for somes ∈ N;
(b) Λ{M1} ⊂ {(f (j)(0))j∈N0: f ∈D{M2}([−1,1])};
(c) Λ(M1) ⊂ {(f (j)(0))j∈N0: f ∈ D(M2)([−1,1])}.

Motivation. Our interest in this subject comes in particular from the study of [1,2,
In [5], the caseM1 = M2 is thoroughly investigated. The slightly more general case w
the sequencesM1 andM2 are replaced by weights is considered in [1] (cf. Theorems
and 3.7). Théorème 30 of [2] provides in particular the equivalence of the assertions (
(c) here above under stronger conditions on the sequencesM1 andM2. Commentaires 32
of [2] give a detailed discussion of the literature and ask for explicit constructions as
as for smoother conditions.

In [4], one finds results similar to ours. The method, based on the use of the F
transform, is completely different and permits to consider the Whitney case (i.e., to
sider jets on a closed subset ofRn and not only sequences at the origin). However,
conditions imposed on the sequences are stronger—M1 andM2 must satisfy the following
condition: there isC > 0 such thatp! � CpMp andMp+1 � CpMp for everyp ∈ N. The

first part of this condition is equivalent to the boundedness of the sequence(p/M
1/p
p )p∈N;

the second part (known as stability under differential operators) is not required in our deve
opment. It is easy to describe sequencesM1 andM2 verifying the conditions (a)–(e) an
not the condition of stability under differentialoperators: one has just to consider the
quencesM1 andM2 defined bym1,0 = m2,0 = 1 andm1,p = m2,p = pp for everyp ∈ N.
So our results extend those of [5] contrary to[4]. Finally let us mention that Langenbruc
has proved that the condition 2.14 of [4] implies the condition(∗) (private communication)

It is a pleasure to thank M. Langenbruch for very fruitful discussions.

2. Some information about the sequences m and M

Let us gather properties and remarks about sequencesm andM .
(a)The inequalityλp,s � m1,p � m2,p holds for everyp, s ∈ N since

(s−pM1,p/M2,j )
1

p−j � (M1,p/M1,j )
1

p−j = (m1,j+1 . . .m1,p)
1

p−j � m1,p
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hold for everyp, s ∈ N andj ∈ {0, . . . , p − 1}. Thereforethe condition(∗∗)

sup
p∈N

m1,p

p

∞∑
k=p

1

m2,k

< ∞

(to be compared with the condition(γ1) of [5]) implies that the condition(∗) holds for
everys ∈ N.

(b) Letm = (mp)p∈N0 be an increasing sequence of real numbers such thatm0 = 1 and
consider the sequenceM = (Mp)p∈N0.

(b.1) If we have
∑∞

p=0 1/mp < ∞, it is well known thatp/mp → 0, hencep/M
1/p
p

→ 0. In this case we may setm1,p = m2,p := mp for every p ∈ N0 and consider the
sequencesM1 = M2 := M .

(b.2) The following two conditions are regularly considered:

(A) there isA > 1 such thatMp � ApMjMp−j for everyp ∈ N andj ∈ {0, . . . , p};
(B) there isB > 1 such thatmp � BM

1/p
p for everyp ∈ N.

Chollet and Thilliez have made us aware that in factthe condition(A) implies the con-
dition (B) with B = A2 since

m
p
p � mp+1 . . .m2p = M2p/Mp � A2pMp, ∀p ∈ N.

(c) If M1 verifies the condition(B), then the following conditions are equivalent:

(i) the condition(∗) holds for everys ∈ N;
(ii) the condition(∗) holds for somes ∈ N;
(iii) the condition(∗∗) holds.

(i) ⇒ (ii) is trivial; (iii) ⇒ (i) is known by (a) and (ii)⇒ (iii) holds since

m1,p � BM
1/p

1,p � Bs(s−pM1,p/M2,0)
1/p � Bsλp,s , ∀p, s ∈ N.

(d) LetM = (Mp)p∈N andM ′ = (M ′
p)p∈N be two sequences ofR.

(d.1) If the sequenceM hasmoderate growth(cf. [2, “suite à croissance modérée”
the sequence(p!Mp)p∈N0 verifies the conditions imposed on the sequenceM1 and may
be baptizedM1. Let us note that in this case the sequenceM1 verifies the condition (A).

(d.2) If the sequenceM ′ is non-quasi-analytic(in the sense of [2]), the sequen
(p!M ′

p)p∈N0 verifies the conditions (a), (b) and (e) imposed on the sequenceM2. If more-
over it isassociatedto M (cf. [2]), there isA1 � 1 such thatmp � A1m

′
p for everyp ∈ N

so, up to the factorA1, it verifies the condition (c) and may be baptizedM2.
(d.3) In the context of such sequencesM1 andM2 let us note that the condition(∗∗)

also reads

sup
p∈N

Mp

Mp−1

∞∑
k=p

M ′
k−1

kM ′
k

< ∞.

Therefore the main Theorem 1.1 leads to the following corollary to be compared wit
the results of [2].
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Corollary 2.1. If the sequenceM1 verifies the condition(B), then the following condition
are equivalent:

(a) the condition(∗∗) holds;
(b) Λ{M1} ⊂ {(f (j)(0))j∈N0: f ∈D{M2}([−1,1])};
(c) Λ(M1) ⊂ {(f (j)(0))j∈N0: f ∈ D(M2)([−1,1])}.

3. Extension theorems in RRR: Roumieu type case

The following result is an easy consequence of the property 1.3.5 of [3].

Theorem 3.1. If M = (Mp)p∈N0 is a sequence of positive numbers such thatM0 = 1 and
a := ∑∞

p=1 Mp−1/Mp < ∞, then there isf ∈D([−a, a]) such that0� f � 1, f (j)(0) =
δj,0 and |f (j)| � 2jMj for everyj ∈ N0.

Here we follow the ideas of Petzsche [5, Theorem 2.2].

Theorem 3.2. If the condition (∗) holds for somes ∈ N, then there isd ∈ N such
that, for everyr ∈ N, there is a continuous linear extension map fromΛ{M1},r into
D{M2},dr ([−1,1]), hence

Λ{M1} ⊂ {(
f (j)(0)

)
j∈N0

: f ∈D{M2}
([−1,1])}.

Proof. Let us fix h > 0. The main tool of this proof is to consider for everyp ∈ N0 the
sequence

m := 1, hλp,s, . . . , hλp,s︸ ︷︷ ︸
2p

,hm2,2p+1, hm2,2p+2, . . . .

