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Abstract

We lift Charles Rezk’s complete Segal space model structure on the category of simplicial spaces to a
Quillen equivalent one on the category of relative categories.
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1. Introduction

1.1. Summary

The usefulness of homotopical and (co-)homological methods in so many parts of modern
mathematics seems to be due to the following two facts.

(i) One often runs into what we will call relative categories, i.e. pairs (C, W) consisting of a
category C and a subcategory W ⊂ C which contains all the objects of C and of which
the maps are called weak equivalences because one would have liked them to behave like
isomorphisms.

(ii) Such a relative category (C, W) is in essence a homotopy theory because not only can one
form the localization of C with respect to W (often called its homotopy category) which
is the category obtained from C by “formally inverting” all the weak equivalences, but one
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can also form the more delicate simplicial localization of C with respect to W, which is
a simplicial category (i.e, a category enriched over simplicial sets) with the same objects
as C.

In this paper we are interested in the fact that two such relative categories give rise to
the “same” homotopy theory if they can be connected by a finite zigzag of DK-equivalences,
i.e. weak equivalences preserving functors which induce

- an equivalence of categories between their homotopy categories, and
- weak (homotopy) equivalences between the simplicial sets involved in their simplicial

localizations.

One thus can ask

(i) whether there exists on the category RelCat of small relative categories and weak
equivalence-preserving functors a model structure that is a homotopy theory of homotopy
theories in the sense that it is Quillen equivalent to the ones considered by Julie Bergner,
André Joyal, Charles Rezk, and many others, and

(ii) whether the weak equivalences in this model structure are the DK equivalences.

Our main result in this paper is an affirmative answer to the first of these.
An affirmative answer to the second of these questions requires a better understanding of

simplicial localization functors and will be given in [1].

1.2. Further details

Our main result consists of proving that there exists a model structure on the category RelCat
of (small) relative categories and weak equivalence preserving functors between them that is
Quillen equivalent to Charles Rezk’s complete Segal structure on the category sS of simplicial
spaces (i.e. bisimplicial sets) and thus is a model for the theory of ∞-categories (or more
precisely, (∞, 1)-categories). We do this by showing that the Reedy model structure on sS and
all its left Bousfield localizations (and hence in particular the just mentioned complete Segal
structure) can be lifted to Quillen equivalent model structure on RelCat.

We also obtain for each such model structure on sS also a conjugate model structure on
RelCat with the same weak equivalences and hence the same underlying relative category as
the model structure discussed above. Moreover the involution of RelCat that sends each (small)
relative category to its opposite is a Quillen equivalence (in fact an isomorphism) between
these two model structures on RelCat and models the contractible space of nontrivial auto-
equivalences of theories of (∞, 1)-categories.

The proof is basically a relative version of Bob Thomason’s arguments that the usual model
structure on the category of simplicial sets can be lifted to a Quillen equivalent model structure
on the category of (small) categories, combined with some ideas contained in a paper he wrote
together with Dana Latch and Steve Wilson.

2. An overview

This paper consists essentially of three parts.

2.1. Formulation of our main result and some of its consequences

This will be done in the first four sections, Sections 3–6.
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(i) In Section 3 we introduce the category RelCat of (small) relative categories and relative
functors between them and introduce in this category notions of homotopic maps and
homotopy equivalences.

Moreover we introduce, following Thomason, a notion of Dwyer maps which are a
kind of neighborhood deformation retracts with such cofibration-like properties (which we
will verify in Section 9) (9.1–9.3) as being closed under retracts, pushouts, and (possibly
transfinite) compositions.

(ii) In Section 4 we consider the special case of relative posets and define for them two kinds
of subdivisions, a terminal one and an initial one which we will denote by ξ t and ξ i
respectively. Unlike what happens in the case of (ordinary) posets, these two subdivisions
are in general not each others’ opposites, but only each others’ conjugates. While Thomason
needed only the iteration of one of them we will, for reasons which will become clear in
Section 9 (9.4–9.6), need the composition ξ = ξ tξ i of the two of them, which we will
refer to as the two-fold subdivision. Of course we could just as well have used the conjugate
two-fold subdivision ξ = ξ iξ t . In that case, the opposites of our arguments then yield a
Quillen equivalent conjugate model structure with the same weak equivalences, in which
the cofibrations and fibrations are the opposites of ours.

(iii) In Section 5 we develop some preliminaries needed in order to formulate our main result.
(a) We recall what is precisely meant by lifting a cofibrantly generated model structure.
(b) We describe the Reedy model structure on the category sS of bisimplicial sets, as well

as its left Bousfield localizations.
(c) We define two adjunctions

Kξ : sS←→ RelCat : Nξ and K : sS←→ RelCat : N
of which the first is the adjunction which will allow us to lift the above ((iii)b) model
structures on sS to Quillen equivalent ones on RelCat.

(d) We also formulate a key lemma, which states that the two right adjoints
Nξ , N : RelCat −→ sS

are naturally Reedy equivalent. At a crucial point (in Section 10) in the proof of our main
result, this key lemma enables us to use, instead of the functor Nξ , the much simpler
simplicial nerve functor N of Charles Rezk [9] (who called it the classifying diagram
functor).

(iv) In Section 6 we state our main results and mention some of its consequences.
(a) Our main result consists of the lifts mentioned above and hence in particular the lifts of

Rezk’s complete Segal model structure on sS to a Quillen equivalent one on RelCat.
(b) Moreover, we note that for each of the resulting model structures on RelCat, there is a

conjugate model structure that is connected to it by the involution of RelCat (1.2, I).
(c) We also note that the two model structures on RelCat lifted from Rezk’s complete

Segal structure on sS are each models for the theory of (∞, 1)-categories, and that the
involution relating them models the contractible space of nontrivial auto-equivalences
of the theory of (∞, 1)-categories.

(d) We observe, after reformulating Thomason’s result in our language, that our Quillen
equivalences (iv)a and Thomason’s Quillen equivalences are tightly connected by a
simple pair of Quillen pairs.

(e) Finally, we note that the Quillen equivalence between the Joyal model structure on the
category S of simplicial sets and RelCat obtained by composing a Quillen equivalence
of Joyal–Tierney [5] with the one mentioned in (a) above admits a description that is
almost identical to the description of Thomason’s Quillen equivalence mentioned in (d)
above.
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2.2. A proof of the key lemma mentioned above

This will be dealt with in Sections 7 and 8.
Thomason proved this lemma for simplicial sets by using the fact that for every simplicial

set Y , the natural map Y → ExY [6] is a weak equivalence. However, as we were not able to
relativize this result, we will instead relativize a quite different argument that is contained in a
paper that he wrote jointly with Latch et al. [7].

In Section 7 we do the following:

(i) We note that the category RelCat is closed monoidal and that the homotopy relation in
RelCat is compatible with this closure.

(ii) We prove that, on finite relative posets, the subdivision functor ξ t , ξ i and ξ are homotopy
preserving.

(iii) We describe sufficient conditions on functors RelCat → sS in order that they send
homotopic maps in RelCat to homotopic maps in sS.

Finally, in Section 8,

(iv) we use these results to relativize the arguments used in the paper [7].

2.3. A proof of the main result

This will be done in Sections 9 and 10.
The first of these, Section 9, is devoted to Dwyer maps.

(i) In 9.1–9.3 we show that Dwyer maps are closed under retracts, pushouts and (possibly
transfinite) compositions.

