On the Extension of 2-Polynomials

Pei-Kee Lin

Department of Mathematics, University of Memphis, Memphis, Tennessee 38152

Submitted by John Horváth

Received December 6, 1993

Let X be a normed linear space over \mathbb{K} (\mathbb{R} or \mathbb{C}). A function $P: X \to \mathbb{K}$ is said to be a 2-polynomial if there is a bilinear functional $\Pi: X \times X \to \mathbb{K}$ such that $P(x) = \Pi(x, x)$ for every $x \in X$. The norm of P is defined by

$$||P|| = \sup\{|P(x)| : ||x|| = 1\}.$$

It is known that if X is an inner product space, then every 2-polynomial defined in a linear subspace of X can be extended to X preserving the norm. On the other hand, there is a 2-polynomial P defined in a two-dimensional subspace of l_x^3 such that every extension of P to l_x^3 has norm greater than $\|P\|$ (see [1, 2]). Recently, Benítez and Otero [2] showed that if X is a three-dimensional real Banach space X such that the unit ball of X is an intersection of two ellipsoids, then every 2-polynomial defined in a linear subspace of X can be extended to X preserving the norm. It is natural to ask [2] the following.

Question 1. Suppose X is a normed space such that the unit ball of X is an intersection of two ellipsoids. Can every 2-polynomial defined in a linear subspace of X be extended to X preserving the norm?

In this article, we show the answer is affirmative when X is a finite dimensional space. First, we recall the following result in [2].

LEMMA 1. If P and Q are 2-polynomials in $X = \mathbb{R}^2$ such that

$$0 \le \{P(x), Q(x)\} \qquad (x \in X)$$

795

0022-247X/95 \$12.00

Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.

796 PEI-KEE LIN

then there exists $0 \le \alpha \le 1$ such that

$$0 \le \alpha P(x) + (1 - \alpha)O(x) \qquad (x \in X).$$

LEMMA 2. Suppose X is a real normed space and suppose P_1 , P_2 are two positive semidefinite 2-polynomials on X. If Q is a 2-polynomial such that

$$|Q(x)| \le \max \{P_1(x), P_2(x)\} \quad (x \in X),$$

then there are $0 \le \alpha$, $\beta < 1$ such that for every $x \in X$,

$$-((\beta P_1(x) + (1-\beta)P_2(x)) \le Q(x) \le \alpha P_1(x) + (1-\alpha)P_2(x).$$

Proof. For every $x \in S$ with $Q(x) \ge 0$ ($Q(x) \le 0$), let

$$A_x = \{ \gamma \in [0, 1] : \gamma P_1(x) + (1 - \gamma) P_2(x) \ge Q(x) \}$$

$$(B_x = \{ \gamma \in [0, 1] : -(\gamma P_1(x) + (1 - \gamma) P_2(x)) \le Q(x) \}.)$$

To prove this lemma, it is enough to show that

$$\bigcap_{\{x \in S \colon Q(x) \geq 0\}} A_x \neq \emptyset, \qquad \bigcap_{\{x \in S \colon Q(x) \leq 0\}} B_x \neq \emptyset.$$

For any $x \in S$ with $Q(x) \ge 0$ (respectively, $Q(x) \le 0$), A_x (respectively, B_x) is a nonempty closed subinterval of [0, 1]. So we only need to show that for any $x, y \in S$, if min $\{Q(x), Q(y)\} \ge 0$ (respectively, max $\{Q(x), Q(y)\} \le 0$), then $A_x \cap A_y \ne \emptyset$ (respectively, $B_x \cap B_y \ne \emptyset$).

