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Abstract

Given two sequencel 1 and M, of positive numbers, we give necessary and sufficient conditions
under which the inclusions

Ay C{(F9O0) ey £ € Doy (1-1, 1)},

Aty C{(F0) jeng: £ € Pty (1-1.11)}

hold, by means of explicit constructions. This answers a question raised by Chaumat and Chollet
(Math. Ann. 298 (1994) 7-40). We also consider the case vhdnl] is replaced by—1, 1] as

well as the possibility to get ultraholomorphic extensions.
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1. Introduction

The sequencel; and M, and the numbers, ; for p,s € N. Throughout this paper
my = (my,,) peN, @aNdm = (m2, ) pen, designate sequences of real numbers submitted to
the following requirements:
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(a) myo=mo0=1,;
(b) mip < mi p+1 andmz,,, < m2 p+1 for everyp € Ng;
(c) my,, <mpy,p for everyp e No;

(d) limp—oo p/ ymr0- -1, =0;

(e) Z;ozo 1/mp , < oc0.

As usual we then se¥1 , =m10...m1, andMp , =mp...mz , for everyp € Ng
and get the sequencas; = (M1, ) pen, aNdM2 = (M3, ) peN,-

Definition. For everyp, s € N, we set

M1 p—Jj
Apsi= sup( P >
0<j<p \SP M2,

and say thathe condition(x) holds fors € N if

(e.¢]
Ap.s 1
sup ok E — < 00.
peN P m2.k

k=p

Now we set up notations used throughout the case of the interdall]. In the fifth
paragraph, we adapt them and treat[thé&, 1]™ setting. In the last one we indicate how to
get ultraholomorphic extensions of the jets.

The spacesi(y,),- and Apy,y.  Givenr > 0, Ay, is the following Banach space: its
elements are the sequenaes (a,) yen, Of C such that
la|, := sup ﬂ <00
peNo TP M1, p
and it is endowed with the norin |,.. We then introduce the Hausdorff (LB)-spadey,;
as the inductive limit of these Banach spaces.

The spaceDu, - ([—1, 1]) and Dy, ([—1, 1]).  Givenr > 0, Dyy,y - ([—1, 1]) is the
following Banach space: its elemts are the complex-valugd®-functions f on R with
support contained ifi-1, 1] and such that
(p)
| flr = supsupM < 00
peNgxeR rPMZ)P
and it is endowed with the norm- |.. We then introduce the Hausdorff (LB)-space
Dim,y([—1, 1]) as the inductive limit of these Banach spaces.

The spacedy,). The Fréchet spacd ) is the vector space of the sequenaes
(ap) pen, Of complex numbers such that

Vplapl

llall, := sup <00, VreN,

peNo M1.p
endowed with the systems of noris: ||,: r € N}.
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The spacey,)([—1,1]). The Fréchet spacB ) ([—1, 1]) is the vector space of the
complex-value&>°-functions f on R with support contained ift-1, 1] and such that
PP ()]

I fll;:= supsup——— < o0, VreN,
peNpgxeR M2,p

endowed with the systems of nortfis: ||,: r € N}.

Main result. The main aim of this paper is to prove the following result, an immediate
consequence of Theorems 3.2, 3.5, 4.2 and 4.4.

Theorem 1.1. The following assertions are equivalent

(a) the condition(x) holds for some € N;
(b) Ay CHF(0)jeng: f € Diayy ([-1, 1D}
(©) Ay TP jeng: f € Doy (=1, 1D}

Motivation. Our interest in this subject comes in particular from the study of [1,2,4,5].

In [5], the caseM 1 = M is thoroughly investigated. The slightly more general case when
the sequence¥; and M2 are replaced by weights is considered in [1] (cf. Theorems 3.6
and 3.7). Théoréme 30 of [2] provides in particular the equivalence of the assertions (b) and
(c) here above under stronger conditions on the sequeMgeand M. Commentaires 32

of [2] give a detailed discussion of the literature and ask for explicit constructions as well
as for smoother conditions.

In [4], one finds results similar to ours. The method, based on the use of the Fourier
transform, is completely different and permits to consider the Whitney case (i.e., to con-
sider jets on a closed subset®f and not only sequences at the origin). However, the
conditions imposed on the sequences are strongéf-and M, must satisfy the following
condition: there i<C > 0 such thap! < C?M, andM,1 < C” M, for everyp e N. The

first part of this condition is equivalent to the boundedness of the seq(lﬁmb;/”)peN;

the second part (known as stability under diffdi@roperators) is not required in our devel-

opment. It is easy to describe sequendesand M, verifying the conditions (a)—(e) and

not the condition of stability under differentiaperators: one has just to consider the se-

quencesM; and M defined bymy g =m20=1andmy , =my , = p” for everyp e N.

So our results extend those of [5] contranf4d Finally let us mention that Langenbruch

has proved that the condition 2.14 of [4] implies the conditionprivate communication).
Itis a pleasure to thank M. Langenbruch for very fruitful discussions.

2. Someinformation about the sequences m and M

Let us gather properties and remarks about sequencexi M.
(a) The inequalityr, ; < my,, <mp , holds for everyp, s € N since

1 1 1
(s7PMy,p/Mp ;)77 < (My,p/M1,j)77 = (my jq1...m1p)7 7 <my
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hold for everyp, s e Nandj € {0, ..., p — 1}. Thereforaghe condition(:x)

(to be compared with the conditioy1) of [5]) implies that the conditiorix) holds for
everys € N.