(ii) In 9.4 we describe sufficient conditions on a relative inclusion of relative posets in order that
its terminal subdivision is a Dwyer map and in 9.5 we use this to show that if, for every
pair of integers p, q ≥ 0, ∆[p, q] and ∂∆[p, q] respectively denote the standard (p, q)-
bisimplex and its boundary, then the inclusion ∂∆[p, q] → ∆[p, q] induces a relative
inclusion (2.1(iii))

Kξ∂∆[p, q] −→ Kξ∆[p, q] ∈ RelPos

which is a Dwyer map.
(iii) In 9.6 we then use (i) and (ii) to show that every monomorphism L → M ∈ sS gives rise to

a Dwyer map Kξ L → Kξ M ∈ RelCat.
We finally complete the proof of our main result in Section 10.

(iv) In 10.1 and 10.2 we relativize another key lemma of Thomason by showing that, up to a
weak equivalence in the Reedy model structure on sS pushouts along a Dwyer map commute
with the simplicial nerve functor N , and

(v) note that, in view of the first key lemma (2.1(iii)) the same holds for the functor Nξ .
(vi) In 10.3 and 10.4 we deduce from this that the unit 1→ Nξ Kξ of the adjunction

Kξ : sS←→ RelCat : Nξ

is a natural Reedy equivalence and that a map L → M ∈ sS is a Reedy equivalence iff the
induced map Nξ Kξ L → Nξ Kξ M ∈ sS is so.

(vii) In 10.5 we then combine these results with the ones of Section 9 to finally prove our main
result.

We end with the following.
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Remark 2.4. The reader may wonder why we (and Thomason) did not prove 2.3 directly,
i.e. without using the simplicial nerve functor N , as this would have avoided the need for the
first key lemma (2.1(iii)d). The reason is that such a proof would probably have been much more
complicated than the present approach, as the proof of 2.3(iv) relies heavily on the fact that the
relative posets involved in the definition of the functor N all have an initial object, something
that is not at all the case for the functor Nξ .

3. Relative categories

In this section we

(i) introduce the category RelCat of (small) relative categories and relative functors between
them,

(ii) define a homotopy relation on RelCat, and
(iii) use this to describe a very useful class of relative functors which are a kind of neighbor-

hood deformation retracts and have cofibration-like properties and which, following Thoma-
son [10], we will call Dwyer maps.

3.1. Relative categories and functors

A relative category will be a pair C consisting of

(i) a category, called the underlying category and denoted by und C, and
(ii) a subcategory of C, called the category of weak equivalences and denoted by we C, of

which the maps will be called weak equivalences, which are only subject to the requirement
that we C contains all the objects of C (and hence also their identity maps).

Similarly a relative functor between two relative categories will be a weak equivalence
preserving functor and a relative inclusion A→ B will be a relative functor such that

und A ⊂ und B and we A = we B ∩ A.

The category of the small relative categories and the relative functors between them will be
denoted by RelCat. This category comes with an involution, i.e., the automorphism

Inv : RelCat −→ RelCat

which sends each category to its opposite.

3.2. Maximal and minimal relative categories

A relative category will be called

(i) maximal if all its maps are weak equivalences, and
(ii) minimal if the only weak equivalences are the identity maps.

Given an ordinary category B we will denote by

B̂ and B̌

respectively the maximal and the minimal relative categories which have B as their underlying
category.
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Very useful examples are, for every integer k ≥ 0, the relative categories

k̂ and ǩ

where k denotes the k-arrow category

0 −→ · · · −→ k.

3.3. Homotopy relation on RelCat

Given two objects Y, Z ∈ RelCat and two maps f, g : Y → Z ∈ RelCat, a strict homotopy
h : f → g will be a natural weak equivalence, i.e., a map

h : Y × 1̂ −→ Z ∈ RelCat

such that (3.2)

h(y, 0) = f y and h(y, 1) = gy

for every object or map y ∈ Y. More generally, two maps Y → Z ∈ RelCat will be called
homotopic if they can be connected by a finite zigzag of such strict homotopies.

Similarly a map f : Y → Z ∈ RelCat will be called a (strict) homotopy equivalence if
there exists a map f ′ : Z→ Y ∈ RelCat (called a (strict) homotopy inverse of f ) such that the
compositions f ′ f and f f ′ are (strictly) homotopic to the identity maps of Y and Z respectively.

A special type of such a strict homotopy equivalence is involved in the following definition.

3.4. Strong deformation retracts

Given a relative inclusion A → Z (3.1), A will be called a strong deformation retract of Z
if there exists a strong deformation retraction of Z onto A, i.e. a pair (r, s) consisting of

(i) a map r : Z→ A ∈ RelCat, and
(ii) a strict homotopy (3.3) s : r → 1Z such that

(iii) for every object A ∈ A, r A = A and s : r A→ A is the identity map of A.

Clearly r is a strict homotopy equivalence (3.3) with the inclusion A→ Z as a strict homotopy
inverse.

Using these strong deformation retracts we now define an important class of maps in RelCat.

3.5. Dwyer maps

In his construction of a model structure on the category of small (ordinary) categories
Thomason [10] introduced Dwyer maps which were a kind of neighborhood deformation
retracts and recently Cisinski [2] noted the existence of a slightly more general and much more
convenient notion which he called pseudo-Dwyer maps. Our Dwyer maps will be a relative
version of these pseudo-Dwyer maps of Cisinski, i.e.

A Dwyer map will be a map A′→ B ∈ RelCat which admits a (unique) factorization

A′ ≈ A −→ B ∈ RelCat

in which the first map is an isomorphism and the second is what we will call a Dwyer inclusion,
i.e. a relative inclusion (3.1) with the following properties:
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(i) A is a sieve in B, i.e. if f : B1 → B2 ∈ B and B2 ∈ A, then f ∈ A (or equivalently, if there
exists a characteristic relative functor α : B→ 1̂ such that α−10 = A), and
if Z(A, B) or just ZA denotes the cosieve on B generated by A, i.e. the full relative
subcategory of B spanned by the objects B ∈ B for which there exists a map A → B ∈ B
which A ∈ A (or equivalently the smallest cosieve in B containing A), then

(ii) A is a strong deformation retract of ZA (3.4).

The usefulness of these Dwyer maps is due to the fact that, as we will show in Section 9,
they have such cofibration-like properties as being closed under retracts, pushouts and transfinite
compositions.

The definition above of a strong deformation retract, and hence also of a Dwyer map, depends
on the choice of the direction of the strict homotopy s in 3.4(iii). The opposite choice yields the
notion of a co-Dwyer map, i.e., a map obtained from a Dwyer map by replacing the relative
categories involved by their opposites.

4. Relative posets and their subdivisions

An important class of relative categories consists of the relative posets and their subdivisions
(which are again relative posets).

With each relative poset P one can associate two subdivisions, a “terminal” subdivision ξ t P
and an “initial” subdivision ξ i P. Unlike the corresponding subdivisions of ordinary posets, these
subdivisions are in general not each others opposites, but merely each others “conjugates” in the
sense that there are canonical isomorphisms

(ξ i P)op
≈ ξ t (Pop) or equivalently (ξ t P)op

≈ ξ i (Pop).

For instance, if P = 2̌ (3.2) and
∼
→ indicates a weak equivalence, then

ξ t 2̌ =

1

!!BBB
BB

��

∼

}}|||
||

01

  BB
BB

12
∼

~~||
||

012

0

CC����������

55kkkkkkkkkkk // 02

∼

OO

2

∼

[[7777777777∼
iiSSSSSSSSSSS

∼
oo

while

ξ i 2̌ =

1

01

==|||||

∼

����
��

��
��

��
12

∼
aaBBBBB

��
77

77
77

77
77

012

OO

∼
`̀BBBB

>>||||

∼

uukkkkkkkkkkk
∼

��
))SSSSSSSSSSS

0 02
∼

oo // 2

4.1. Relative posets

A relative poset is a relative category P such that und P (3.1) (and hence we P) is a poset. The
resulting full subcategory of RelCat spanned by these relative posets will be denoted by RelPos.
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4.2. Terminal and initial subdivisions

The terminal (resp. initial) subdivision of a relative poset P will be the relative poset ξ t P
(resp. ξ i P) which has

(i) as objects the monomorphisms (3.2)

ň −→ P ∈ RelPos (n ≥ 0)

(ii) as maps

(x1 : ň1 → P) −→ (x2 : ň2 → P)

(resp. (x2 : ň2 → P) −→ (x1 : ň1 → P))

the commutative diagrams of the form

ň1
//

x1
��

??
??