The casep = 0 is particular. As we haveB := h
∑∞

k=1 1/hm2,k < ∞, Theorem 3.1

providesρh,0 ∈ D([−B/h,B/h]) such that 0� ρh,0 � 1, ρ(j)

h,0(0) = δj,0 for everyj ∈ N0

and|ρ(j)

h,0(x)| � 2jhjM2,j for everyj ∈ N andx ∈ R.
For p ∈ N, we proceed as follows. As the condition(∗) holds fors, there is a constan

A > 1 such that for everyp ∈ N, we have

2p

hλp,s

+
∞∑

k=2p+1

1

hm2,k

= 2p

hλp,s

(
1+ λp,s

2p

∞∑
k=2p+1

1

m2,k

)
� 2p

hλp,s

A.

So for everyp ∈ N, Theorem 3.1 provides an elementρh,p of the spaceD([−2Ap/(hλp,s),

2Ap/(hλp,s)]) verifying 0� ρh,p � 1, ρ(j)
h,p(0) = δj,0 for everyj ∈ N0 and

∣∣ρ(j)
h,p(x)

∣∣ �
{

2jhj λ
j
p,s if 1 � j � 2p,

2jhj λ
2p
p,s

M2,j if j > 2p.

M2,2p



J. Schmets, M. Valdivia / J. Math. Anal. Appl. 297 (2003) 384–403 389
Now for everyp ∈ N0, we introduceχh,p(x) := ρh,p(x)xp/p! ∈ E∞(R). We need to
evaluate the absolute value of the derivatives of these functions.

Forp = 0, as we haveχh,0 = ρh,0, this is already known.
Forp ∈ N, we are going to prove that we have∣∣χ(j)

h,p(x)
∣∣ � M2,j

M1,p

(
2Aes

h

)p

hj

(
2+ 1

2A

)j

(1)

for everyj ∈ N0 andx ∈ R. The Leibniz formula leads immediately to

∣∣χ(j)
h,p(x)

∣∣ �
(

2Ae

h

)p j∑
l=max{0,j−p}

(
j

l

)∣∣ρ(l)
h,p(x)

∣∣(2A

h

)l−j 1

λ
p+l−j
p,s

if we note that for suchp, j andl, we have 0� p+ l−j � p, hencepp+l−j /(p+ l−j)! �
pp/p! � ep . To go on further we consider two cases.

Case1: p ∈ N and 0� j � 2p. In this case we immediately obtain∣∣χ(j)

h,p(x)
∣∣ �

(
2Ae

h

)p

hj

(
2+ 1

2A

)j

λ
j−p
p,s ,

hence successively∣∣χ(j)

h,p(x)
∣∣ � M2,j

M1,p

(
2Aes

h

)p

hj

(
2+ 1

2A

)j

if 0 � j < p (2)

sinceλ
p−j
p,s � M1,p/(spM2,j ) for 0 � j < p;∣∣χ(p)
h,p(x)

∣∣ � M2,p

M1,p

(
2Ae

h

)p

hp

(
2+ 1

2A

)p

if j = p (3)

and ∣∣χ(j)

h,p(x)
∣∣ � M2,j

M1,p

(
2Ae

h

)p

hj

(
2+ 1

2A

)j

if p < j � 2p (4)

if we note that forp < j � 2p, the inequalityλp,s � m2,p leads to

λ
j−p
p,s � m

j−p

2,p � m2,p+1 . . .m2,j = M2,j /M2,p � M2,j /M1,p.

Case 2: p ∈ N and 2p < j . If necessary, we decompose the sum
∑j

l=j−p into∑2p

l=j−p +∑j

l=2p+1 and observe that, as in the casep < j � 2p, the first sum is

� M2,j

M1,p

(
2Ae

h

)p

hj

2p∑
l=j−p

(
j

l

)
2l (2A)l−j .

In all cases the sum
∑j

l=max{2p+1,j−p} is

�
(

2Ae

h

)p

hj

j∑ (
j

l

)
2l(2A)l−jλ

p+j−l
p,s

M2,l

M2,2p

l=max{2p+1,j−p}
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λ
p+j−l
p,s

M2,l

M2,2p

� m
p

2,pm
j−l

2,p m2,2p+1 . . .m2,l � m2,p+1 . . .m2,j � M2,j

M1,p

.

Putting these informations together, we end up with∣∣χ(j)

h,p(x)
∣∣ � M2,j

M1,p

(
2Ae

h

)p

hj

(
2+ 1

2A

)j

if 2p < j. (5)

The inequality (1) summarizes the inequalities (2)–(5).
By use of the valuej = 0 in the definition ofλp,s , we getM1/p

1,p � sλp,s for everyp ∈ N,
hence limp→∞ p/λp,s = 0 by means of the condition (d) imposed on the sequencem1.
Therefore there isl ∈ N such thatB/l < 1/2, 2Aes/l < 1/2 and 2Ap/(lλp,s) < 1 for
everyp ∈ N. So if we fixh � l, we finally arrive with

(a) the support ofρh,p is contained in[−1,1] for everyp ∈ N0;

(b)
∣∣χ(j)

h,p(x)
∣∣ � M2,j

M1,p

(
2Aes

h

)p

hj

(
2+ 1

2A

)j

for everyp, j ∈ N0 andx ∈ R;
(c) χ

(j)

h,p(0) = δp,j for everyp, j ∈ N0.

To conclude let us prove that any integerd > l(2+ 1/(2A)) fits our statement. Letr be
any positive integer. For everya ∈ Λ{M1},r , we get

∣∣apχ
(j)
rl,p(x)

∣∣ � |a|r rpM1,p

M2,j

M1,p

2−p

rp
(rl)j

(
2+ 1

2A

)j

� 2−p|a|r (dr)jM2,j

for everyp, j ∈ N0 andx ∈ R, hence

∞∑
p=0

∣∣apχ
(j)

rl,p(x)
∣∣ � 2|a|r (dr)jM2,j .

Therefore the mapTr :Λ{M1},r → D{M2},dr ([−1,1]) defined bya �→ ∑∞
p=0 apχrl,p suits

our purpose. �
Proposition 3.3. The inclusion

Λ{M1} ⊂ {(
f (j)(0)

)
j∈N0

: f ∈D{M2}
([−1,1])}

implies that, for everym ∈ N, there is a continuous linear extension map fromΛ{M1},m
into someD{M2},r ([−1,1]).