Suppose that $Q(x) \ge 0$ and $Q(y) \ge 0$. For any $z \in \text{span } \{x, y\}$, R_1 and R_2 are defined by

$$R_1(z) = P_1(z) - Q(z)$$

$$R_2(z) = P_2(z) - Q(z).$$

By Lemma 1, there is a γ , $0 \le \gamma \le 1$, such that

$$0 \leq \gamma R_1(z) + (1 - \gamma)R_2.$$

This implies $\gamma \in A_x \cap A_y$. Similarly, if $Q(x) \le 0$ and $Q(y) \le 0$, then there exists $0 \le \gamma \le 1$ such that $\gamma \in B_x \cap B_y$. We proved our lemma.

THEOREM 3. Let Π_1 and Π_2 be two inner products on \mathbb{R}^n and let $X = \mathbb{R}^n$ be the space with the norm

$$||x|| = \sqrt{\max\{\Pi_1(x, x), \Pi_2(x, x)\}}.$$

Then every 2-polynomial defined in a subspace of X can be extended to X preserving the norm.

Proof. Let P be any 2-polynomial on a subspace Y of X and let

$$||x||_1 = \sqrt{\Pi_1(x, x)}$$

 $||x||_2 = \sqrt{\Pi_2(x, x)}$.

Without loss of generality, we may assume ||P|| = 1 and Y is a hyperplane of X. So for any $x \in Y$,

$$|P(x)| \le ||x||^2 \le \max\{||x||_1^2, ||x||_2^2\}.$$

By Lemma 2, there exist $0 \le \alpha$, $\beta \le 1$ such that for every $x \in Y$,

$$-(\beta ||x||_1^2 + (1-\beta)||x||_2^2) \le P(x) \le \alpha ||x||_1^2 + (1-\alpha)||x||_2^2.$$

Replacing $||x||_1$ (respectively, $||x||_2$) by $(\alpha \Pi_1(x, x) + (1 - \alpha)\Pi_2(x, x))^{1/2}$ (respectively, $(\beta \Pi_1(x, x) + (1 - \beta)\Pi_2(x, x))^{1/2}$), we may assume that if $x \in Y$, then

$$-\|x\|_2^2 \le P(x) \le \|x\|_1^2.$$

Let Π be the symmetric bilinear functional associated with P. Then there is a (bounded) symmetric operator T_1 (respectively, T_2) on $(Y, \|\cdot\|_1)$ (respectively, $(Y, \|\cdot\|_2)$) such that for any $y_1, y_2 \in Y$

$$\Pi(y_1, y_2) = \Pi_1(y_1, T_1(y_2)) = \Pi_2(y_1, T_2(y_2)).$$

Since T_1 and T_2 are symmetric, they are diagonalizable. It is known that

- 1. every eigenvalue of T_1 (respectively, T_2) is real;
- 2. if x_1 and x_2 are two eigenvectors of T_1 (respectively, T_2) associated with two distinct eigenvalues, then

$$\Pi(x_1, x_2) = 0.$$

798 PEI-KEE LIN

Let Y_1 (respectively, Y_3) be the subspace spanned by all eigenvectors of T_1 (respectively, T_2) associated with non-negative eigenvalues, and Y_2 (respectively, Y_4) be the subspace spanned by all eigenvectors of T_1 (respectively, T_2) associated with negative eigenvalues. Then Y_1 , Y_2 , Y_3 , Y_4 satisfy the following conditions:

- 3. $Y = Y_1 \oplus Y_2 = Y_3 \oplus Y_4$;
- 4. $T_1(Y_1) \subseteq Y_1$, $T_1(Y_2) \subseteq Y_2$, $T_2(Y_3) \subseteq Y_3$, and $T_2(Y_4) \subseteq Y_4$;
- 5. for any $v_i \in Y \setminus \{0\}$,

$$\begin{split} \Pi_1(y_1, T_1(y_1)) &\geq 0 > \Pi_1(y_2, T_1(y_1)), \\ \Pi_2(y_3, T_1(y_3)) &\geq 0 > \Pi_2(y_4, T_2(y_4)), \\ \Pi_1(y_1, y_2) &= 0 = \Pi_2(y_3, y_4). \end{split}$$