??
? ň2

x2
����

��
��

�

P

and
(iii) as weak equivalences those of the above (ii) diagrams for which the induced map x1n1 →

x2n2 (resp. x20→ x10) is a weak equivalence in P.
This terminal (resp. initial) subdivision comes with a terminal (resp. initial) projection

functor

π t : ξ t P −→ P (resp.π i : ξ i P −→ P)

which sends an object x : ň → P ∈ ξ t P (resp. ξ i P) to the object xn ∈ P (resp. x0 ∈ P)
and a commutative triangle as above to the map x1n1 → x2n2 ∈ P (resp. x20→ x10 ∈ P),
which clearly implies that

(iv) a map in ξ t P (resp. ξ i P) is a weak equivalence iff its image under π t (resp. π i ) is so
in P.

4.3. Naturality of the subdivisions

One readily verifies that the above functions ξ t and ξ i on the objects of RelPos can be
extended to functors

ξ t , ξ i : RelPos −→ RelPos

by sending, for a map f : P → P′ ∈ RelPos every monomorphism ň → P to the unique
monomorphism ň′→ P′ for which there exists a commutative diagram of the form

ň //

��

ň′

��

P
f

// P′

in which the top map is an epimorphism.
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4.4. The conjugation

To verify the conjugation mentioned at the beginning of this section we note that, using the
unique isomorphisms

n ≈ nop (n ≥ 0),

one can construct an isomorphism und(ξ i P)op ≈
→ undξ t (Pop) by associating with each map

ň1
//

y1
!!BB

BB
BB

BB
ň2

y2
}}||

||
||

||

Pop

in ξ t (Pop)

the map

ň1
//

≈

��

ň2

≈

��

ň1
op

y1
op

!!BB
BB

BB
BB

ň2
op

y2
op

}}||
||

||
||

P

in (ξ i P)op.

A rather straightforward calculation yields that this isomorphism is actually an isomorphism
of relative posets.

4.5. Final comments

(i) The reason that, given a relative poset P, we considered in this section both its terminal and
its initial subdivision is that, as will be shown in 9.4–9.6 below, in order to obtain the needed
Dwyer maps we need the two-fold subdivision ξ tξ i P and not, as one might have expected
from Thomason’s original result the iterated subdivisions ξ2

t P or ξ2
i P. It will therefore be

convenient to denote the two-fold subdivision

ξ tξ i P by ξP

and the associated composition

ξ tξ i P
π t
−−−→ ξ i P

π i
−−−→ P by ξP

π
−−→ P.

That Thomason did not have to do this is due to the fact that if P is maximal (3.2), then there
are obvious isomorphisms

ξ2
t P ≈ ξP and ξ2

i P ≈ ξP.

(ii) Dually, there is a conjugate two-fold subdivision ξ iξ t , which we denote by ξP, and for
which we denote the associated composition

ξ iξ t P
π i
−−−→ ξ t P

π t
−−−→ P by ξP

π
−−→ P.
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(iii) Given a relative poset P it is sometimes convenient to denote an object

x : ň −→ P ∈ ξ t P or ξ i P

by the sequence

(x0, . . . , xn)

of objects of P.

5. Some more preliminaries

To formulate our main result (in 6.1 below) we need

(i) a description of what is meant by lifting a cofibrantly generated model structure,
(ii) the Reedy model structure on the category sS of bisimplicial sets as well as its left Bousfield

localizations,
(iii) two adjunctions sS←→ RelCat, and
(iv) a key lemma.

5.1. Lifting model structures

[4, sec. 11.3] Given a cofibrantly generated model category F and an adjunction

f : F←→ G : g

one says that the model structure on F lifts to a cofibrantly generated model structure on G if

(i) the sets of the images in G under the left adjoint f of some choice of generating cofibrations
and generating trivial cofibrations of the model structure on F admit the small object
argument, and

(ii) the right adjoint g takes all (possibly transfinite) compositions of pushouts of the images in
G under f of the generating trivial cofibrations of F to weak equivalences in F,

in which case
(iii) the generating cofibrations and generating trivial cofibrations of the model structure on G

are the images under f of the generating cofibrations and generating trivial cofibrations of
the model structure on F, and

(iv) a map in G is a weak equivalence or a fibration iff its image under g is so in F.

5.2. The Reedy model structure on sS and its left Bousfield localizations

As usual let ∆ ⊂ Cat (the category of small categories) be the full subcategory spanned by
the posets n (n ≥ 0) (3.2) and let S and sS denote the resulting categories

S = Set∆
op

and sS = Set∆
op
×∆op

of simplicial and bisimplicial sets.

(i) The standard model structure on S is the cofibrantly generated proper model structure
[4, pp. 210 and 239] in which
(a) the cofibrations are the monomorphisms, and
(b) the weak equivalences are the maps which induce homotopy equivalences between the

geometric realizations.
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(ii) The resulting Reedy model structure on sS is the cofibrantly generated proper model
structure in which
(a) the cofibrations are the monomorphisms, and
(b) the weak equivalences are the Reedy (weak) equivalences, i.e. the maps L → M ∈ sS

for which the restrictions
L(p,−) −→ M(p,−) ∈ S (p ≥ 0)

are weak equivalences (i).
(iii) A left Bousfield localization [4, p. 57] of this Reedy structure is any cofibrantly generated

left proper model structure in which
(a) the cofibrations are the monomorphisms, and
(b) the weak equivalences include the Reedy equivalences.

(v) We note that the category sS admits an involution

Inv : sS −→ sS,

which is the automorphism that sends an object L ∈ sS – i.e., a functor ∆op
×∆op

−→ Set
– to the composition

∆op
×∆op σ op

×σ op

−−−−−−−→∆op
×∆op L

−−→ Set,

wherein σ :∆ −→∆ denotes the unique nontrivial automorphism of ∆.

5.3. Two adjunctions

Let ∆[m, n] ∈ sS (m, n ≥ 0) denote the standard (m, n)-bisimplex which has as its (i, j)-
bisimplices (i, j ≥ 0) the maps (i, j) → (m, n) ∈ ∆ ×∆ (5.2). Our main result then involves
the adjunctions

K : sS←→ RelCat : N and Kξ : sS←→ RelCat : Nξ ,

in which K and Kξ are the colimit preserving functors which send ∆[p, q] (p, q ≥ 0) to the
relative categories (3.2 and 4.5(i))

p̌× q̂ and ξ(p̌× q̂),

respectively, and N and Nξ send an object X ∈ RelCat to the bisimplicial sets which have as
their (p, q)-bisimplices (p, q ≥ 0) the maps

p̌× q̂ −→ X and ξ(p̌× q̂) −→ X ∈ RelCat,

respectively.
The most important of these functors is the functor N which Charles Rezk called the

classifying diagram, but which is now often referred to as the (simplicial) nerve functor. It
is connected to the functor Nξ by a natural transformation

π∗ : N −→ Nξ

induced by the natural transformation π : ξ → id (4.5(i)). This natural transformation π∗ is of
particular importance as, in view of the following Key Lemma 5.4, it enables us, in the proof of
Theorem 6.1 below, to use the functor N instead of the much more cumbersome functor Nξ .