Proof. For everyj ∈ N0, f �→ f (j)(0) clearly defines a continuous linear functionalτ (j)

onD{M2}([−1,1]). Therefore

H := {
f ∈D{M2}

([−1,1]): f (j)(0) = 0, ∀j ∈ N0
}
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is a closed vector subspace ofD{M2}([−1,1]). Let us denote byψ the canonical surjectio
fromD{M2}([−1,1]) onto the quotient spaceD{M2}([−1,1])/H .

By hypothesis, for everya ∈ Λ{M1}, there is somefa ∈ D{M2}([−1,1]) such that

f
(j)
a (0) = aj for every j ∈ N0. So if we setφ(a) := ψ(fa), φ is a well defined linea

map fromΛ{M1} into D{M2}([−1,1])/H .
Let us prove that this mapφ is continuous. As the spacesΛ{M1} andD{M2}([−1,1])/H

are (LB)-spaces, it suffices to prove that its graph is sequentially closed. Let(am)m∈N be
a sequence ofΛ{M1} converging toa and such that the sequence(φ(am))m∈N converges
to ψ(f ) in D{M2}([−1,1])/H . For everyj ∈ N0, we clearly haveam,j → aj . Moreover,
asτ (j) vanishes onH , τ (j), ˜ is a continuous linear functional onD{M2}([−1,1])/H such
that

am,j = τ (j), ˜(φ(am)
) → τ (j), ˜(ψ(f )

) = f (j)(0).

So we haveaj = f (j)(0) for everyj ∈ N0, i.e.,φ(a) = ψ(f ).
Now we apply the localization theorem: for everym ∈ N, there isr ∈ N such that

φ(Λ{M1},2m) ⊂ ψ(D{M2},r ([−1,1])) =: E. Let us endow this vector spaceE with the
Banach structure coming from its canonical identification withD{M2},r ([−1,1])/(H ∩
D{M2},r ([−1,1])). In this way, the mapφ :Λ{M1},2m → (E,‖ · ‖) is a continuous linea
map in between two Banach spaces and there isC > 0 such that‖φ(a)‖ � C|a|2m for
everya ∈ Λ{M1},2m.

Now for every p ∈ N0, let ep be the sequence(δp,j )j∈N0. Of courseep belongs
to Λ{M1},2m with |ep|2m = (2m)−pM−1

1,p and there isχp ∈ D{M2},r ([−1,1]) such that
ψ(χp) = φ(ep) with |χp|r � 2‖φ(ep)‖.

Putting these last informations together leads to the following situation. For evera ∈
Λ{M1},m andp ∈ N0, we get

|apep|2m � |a|mmpM1,p(2m)−pM−1
1,p = 2−p|a|m,

hence

|apχp|r � 2|ap|∥∥φ(ep)
∥∥ � 2C|apep|2m � 2C2−p|a|m.

Therefore the seriesT a := ∑∞
p=0 apχp defines a linear extension map fromΛ{M1},m

into D{M2},r ([−1,1]) which is continuous since

|T a|r �
∞∑

p=0

|apχp|r � 4C|a|m, ∀a ∈ Λ{M1},m. �

For the sake of completeness, let us mention the following result.

Lemma 3.4 [3, Lemma 1.3.6].Let m ∈ N. If a1, . . . , am are positive decreasing numbe
with T � a1 + · · · + am, then for everyf ∈ Em(] − ∞, T ]) vanishing on]−∞,0], one has∣∣f (x)

∣∣ �
∑
j∈J

22j sup
y<x

a1 . . . aj

∣∣f (j)(y)
∣∣, ∀x � T ,

whereJ := {j : 1 � j � m andaj+1 < aj or j = m}.
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24].
Here we follow again the ideas of Petzsche as it has been done in [2, Proposition

Theorem 3.5. If Λ{M1} ⊂ {(f (j)(0))j∈N0: f ∈ D{M2}([−1,1])}, then the condition(∗)

holds for somes ∈ N.

Proof. The preceding proposition provides the existence of a positive integers and of
a continuous linear extension mapT from Λ{M1},1 into D{M2},s ([−1,1]). Let us choose
C > max{1,‖T ‖} and selecth > 0 such that 0< 4hs2 < 1/2 and

∑∞
l=0 h/m2,l < 1.

For everyp ∈ N, we consider the sequence
m2,2p

h
, . . . ,

m2,2p

h︸ ︷︷ ︸
p

,
m2,2p+1

h
,
m2,2p+2

h
, . . .

and introduce the following notations:ep := (δp,j )j∈N0 ∈ Λ{M1},1, χp := T ep andρp,j

is defined byρp,j (x) := 0 if x � 0 andρp,j (x) := χ
(j)
p (x) − xp−j /(p − j)! if x > 0 for

everyj ∈ {0, . . . , p − 1}. Finally we choosez ∈]0,1[ such that

z <
ph

m2,2p

+
∞∑

l=2p+1

h

m2,l

.

So everything is set up in order to apply Lemma 3.4: we get∣∣ρp,j (z)
∣∣ �

∞∑
k=p

(4h)k

m
p

2,2pm2,2p+1 . . .m2,p+k

∥∥ρ
(k)
p,j

∥∥[0,z]

with successively fork � p∥∥ρ
(k)
p,j

∥∥[0,z] �
∥∥χ

(j+k)
p

∥∥[0,z] + 1� |χp|ssj+kM2,j+k + 1

� C|ep|1s2kM2,j+k + 1 � 2C

M1,p

s2kM2,j+k

as well as

M2,j+k � M2,jm2,p+1 . . .m2,p+k � M2,jm
p

2,2pm2,2p+1 . . .m2,p+k,

hence (by use of the inequalities 0< 4hs2 < 1/2)∣∣ρp,j (z)
∣∣ � 2C

M1,p

M2,j

∞∑
k=p

(4hs2)k � 2C

M1,p

M2,j2−p+1.