(b) Letm = (m,) yen, b€ an increasing sequence of real numbers suchvitiat 1 and
consider the sequendd = (M) pen, -

(b.1) If we haveZ‘;O:0 1/m, < oo, it is well known thatp/m, — O, hencep/M;/p
— 0. In this case we may set1 , = mp , := m, for every p € Ng and consider the
sequenced =M =M.

(b.2) The following two conditions are regularly considered:

(A) thereisA > 1 such thatV/,
(B) thereisB > 1 such thain ,

< APM;M,_; foreveryp e Nandj € {0, ..., p};
< BM,/” foreveryp e N.

Chollet and Thilliez have made us aware that in faetcondition(A) implies the con-
dition (B) with B = A2 since

mg <mpy1...map=Mop/M, gAZPM,,, VpeN.

(c) If M1 verifies the conditioliB), then the following conditions are equivalent

() the condition(x) holds for every € N;
(i) the condition(x) holds for some € N;
(iii) the condition(xx) holds.

(i) = (ii) is trivial: (iii) = (i) is known by (a) and (ii}= (iii) holds since
mi.p < BMi/; < Bs(s™P My ,/M20)Y? < Bsh,,, Vp.,seN.

(d) LetM = (M) pen andM’ = (M},) pen be two sequences &.

(d.1) If the sequencd4 hasmoderate growtHcf. [2, “suite a croissance modérée™]),
the sequencep!M,) ,cn, Vverifies the conditions imposed on the sequelteand may
be baptizedV;. Let us note that in this case the sequemteverifies the condition (A).

(d.2) If the sequenceM’ is non-quasi-analytiqin the sense of [2]), the sequence
(p!M;,)peNo verifies the conditions (a), (b) and (e) imposed on the sequiicdf more-
over it isassociatedo M (cf. [2]), there isA; > 1 such thain , < Alm;, foreveryp e N
S0, up to the facton, it verifies the condition (c) and may be baptizeft.

(d.3) In the context of such sequendds and M let us note that the conditiogx)
also reads

(.¢]
MP M]i,]_
< e

sup
peN Mpfl k

< Q.

Therefore the main Theorem 1.1 leadshe following corollary to be compared with
the results of [2].
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Corollary 2.1. If the sequencd/ verifies the conditio(B), then the following conditions
are equivalent

(a) the condition(xx) holds
(b) Ay CH(0)jeng: f € Diaayy ([-1, 1D}
(©) Ay CLSD0))jeng: f € Diapy (=1, 11}

3. Extension theoremsin R: Roumieu type case
The following result is an easy consequence of the property 1.3.5 of [3].

Theorem 3.1. If M = (M) pen, is a sequence of positive numbers such #at= 1 and
a:=)7_1M,_1/M, < oo, then there isf € D([—a, a]) such thaD < f <1, f)(0) =
8joand|fY| <2/ M; for every;j € No.

Here we follow the ideas of Petzsche [5, Theorem 2.2].

Theorem 3.2. If the condition (x) holds for somes € N, then there isd € N such
that, for everyr € N, there is a continuous linear extension map frofpy,  into
Dimy),ar([—1, 1]), hence

Aty CH{(FV0) oyt S € P (-1, 1)}

Proof. Let us fixh > 0. The main tool of this proof is to consider for everye Ng the
sequence

m:=1, hdps,....,hdp s, hmo 2,11, hm2 2,40, . ...
—_——
2p

The casep = 0 is particular. As we hava := h Z,‘j"zl 1/hma < oo, Theorem 3.1

providespy 0 € D([—B/h, B/ h]) such that O< pj.0 < 1, ,0}(1{())(0) =4, 0 foreveryj e Ng
and|p,5{c),(x)| < 2/h/ M5 ; for everyj e N andx € R.
For p € N, we proceed as follows. As the conditi¢r) holds fors, there is a constant

A > 1 such that for every € N, we have
2 =1 2 A = 1 2
L = P (1422 Y =)< Pp
Whps ey hmak hhp.s 2P a2k ) s

So foreveryp € N, Theorem 3.1 provides an element, of the spac@®([—2Ap/(hip s),
2Ap/(hip )] verifying 0< pp,, , <1, p}(,{;(()) =4, 0 for everyj e Ng and

20ni, if1<j<2p,
i 2p Moo .
2/h-lkpf752—?z) if j>2p.

o3 0| < :
M.
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Now for everyp e No, we introducey, ,(x) := pp, ,(x)x?/p! € £ (R). We need to
evaluate the absolute value of the derivatives of these functions.

For p =0, as we have;,.o = pn.0, this is already known.