A Key Lemma 5.4. The natural transformation π∗ : N → Nξ is a natural Reedy equivalence
(5.2). A proof will be given in Sections 7 and 8.
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6. A statement of the main results

Our main result is the following.

Theorem 6.1. Lifting model structures on sS to Quillen equivalent ones on RelCat The
adjunction (5.3)

Kξ : sS←→ RelCat : Nξ

lifts (5.1) every left Bousfield localization of the Reedy model structure on sS (and in particular
Rezk’s complete Segal structure) to a Quillen equivalent cofibrantly generated left proper model
structure on RelCat in which

(i) a map is a weak equivalence iff its image under Nξ (or equivalently (5.4) iff its image under
N) is so in sS,

(ii) a map is a fibration iff its image under Nξ is so in sS,
(iii) every cofibration is a Dwyer map (3.5),
(iv) every cofibrant object is a relative poset (4.1).

Moreover, the model structure lifted from the Reedy structure itself is also right proper.

A proof will be given in Section 10.
Dualizing the proof of both 5.4 and 6.1, one obtains the following.

Theorem 6.2. The conjugate model structures on RelCat The Key Lemma 5.4 and the
Theorem 6.1 remain valid if one replaces

(i) ξ with ξ (4.5 (ii)),
(ii) π with π (4.5 (ii)), and

(iii) the phrase Dwyer map with the phrase co-Dwyer map (3.5).

Corollary 6.3. The two model structures on RelCat lifted, as in 6.1 and 6.2, from the Reedy
model structure on sS or any left Bousfield localization thereof

(i) are Quillen equivalent,
(ii) have the same weak equivalences, and hence

(iii) have identical underlying relative categories.

Theorem 6.4. The involution of RelCat

(i) The involution (3.1)

Inv : RelCat −→ RelCat

is an isomorphism between the two model structures of 6.3.
(ii) Equivalently, a map f ∈ RelCat is a cofibration, fibration, or weak equivalence in one of

those model structures iff Inv( f ) ∈ RelCat is so in the other.

Proof. 6.4(ii) follows readily from the existence, for every pair of integers p, q ≥ 0, of an
isomorphism

ξ(p̌× q̂) ≈ (ξ(p̌op
× q̂op))op

≈ (ξ(p̌× q̂))op,

in which the first isomorphism is as in 4.5(i), and the second is induced by the unique
isomorphism

p̌op
× q̂op

≈ p̌× q̂. �
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6.5. Some (∞, 1)-categorical comments on the Rezk case

For the purposes of this section, let RelCat and sS denote the relative categories in which
the weak equivalences are the Rezk ones, and denote by RELCAT the similarly defined large
relative category.

(i) As sS is a model for the theory of (∞, 1)-categories, so is RelCat.
To make a similar statement for the involution Inv : RelCat −→ RelCat (3.1), let L H

denote the hammock localization of [3]. Then one can, for every relative category X, define
the space haut X of auto-equivalences of X as the space which consists of the invertible
components of the function space

L H RELCAT(X, X).

It then follows from a result of Toën [11, 6.3], that the space haut RelCat has two
components, which are both contractible. One of these contains the identity map of RelCat,
and thus the vertices of the other are the nontrivial auto-equivalences of RelCat.

(ii) The involution Inv : RelCat −→ RelCat (3.1) is a nontrivial auto-equivalence of RelCat,
and hence it models the contractible space of the nontrivial auto-equivalences of theories of
(∞, 1)-categories.

Proof. This follows readily from

(i) the observation of Toën [11, 6.3] that the involution Inv : sS −→ sS (5.2(v)) is an
automorphism of relative categories and is a nontrivial auto-equivalence of sS, and

(ii) the commutativity of the diagram

RelCat

N
��

Inv // RelCat

N
��

sS
Inv

// sS. �

To next deal with Thomason’s result [10] in our language we need the following.

6.6. Two more adjunctions

Let Cat ⊂ RelCat denote the full subcategory spanned by the maximal (3.2) relative cate-
gories. Then one has, corresponding to the adjunctions of 5.3, adjunctions

k : S←→Cat : n and kξ : S←→Cat : nξ

in which respectively k and kξ are the colimit preserving functors which send the standard sim-
plex ∆[q](q ≥ 0) to the maximal relative categories

q̂ and ξ q̂

and n and nξ send an object Y ∈Cat to the simplicial sets which have as its q-simplices (q ≥ 0)

the maps

q̂ −→ Y and ξ q̂ −→ Y ∈Cat ⊂ RelCat.

The functor n : Cat → S is the (classical) nerve functor and is connected to the functor
nξ :

Cat→ S by a natural transformation
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π∗ : n −→ nξ

induced by the natural transformation π : ξ → id (4.5(i)).
In our language Thomason’s result then becomes the following.

Thomason’s Theorem 6.7 ([10]). The adjunction

kξ : S←→Cat : nξ

lifts (5.1) the standard model structure on S (5.2) to a Quillen equivalent cofibrantly generated
proper model structure on Cat in which

(i) a map is a weak equivalence or a fibration iff its image under nξ is so in S,
(ii) every cofibration is a Dwyer map (3.5), and

(iii) every cofibrant object is a relative poset (4.1).
Moreover

(iv) the natural transformation π∗ : n→ nξ is a natural weak equivalence
and hence

(v) a map is also a weak equivalence iff its image under the nerve functor n is so in S.

We further point out a tight connection between our result and Thomason’s original one [10].

6.8. A tight connection between Theorems 6.1 and 6.7

If one considers the category S as the subcategory of the category sS consisting of the
bisimplicial sets L for which

L(p, q) = L(0, q) for all p, q ≥ 0

then the inclusions

S ⊂ sS and Cat ⊂ RelCat

are the left adjoints in adjunctions

i : S←→ sS : r and i :Cat←→ RelCat : r

for which the units 1→ ri are both the identity natural transformations. Then one readily verifies
that

Proposition 6.9. The diagram

S
kξ

//

i

��

Cat
nξ

oo

i

��

sS

r

OO

Kξ

// RelCat
Nξ

oo

r

OO

in which the outside arrows are the left adjoints and the inside ones the right adjoints has the
following properties:
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(i) The horizontal adjunctions are both Quillen equivalences (6.1 and 6.7) and the vertical
adjunctions are both Quillen pairs.

(ii) The diagram commutes as a square of adjunctions and as a square of Quillen pairs.
Moreover

(iii) kξ = r Kξ i and nξ = r Nξ i .

We end with a description of the following.

6.10. The Quillen equivalence between the model category of relative categories and the Joyal
model category of simplicial sets

In [5] Joyal and Tierney constructed a Quillen equivalence

S←→ sS

between the Joyal structure on the category S of small simplicial sets and the Rezk structure on
the category sS of simplicial spaces (i.e. bi-simplicial sets), and in 6.1 we described a Quillen
equivalence

sS←→ RelCat

between the Rezk structure on sS and the induced Rezk structure on the category RelCat of
relative categories.

We now observe that the resulting composite Quillen equivalence

S←→ RelCat

admits a description which is almost identical to that of Thomason’s [10] Quillen equivalence

S←→ Cat

between the classical structure on S and the induced one on the category Cat of small categories,
as reformulated in 6.7.

In view of [5, 4.1] and 5.2 we can state the following.