We now consider the special casez = ∑∞
l=2p+1 h/m2,l . Givenp ∈ N andj ∈ {0, . . . ,

p − 1}, two possibilities may occur: either

χ
(j)
p (z) � 1

2

zp−j

(p − j)!
which leads to

1 zp−j

� zp−j

− χ
(j)
p (z) = ∣∣ρp,j (z)

∣∣ � 2C
spM2,j

,

2 (p − j)! (p − j)! M1,p



J. Schmets, M. Valdivia / J. Math. Anal. Appl. 297 (2003) 384–403 393

m-
p

e of
or

χ
(j)
p (z) >

1

2

zp−j

(p − j)!
which leads to

1

2

zp−j

(p − j)! < χ
(j)
p (z) � |χp|ssjM2,j � C

spM2,j

M1,p

.

So in both cases we get

∞∑
l=2p+1

h

m2,l

= z � (4C)
1

p−j (p − j)! 1
p−j

(
spM2,j

M1,p

) 1
p−j

� 4Cp

(
spM2,j

M1,p

) 1
p−j

for everyp ∈ N andj ∈ {0, . . . , p − 1}, hence

λp,s

p

∞∑
l=2p+1

1

m2,l

� 4C

h
, ∀p ∈ N,

and finally we arrive at

λp,s

p

∞∑
l=p

1

m2,l

� λp,s

p

2p∑
l=p

1

m2,l

+ 4C

h
� m1,p

p

p + 1

m2,p

+ 4C

h
� 2+ 4C

h
, ∀p ∈ N,

which concludes the proof.�
Remark. Theorems 3.2 and 3.5 lead easily to the following result due to Petzsche.

Theorem 3.6 [5, Theorem 3.6].Let (mp)p∈N0 be an increasing sequence of real nu
bers such thatm0 = 1 and

∑∞
p=0 1/mp < ∞. Then the continuous linear restriction ma

R :D{M}([−1,1]) → Λ{M} defined byf �→ (f (j)(0))j∈N0 is surjective if and only if the
condition(γ1) of [5] holds.

Proof. The information (b.1) of the second paragraph tells us that settingm1,p = m2,p :=
mp for everyp ∈ N0 leads to admissible sequencesM1 andM2.

If R is surjective, Theorem 3.5 says that the condition(∗) holds for somes ∈ N. If we
remark that for everyp ∈ N

λ2p,s � (s−2pM1,2p/M2,p)1/p = s−2(m1,p+1 . . .m1,2p)1/p � s−2m1,p = s−2m2,p,

the conclusion is a direct consequence of the fact that, for everyp ∈ N,

m1,p

p

∞∑
k=p

1

m2,k

� m1,p

p

2p−1∑
k=p

1

m2,k

+ s2λ2p,s

p

∞∑
k=2p

1

m2,k

� 1+ 2Cs2.

As λp,s � m1,p for everyp, s ∈ N, the other direction is an immediate consequenc
Theorem 3.2. �
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4. Extension theorems in RRR: Beurling type case

For the sake of completeness, let us mention the following result.

Lemma 4.1 [2, Lemme 16].Let (αk)k∈N be a sequence of non-negative numbers s
that

∑∞
k=1 αk < ∞. Let, moreover,(βk)k∈N and(γk)k∈N be sequences of positive numb

such thatβk → 0 andγk ↓ 0. Then there is a sequence(λk)k∈N such thatλk ↑ ∞, λkγk ↓,
λkβk → 0 and

∑∞
k=p λkαk � 8λp

∑∞
k=p αk for everyp ∈ N.

Theorem 4.2. If the condition(∗) holds for somes ∈ N, then

Λ(M1) ⊂ {(
f (j)(0)

)
j∈N0

: f ∈D(M2)

([−1,1])}.
Proof. Let a be any non-zero element ofΛ(M1).

For everyr ∈ N, there isCr > 0 such that|ap| � CrM1,pr−p for every p ∈ N0,

hence(|ap|/M1,p)1/p � C
1/p
r /r, for every p ∈ N0 and r ∈ N, which implies (|ap|/

M1,p)1/p → 0.
Let us setεp := supk�p(|ap|/M1,p)1/p for everyp ∈ N. Of course(εp)p∈N is a de-

creasing sequence of non-negative numbers such thatεp → 0 and|ap| � ε1 . . . εpM1,p for

everyp ∈ N. Let us also setαk := 0, βk := max{εk, k/M
1/k

1,k } andγk := 1/m1,k for every
k ∈ N. The preceding lemma provides then a sequence(θk)k∈N of positive numbers suc
thatθk ↑ ∞, θkγk ↓ andθkβk → 0 and we may very well impose the conditionθ1 = 1. In
fact, we haveθkγk ↓ 0 since

θkγk = θk

m1,k

� θk

M
1/k

1,k

� θk
k

M
1/k

1,k

� θkβk, ∀k ∈ N.

Now we apply the preceding lemma to the following situation:α′
k = γ ′

k := 1/m2,k and

β ′
k := max{1/θ

1/2
[k/2],1/m2,k} for everyk ∈ N, where[k/2] denotes the integer part ofk/2

andθ0 := 1. So we get a sequence(θ ′
k)k∈N of positive numbers such thatθ ′

k ↑ ∞, θ ′
kγ

′
k ↓,

θ ′
kβ

′
k → 0 and

∑∞
k=p θ ′

k/m2,k � 8θ ′
p

∑∞
k=p 1/m2,k for everyp ∈ N0, and we may impos

θ ′
1 = 1. As θ ′

kβ
′
k → 0, we have limk θ ′

k/θ
1/2
[k/2] = 0 and limk θ ′

k/m2,k = 0, henceθ ′
kγ

′
k ↓ 0

and therefore get the existence of a constantA > 1 such that

θ ′
k � Aθ

1/2
[k/2] � Aθ[k/2] � Aθk, ∀k ∈ N. (6)

Now we introduce the sequencesm′
1 and m′

2 by settingm′
1,0 = m′

2,0 := 1, m′
1,k :=

m1,k/θk andm′
2,k := Am2,k/θ

′
k for everyk ∈ N. It is clear thatm′

1 andm′
2 are increasing se

quences of positive numbers such thatm′
1,p � m′

2,p for everyp ∈ N0,
∑∞

p=0 1/m′
2,p < ∞

and alsop/(M ′
1,p)1/p → 0 since

p

(M ′
1,p)1/p

= p( 1 . . . 1 M1,p

)1/p
� pθp

M
1/p

� θpβp, ∀p ∈ N.
θ1 θp 1,p
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f

As the condition(∗) holds fors ∈ N, there is a constantC > 0 such that

∞∑
k=p

1

m2,k

< Cp

(
spM2,j

M1,p

) 1
p−j

, ∀p ∈ N, ∀j ∈ {0, . . . , p − 1}.