For p € N, we are going to prove that we have

r J
] < 22 (—2A65> hf(2+ i) (1)
My, p

h 2A
for everyj € Ng andx € R. The Leibniz formula leads immediately to

2Ae / |
) (0] < (h> > (>‘ (z>()\( ) Y

I=max0, j—p}

if we note that for suclp, j andl, we have 0< p+1— j < p, hencep? ™=/ /(p+1— j)! <
pP/p! < eP. To go on further we consider two cases.
Casel: p e Nand 0< j < 2p. In this case we immediately obtain

P J
) Ae . 1
‘X ! (X)‘ (T) hj<2+ ﬂ) M;sp,

hence successively

) sz 2Aes po 1 J
< — | W24 — if 0 < 2
|X (x )| ’p< h ) +2A fo<j<p (2)

sincerl s’ > My /(s My, j) for 0< j < p;

(p) sz 2Ae 1 4 P
x| < p<7> h”(2+ﬂ ifj=p 3)

and
) M2,j 2Ae P j 1 J . .
ol < == =—) & 2+50) Hfp<j<2p (4)
y
if we note that forp < j < 2p, the inequalityr, ; <m>, , leads to
)L] P

mz <m2,p+l m2]—M2]/M2p MZ]/Mlp

Case 2: peNand 2 < j. If necessary, we decompose the SlE}L,-fp into
+30 and observe that, as in the cgse: j < 2p, the first sum is
l =j—p 1=2p+1

2p .
< M ; <2Ae) B Z (])21(214)1_.,’.
My, h ; l

=j-p

In all cases the U/ _ax2, 1. ) IS

P J
< (%2 3 7\ 2 2ay-innti—t Mt
h l M22p

I=max{2p+1.j—-p}
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+j—1 M2y j—t M3, j
PR < mg pmépmz,szrl...mz,[ <M p41...m2; < .
s s Ml,p

Putting these informations together, we end up with

(]) sz 2A€ p j< 1 )j . .
‘X ()‘ ,p<h>h 2+2A if2p < j. (5)
The inequality (1) summarizes the inequalities (2)—(5).

By use of the valug = 0 in the definition of , 5, we getMl/” <shp s foreveryp e N,
hence lim_.« p/Ap,,s = 0 by means of the condition (d) |mposed on the sequemce
Therefore there i$¢ € N such thatB/l < 1/2, 2Aes/l < 1/2 and Ap/(Xr, ) < 1 for
everyp € N. So if we fixh > [, we finally arrive with

(a) the support opy, , is contained iff—1, 1] for everyp € No;
; My ; (2Aes\? . 1\’

b () g J h] 2

(b) |Xh,p(x)| —,p —h + _2A

for everyp, j e Ngandx e R;
() X(’)(O) =34, j foreveryp, j € No.

To conclude let us prove that any integet /(2 + 1/(2A)) fits our statement. Let be
any positive integer. For evetye A,y -, We get

1\’ .
<2+ —) < 27P|al, (dr)! Ma,;

@)
|apXr1p(x)| lalyr? My, p 24

M

for everyp, j € Ng andx € R, hence

9]

Y lapx), )| < 2lal dr) Ma, ;.
p=0

Therefore the maf; : A(my).r = Dim,).ar((—1, 1]) defined bya — Zp 0dpXri,p SUItS
our purpose. O

Proposition 3.3. The inclusion
Ay S {(FP00) ey S € Dotz (-1, 11)}

implies that, for everyn € N, there is a continuous linear extension map frefyh, m
into someDyar,).» ([—1, 1]).

Proof. For everyj € No, f — f)(0) clearly defines a continuous linear functionél’
on Dy, ([—1, 1]). Therefore

= {f €Dy (I-1.11): fP(0) =0, ¥ € No}
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is a closed vector subspace®far,; ([—1, 1]). Let us denote by the canonical surjection
from Dyar,3([—1, 1]) onto the quotient spacd®ar,y([—1, 11)/H.

By hypothesis, for everyi € Aqy,), there is somef, € Dy, ([—1,1]) such that
f}’)(O) = a; for every j € Ng. So if we setp(a) := ¥ (fa), ¢ is a well defined linear
map fromAyay,) into Dy, ([—1, 1) /H.

Let us prove that this map is continuous. As the spaces,; andDyar,)([—1, 11)/H
are (LB)-spaces, it suffices to prove that its graph is sequentially closeda )& n be
a sequence oft{y,; converging toe and such that the sequen@a,,))men CONverges
to ¥ (f) in Dy, ([—1, 11)/H . For everyj € No, we clearly haver, ; — a;. Moreover,
ast/) vanishes orf1, /-~ is a continuous linear functional dP, ([—1, 1])/H such
that

am,j =D (P(@m) > 17 (W () = £ 0.

So we haver; = £)(0) for every; € No, i.e.,¢(a) = ¥ (f).

Now we apply the localization theorem: for everye N, there isr € N such that
¢ (Aimpy,2m) C ¥ (Dymyy,-([—1,1])) =: E. Let us endow this vector spade with the
Banach structure coming from its canonical identification viithy.,, ,([—1, 1])/(H N
Dim,y,-([—1,1])). In this way, the ma@ : Ajpr,y,2+ — (E, || - [|) is @ continuous linear
map in between two Banach spaces and thei@ is O such that|¢(a)| < Cla|2, for
everya € Aipmqy,2m-

Now for every p € Ny, let e, be the sequencé’, ;);cn,. Of coursee, belongs
to Aypyy,2m With |eplon = (Zm)‘l’lel and there isy, € Dim,},-([—1,1]) such that
V(xp) = ¢ep) With [xpl <2l (ep)ll-

Putting these last informations together leads to the following situation. For every
Amyy,m andp € Np, we get

lapeplom < lalum? M1 ,(2m)~P My 5 =2""|aly,
hence
lapxplr < 2layl|¢(ey)| < 2Clapeplom <2C27|al,.