Corollary 6.11. (i) The left adjoint in the above composite Quillen equivalence

S←→ RelCat

is the colimit preserving functor which for every integer n ≥ 0 sends

∆[n] ∈ S to ξ ň ∈ RelCat

and the right adjoint sends an object X ∈ RelCat to the simplicial set which in dimension n
(n ≥ 0) consists of the maps

ξ ň→ X ∈ RelCat.

while, in view of the fact that Cat is canonically isomorphic to the full subcategory Cat ⊂
RelCat spanned by the relative categories in which every map is a weak equivalence and
6.7,

(ii) The left adjoint in Thomason’s Quillen equivalence

S←→Cat

is the colimit preserving functor which, for every integer n ≥ 0, sends

∆[n] ∈ S to ξ n̂ ∈Cat (n ≥ 0)
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while the right adjoint sends an object X ∈ Cat to the simplicial set which in dimension n
(n ≥ 0) consists of the maps

ξ n̂ −→ X ∈Cat.

7. Some homotopy preserving functors

In preparation for the proof (in Section 8 below) of Key Lemma 5.4 we here

(i) note that the category RelCat is cartesian closed and that the homotopy relation on RelCat
is compatible with this cartesian closure,

(ii) prove that the subdivision functors (Section 4) preserve homotopies between finite relative
posets and

(iii) describe a sufficient condition on a functor RelCat → sS (5.2) in order that it sends
homotopic maps in RelCat to homotopic maps in sS.

7.1. Cartesian closure of RelCat

The category RelCat is cartesian closed. That is [8, Ch. IV, sec. 6], we have the following.

(i) For every object Y ∈ RelCat, the functor

−× Y : RelCat −→ RelCat

has a right adjoint (−)Y , which associates with an object Z ∈ RelCat the relative category
of relative functors ZY , which has
(a) as objects the maps Y→ Z ∈ RelCat, and
(b) as maps and weak equivalences respectively the maps (3.2)

Y × 1̌ −→ Z and Y × 1̂ −→ Z ∈ RelCat.
(ii) For every three objects X, Y and Z ∈ RelCat, there is [8, Ch. IV, sec. 6, Ex. 3] a natural

enriched adjunction isomorphism

ZX×Y
≈ (ZY)X

∈ RelCat,

which sends
(a) a map f : X × Y → Z to the map g : X→ ZY , which sends an object x ∈ X to the map

gx : Y→ Z given by (gx)y = f (x, y) for every object y ∈ Y, and
(b) a map

X × Y × 1̌ −→ Z (resp. X × Y × 1̂ −→ Z)
to the map

X × 1̌ −→ ZY (resp. X × 1̂ −→ ZY)
obtained from the obvious composition

X × 1̌× Y ≈ X × Y × 1̌ −→ Z (resp. X × 1̂× Y ≈ X × Y × 1̂ −→ Z).

Proposition 7.2. If two maps f, g : X → Y ∈ RelCat are strictly homotopic (3.3), then so are,
for every object Z ∈ RelCat the induced maps (7.1)

f ∗, g∗ : ZY
−→ ZX,

and hence, if e : X→ Y ∈ RelCat is a (strict) homotopy equivalence (3.3), then so are, for every
object Z ∈ RelCat, the induced maps

e∗ : ZY
−→ ZX.
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Proof. Given a strict homotopy h : X × 1̂→ Y, the desired strict homotopy is the map

ZY
× 1̂→ ZX

which is adjoint (7.1(ii)a) to the composition

ZY zh

−→ Z(X×1̂)
≈ (ZX)1̂

in which the isomorphism is as in 7.1(ii)a. �

Proposition 7.3. The subdivision functors ξ t , ξ i and ξ = ξ tξ i (Section 4)

(i) preserve homotopies between maps from finite relative posets
and hence also

(ii) preserve homotopy equivalences between finite relative posets.
In particular,

(iii) for every pair of integers p, q ≥ 0 all maps in the commutative diagram

ξ(p̌× q̂) = ξ tξ i (p̌× q̂)
π t ξ i //

��

ξ i (p̌× q̂)
π i //

��

p̌× q̂

��

ξ p̌ = ξ tξ i p̌
π t ξ i // ξ i p̌

π i // p̌,

in which the vertical maps are induced by the projection p̌ × q̂ → p̌, are homotopy
equivalences.

Proof. We first deduce (iii) from (ii).
To do this we note that the map p̌ × q̂ → p̌ is obviously a homotopy equivalence; hence, in

view of (ii), so are the other two vertical maps.
Next we consider the commutative diagram

ξ tξ i p̌
π t ξ i //

ξ t π i

��

ξ i p̌

π i

��

ξ t p̌
π t // p̌,

for which one readily verifies that the maps going to p̌ are homotopy equivalences with as
homotopy inverses the maps which send an object i ∈ p̌ to the objects (4.5(iii))

(0, . . . , i) ∈ ξ t p̌ and (p − i, . . . , p) ∈ ξ i p̌

respectively and the desired result now follows from the observation that, in view of (ii), the map
ξ tπ i is a weak equivalence and thus so is the map π tξ i .

Next we note that (ii) follows from (i). It thus remains to prove (i).
To do this, it suffices to observe that, for every finite relative poset P, if

(i) n is the number of objects of P and one denotes the objects of P by the integers 1, . . . , n in
such a manner that, for every two such integers a and b one has a ≤ b, whenever there exists
a map a→ b ∈ P, and

(ii) J denotes the maximal relative poset (3.2) which has 2n+1 objects j0, . . . , j2n and, for every
integer i with 0 ≤ i ≤ n − 1, maps
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j2i −→ j2i+1 ←− j2i+2,

then we have the following.

(i) There exists a map

k : ξ t P× J −→ ξ t (P× 1̂) ∈ RelPos

such that, in the notation of 4.5(iii), for every object (r1, . . . , ru) ∈ ξ t P

k((r1, . . . , ru), j2n) = ((r1, 0), . . . , (ru, 0))

and

k((r1, . . . , ru), j0) = ((r1, 1), . . . , (ru, 1)).

For in that case,
(ii) for any two maps f, g : P→ X ∈ RelCat and strict homotopy (3.3)

h : P× 1̂ −→ X ∈ RelCat

between them, the composition

ξ t P× J
k
−−→ ξ t (P× 1̂)

ξ t h
−−−→ ξ t X

is a homotopy between ξ t f and ξ t q .
A lengthy but essentially straightforward calculation (which we will leave to the reader)

then yields that
(iii) such a map k can be obtained by defining, for every integer i with 0 ≤ i ≤ n and every

object (p1, . . . , ps, q1, . . . , qt ) ∈ ξ t P with ps < i ≤ q1,

k((p1, . . . , ps, q1, . . . , qt ), j21) = ((p1, 0), . . . , (ps, 0), (q1, 1), . . . , (qt , 1)),

and, for every integer i with 0 ≤ i ≤ n − p and object (p1, . . . , ps, q1, . . . , qt ) ∈ ξ t P with
ps < i < qt ,

k((p1, . . . , ps, q1, . . . , qt ), j2i+1) = ((p1, 0), . . . , (ps, 0), (q1, 1), . . . , (qt , 1))

and

k((p1, . . . , ps, i, q1, . . . , qs), j2i+1)

= ((p1, 0), . . . , (ps, 0), (i, 0), (i, 1), (q1, 1), . . . , (qt , 1)). �

It thus remains to describe the needed sufficient condition on a functor RelCat→ sS (5.2) in
order that it preserve homotopies, and for this we define the following.

7.4. Homotopic maps and homotopy equivalences in sS

We will call

(i) two maps A → B ∈ sS homotopic if they can be connected by a finite zigzag of maps of
the form A ×∆[0, 1] → B ∈ sS, and

(ii) a map f : A → B ∈ sS a homotopy equivalence if there exists a map g : B → A ∈ sS
(called a homotopy inverse of f ) such that the compositions g f and f g are homotopic to
the identity maps of A and B respectively.

These definitions clearly imply that
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(iii) every homotopy equivalence in sS is a Reedy equivalence (5.2).

