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1. INTRODUCTION

Second order ordinary differential equations differ from third order
� �ordinary differential equations in their symmetry properties. Lie 9 showed

that the maximum number of point symmetries for second order ordinary
Ž .differential equations is 2 � 6 and for higher order equations n � 3

� � � �n � 4 10 . Lie 9 further showed that an nth order equation which
possesses n � 4 point symmetries is equivalent to

y Žn. � 0, 1.1Ž .

where Žn. denotes dn�d x n, under a point transformation

X � F x , y , Y � G x , y . 1.2Ž . Ž . Ž .

Ž Ž . Ž .For n � 3, X � F x in 1.2 which is a restricted type of point transfor-
� � .mation called a fibre-preserving transformation 4 . He also proved that

all linear second order ordinary differential equations are equivalent to
y� � 0. A linear higher order equation can have n � 1, n � 2 or, the

Žmaximum number, n � 4 point symmetries see Mahomed and Leach
� �. � �12 . Krause and Michel 6 proved that the maximum number of point
symmetries for nth order equations is n � 4 iff the equation is iterative;
i.e., it can be written in the form

n n�1� � � � � �L y � r x y� � q x y � 0, L y � L L y . 1.3Ž . Ž . Ž .

They further showed that equations possessing n � 4 point symmetries
Ž . Ž .were equivalent to 1.1 under a suitable transformation of the form 1.2 .

In this paper we confine ourselves to equations of maximal symmetry
written in an equivalent but more general form, i.e., the self adjoint form.

Ž .We do not transform them to their equivalent form 1.1 so that we
maintain the structure of the equations. This enables us to extract more
information and make new inferences than when the equations are in the

Ž .simpler form 1.1 . The exceptional properties of second and third order
ordinary differential equations of maximal symmetry are studied and the
generalised symmetries of both the second and third order equations are

Ž .used to show that under a Riccati transformation the sl 2, R subalgebra is
preserved. The structure of the symmetries in both cases is of particular
interest. We rewrite the symmetries in terms of a Jacobian and show that
this Jacobian is also a solution of the original equation. The first integrals

Ž .associated with the sl 2, R subalgebra are computed and the general
expression for them in terms of the Jacobian is calculated. Some interest-
ing aspects arising from the analysis are discussed.
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2. GENERALISED SYMMETRIES

An operator

� �
G � � � � , 2.1Ž .

� x � y

where � and � are analytic functions of x, y and derivatives of y, is a
generalized symmetry of the differential equation written in normal form

y Žn. � E x , y , . . . , y n�1 2.2Ž .Ž .
if the symmetry condition

� n� Žn. n�1G y � E x , y , . . . , y � 0 2.3Ž .Žn.Ž . y �E

is satisfied. It is well known that second order equations have an infinite
� �number of generalized symmetries 13 . There is no totally inclusive

approach to determine generalized symmetries. One must put a restriction
on the y� dependence that is systematic in form to make a conclusive
calculation possible.

A one parameter Lie group of contact transformations with infinitesimal
generator

� � �
G � � x , y , y� � � x , y , y� � � x , y , y� 2.4Ž . Ž . Ž . Ž .

� x � y � y�

is a contact transformation provided the contact condition,

� � �� � y�� �, 2.5Ž .

is preserved. The absence of the y� term in � implies that

�� ��
� y� . 2.6Ž .

� y� � y�

This puts a constraint on the y� dependence in � and � . We can describe
Ž . � �the symmetry in terms of a generating function, W x, y, y� 1 . We have

that

W � � y� � � 2.7Ž .
� � � W�� y� 2.8Ž .
� � y�� W�� y� � W 2.9Ž .
� � �� W�� x � y�� W�� y. 2.10Ž .
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It is evident that a contact symmetry is a restricted type of generalised
symmetry.

3. REDUCTION USING THE RICCATI
TRANSFORMATION

The well known Riccati transformation

y� xŽ .
u � 3.1Ž .

y xŽ .

is associated with the homogeneity symmetry

�
G � y 3.2Ž .