This leads to
∞∑

k=p

1

m′
2,k

= 1

A

∞∑
k=p

θ ′
k

m2,k

� 8θ ′
p

∞∑
k=p

1

m2,k

� 8pθ ′
pC

(
spm2,1 . . .m2,j

m1,1 . . .m1,p

) 1
p−j

� 8pθ ′
pC

(
spθ ′

1 . . . θ ′
jM

′
2,j

Aj θ1 . . . θpM ′
1,p

) 1
p−j

� 8pθ ′
pC

(
spM ′

2,j

θj+1 . . . θpM ′
1,p

) 1
p−j

for everyp ∈ N andj ∈ {0, . . . , p − 1}. Let us remark that, on one hand, forj ∈ {0, . . . ,

[p/2] − 1}, we have

(θj+1 . . . θp)
1

p−j � (θ[p/2] . . . θp)
1

p−j � (θ[p/2])
p−[p/2]

p−j � (θ[p/2])
p−[p/2]

p �
√

θ[p/2]
and, on the other hand, forj ∈ {[p/2], . . . , p − 1},

(θj+1 . . . θp)
1

p−j � θj+1 � θ[p/2].
Therefore we finally get

∞∑
k=p

1

m′
2,k

� 8ACp

(
spM ′

2,j

M ′
1,p

) 1
p−j

, ∀p ∈ N, ∀j ∈ {0, . . . , p − 1},

by use of the inequality (6), hence

sup
p∈N

λ′
p,s

p

∞∑
k=p

1

m′
2,k

� 8AC

and we may apply Theorem 3.2 in the′-situation: we get

Λ{M ′
1} ⊂ {(

f (j)(0)
)
j∈N0

: f ∈D{M ′
2}

([−1,1])}.
Let us consider again the elementa of Λ(M1) we started with. As we have

|ap| � ε1 . . . εpM1,p � ε1θ1 . . . εpθp(θ1 . . . θp)−1M1,p � ε1θ1 . . . εpθpM ′
1,p

and εpθp � θpβp for every p ∈ N with θpβp → 0, there is an integerp1 ∈ N such
that |ap| � M ′

1,p for every p � p1; this implies a ∈ Λ{M ′
1}, hence the existence o

f ∈D{M ′
2}([−1,1]) such thatf (p)(0) = ap for everyp ∈ N0.

Let us investigate this functionf . There isr ∈ N such thatf ∈ D{M ′
2},r ([−1,1]), hence

K > 0 such that|f (p)(x)| � KrpM ′
2,p for everyp ∈ N0 andx ∈ R. For everyq ∈ N, as

θ ′
p ↑ ∞, there isp2 ∈ N such thatθ ′

p > qrA for everyp � p2. Therefore for everyp > p2,
we get

M2,p = m2,1 . . .m2,p = A−pθ ′
1 . . . θ ′

pm′
2,1 . . .m′

2,p

� A−pθ ′
p +1 . . . θ ′

pM ′
2,p � A−p2(qr)p−p2M ′

2,p.

2
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nsion
ap

l

tting
This leads to|f (p)(x)| � K(qrA)p2q−pM2,p for everyp > p2, hencef ∈ D(M2)([−1,1])
and we conclude. �
Notations. For everym ∈ N, let us designate byEm the normed space(D(M2)([−1,1]),
‖ · ‖m) and byFm its completion.

Definition. Let m ∈ N. For everyp ∈ N0, the functionalτ (p) defined onEm by τ (p)(f ) =
f (p)(0) is linear and continuous. Therefore it has a unique continuous linear exte
on Fm, that we continue to denote byτp . In this way, it makes sense to say that a m
T :Λ(M1) → Fm is anextension mapif τ (p)(T a) = ap for everya ∈ Λ(M1) andp ∈ N0.

Proposition 4.3. The inclusion

Λ(M1) ⊂ {(
f (j)(0)

)
j∈N0

: f ∈D(M2)

([−1,1])}
implies that, for everym ∈ N, there is a continuous linear extension mapTm :Λ(M1) → Fm

such thatTmep ∈ D(M2)([−1,1]) for everyp ∈ N0.

Proof. Let m be any element ofN. Of course

H := {
f ∈D(M2)

([−1,1]): f (j)(0) = 0, ∀j ∈ N0
}

is a closed vector subspace ofD(M2)([−1,1]) and ofEm. We designate byψ the canonica
surjection fromD(M2)([−1,1]) onto the quotient spaceD(M2)([−1,1])/H . For everya ∈
Λ(M1), there is by hypothesis an elementf of D(M2)([−1,1]) such thatf (p)(0) = ap for
everyp ∈ N0. Proceeding as in the proof of Proposition 3.3, it is a direct matter that se
φ(a) = ψ(f ) definesφ as a continuous linear map fromΛ(M1) into D(M2)([−1,1])/H ,
hence fromΛ(M1) into Em/H . So there arer ∈ N andA > 0 such that‖φ(a)‖m̃ � A‖a‖r

holds for everya ∈ Λ(M1).
For everyp ∈ N0, let χp be an element ofEm such thatψ(χp) = φ(ep) and‖χp‖m �

2‖φ(ep)‖m̃. For everya ∈ Λ(M1), we then get∥∥∥∥∥
∞∑

p=0

apχp

∥∥∥∥∥
̂
m

�
∞∑

p=0

|ap|‖χp‖m � 2
∞∑

p=0

‖a‖2r

M1,p

(2r)p

∥∥φ(ep)
∥∥

m̃

� 2A‖a‖2r

∞∑
p=0

M1,p

(2r)p
‖ep‖r = 4A‖a‖2r .

Therefore the mapT :Λ(M1) → Fm defined bya �→ ∑∞
p=0 apχp suits our purpose. �

Theorem 4.4. If Λ(M1) ⊂ {(f (j)(0))j∈N0: f ∈ D(M2)([−1,1])}, then the condition(∗)

holds for somes ∈ N0.

Proof. The preceding proposition provides a continuous linear extension mapT :Λ(M1)→ F1 such thatχp := T ep belongs toD(M2)([−1,1]) for everyp ∈ N0. The continuity of
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nteger
T affords the existence ofs ∈ N andC > 1 such that‖T a‖1̂ � C‖a‖s for everya ∈ Λ(M1),
hence

‖χp‖1 = ‖χp‖1̂ � C‖ep‖s = C
sp

M1,p

, ∀p ∈ N0.