Next, for every functor α : ∆ × ∆ → RelCat, let Nα : RelCat → sS denote the functor
that to every object X ∈ RelCat and to every pair of integers p, q ≥ 0 assigns the set of maps
α(p, q)→ X ∈ RelCat. Then one has the following.

Proposition 7.5. If ι : ∆ ×∆ → RelCat (5.2) is the functor that sends (p, q) to q̂ (p, q ≥ 0),
and α : ∆×∆→ RelCat is a functor for which there exists a natural transformation ε : α→ ι,
then the functor Nα : RelCat → sS sends homotopic maps in RelCat to homotopic maps in
sS (7.4), and hence homotopy equivalences in RelCat to homotopy equivalences in sS.

This is in particular the case if

(i) α = ι and ε = id

and, for every pair of integers p, q ≥ 0, if

(ii) α(p, q) = p̌× q̂ and εq is the projection p̌× q̂→ q̂ (q ≥ 0), and
(iii) α(p, q) = ξ(p̌× q̂) (4.5) and εq is the composition

ξ(p̌× q̂)
π
−−→ p̌× q̂

proj.
−−→ q̂.

Proof. Given a homotopy h : X×1̂→ Y ∈ RelCat, the desired homotopy in S is the composition

NαX ×∆[0, 1] −→ NαX × Nα 1̂ ≈ Nα(X × 1̂)
Nαh
−−−−→ NαY

in which the isomorphism in the middle is due to the fact that Nα as a right adjoint preserves
products, while the first map is induced by the composition

∆[0, 1] ≈ Nι1̂ −→ Nα 1̂,

in which the first map is the obvious isomorphism, while the second is induced by the natural
transformation ε : α→ ι. �

8. Proof of Key Lemma 5.4

To prove Key Lemma 5.4 we have to show that for every object X ∈ RelCat and integer
p ≥ 0, the map

π∗p : NX(p,−) −→ Nξ X(p,−) ∈ S

is a weak equivalence.
To prove this we recall that, for every pair of integers p, q ≥ 0

NX(p, q) = RelCat(p̌× q̂, X) and

Nξ X(p, q) = RelCat(ξ(p̌× q̂), X)

and embed the map π∗p in a commutative diagram

RelCat(p̌× −̂, X)
a
≈

//

π∗p

��

diag F̄pX
diag f

// diag FpX

diag k

��

RelCat(ξ(p̌× −̂), X)
b
≈

// diag Ḡ pX
diag g

// diag G pX
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in S and show that the maps a and b are isomorphisms and that the other three are weak
equivalences.

The bisimplicial sets F̄pX, FpX, G pX and Ḡ pX and the maps between them are defined as
follows:

F̄pX(q, r) = RelCat(p̌× q̂, X0̂)

f

��

FpX(q, r) = RelCat(p̌× q̂, Xr̂)| 7.1(ii)a
≈ RelCat(r̂, Xp̌×q̂)

k

��

G pX(q, r) = RelCat(ξ(p̌× q̂), Xr̂)| 7.1(ii)a
≈ RelCat(r̂, Xξ(p̌×q̂))

Ḡ pX(q, r) = RelCat(ξ(p̌× q̂), X0̂),

g

OO

where f and g are induced by the unique maps r̂→ 0̂ and k is induced by the map π : ξ(p̌×q̂)→

p̌× q̂ (4.5).
It then follows readily from 7.2, 7.3(iii) and 7.5 that the restrictions

f (−, r), g(−, r), and k(q,−) ∈ S (q, r ≥ 0)

are homotopy equivalences and hence weak equivalences. Moreover, as any map of bisimplicial
sets that induces weak equivalences between either their rows or their columns also induces a
weak equivalence between their diagonals, it follows that

diag f, diag g, and diag k

are all weak equivalences.
Finally, to complete the proof, one notes that there are obvious isomorphisms a and b which

make the diagram commute.

9. Dwyer maps

In preparation for the proof of Theorem 6.1 (in Section 10 below) we here

(i) note (in 9.1, 9.2 and 9.3) that Dwyer maps (3.5) are closed under retracts, pushouts and
(possibly transfinite) compositions,

(ii) discuss (in 9.4 and 9.5) a way of producing Dwyer maps which explains why our main result
involves the two-fold subdivision ξ = ξ tξ i (4.5) and not, as one might have expected from
Thomason’s original result [10], the iterated functors ξ2

t and ξ2
i , and

(iii) use these results to show that every monomorphism

L −→ M ∈ sS (5.2)

gives rise to a Dwyer map (5.3)

Kξ L −→ Kξ M ∈ RelCat.

Proposition 9.1. Every retract of a Dwyer map (3.5) is a Dwyer map.
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Proof. Let A→ B be a Dwyer inclusion (3.5), and let

A
′ //

��

A
′′ //

f̄
��

B
′

f

��

A //

��

ZA //

ḡ
��

B

g
��

A
′ // A

′′ // B
′

be a commutative diagram in which g f = 1B′ , the horizontal maps are relative inclusions 3.1,
and (r, s) is a strong deformation retraction (3.4) of ZA (3.5) onto A. Then a straightforward
calculation yields that A′ is a sieve on B′, that A′′ = ZA′ and that the pair (r ′, s′) where

r ′ = ḡr f̄ and s′ = ḡs f̄ : ḡr f̄ −→ ḡ f̄ = 1A′′

is the desired strong deformation retraction of A′′ = ZA′ onto A′. �

Proposition 9.2. Let

A
s //

i
��

C

j
��

B
t // D

be a pushout diagram in RelCat in which the map i : A→ B is a Dwyer map (3.5). Then

(i) the map j : C→ D is a Dwyer map in which ZC = ZA⨿A C, and
(ii) if A, B and C are relative posets, then so is D.

Moreover
(iii) the map t : B→ D restricts to isomorphisms

XA ≈ XC and XA ∩ ZA ≈ XC ∩ ZC

where XA ⊂ B and XC ⊂ D denote the full relative subcategories spanned by the objects
which are not in the image of A or C.

Proof. Assuming that the map i : A→ B is a relative inclusion (3.1) one shows that C is a sieve
in D by noting that the characteristic relative functor (3.5) B → 1̂ and the map C → 1̂ which
sends all of C to 0 yield a map x : D→ 1̂ such that x−10 = C and one shows in a similar manner
that ZA⨿A C is a cosieve in D. Furthermore, the strong deformation retraction (r, s) of ZA onto
A induces a strong deformation retraction (r ′, s′) of ZA⨿A C onto C given by

r ′ = r ⨿A C : ZA⨿A C −→ A⨿A C = C

s′ = s⨿A C : r ⨿A C −→ 1ZA⨿A C = 1ZA⨿A C.

This, together with the fact that ZA⨿A C is a cosieve in D, readily implies that

ZA⨿A C = ZC.

To prove (iii) one notes that (i) the relative inclusion

0̂ = A⨿A 0̂ −→ B⨿A 0̂
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is a Dwyer map in which Z 0̂ = ZA⨿A 0̂ is obtained from XA ∩ ZA by adding a single object 0
and, for every object B ∈ XA ∩ ZA a single weak equivalence 0 → B and similarly B⨿A 0̂ is
obtained from XA by adding a single object 0 and, for every object B ∈ XA∩ ZA a single weak
equivalence 0→ B. Clearly D⨿C 0̂ admits a similar description in terms of XC and ZC and the
desired result now follows from the observation that the map B→ D induces an isomorphism

B⨿A 0̂ ≈ D⨿C 0̂

Finally, to prove (ii), we note that if two objects E, F ∈ D are both in C or else both in XC,
then there is at most one map between them as C, and, in view of (iii), the relative categories
XC ≈ XA ⊂ A are both relative posets. It thus remains to consider the case that E ∈ C and
F ⊂ XC. In that case, there is no map F → E ∈ D (because C is a sieve in D), and if there
is a map g : E → F ∈ D, then F ∈ ZC and g = (s′F)(r ′g); hence g is unique because
r ′g : E → r ′F is in C and therefore unique. �

Proposition 9.3. Every (possibly transfinite) composition of Dwyer maps is a Dwyer map.

