Results: For prostate the average value of the D99% were 99.19% ± 0.25%, 79.62% ± 13.23%, 91.42% ± 7.19% of prescribed dose, for 0°, 27°, 54° rotation angles respectively. For IMRT and SIB-IMRT techniques decrease of D99% was reduced for maximum angles by 12% and 26.5% respectively and results were rotation direction independent. The rotation had no impact on D1%. A negligible influence of rotation for 3D-CRT and IMRT on the Dmean was observed. For 3D-CRT and IMRT techniques decreased of Dmean was greater than 2% only for maximum analyzed angles in 1 and 3 cases respectively. For SIB-IMRT, the 2% decrease of Dmean was observed for 5 patients for rotations larger than 21°, regardless of the direction of rotation. For group of 8 patients with low grade tumors the average value of the TCP for non-rotated prostate were calculated and equal to 83.4% ± 0.2% and 83.3% ± 0.3% for 3D-CRT and IMRT respectively. For rotations smaller than 18° the TCP was close to 80% for all patients. For SIB-IMRT plans the TCP decreased from 88.3 % to 80.0% for 18° rotations.

Conclusions: Our results showed that the change of dose distribution in the target volume depend on the angle of rotation and the treatment delivery technique. Only rotations larger than about 21° influence significantly on the DVH and Conclusions: Lipiodol offers the potential of target localization with motion blurring minimized on the 4D CBCT images. Using diaphragm as tumor surrogate can lead to misalignment of the tumor. The amount of TACE lipiodol may need to be adjusted according to the tumor size to improve its visibility on 4D CBCT.

EP-1503
Rigid and non-rigid registration dose propagation for brachytherapy treatment combined with radiotherapy J. Krayerbuehl1, M. Guckenberger1, C. Linsenmeier1, S. Kloeck1, M. Zamburlini1
1University Hospital Zürich, Department of Radiation Oncology, Zurich, Switzerland

Purpose/Objective: Cervical cancer is the fourth most common cancer in women with an estimate of 266'000 death per year worldwide. It has been reported that by combining HDR brachytherapy (HDR) with external beam radiotherapy (EBRT) the local tumor control can be further improved. The dose distributions for these two treatment modalities are based on CTs which differ in the patient positioning. The dose planned with EBRT and HDR has to be added together in order to assess the dose to the target and to the organ at risk. Furthermore, the medial field border for EBRT will be based on the dose distribution from the HDR plan. In order to propagate the dose from one CT to the other, image registration is required. In this work we evaluated the benefit of using a non-rigid algorithm compared to a rigid registration for dose propagation.

Materials and Methods: Ten patients treated with HDR (5x5Gy, Manchester method) combined with Boost-EBRT to the parametrium (3x2Gy) were included in this study. The EBRT treatment consisted of 2 opposing fields, in which the medial border was based on the 50-80% isodose line from the first HDR treatment. The total dose was calculated by registering the CT in a rigid or a non-rigid way using Velocity (Varian Medical System, Palo Alto, CA). The total dose obtained with the rigid and non-rigid registration was then compared together based on dose distribution as well as dose-volume histogram parameters.

Results: The position of the 50% HDR isodose line propagated on the EBRT CT between the rigid and non-rigid registration was different by up to 1cm in all directions, thus substantially affecting the choice of field size for the subsequent EBRT. The change of dose distribution between both registration modalities did not affect the dose to the femoral heads. Larger dose difference to the rectum and bladder was observed. Dose to 0.1cm3, 1cm3, 2cm3 and 5cm3 of the rectum volume could increase by up to 37%, 22%, 18% and 10%, respectively. For the bladder, dose to 0.1cm3, 1cm3, 2cm3 and 5cm3 could change by more than 41%, 21%, 22% and 28%, respectively.

Conclusions: The registration modality used for dose propagation has to be carefully evaluated when matching CTs were taken with the patient lying in different positions, as is the case in HDR and EBRT. Wrong registration could result in cold spots in the tumor region or hot spots in the organs at risk.