Now we chooseh > 0 such that 0< 4hs < 1/2 and
∑∞

l=0 h/m2,l < 1 and consider the
increasing sequence

m2,2p

h
, . . . ,

m2,2p

h︸ ︷︷ ︸
p

,
m2,2p+1

h
,
m2,2p+2

h
, . . . .

We also introduce the functionsρp,j onR by ρp,j (x) := 0 if x � 0 and

ρp,j (x) := χ
(j)
p (x) − xp−j

(p − j)! if x > 0

for everyp ∈ N andj ∈ {0, . . . , p−1}. Then for everyz ∈]0,1[ such thatz < ph/m2,2p +∑∞
l=2p+1h/m2,l , Lemma 3.4 leads to

∣∣ρp,j (z)
∣∣ �

∞∑
k=p

(4h)k

m
p

2,2pm2,2p+1 . . .m2,p+k

∥∥ρ
(k)
p,j

∥∥[0,z]

with successively fork � p∥∥ρ
(k)
p,j

∥∥[0,z] �
∥∥χ

(j+k)
p

∥∥[0,z] + 1� ‖χp‖1M2,j+k + 1

� C
sp

M1,p

M2,j+k + 1 � 2C

M1,p

spM2,j+k.

Proceeding then as in the proof of Theorem 3.5, we obtain∣∣ρp,j (z)
∣∣ � 2C

M1,p

M2,j2−p+1,

and the more precise valuez = ∑∞
l=2p+1 h/m2,l leads to

λp,s

p

∞∑
l=p

1

m2,l

� 2+ 4C

h
, ∀p ∈ N. �

5. Extension theorems in RRRm

Notations. Unless otherwise stated, throughout this paragraph we consider an i
m � 2. Given a multi-indexν = (ν1, . . . , νm) ∈ N

m
0 , |ν| is equal toν1 + · · · + νm and

we introduce the numbers

M1,ν := M1,ν1 . . .M1,νm and M2,ν := M2,ν1 . . .M2,νm.
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5.1. Case of the{M] spaces

Definitions. Given r ∈ N, Λ
(m)
{M1],r is the following Banachspace: its elements are th

complex-valued multi-sequencesa = (aν)ν∈N
m
0

such that

|a|r := sup
ν∈N

m
0

|aν |
r |ν|M1,ν

< ∞

and it is endowed with the norm| · |r . We then introduce the Hausdorff (LB)-spaceΛ
(m)
{M1]

as the inductive limit of these Banach spaces.
Given r ∈ N, D{M2],r ([−1,1]m) is the following Banachspace: its elements are th

complex-valued functionsf ∈ E∞(Rm) such that

|f |r := sup
ν∈N

m
0

‖Dνf ‖Rm

r |ν|M2,ν

< ∞

and it is endowed with the norm| · |r . We then introduce the Hausdorff (LB)-spa
D{M2]([−1,1]m) as the inductive limit of these Banach spaces.

Theorem 5.1. If the condition (∗) holds for somes ∈ N, then there isd ∈ N such
that, for everyr ∈ N, there is a continuous linear extension map fromΛ(m)

{M1],r into
D{M2],dr ([−1,1]m).

Proof. We start as in the proof of Theorem 3.2 until we consider an integerd > l(2 +
1/(2A)), i.e., shortly after the inequality (5). Then we proceed as follows.

For everyh � l, π = (π1, . . . , πm) ∈ N
m
0 and (x1, . . . , xm) ∈ Rm, let us then se

χh,π (x) = χh,π1(x1) . . .χh,πm(xm); of course these functionsχh,π belong toD([−1,1]m).
Moreover, for everyν ∈ N

m
0 , we have Dνχh,π (0) = δν,π and∣∣Dνχh,π (x)

∣∣ � M2,ν

M1,π

(2Aes/h)|π |h|ν|(2+ 1/(2A)
)|ν|

, ∀x ∈ R
m.

Let r be any positive integer. To everya ∈ Λ
(m)
{M1],r , we associate the seriesTra :=∑

π∈N
m
0

aπχlr,π . As for everyπ,ν ∈ N
m
0 andx ∈ Rm, we have∣∣aπDνχlr,π(x)

∣∣ � |a|rM2,ν(2Aes/l)|π |(lr)|ν|(2+ 1/(2A)
)|ν|

� |a|r2−|π |(dr)|ν|M2,ν,

this series converges in the spaceD{M2],dr ([−1,1]m) andTr appears as a continuous line

extension map fromΛ(m)
{M1],r intoD{M2],dr([−1,1]m). �

Definitions. Given r ∈ N, Λ
(m)
{M1},r is the following Banachspace: its elements are th

complex-valued multi-sequencesa = (aν)ν∈N
m
0

such that

|a|′r := sup
ν∈N

m

|aν |
r |ν|M1,|ν|

< ∞

0
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lti-
and it is endowed with the norm| · |′r . We then introduce the Hausdorff (LB)-spaceΛ
(m)
{M1}

as the inductive limit of these Banach spaces.
In a similar way, we introduce the Banach spacesD{M2},r ([−1,1]m) for everyr ∈ N

and the Hausdorff (LB)-spaceD{M2}([−1,1]m).

Theorem 5.2. The following assertions are equivalent:

(a) the condition(∗) holds for somes ∈ N;
(b) Λ

(m)
{M1] ⊂ {(f (ν))ν∈N

m
0
: f ∈D{M2]([−1,1]m)};

(c) Λ
(m)
{M1] ⊂ {(f (ν))ν∈N

m
0
: f ∈D{M2}([−1,1]m)}.