. Therefore the serief_a = Z;ozpapxp dgfines a linear extension map framay,),m
into Dy, ([—1, 1) which is continuous since

o0
Tal, <Y _lapxylr <4Claln, YaeApym. O
p=0

For the sake of completeness, let us mention the following result.

Lemma 3.4 [3, Lemma 1.3.6]Letm € N. If a1, ..., a, are positive decreasing numbers
with T <aj + - -+ +an, then for everyf € £™ (] — oo, T]) vanishing on—oo, 0], one has

|f0)] <D 2% supar...aj|fP()|, ¥x<T,
jeqg V=¥

whereJ :={j: 1< j<mandaji1 <a;or j =m}.
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Here we follow again the ideas of Petzsche as it has been done in [2, Proposition 24].

Theorem 35. If Ay C {(f9(0) ey f € Diary(I—1, 1D}, then the condition(x)
holds for some € N.

Proof. The preceding proposition provides the existence of a positive integad of
a continuous linear extension madpfrom Agas,;,1 into Dyar,y s ([—1, 1]). Let us choose
C > maxX1, |T |y and select > 0 such that G< 4hs? < 1/2 and) [ 2oh/ma; < 1.

For everyp € N, we consider the sequence

m22p ma2p MmM22p+1 M22p+2
n T, P s h S
—_——
p

and introduce the following notations;, := (5, j)]eNo € A1, xp :=Tep andp,

is defined byp, ;(x) := 0 if x <0 andp, ;(x) := x5’ (x) —xP~7 /(p — j)!if x > O for
everyj €{0,..., p —1}. Finally we choose €10, 1] such that
oo

h

ma,|

ph
m22p

<
1=2p+1
So everything is set up in order to apply Lemma 3.4: we get

o0

(4h)*
|00 D] <D — s

= M3 2, M2.2p+1 - - M2, ptk

with successively fok > p

o 0. < 5" .2y + 1< 1xplss ™ Mo i +1

2k
Ky Mz,j_;_k

2C
<Cleplis®F My j i +1<
M]_’p

as well as
M3 j+x < M2 jm2 py1...m2 prik < Mp, ;m22 M2 2p+41-..-M2 ptk,
hence (by use of the inequalities<04hs? < 1/2)

2C 2C
lpp.j (@] < —Mz,2(4hs2)k<M—Mz 27t
Lp

k=p

We now consider the special case- Zin-}-lh/mz,l- GivenpeNandj €{0,...,
p — 1}, two possibilities may occur: either

which leads to

1 zP—i ZP=J ) sP M, ;
5 — < —xp (@) =|ppj(@)| <2C——,
2(p=pt =t 7 12252 My,
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or
7P~

%S 1
@ 2=

which leads to

1 z¢p7/J ) ; sPMp
- <xp (@) < sTMp ; < C =
2(p— ) Xp (@) <|xpls 2,j X My,

So in both cases we get

° 1 1 PM> ; % M L
—E—=z<x40ﬁ?xp—jﬂF7(s 2”)”’<4Cp<i—ﬁi>p
1=2p41 2!

foreveryp e Nandj €{0,..., p — 1}, hence

oo

Ap,s
p

1 4C
- g PR Vp GN,
ma, h

and finally we arrive at

2p
1 4C mi1,p+1 A4AC 4C
Pp.s E —_— < —£ —<2+—, VpeN
— m2, h p mz,p—i_ h + h’ p ’

mzz =

which concludes the proof.O
Remark. Theorems 3.2 and 3.5 lead easily to the following result due to Petzsche.

Theorem 3.6 [5, Theorem 3.6]Let (m,),cn, be an increasing sequence of real num-
bers such thatng =1 and}_’* ,1/m, < oc. Then the continuous linear restriction map

m (=1, 1]) = A defined byf > (f(0)) jen, is surjective if and only if the
cond|t|on(y1) of [5] holds.

Proof. The information (b.1) of the second paragraph tells us that setting=mo , :=
m p, for everyp € No leads to admissible sequendds and M.

If R is surjective, Theorem 3.5 says that the conditienholds for some € N. If we
remark that for every e N

-2 1 -2 1 -2 -2
)LZp,s Z (s le,Zp/MZ,p) /P =S (ml,p+l' . 'ml,Zp) /p =S mip,=s8 mzp,

the conclusion is a direct consequence of the fact that, for gveriy,

m”XI

As A, s <my p foreveryp,s e N, the other direction is an immediate consequence of
Theorem 3.2. O

2p—-1 oo

ml" Z 2 3 1 c1i20s2

— mzk P (=, mak

m2k
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4. Extension theoremsin R: Beurling type case
For the sake of completeness, let us mention the following result.

Lemma 4.1 [2, Lemme 16].Let (ox)ren be a sequence of non-negative numbers such
that) ;2 ; ax < o0o. Let, moreoverBi)ren and (yx)ren be sequences of positive numbers
such that8y — 0andy, | 0. Then there is a sequen¢g,)en such thath; 1 co, Aryi 4,
B — 0 andz,‘j":p Ao < 8hp Z,‘j‘;p ay, for everyp e N.

Theorem 4.2. If the condition(x) holds for some € N, then

Aty C{(FV0) eyt S € Pap (-1 1)}

Proof. Leta be any non-zero element df(yz,).