� y

Ž .since the zeroth and first order differential invariants of 3.2 are x � x
and u � y��y, respectively. The homogeneity symmetry is the only symme-
try of a general homogeneous linear equation which can be obtained
without prior knowledge of a solution to the equation or its adjoint. The

Ž . Ž .symmetry 2.1 under the Riccati transformation 3.1 is transformed to

� � ��G � � � � u� � . 3.3Ž .ž /� x y � u

4. GENERAL PROPERTIES

� �The general form of equations with maximal symmetry 12 is given by

2Ž . 2n�1 �2d d 2 iŽ .
� � y � 0 4.1Ž .Ł n�22d x n � 1d xi�1 � 0ž /3

for n odd, and

22n�2 d 2 i � 1Ž .
� � y � 0 4.2Ž .Ł n�22 n � 1d xi�1 � 0ž /3
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for n even. We present the point symmetry structure for the second and
third order equations with maximal symmetry, i.e., with n � 2 and n � 3

Ž . Ž .in 4.2 and 4.1 , viz.

y� � � x y � 0 4.3Ž . Ž .

and

1y	 � � x y� � � � x y � 0, 4.4Ž . Ž . Ž .2

Ž .respectively The subscript in � has been ignored for simplicity. The
symmetry structure is

�
G � 
 4.5Ž .1 1 � y

...
�

G � 
 4.6Ž .n n � y

�
G � y 4.7Ž .n�1 � y

� n � 1 �
�G � � � � y 4.8Ž .n�2 1 1� x 2 � y

� n � 1 �
�G � � � � y 4.9Ž .n�3 2 2� x 2 � y

� n � 1 �
�G � � � � y , 4.10Ž .n�4 3 3� x 2 � y

where n � 2, 3, 
 , . . . , 
 are solutions of the differential equation and1 n
� , � , � are solutions of a third order equation. In addition to these1 2 3
symmetries it is a simple calculation to show that the second order
ordinary differential equation has the two non-Cartan symmetries

� �
� 2G � 
 y � 
 y 4.11Ž .7 1 1� x � y

� �
� 2G � 
 y � 
 y 4.12Ž .8 2 2� x � y
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while the third order ordinary differential equation has three intrinsically
Ž .contact symmetries ICS since their � ’s and � ’s contain y� when the other

Ž . Ž .seven symmetries are point symmetries of the structure in 4.5 and 4.10 .
In the symmetry structure, G � G represent the solution symmetries1 n
since their coefficients are solutions of the original differential equation.
The presence of the homogeneity symmetry G comes from the fact thatn�1
the differential equation is homogeneous in y while G � G repre-n�2 n�4

Ž .sent the sl 2, R subalgebra. The � ’s, i � 1, 2, 3, are solutions of the thirdi
order differential equation

n � 1 !Ž .
� � 1� � �� � � �� � 0. 4.13Ž .i i i2n � 2 !4!Ž .
2 Ž .Under the transformation � � � and integration wrt x 4.13 becomesi i

4 n � 1 ! kŽ .
�� � �� � , 4.14Ž .i i 3n � 2 !4! �Ž . i

Ž .where k is a constant. Therefore the sl 2, R coefficients are related to the
Ž . � �solution of 4.14 which is the Ermakov�Pinney equation 2, 15 the

general solution of which was given by Pinney in terms of the solution set
of

4 n � 1 !Ž .
�� � �� � 0. 4.15Ž .i in � 2 !4!Ž .

Ž . Ž .Under the Riccati transformation 3.1 the sl 2, R symmetries take the
form

� n � 1 �
� �G � � � � � � u . 4.16Ž .sl i i i iž /� x 2 � u

The homogeneity symmetry G is lost while the solution symmetriesn�1
become

�
�G � exp u d x 
 � 
 u . 4.17Ž . Ž .Hsi i i � u

ŽNote that in this notation the G represent solution symmetries and thesi
Ž . .G the sl 2, R symmetries. We observe that the solution symmetriessl i

become nonlocal symmetries, since � and � now contain integrals, with a
Ž .positive exponent under the Riccati transformation. The sl 2, R symme-

Ž .tries 4.16 remain as point symmetries under the Riccati transformation
Ž .3.1 .
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Ž .The general nth order ordinary differential equation in the form of 4.1
Ž .and 4.2 can be transformed to

V Žn. t � 0 4.18Ž . Ž .

via the transformation

y � � n�1 x V t , t � ��2 x d x 4.19Ž . Ž . Ž . Ž .H
and � satisfies

4 n � 1 !Ž .
�� � � x � � 0. 4.20Ž . Ž .

n � 2 !4!Ž .

Ž . Ž .The solution set for y in 4.19 then gives the solution set for 4.1 and
Ž . Ž4.2 , respectively. The subscripts in � and � have been ignored for

.simplicity.
Ž .In the case of the third order ordinary differential equation 4.4 we

Ž .have n � 3 and 4.20 becomes

4�� � � x � � 0. 4.21Ž . Ž .

Ž . 	 4The solution set for � from 4.21 with � � 4 is cos x, sin x . The transfor-
Ž . Ž . Ž .mation of 4.4 to 4.18 is given by 4.19 with n � 3, i.e.,

	 2 4t � tan x , V � 1, tan x , tan x . 4.22Ž .