Proof. (a)⇒ (b) is known by Theorem 5.1 and (b)⇒ (c) is trivial.
(c) ⇒ (a) To everya ∈ Λ{M1}, let us associate the multi-sequenceb = (bν)ν∈N

m
0

defined
by bν = aν1 if ν2 = · · · = νm = 0 andbν = 0 otherwise. Asa belongs toΛ{M1}, there is
r ∈ N such thata ∈ Λ{M1},r , hence

|b|r = sup
ν∈N

m
0

|bν |
r |ν|M1,ν

= sup
p∈N0

|ap|
rpM1,p

< ∞,

i.e.,b belongs toΛ(m)
{M1],r . Therefore there isf ∈D{M2}([−1,1]m) verifying Dνf (0) = bν

for every ν ∈ N
m
0 and for which there ares ∈ N and C > 0 such that|Dνf (x)| �

Cs|ν|M2,|ν| for every ν ∈ N
m
0 and x ∈ Rm. Now we define the functiong on R by

g(x) := f (x,0, . . . ,0) for every x ∈ R. Of courseg belongs toE∞(R) and, for every
p ∈ N

m
0 , settingν = (p,0, . . . ,0) leads to∣∣g(p)(x)

∣∣ = ∣∣Dνf (x,0, . . . ,0)
∣∣ � Cs|ν|M2,|ν| = CspM2,p, ∀x ∈ R,

i.e., g ∈ D{M2},s ([−1,1]). As we clearly haveg(p)(0) = ap for everyp ∈ N0, we have
arrived at Λ{M1} ⊂ {(f (j)(0))j∈N0: f ∈ D{M2}([−1,1])} and we conclude by Theo
rem 1.1. �
5.2. Case of the(M] spaces

Definitions. The Fréchet spaceΛ(m)
(M1] is the vector space of the complex-valued mu

sequencesa = (aν)ν∈N
m
0

such that

‖a‖r := sup
ν∈N

m
0

r |ν||aν |
M1,ν

< ∞, ∀r ∈ N,

and it is endowed with the countable system of norms{‖ · ‖r : r ∈ N}.
The Fréchet spaceD(M2]([−1,1]m) is the vector space of the complex-valuedE∞-

functions onRm with support contained in[−1,1]m verifying

‖f ‖r := sup
ν∈N

m
0

r |ν|‖Dνf ‖Rm

M2,ν

< ∞, ∀r ∈ N,

and it is endowed with the countable system of norms{‖ · ‖r : r ∈ N}.
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f of
The Fréchet spaceΛ(m)
(M1)

is the vector space of the complex-valued multi-seque
a = (aν)ν∈N

m
0

such that

‖a‖′
r := sup

ν∈N
m
0

r |ν||aν |
M1,|ν|

< ∞, ∀r ∈ N,

endowed with the countable system of norms{‖ · ‖′
r : r ∈ N}.

In a similar way we introduce the Fréchet spaceD(M2)([−1,1]m).

Theorem 5.3. The following assertions are equivalent:

(a) the condition(∗) holds for somes ∈ N;
(b) Λ

(m)
(M1] ⊂ {(f (ν)(0))ν∈N

m
0
: f ∈D(M2]([−1,1]m)};

(c) Λ
(m)
(M1] ⊂ {(f (ν)(0))ν∈N

m
0
: f ∈D(M2)([−1,1]m)}.

Proof. (a)⇒ (b) Leta be any non-zero element ofΛ
(m)
(M1].

As we have(|aν |/M1,ν)
1/|ν| � ‖a‖1/|ν|

r /r for every r ∈ N and ν ∈ N
m
0 , we get

lim|ν|→∞(|aν |/M1,ν)
1/|ν| = 0. So settingεm

p := sup|ν|�p(|aν |/M1,ν)
1/|ν| for everyp ∈ N

leads to a sequence(εp)p∈N of non-negative numbers, decreasing to 0 and such
|aν | � εm

1 . . . εm|ν|M1,ν for everyν ∈ N
m
0 and|ν| � 1.

With this sequence(εp)p∈N in mind, we can reproduce the argument of the proo
Theorem 4.2 and get sequences(θk)k∈N, (θ ′

k)k∈N, (M ′
1,k)k∈N and(M ′

2,k)k∈N. Let us more-
over setθ0 = θ ′

0 := 1.
Then for everyν ∈ N

m
0 , we haveM1,νj = θ0 . . . θνj M

′
1,νj

for everyj ∈ {1, . . . ,m}, hence

M1,ν = M ′
1,ν

∏m
j=1(θ0 . . . θνj ) and in the same wayM2,ν = A−|ν|M ′

2,ν

∏m
j=1(θ

′
0 . . . θ ′

νj
).

This leads to

|aν | � (θ1ε1 . . . θ|ν|ε|ν|)mM1,ν(θ1 . . . θ|ν|)−m

� (θ1ε1 . . . θ|ν|ε|ν|)mM1,ν

m∏
j=1

(θ1 . . . θνj )
−1 � (θ1ε1 . . . θ|ν|ε|ν|)mM ′

1,ν .

As θpεp → 0, there isp1 ∈ N such that|aν | � M ′
1,ν for every ν ∈ N

m
0 such that

|ν| � p1. This impliesa ∈ Λ
(m)

{M ′
1] and, by Theorem 5.2, there isf ∈ D{M ′

2]([−1,1]m)

such that Dνf (0) = aν for every ν ∈ N
m
0 . In particular, there isr ∈ N such thatf ∈

D{M ′
2],r ([−1,1]m).

To conclude, let us prove thatf belongs also toD(M2]([−1,1]m). Indeed, for every
q ∈ N, asθ ′

p ↑ ∞, there isp2 ∈ N such thatθ ′
p > (rqA)m for everyp � p2. So for every

ν ∈ N
m
0 such that[|ν|/m] � p2 + 1, we successively get

M2,ν � A−|ν|θ ′
1 . . . θ ′[|ν|/m]M ′

2,ν � A−|ν|θ ′
p2+1 . . . θ ′[|ν|/m]M ′

2,ν

� A−|ν|(θ ′
p2+1)

[|ν|/m]−p2M ′
2,ν � A−m(p2+1)(rq)|ν|−(p2+1)mM ′

2,ν.

Therefore we have obtained

‖Dνf ‖Rm � |f |r r |ν|M ′
2,ν � |f |r (rqA)m(p2+1)q−|ν|M2,ν

for all suchν ’s, hencef ∈ D{M2],q([−1,1]m).



J. Schmets, M. Valdivia / J. Math. Anal. Appl. 297 (2003) 384–403 401

y

)
those

e

h

(b) ⇒ (c) is trivial sinceD(M2]([−1,1]m) ⊂D(M2)([−1,1]m).
(c) ⇒ (a) To everya ∈ Λ(M1), let us associate the multi-sequenceb = (bν)ν∈N

m
0

defined
by bν = aν1 if ν2 = · · · = νm = 0 andbν = 0 otherwise. For everyr ∈ N, we then have

‖b‖r = sup
ν∈N

m
0

r |ν||bν |
M1,ν

= sup
p∈N0

rp|ap|
M1,p

= ‖a‖r ,

i.e.,b ∈ Λ
(m)
(M1]. Therefore there isf ∈ D(M2)([−1,1]m) such that Dνf (0) = bν for every

ν ∈ N
m
0 . Now we define the functiong on R by g(x) := f (x,0, . . . ,0) for everyx ∈ R.