For everyr € N, there isC, > 0 such thatla,| < C, M1 ,r~—7 for every p € Np,
hence(la,|/M1,,)Y/? < CH?/r, for every p € Ng and r € N, which implies (|a,|/
My ,)YP — 0.

Let us sete, := sup.s ,(la,|/M1 )7 for every p € N. Of course(e,) yen is a de-
creasing sequence of non-negative numbers such jhat 0 and|a,| <e1...€,M1 , for
everyp € N. Let us also sety, := 0, B := maxXe, k/Mll)/kk} andyg := 1/m1 for every
k € N. The preceding lemma provides then a sequéfggcn Of positive numbers such
thatfy 1 oo, Oy | andéyBr — 0 and we may very well impose the conditién= 1. In
fact, we haveédy, | 0 since

Ok Ok

k
Oryi = S —77 SOc—g7 < OB, Vk € N.
MLk My My

Now we apply the preceding lemma to the following situatief= y/ := 1/mz; and
By = max{l/e[t//":z], 1/my} for everyk € N, where[k/2] denotes the integer part bf2
andfp := 1. So we get a sequene )en Of positive numbers such théf 1 oo, 6,y |,
OB — 0andd ;2 6, /may <8,3 .2, 1/may for everyp € No, and we may impose
61 =1. As 6B, — 0, we have lim6] /6% = 0 and lim 6 /mz = 0, henced}y; | 0
and therefore get the existence of a constant 1 such that

1/2
6] < Ae[k//Z] < Afpy2 < A6y, VkeN. (6)
Now we introduce the sequences andm;, by settingm} o =my =1, my; =
my /0 andm’, , := Am3 1 /6, for everyk € N. Itis clear thain’ andm), are increasing se-
quences of positive numbers such ﬂmf{tp < m/z’p for everyp € N, Z;"ZO 1/m’2)p <00
and alsop/(M; p)l/P — 0 since

p p POy
7 )1/p 1 1 p = 5,1/ p S7PEP
M3 ,) (3 -3, M1.p) My
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As the condition(x) holds fors € N, there is a constan > 0 such that

> 1 sP Mo Pfil )
> <Cp ' , VpeN,Vje{0,...,p—1}.

k:mek Ml!p
This leads to
00 00 , 00 1
1 1 % 1 sPmoq...mp i\ P
D D Db
k= my A — M2k — M2k mii...mip
=p ? k=p k=p

1

sPO;...0 My N\ 7T sPM} 77

J72j ’ 2,j ’

<81’76';’C(Ai9 0,M] ) <8p9;7C<9. 0,M] )
101...0p My j+1---0pMy

foreveryp e Nandj € {0, ..., p — 1}. Let us remark that, on one hand, fpe {0, ...,
[p/2] — 1}, we have

r=Ip/2] r=[p/2]

Oj+1--.0p) 7T = Orpj2y---0p) 777 = Oppj2) 77 = Op2) 7 2 /0ipj2)
and, on the other hand, fgre {[p/2], ..., p — 1},

1
Oj41...0p) 777 2041 2 Opp/2).

Therefore we finally get

=1 SPM} N i
> = <8Acp( 7 ’f> , VpeN,Vje{0,...,p—1},
f=p 2.k 1p

by use of the inequality (6), hence

)\’/ o0 1
sup—22 3" T <8AC
peN P = Mo

and we may apply Theorem 3.2 in thsituation: we get
Apry H{(FV0) ey’ £ € Dary (-1, 21)}-
Let us consider again the elemendf A7,y we started with. As we have
lapl <e1...€pM1, <e161...€,0,(01...0,) M1, <e161...€,0,M; ,
ande,6, < 6,8, for every p ¢ N with 6,8, — 0, there is an integep1 € N such

that |a,| < Mi)p for every p > pj; this impliesa € Ay hence the existence of
f € Dpary (=1, 1)) such thatf (P (0) = a,, for everyp € No.

Let us investigate this functiofi. There is- € N such thatf € Dy, (-1, 1), hence
K > 0 such that f " (x)| < Kr”Mé)p for everyp € Ng andx € R. For everyg € N, as
9;, 1 o0, there ispp € N such thal9;7 > gr A foreveryp > p». Therefore for every > po,

we get
— / / / /
M2,p=m2,l...m2,p=A pel...eme,l...mZ,p

>ATPO .0 MY > AT (qr)P TP MY
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Thisleads td f P (x)| < K (grA)P2q=P M>,, for everyp > p, hencef € D, ([—1, 1])
and we conclude. O

Notations. For everym € N, let us designate b¥,, the normed spac€D a,)([—1, 1]),
|l - Il.,) and byF,, its completion.

Definition. Let m € N. For everyp € Ny, the functionak ?) defined onk,, by P (f) =

£ (0) is linear and continuous. Therefore it has a unique continuous linear extension
on F,,, that we continue to denote kry,. In this way, it makes sense to say that a map
T: Ay — Fn is anextension maff (7 (Ta) = a, for everya € Ay,) andp € No.

Proposition 4.3. The inclusion
Ay C {(f(j)(o))jeNoi f €Dy ([-1.11)}

implies that, for everyn € N, there is a continuous linear extension m&p: A,) — Fn
such thatl;,e, € Dy, ([—1, 1]) for everyp € Ng.