Ž .Therefore the third order equation 4.4 has the fundamental solution set

	 4 	 2 2 4y � cos x , cos x sin x , sin x . 4.23Ž .

Ž . 	 2 24If 
 � cos x and � � sin x then 4.23 becomes 
 , 
 � , � , where 
 and
� are any two independent solutions of the second order ordinary differen-

Ž .tial equation 4.21 . The solution set for the third order ordinary differen-
Ž .tial equation 4.4 ,

y	 � 4 y� � 0, 4.24Ž .
with � � 4 is

	 4 	 4y � 1, sin 2 x , cos 2 x 4.25Ž .

which is a linear combination of the fundamental set of solutions. As
another example consider the second order ordinary differential equation
Ž .4.3 which is

y� � � x y � 0. 4.26Ž . Ž .
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Ž .Equation 4.20 with � � 1 becomes

�� � � � 0. 4.27Ž .

Ž . 	 4 	 4 Ž .The solution set for 4.27 is � � cos x, sin x . From 4.19 the transfor-
mation to V Ž2. � 0 gives

	 4 	 4t � tan x , V � 1, tan x . 4.28Ž .

This means that

	 4 	 4y � cos x , sin x . 4.29Ž .

Ž .If we put 
 � cos x, � � sin x then the fundamental solution set for 4.26
	 4is 
 , � . This illustrates the connection of the solutions of the equation to

those of the second order equation.
We therefore have the following proposition:

PROPOSITION 1. A basis for the solution set of an nth order ordinary
Ž . Ž .differential equation in the form of 4.1 or 4.2 can be gi�en as a basis for

Ž .the solution of the second order ordinary differential equation 4.20 . If the
Ž . 	 4 	 4solution set for 4.20 is say � � 
 , � , where 
 and � are linearly

Ž .independent solutions of 4.20 , then

	 4 	 n� i i�14
 � 
 � , i � 1, . . . , n 4.30Ž .i

is the basis of the solution set for the nth order ordinary differential equation
Ž . Ž .4.1 and 4.2 , respecti�ely.

Remark. It is easy to see with this representation why we get the Lie
Ž .bracket relations for the sl 2, R subalgebra. Consider

� �
2G � 
 � n � 1 

 �y 4.31Ž . Ž .1 � x � y

� n � 1 �
G � 
 � � 
 �� � � �
 y 4.32Ž . Ž .2 � x 2 � y

� �
2G � � � n � 1 �� �y . 4.33Ž . Ž .3 � x � y

The Lie bracket relations are

� �G , G � �WG , 4.34Ž .1 2 1

� �G , G � �2WG 4.35Ž .1 3 2

� �G , G � �WG , 4.36Ž .2 3 1
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where W � 
 �� � 
 � � is the Wronskian of 
 and �. For instance in the
case of the third order ordinary differential equation the coefficients of

Ž .the ��� x term in the sl 2, R subalgebra are precisely the solution set
Ž . Ž . Ž . Ž .4.23 with 
 � cos x, � � sin x, and sl 2, R representation 4.31 � 4.33 .

Ž .Recall that if n � 1 solutions of the linear differential equation are
� �known, Abel’s formula can be used to give the nth solution 5 . In our case

we use the basis for the solution set of the second order ordinary
differential equation to find the solution set of the higher order equations
with maximal symmetry.

5. SECOND ORDER ORDINARY
DIFFERENTIAL EQUATIONS

Ž .We refer to 4.3 which is given by

y� � � x y � 0. 5.1Ž . Ž .
Ž . Ž .If we seek the point symmetries of 5.1 , i.e., � and � in 2.1 are functions

Ž . Ž .of x and y only, the operation of the second extension of 2.1 of 5.1
leads to

�� �y � �� � �� � 2 y� � � � y�� � � 0. 5.2Ž . Ž .
Ž .Expanding 5.2 and separating by powers of y� we obtain to the following

system of partial differential equations,

y3 : � � a x y � b x 5.3Ž . Ž . Ž .
y�2 : � � a� x y2 � c x y � d x 5.4Ž . Ž . Ž . Ž .
y�1 : 0 � 3a� x y � 3 y� x a x � b� � 2c� 5.5Ž . Ž . Ž . Ž .
y�0 : 0 � y2a � by � � � a�y2 � cy � 2 yb� � d �Ž . Ž .

� a	 y2 � c� y � d� . 5.6Ž .Ž .
Ž .Separation of 5.5 by powers of y gives

y1 : 0 � a� � � a 5.7Ž .
y0 : 0 � b� � 2c� 5.8Ž .