Of courseg belongs toE(Rm) and, for everyp ∈ N0, settingν = (p,0, . . . ,0) ∈ N
m
0 leads

to |g(p)(x)| = |Dνf (x,0, . . . ,0)| � ‖f ‖′
r r

−pM2,p for everyr ∈ N andp ∈ N0, i.e., g ∈
D(M2)([−1,1]). As we clearly haveg(p)(0) = ap for every p ∈ N0, we have obtained
the inclusionΛ(M1) ⊂ {(f (j)(0))j∈N0: f ∈ D(M2)([−1,1])} and we conclude at once b
Theorem 1.1. �
5.3. A consequence of condition (A)

Proposition 5.4. If the sequenceM1 verifies condition(A), then the inequalitiesM1,ν �
M1,|ν| � Am|ν|M1,ν hold for everyν ∈ N

m
0 , hence the equalitiesΛ(m)

{M1] = Λ
(m)
{M1} and

Λ
(m)
(M1] = Λ

(m)
(M1)

hold for these locally convex spaces.

Proof. For every ν ∈ N
m
0 , the inequalityM1,ν � M1,|ν| is clear and fromM1,|ν| �

A|ν|M1,ν1+···+νm−1M1,νm , we deduceM1,|ν| � Am|ν|M1,ν1 . . .M1,νm = Am|ν|M1,ν . �
So if we recall that condition (A) implies condition (B) which in turn leads to the part (c

of Section 2, Theorems 5.2 and 5.3 provide the following result to be compared with
of [2].

Theorem 5.5. If the sequenceM1 verifies condition(A), then the following conditions ar
equivalent:

(a) the condition(∗∗) holds;
(b) Λ

(m)
{M1} ⊂ {(f (ν)(0))ν∈N

m
0
: f ∈D{M2]([−1,1]m)};

(c) Λ
(m)
{M1} ⊂ {(f (ν)(0))ν∈N

m
0
: f ∈D{M2}([−1,1]m)};

(d) Λ
(m)
(M1)

⊂ {(f (ν)(0))ν∈N
m
0
: f ∈ D(M2]([−1,1]m)};

(e) Λ
(m)
(M1)

⊂ {(f (ν)(0))ν∈N
m
0
: f ∈ D(M2)([−1,1]m)}.

6. Ultraholomorphic extension

It is possible to replace theD spaces by spaces of complex-valuedE∞-functions on
R

m with ultraholomorphic extension on some open neighbourhood ofR
m \ {0} in C

m.
In particular, such functions are real-analytic onRm \ {0}. The key results to get suc
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properties are Theorems 4.3 and 6.2 of [6]: they lead immediately to results such
following ones.

Theorem 6.1. (a)The following assertions are equivalent:

(a) the condition(∗) holds for somes ∈ N;
(b) Λ{M1} ⊂ {(f (j)(0)j∈N0: f ∈F∞{M2,DR\{0}}};
(c) Λ(M1) ⊂ {(f (j)(0)j∈N0: f ∈ F∞(M2,DR\{0})}.

(b) The following assertions are equivalent:

(a) the condition(∗) holds for somes ∈ N;
(b) Λ

(m)
{M1] ⊂ {(f (j)(0)j∈N0: f ∈ F∞{M2,DRm\{0}}};

(c) Λ
(m)
(M1] ⊂ {(f (j)(0)j∈N0: f ∈F∞(M2,DRm\{0})}.

Let us explain this in the Beurling case; the Roumieu case can be treated in
analogous way.

Given a sequence such asM2, one finds in [6] a construction associating to every pro
open subsetΩ of Rm, an open subsetDΩ of Cm verifying in particular the following
properties:DΩ ∩ Rm = Ω and(u + iv ∈ DΩ ⇒ u ∈ Ω and|v| < d(u, ∂Ω)). The Fréche
space C(M2,Ω) is the vector space of the complex-valuedE∞-functionsf on Ω such
that

‖f ‖r := sup
α∈N

m
0

2(r+1)|α|‖Dαf ‖Ω

M2,|α|
< ∞, ∀r ∈ N,

endowed with the system of norms{‖ · ‖r : r ∈ N}. Given a proper open subsetU of Cm,
the Fréchet spaceH∞(M2,U) is the vector space of the holomorphic functionsg on U

such that

‖g‖r := sup
α∈N

m
0

2(r+1)|α|‖Dαg‖Ω

M2,|α|
< ∞, ∀r ∈ N,

endowed with the system of norms{| · |r : r ∈ N}.
Then one can establish the following result.

Theorem 6.2 [6, Theorem 4.3].For every proper open subsetΩ of Rm, there is a continu-
ous linear mapTΩ fromC(M2,Ω) intoH∞(M2,DΩ) such that for everyf ∈ C(M2,Ω),
ε > 0 and s ∈ N, there is a compact subsetK of Ω such that|Dα(TΩf )(u + iv) −
Dαf (u)| � ε for everyu + iv ∈ DΩ andα ∈ N

n
0 verifyingu ∈ Ω \ K and|α| � s.

Given a proper open subsetU of Cm, we designate byF(U) the vector space of th
functionsf defined onRm ∪ U verifying f |Rm ∈ E∞(Rm), f |U ∈ H(U) and such tha
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nctions

l. Soc.
limz→x Dα(f |U)(z) = Dα(f |Rm)(x) for everyα ∈ N
n
0 andx ∈ ∂Rm(Rm ∩ U). The Fréche

spaceF∞(M2,U) is then the vector space of the elementsf of F(U) such that

‖f ‖r := sup
α∈N

m
0

2(r+1)|α|‖Dαf ‖Rm∪U

M|α|
< ∞, ∀r ∈ N,

endowed with the fundamental system of norms{‖ · ‖r : r ∈ N}.
The use of these informations leads directly to the equivalence (a)⇔ (c) of the

announced results: iff ∈ D{M2}([−1,1]m) extendsa, g defined onRm ∪ DRm\{0} by
g(0) = a0 andg(z) := TRm\{0}(f |Rm\{0})(z) otherwise belongs toF∞(M2,DRm\{0}) and
extendsa too.
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