Proof. Letm be any element ai. Of course
H:={feDwmy(-1.11): f¥(0) =0, ¥j e No}

is a closed vector subspacefy.,) ([—1, 1]) and of E,,,. We designate by the canonical
surjection fromDr,) ([—1, 1]) onto the quotient spac® ., ([—1, 1])/H. For everya €
Amy), there is by hypothesis an elemefibf Dar, ([—1, 1]) such thatf?)(0) = a,, for
everyp € Np. Proceeding as in the proof of Proposition 3.3, it is a direct matter that setting
¢(a) = ¥ (f) definesgp as a continuous linear map frory s,y into D, ([—1, 11)/H,
hence fromAyy,) into E,,/H. So there are € N andA > 0 such tha1|¢(a)||;1 < Alal,
holds for everyr € Ay).

For everyp € Ny, let x, be an element of,, such thaty(x,) = ¢(ep) and| xplln <
2|lp(ep)ll,,- For everya € Ay,), we then get

o0
Z%XP
p=0

- - ~
< ;)Iaplnxpnm < 2;)nan2r o leenl,

m

M,
(2r)p

o
<24Allallz ) lepll- =4Allall2.
p=0

Therefore the maf : A,y — F, defined bya — 77 ga, xp Suits our purpose. O

Theorem 4.4. If Agry C {(f9(0)jeny: f € Doy (=1, 1)}, then the conditionx)
holds for some < Np.

Proof. The preceding proposition provisi@ continuous linear extension map A ;)
— F1 suchthaty, :=Te, belongs taDy,)([—1, 1]) for everyp € Ng. The continuity of
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T affords the existence ofe N andC > 1 such that|Ta||I < Clla||s foreverya € Ay,
hence
p

-~ S
Ixplla=llxplly < Clleplls =C . VpeNo.
Ml,p

Now we choosé > 0 such that 0< 4hs < 1/2 and) ;2 h/m2,; < 1 and consider the
increasing sequence

m22p ma2p MmM22p+1 M22p+2
ho T i s N U
—_—
p

We also introduce the functions, ; onR by p,, ;(x) :=0if x <0 and

Py i(x):= x(j)(x) — 7)517—.1' if x>0
pae A (p— !
foreveryp e Nandj € {0, ..., p—1}. Thenforevery €10, 1[ suchthat < ph/m2 2, +
> 22p+1h/m2,1, Lemma 3.4 leads to

9]

(4
p i@ <D —5

k=p mz’zpm2,2p+1 <. .M2 ptk

” 'Oz(ﬁk)j ” [0,z]

with successively fok > p

Hpizk)j H[O,z] < X;Hk) H[o,z] +1<|IxpllaM2jx +1

p

2C »
My +1< YA M2, k-

S
<C
~

My p 1p

Proceeding then as in the proof of Theorem 3.5, we obtain

2C

M2§j27p+l’
Ml,p

lpp.j (@] <
and the more precise value= Y 2, , 1 h/m2, leads to

Ap,s
p

4Cc
— <24 —,
mo h

WK

VpeN. O

~

p

5. Extension theoremsin R™

Notations. Unless otherwise stated, throughout this paragraph we consider an integer
m > 2. Given a multi-indexv = (v1,...,v,) € N, [v] is equal tovy + --- + v, and
we introduce the numbers

My, =M, ...M,, and My, := Mz, ...M>,,,.



398 J. Schmets, M. Valdivia / J. Math. Anal. Appl. 297 (2003) 384-403

5.1. Case of théM] spaces

Definitions. Given r € N, A{}, . is the following Banactspace: its elements are the
complex-valued multi-sequences= (av)ven such that

lay]
la|, := sup T <
veNy r Ml,U
and it is endowed with the norin |.. We then introduce the Hausdorff (LB)-spas ;’}ﬂ

as the inductive limit of these Banach spaces.
Givenr € N, Diu,,-([—1,11™) is the following Banactspace: its elements are the
complex-valued functiong € £°°(R™) such that

ID” f llgm
|/l = sup —=
veNy r MZ,V

and it is endowed with the norm- |.. We then introduce the Hausdorff (LB)-space
Dim,1([—1, 1]™) as the inductive limit of these Banach spaces.

Theorem 5.1. If the condition (x) holds for somes € N, then there isd € N such
that, for everyr € N, there is a continuous linear extension map frotr{cfzfl)l]’r into
Dimy).ar([—1, 11™).

Proof. We start as in the proof of Theorem 3.2 until we consider an intéger/ (2 +
1/(2A)), i.e., shortly after the inequality (5). Then we proceed as follows.

For everyh > I, m = (71,...,my) € Ny and (x1,...,x,) € R™, let us then set
Xh,x (X) = Xn,m (X1) - .. Xz, (Xm); Of course these functiong, . belong toD([—1, 1]™).
Moreover, for every € N, we have D x; - (0) =6, , and

M
D" xir ()] < WZ’U(ZAes/h)‘”‘h‘”‘(Z—i— /A", vxeRr™
LT

Let r be any positive integer. To every e AE’;Z]J, we associate the seridsa :=
m ax Xir.z- AS for everyr, v € NI andx € R™, we have
eNy ) 0

al, Ma,, (2Aes /D71 (r) " (24 1/(24)) "
a|r27‘n‘(dr)‘v‘M2,Ua

‘aanXlr,rr(x)| |
|

NN

this series converges in the spdegy,),«-([—1, 1]") and7, appears as a continuous linear

extension map frormm)ﬂj into Dyar,p.ar (1, 117). O

Definitions. Givenr € N, A(’;'}l . Is the following Banactspace: its elements are the
complex-valued multi-sequences= (av)venm such that
’ lay|

lal, :== SUp ———— < 0
T veny rMIMy
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and it is endowed with the norin |,.. We then introduce the Hausdorff (LB)-spad 1(4)1}
as the inductive limit of these Banach spaces.