Proof. Assuming that all Dwyer maps involved are relative inclusions this follows readily from
the following observations.
(i) If A0 → A1 and A1 → A2 are Dwyer maps with strong deformation retractions (3.4),

(r0,1, s0,1) and (r1,2, s1,2)

of Z(A0, A1) onto A0 of Z(A1, A2) onto A1,

then A0 is a sieve in A2, and one can obtain a strong deformation retraction

(r0,2, s0,2) of Z(A0, A2) onto A0

that restricts on Z(A0, A1) to (r0,1, s0,1) by “composing” the restriction (r ′1,2, s′1,2) of
(r1,2, s1,2) to Z(A0, A1) with (r0,1, s0,1), i.e., by defining (r0,2, s0,2) by

r0,2 = r0,1r ′1,2 and s0,2 = s′1,2s0,1.

(ii) If λ is a limit ordinal, and

A0 −→ · · · −→ Aβ −→ (β ≤ λ)

is a sequence of relative inclusions such that
(a) for every limit ordinal γ ≤ λ,one has Aγ =


α<γ Aα ,

(b) for all β < λ, A0 is a sieve in Aβ , and
(c) there exist strong deformation retractions

(r0,β , s0,β) of Z(A0, Aβ) onto A0
(one for each β < λ) such that, for each α < β < λ, (r0,α, s0,α) is the restriction of
(r0,β , s0,β) to Z(A0, Aα),

then A0 is a sieve in Aλ and there exists a (unique) strong deformation retraction (r0,λ, s0,λ)

of Z(A0, Aλ) onto A0 such that, for every β < λ, (r0,β , s0,β) is the restriction of (r0,λ, s0,λ)

to Z(A0, Aβ).

Proposition 9.4. If
(i) P→ Q ∈ RelPos is a relative inclusion (3.1), and

(ii) P is a cosieve in Q (3.5),

then the induced inclusion ξ t P→ ξ t Q (4.1) is a Dwyer map (3.5).

Proof. For every object (a0, . . . , an) ∈ ξ t Q (4.5(iii)) either
(i) none of the ai (0 ≤ i ≤ n) is in P, or
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(ii) there is (in view of 9.4(ii)) an integer j with 0 ≤ j ≤ n such that ai ∈ P iff i ≥ j , in which
case

(iii) (a j , . . . , an) ∈ ξ t P and (a0, . . . , an) ∈ Zξ t P.

It now readily follows that ξ t P is a sieve in ξ t Q and that the strong deformation retraction
(r, s) given by the formulas

r(a0, . . . , an) = (a j , . . . , an) ∈ ξ t P

s(a0, . . . , an) = (a j , . . . , an) −→ (a0, . . . , an) ∈ ξ t Q

is the desired one. �

Proposition 9.5. For every pair of integers p, q ≥ 0 let ∂∆[p, q] ⊂ ∆[p, q] ∈ sS (5.2)
denote the largest subobject not containing its (only) non-degenerate (in both directions) (p, q)-
bisimplex. Then the inclusion ∂∆[p, q] → ∆[p, q] induces (5.3) a Dwyer map

Kξ∂∆[p, q] −→ Kξ∆[p, q] = ξ(p̌× q̂) = ξ tξ i (p̌× q̂) ∈ RelPos (4.1)

Proof. Let Kξ i : sS → RelCat denote the colimit preserving functor which, for every pair of
integers a, b ≥ 0, sends ∆[a, b] to ξ i (ǎ× b̂). We show that

I. the inclusion ∂∆[p, q] → ∆[p, q] induces an inclusion

Kξi ∂∆[p, q] → Kξi ∆[p, q]

that satisfies 9.4(i) and (ii), implying that the resulting inclusion

ξt Kξi ∂∆[p, q] → ξt Kξi ∆[p, q] = Kξ∆[p, q]

is a Dwyer inclusion, and
II. Kξ∂∆[p, q] = ξt Kξi ∂∆[p, q].

To show these, let D denote the poset that has as its objects the subcategories of p̌ × q̂ of
the form ǎ × b̂ for which ǎ and b̂ are relative subcategories of p̌ and q̂, respectively, and as its
morphisms the relative inclusions. One readily verifies the following.

(i) For every pair of objects ǎ1 × b̂1 and ǎ2 × b̂2 ∈ D for which both ǎ1 ∩ ǎ2 and b̂1 ∩ b̂2 are
nonempty,
(a) (ǎ1 × b̂1) ∩ (ǎ2 × b̂2) = (ǎ1 ∩ ǎ2)× (b̂1 ∩ b̂2)

(b) ξi (ǎ1 × b̂1) ∩ ξi (ǎ2 × b̂2) = ξi ((ǎ1 ∩ ǎ2)× (b̂1 ∩ b̂2))

(c) ξ(ǎ1 × b̂1) ∩ ξ(ǎ2 × b̂2) = ξ((ǎ1 ∩ ǎ2)× (b̂1 ∩ b̂2)).
(ii) For every map f : ǎ1 × b̂1 → ǎ2 × b̂2 ∈ D,

(a) ξi f is a relative inclusion, and ξi (ǎ1 × b̂1) is a cosieve in ξ(ǎ2 × b̂2), and
(b) ξ f is a relative inclusion, and ξ(ǎ1 × b̂1) is a sieve in ξ(ǎ2 × b̂2).

One verifies I above by noting, in view of (i)b and (ii)a, that Kξi ∂∆[p, q] is exactly the
union in ξi (p̌ × q̂) = Kξi ∆[p, q] of all the ξi (ǎ × b̂)’s, and thus the resulting inclusion
Kξi ∂∆[p, q] → Kξi ∆[p, q] satisfies 9.4(i) and (ii).

To obtain II above one first notes that, as above, the map Kξ∂∆[p, q] → Kξ∆[p, q] is an
inclusion, and thus the obvious map Kξ∂∆[p, q] → ξt Kξi ∂∆[p, q] is also an inclusion. It
remains therefore to show that this map is onto. But this follows from the fact that, for every
map h : x → y ∈ ξt Kξi ∂∆[p, q], where y is a monomorphism n → Kξi ∂∆[p, q], the object
y0 ∈ Kξi ∂∆[p, q] lies in some ξi (ǎ × b̂) and hence, in view of (ii)b, the whole map h : x → y
lies in Kξ∂∆[p, q]. �
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Finally we show the following by combining 9.5 with 9.2 and 9.3,

Proposition 9.6. Every monomorphism L → M ∈ sS induces (5.3) a Dwyer map

Kξ L −→ Kξ M ∈ RelPos.

Proof. Assume that L is actually a subobject of M and denote by Mn (n ≥ −1) the smallest
subobject containing all (i, j)-bisimplices with i + j ≤ n. Then

(i) M =


n≥−1(Mn
∪ L) and Kξ M =


n≥−1 Kξ (Mn

∪ L).
Furthermore if ∆n(M, L) (resp. ∂∆n(M, L)) (n ≥ 0) denotes the disjoint union of copies

of ∆[i, j] (resp. ∂∆[i, j]), one for each non-degenerate (in both directions) (i, j)-bisimplex
with i + j = n that is in Mn

∪ L , but not in Mn−1
∪ L , then 9.2(i) and 9.5 imply:

(ii) The pushout diagram in sS

∂∆n(M, L) //

��

Mn−1
∪ L

��

∆n(M, L) // Mn
∪ L

induces a pushout diagram in RelCat

Kξ∂∆n(M, L) //

��

Kξ (Mn−1
∪ L)

��

Kξ∆n(M, L) // Kξ (Mn
∪ L),

in which the vertical maps are Dwyer maps. It therefore follows from (i) and 9.3 that the map
Kξ L → Kξ M is a Dwyer map as well.