We claim that $Y_1 \cap Y_4 = \{0\}$. Suppose it is not true. Let $y \in (Y_1 \cap Y_4)\setminus\{0\}$. Then

$$0 > \Pi_2(y, T_2(y)) = \Pi(y, y) = \Pi_1(y, T_1(y)) \ge 0.$$

We get a contradiction. Similarly, $Y_2 \cap Y_3 = \{0\}$. Hence, we have

6.
$$\dim(Y_1) = \dim(Y_3), \dim(Y_2) = \dim(Y_4), \text{ and}$$

$$Y_1 \oplus Y_4 = Y = Y_2 \oplus Y_3$$
.

Let

$$M_1 = \{ z \in X : \Pi_1(z, x) = 0 \text{ for all } x \in Y_1 \},$$

 $M_2 = \{ z \in X : \Pi_2(z, x) = 0 \text{ for all } x \in Y_4 \},$

By (5) and (6), dim $(M_1) = \dim (Y_2) + 1$ and dim $(M_2) = \dim (Y_3) + 1$. This implies there is a non-zero vector $z \in M_1 \cap M_2$. Let ϕ be any non-zero linear functional on X such that $\ker \phi = Y$. For any $x \in X$, define

$$\tilde{P}(x) = P\left(x - \frac{\phi(x)}{\phi(z)}z\right).$$

We claim that if $0 < \tilde{P}(x)$, then $\tilde{P}(x) \le ||x||^2$.

Case 1. $x - (\phi(x)/\phi(z))$ $z \in Y_1$. Since $z \in M_1$, we have $\prod_1 (x - (\phi(x)/\phi(z)) z, z) = 0$. So

$$\tilde{P}(x) = P\left(x - \frac{\phi(x)}{\phi(z)}z\right) \le \left\|x - \frac{\phi(x)}{\phi(z)}z\right\|_1^2 \le \left\|x_{\overline{2}_1}^2\right\|_1^2$$

Case 2. $x - (\phi(x)/\phi(z)) \ z \notin Y_1$. Then there exist $y_1 \in Y_1$ and $y_2 \in Y_2$ such that $x - (\phi(x)/\phi(z)) \ z = y_1 + y_2$. (Note. $\Pi_1(y_1, y_2) = 0 = \Pi_1(y_1, z)$.) So

$$\begin{split} \tilde{P}(x) &= P\left(x - \frac{\phi(x)}{\phi(z)}z\right) = \Pi(y_1 + y_2, y_1 + y_2) \\ &= P(y_1) + P(y_2) \le P(y_1) \\ &\le \|y_1\|_1^2 &\le \|x\|_1^2 \\ &\le \|x\|^2. \end{split}$$

We proved our claim. Similarly, if $\tilde{P}(x) \le 0$, then $|\tilde{P}(x)| \le ||x||^2$. Hence, \tilde{P} is an extension of P preserving the norm.

In [2, Lemma 2 and Proposition 2], Benítez and Otero proved that the problem of extension preserving the norm can be reduced to the real case. Hence, we have the following theorem.

THEOREM 4. Let Π_1 and Π_2 be two inner products on \mathbb{C}^n and let $X = \mathbb{C}^n$ be the space with the norm

$$||x|| = \sqrt{\max{\{\Pi_1(x,x), \Pi_2(x,x)\}}}.$$

Then every 2-polynomial defined in a subspace of X can be extended to X preserving the norm.

ACKNOWLEDGMENT

The author is thankful to the referee for his comments.

REFERENCES

- R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3-24.
- C. Benitez and M. C. Otero, On the extension of continuous 2-polynomials in normed linear spaces, in "Geometric Aspects of Banach Spaces," London Math. Soc. Lecture Note Series, Vol. 140, pp. 125-132, Cambridge Univ. Press, Cambridge/New York, 1990.
- 3. K. HOFFMAN AND R. KUNZE, "Linear Algebra," Prentice-hall, Englewood Cliffs, New Jersey, 1971.