In a similar way, we introduce the Banach spa€®gy, ([—1, 1]") for everyr e N
and the Hausdorff (LB)-spad®a,; ([—1, 11™).

Theorem 5.2. The following assertions are equivalent

(a) the condition(x) holds for some € N;
(0) A%)ﬂ CHU ey £ € Dy (=1, 1)),
(©) Amﬂ CHU ey | € Dy (=1, 1)),

Proof. (a) = (b) is known by Theorem 5.1 and (b} (c) is trivial.

(c)= (a) To everya € Ay, let us associate the multi-sequeihce (bv)ven defined
by b, = a,, if vo=---=v, =0 andb, =0 otherwise. Az belongs toAy ), there is
r € Nsuch thai € Aqpy),-, hence

|by] |ap|

|b|, = sup o = sup < 00,
veNy rViMy, peNg rle;P

i.e.,b belongs IOA%)W. Therefore there ig' € Dy, ([—1, 1]™) verifying DY £ (0) = b,

for every v € N and for which there are € N and C > 0 such that|D" f(x)| <

Cs'Mo, for everyv € NJ and x € R™. Now we define the functiorg on R by

g(x) = f(x,0,...,0) for everyx € R. Of courseg belongs to£°°(R) and, for every
p e Nj, settingv = (p,0,...,0) leads to

g (x| =|D" f(x,0,...,0)| < Cs""'Mp )y = Cs" M2, VxR,

i.e., g € Diyy.s([—1, 1]). As we clearly have P (0) = a,, for every p € No, we have
arrived at A,y C {(f9(0)jeng: f € Dimo([—1, 1)} and we conclude by Theo-
reml.l. O

5.2. Case of théM] spaces

Definitions. The Fréchet spacag”'ﬁjﬂ is the vector space of the complex-valued multi-
sequences = (ay)yeny such that

rlullau|

llall, :== sup <oo, VreN,

veNy lv
and it is endowed with the countable system of nofing||,: r € N}.
The Fréchet spac®y,([—1, 11™) is the vector space of the complex-valugd-
functions onR™ with support contained if—1, 1] verifying
rl’lIDY f |

Iflly = sup ———— < o0, VreN,
veNy M>,

and it is endowed with the countable system of nofing|,: r € N}.
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The Fréchet spacﬂ(’]‘?l) is the vector space of the complex-valued multi-sequences
a=(av)yeny such that

IVI|

, r'lay|

lall, := sup —
veNy 1y

<00, VreN,

endowed with the countable system of norfis|.: r € N}.
In a similar way we introduce the Fréchet spaggy,,([—1, 11™).

Theorem 5.3. The following assertions are equivalent

(a) the condition(x) holds for some € N;
() AQ, CUFVO)very: f € Daary (=1, M)
©) A(”“ Wy C {(f<”>(0>)veNm f €Dy (=1, 1)}

Proof. (a) = (b) Leta be any non-zero element ﬂf(’")

As we have (Jay|/M1.,) V" < [lallF’""/r for everyr e N andv € N, we get
lim = oo (av]/M1,,)Y" = 0. So setting:"’ := supv‘2p(|av|/M1,,,)1/‘”‘ for everyp e N
leads to a sequendg,),cn Of non-negative numbers, decreasing to 0 and such that
lay| <€’ .. .el’ﬁlMl,v for everyv € Nij and|v| > 1.

With this sequencee,) ,en in mind, we can reproduce the argument of the proof of
Theorem 4.2 and get sequenc¢@gicn, (6;)kenN, (Mi’k)keN and(Mé’k)keN. Let us more-
over setp = 6 := 1.

Then forevery € Ny, we haveMy, ,; = 6p. . .6y, Mivj foreveryj e {1,...,m}, hence
My, = M;  T]j_1(60...6,)) and in the same waylz, = A™VM, T} 1(65...6)).
This leads to

lay] < (B1€1...01€w)" M1,y (O1...0,,) "
m

< (Orer.. .9\v\€|u|)mM1,v 1_[(91. . .91)_/)71 < (Ore1.. .Q\V\G\v\)mMiv.
j=1
As 6,¢, — 0, there isp1 € N such that|a,| < for every v € N such that
|v| > p1. This impliesa eAE’"),] and, by Theorem 5 2, there i e DM/]([ 1,1™)
such that Df(0) = a, for everyv € Ng. In particular, there is € N such thatf €
Dy (=1, 11™).
To conclude, let us prove that belongs also td,1([—1, 1]™). Indeed, for every
q €N, ast), 1 oo, there isp2 € N such thav), > (rqA)™ for everyp > p,. So for every
v e Njj such thaf|v|/m] > p2 + 1, we successively get
Moy = A™M01 00 M, = A0 0 Ms,
> A_M(9;2+1)[‘”‘/'"]_p2M2’v > A m(p2+1)(rq)\v\—(l?2+l)mMé’v_
Therefore we have obtained
ID” fllgm < 11" Mg, <11 (rg AY" P2 Vg™ M3,
for all suchv’s, hencef € Dy, 4([—1, 11).
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(b) = (c) is trivial sinceDpr,1([—1, 11™) C Dar,y ([—1, 11™).
(c)= (a) To everya € A, let us associate the multi-sequeihce (bv)ven defined
by b, =a,, if vo="---=v, =0 andb, =0 otherwise. For every € N, we then have