That this map is in RelPos, i.e. that Kξ M (and hence Kξ L) is a relative poset now can
be shown by combining the above for L = ∅ with 9.2(ii) and the fact that every (possibly
transfinite) composition of relative inclusions of relative posets is again a relative inclusion of
relative posets. �

10. Proof of Theorem 6.1

Before proving Theorem 6.1 (in 10.5 below) we

(i) obtain a key lemma which states that, up to a weak equivalence in the Reedy model structure
on sS (and hence in any left Bousfield localization thereof), pushing out along a Dwyer map
commutes with applying the (simplicial) nerve functor N : RelCat → sS (and hence (5.4)
also the functor Nξ : RelCat→ sS),

and then

(ii) use this to show that the unit 1→ Nξ Kξ of the adjunction

Kξ : sS←→ RelCat : Nξ

is a natural Reedy weak equivalence, which in turn readily implies that a map f : L → M ∈
sS is a weak equivalence in the Reedy model structure or any left Bousfield localization
thereof iff the induced map Nξ Kξ f : Nξ Kξ L → Nξ Kξ M ∈ sS is so.
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Another Key Lemma 10.1. Let

A
s //

i
��

C

j
��

B
t // D

be a pushout diagram in RelCat in which the map i : A→ B is a Dwyer map (3.5). Then, in the
Reedy model structure on sS (and hence in any left Bousfield localization thereof),

(i) the induced map

NB⨿NA NC −→ ND ∈ sS

is a weak equivalence, and
(ii) if Ni is a weak equivalence, then so is N j and if Ns is a weak equivalence, then so is Nt.

Proof. One readily verifies that (3.5 and 9.2(iii))

XA, ZA and XA ∩ ZA

are cosieves in B and that therefore the image of a map p̌× q̂→ B (p, q ≥ 0) is

(i) either only in XA,
(ii) or only in ZA

(iii) or both in XA and in ZA

iff the image of the initial object (0, 0) ∈ p̌×q̂ is. It follows that NB and (9.2(i)) ND are pushouts

NB
b
≈ N XA⨿N (XA∩ZA) N ZA and

ND
d
≈ N XC⨿N (XC∩ZC) N ZC

and that therefore the map NB⨿NA NC→ ND admits a factorization

NB⨿NA NC
a
−−→ NB⨿N ZA N ZC

b
≈ N XA⨿N (XA∩ZA) N ZA⨿N ZA N ZC

= N XA⨿N (XA∩ZA) N ZC
c
≈ N XC⨿N (XC∩ZC) N ZC

d
≈ ND

in which c is induced by the isomorphisms of 9.2(iii), and a is induced by the inclusions A→ ZA
and C → ZC (3.5).

Part (i) now follows from the observation that, in view of 7.5(ii) and the fact that (3.3 and 3.5)
the maps A→ ZA and C→ ZC are homotopy equivalences, the induced maps

NA −→ N ZA and NC −→ N ZC ∈ sS

are weak equivalences. �

Furthermore the first half of (ii) is an immediate consequence of (i), while the second half
follows from (i) and the left properness of the model structures involved.

Corollary 10.2. In view of Key Lemma 5.4 Proposition 10.1 remains valid if one replaces
everywhere the functor N by Nξ (5.3).



C. Barwick, D.M. Kan / Indagationes Mathematicae 23 (2012) 42–68 67

Proposition 10.3. The unit

ηξ : 1 −→ Nξ Kξ

of the adjunction Kξ : sS ←→ RelCat : Nξ (5.3) is a natural weak equivalence in the Reedy
model structure on sS (and hence also any left Bousfield localization thereof).

Corollary 10.4. A map f : L → M ∈ sS is a weak equivalence in the Reedy model structure or
any of its left Bousfield localizations iff the induced map Nξ Kξ L → Nξ Kξ M ∈ sS is so.

Proof of 10.3. We first show that

(*) for every pair of integers p, q ≥ 0, the map

ηξ : ∆[p, q] −→ Nξ Kξ∆[p, q] ∈ sS

is a weak equivalence.

This follows from the observation that, in the commutative diagram

∆[p, q]
ηξ

//

��

Nξ Kξ∆[p, q] = Nξ ξ(p̌× q̂)

π∗

��

N K∆[p, q] π∗ // Nξ K∆[p, q] = Nξ ξ(p̌× q̂),

in which η denotes the unit of the adjunction K : sS←→ RelCat : N (5.3) and π is as in 4.5(i).
η is readily verified to be a Reedy equivalence, while π∗ and π∗ are so in view of 5.4 and 7.5(iii)
and 7.3(iii) respectively.

To deal with an arbitrary object M ∈ sS one notes that, in the notation of the proof of 9.6,

M =


n
Mn and Nξ Kξ M =


n

Nξ Kξ Mn,

and that it thus suffices to prove that

(*)n for every integer n ≥ 0, the map

ηξ : Mn
−→ Nξ Kξ Mn

∈ sS

is a weak equivalence.

For n = 0 this is obvious, and we thus show that, for n > 0, (∗)n−1 implies (∗)n .
To do this, consider the commutative diagram, in which ∆n(M,∅) and ∂∆n(M,∅) are as in

the proof of 9.6,

∂∆n(M,∅) //

��

))SSSSSSS ∆n(M,∅)

((RRRRRRR

��

Nξ Kξ∂∆n(M,∅) //

��

Nξ Kξ∆n(M,∅)

��

��

Mn−1

))RRRRRRRR
// Mn

((QQQQQQQQQQQ

Nξ Kξ Mn−1 //

//

H

((QQQQQQQQQ

Nξ Kξ Mn
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in which the two squares are pushout squares and all maps are the obvious ones. It then follows
from (∗) and (∗)n−1 above that the slanted maps at the left and the top are weak equivalences
and so is therefore the map Mn

→ H . The desired result now follows from the observation that,
in view of 9.6, 10.1, and 10.2 so is the map H → Nξ Kξ Mn . �

Now we are finally ready to complete the proof of our main theorem.

10.5. Proof of Theorem 6.1

(i) The model structure. To show that the Reedy model structure on sS lifts to a model structure
on RelCat one has to verify 5.1(i) and (ii). Clearly 5.1(i) follows from the smallness of the
prospective generating cofibrations and generating trivial cofibrations. To show that 5.1(ii)
holds, one notes that, in view of 10.4, the right adjoint Nξ sends every prospective generating
trivial cofibration to a weak equivalence in sS and that, in view of 9.2, 9.3, 9.6, 10.1 and 10.2,
the same holds for every (possibly transfinite) composition of pushouts of the prospective
generating trivial cofibrations. Moreover, in view of [4, Th. 3.3.20], all this applies also to
any Bousfield localization of the Reedy structure.

Furthermore
(a) 6.1(i) and (ii) follow from 5.1(iv),
(b) 6.1(iii) follows from 9.1–9.3 and 9.6, and
(c) 6.1(iv) follows similarly from 9.1–9.3 and the fact that the colimit of every (possibly

transfinite) sequence of monomorphisms of posets is again a poset.
(ii) The Quillen equivalence. This follows readily from 6.1(i), and 10.3.

And finally
(iii) The (left) properness. Left properness follows from 10.1(ii), and 10.3 and the left properness

of the model structures on sS. The right properness of the model structure lifted from the
Reedy model structure is a consequence of the right properness of the latter and the fact that
the right adjoint preserves limits.
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