i.e.,be AE’Z‘QH. Therefore there i’ € D, ([—1, 1]™) such that D £(0) = b, for every

v € Nj'. Now we define the functiog onR by g(x) := f(x,0,...,0) for everyx € R.
Of courseg belongs taf(R™) and, for everyp € No, settingv = (p, 0, ..., 0) € Ny leads
to g (x)] = |DV £ (x,0,...,0)| < | fll.r " M>,, for everyr e N andp € No, i.e.,g €
Dim,([—1,1]). As we clearly haves”) (0) = a,, for every p € No, we have obtained
the inclusionA s,y C {(fY(0) jeny: f € Dy (-1, 1)} and we conclude at once by
Theorem 1.1. O

5.3. A consequence of condition (A)

Proposition 5.4. If the sequenc@/, verifies condition(A), then the inequalitied/; , <
My, < A™VIMy, hold for everyv € N, hence the equalltlesx(m) AE’}(}l and

(m) __ ,(m)
A=Ay hold for these locally convex spaces.

Proof. For everyv € N, the inequality M1, < My is clear and fromMy ), <
AVIMy vy 1 py, M1y, We deduceMy ) < A™VIMy .. M1, = A™IM,. O

So if we recall that condition (A) implies coittbn (B) which in turn leads to the part (c)
of Section 2, Theorems 5.2 and 5.3 provide the following result to be compared with those
of [2].

Theorem 5.5. If the sequencd/ verifies conditior{A), then the following conditions are
equivalent

(a) the condition(xx) holds

() A, SV O)veng: f € Dy (=1 11™)};
© Al UV O)veng: f €Dy (=1, M)
(d) ALY, UV O)venz: f € Dy (-1 11™)};
e) AE";}l) c {(f<“>(0>)ueNg: f €Dy ([—1. 1)}

6. Ultraholomorphic extension
It is possible to replace th® spaces by spaces of complex-valu&d-functions on

R™ with ultraholomorphic extension on some open neighbourhodddf, {0} in C™.
In particular, such functions are real-analytic Bff \ {0}. The key results to get such
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properties are Theorems 4.3 and 6.2 of [6]: they lead immediately to results such as the
following ones.

Theorem 6.1. (a) The following assertions are equivalent

(a) the condition@) holds for some € N;
(b) Amyy C {(f({)(o)jeNoi [ € Foo{M2, Dpy(o}};
© Aty CUFD0)jeng: f € FooM2, D))}

(b) The following assertions are equivalent

(a) the condition(x) holds for some € N;
() A CHF DO jeny: f € Fool M2, Drmyop});
©) Ay CUFD () jerg: f € FooMa2, Drmyjop)}.

Let us explain this in the Beurling case; the Roumieu case can be treated in a very
analogous way.

Given a sequence such 8%, one finds in [6] a construction associating to every proper
open subsef2 of R™, an open subsebg, of C™ verifying in particular the following
propertiesD, NR™ = 2 and(u +iv € D = u € 2 and|v| < d(u, 052)). The Fréchet
space €My, £2) is the vector space of the complex-valugtt-functions f on §£2 such
that

o(r+Daly D
I fll, == sup 270 e _ o vren,
aeN M2,

endowed with the system of nornfis- ||: r € N}. Given a proper open subsgtof C™,
the Fréchet spacH (M2, U) is the vector space of the holomorphic functignen U
such that

20+ DDog o

lglly := sup —————"= <00, VreN,
aeN M2,

endowed with the system of norffis |,: r € N}.
Then one can establish the following result.

Theorem 6.2 [6, Theorem 4.3]For every proper open subséx of R™, there is a continu-
ous linear mafy,; from C(M >, §2) into Heo (M2, Dg;) such that for every € C(M 3, £2),
¢ >0 ands € N, there is a compact subséf of 2 such that|D%(Tq f)(u + iv) —
D% f(u)| < & foreveryu +iv € Do anda € Nj verifyingu € 2\ K and || <s.

Given a proper open subsgt of C™, we designate byF(U) the vector space of the
functions f defined onR™ U U verifying f|rm € E°R™), fly € H(U) and such that
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lim, ., D*(flv)(z) = D¥(f|rm)(x) for everya € N andx € ag= (R™ NU). The Fréchet
spaceF~ (M2, U) is then the vector space of the elemefitsf F(U) such that
20+DID* fl|gmuy

Ifl-:= sup <00, VreN,
aeN Mq|

endowed with the fundamental system of nofihs||,: r € N}.

The use of these informations leads directly to the equivalences(a)c) of the
announced results: if € Dyy,y([—1,1]") extendsa, g defined onR™ U Dgm (g by
g(0) = ap andg(z) := Trm\(0)(f|rm\(0}) (z) Otherwise belongs t&F..(M2, Drm\ (o)) and
extendsz too.
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