Ž .and 5.6 leads to

y2 : 0 � a� � � a�� � a	 5.9Ž .
y1 : 0 � b� � � 2� b� � c� 5.10Ž .
y0 : 0 � d� � d� . 5.11Ž .
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Ž . Ž .The use of 5.8 in 5.10 results in

b	 � 4b�� � 2b� � � 0. 5.12Ž .

2 Ž .The substitution of b � � after multiplying throughout by b in 5.12
leads to

k
�� � �� � , 5.13Ž .3�

Ž . Ž .which is just 4.20 with n � 2. The sl 2, R symmetries come from the
Ž . Ž .solutions of 5.12 . If 
 and � are solutions of 5.1 , we can write the
Ž .symmetries of 5.1 as

�
G � 
 5.14Ž .1 � y

�
G � � 5.15Ž .2 � y

�
G � y 5.16Ž .3 � y

� �
2G � 
 � 

 �y 5.17Ž .4 � x � y

� �
1G � 
 � � 
 �� � � �
 y 5.18Ž . Ž .5 2� x � y

� �
2G � � � �� �y 5.19Ž .6 � x � y

� �
2G � 
 y � 
 �y 5.20Ž .7 � x � y

� �
2G � �y � � �y 5.21Ž .8 � x � y

of which the first six are in Cartan form and the last two are non-Cartan.
A symmetry is non-Cartan if � is not a function of x only. Under the

Ž .Riccati transformation 3.1 the second order ordinary differential equa-
Ž .tion 5.1 becomes

u� � u2 � � � 0. 5.22Ž .
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The symmetries G through to G are transformed as1 8

�
G � exp � u d x 
 � � 
 u 5.23Ž . Ž .H1 � u

�
G � exp � u d x � � � �u 5.24Ž . Ž .H2 � u

G vanishes3

� �
2 2G � 
 � 
 � � 

 � � 2

 �u 5.25Ž . Ž .4 � x � u

� �
1 � �G � 
 � � 
 � � � � �
 � 2
 �� � � 
 �� � � �
 u 5.26Ž . Ž .Ž .5 2� x � u

� �
2 2G � � � � � � �� � � 2�� �u 5.27Ž . Ž .6 � x � u

� �
2G � exp u d x 
 � 
 � � 
 u 5.28Ž . Ž .H7 ž /� x � u

� �
2G � exp u d x � � � � � �u . 5.29Ž . Ž .H8 ž /� x � u

We have already noted in the general properties of the symmetry
structure that the solution symmetries G and G become nonlocal1 2

Ž .symmetries and G vanishes. The sl 2, R subalgebra G � G remains as3 4 6
point symmetries while G and G become nonlocal symmetries. If 
 is a7 8

Ž . Ž .solution of 5.1 , a first integral can be obtained by multiplying 5.1
throughout by 
 and integrating by parts. A first integral is

I � 
 y� � 
 �y. 5.30Ž .1

Similarly, if � is another solution, then

I � �y� � � �y 5.31Ž .2

is also a first integral.

Remarks.

� Ž .We observe that the elements of the sl 2, R subalgebra, namely
G , G , and G , remain as point symmetries of the reduced equation.4 5 6

� The symmetry used in the reduction G � y��� y vanishes.3

� The non-Cartan symmetries, G and G , have a positive exponent7 8
while G and G have a negative exponent.1 2
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Ž .We note that the standard representation of the sl 2, R subalgebra is

� n � 1 �
�G � � � � y 5.32Ž .4 1 1� x 2 � y

� n � 1 �
�G � � � � y 5.33Ž .5 2 2� x 2 � y

� n � 1 �
�G � � � � y , 5.34Ž .6 3 3� x 2 � y

where � , � , and � are solutions of the third order ordinary differential1 2 3
Ž .equation 4.13 with the appropriate value of n. Therefore, in transforming

Ž .from the second order equation to the first order equation, the sl 2, R
subalgebra is preserved. The corresponding first integrals associated with

Ž .each sl 2, R subalgebra can be computed easily. Consider the first exten-
Ž .sion of the element of the sl 2, R subalgebra for the second order

Ž .ordinary differential equation 5.1 given by

� � �
1 1�1�G � � � ��y � �� y � ��y� . 5.35Ž . Ž .2 2� x � y � y�

The associated Lagrange system is

d x d y d y�
� � . 5.36Ž .

� 1�2 ��y 1�2 �� y � ��y�Ž . Ž . Ž .

The characteristics are

y ��1 12p � , q � y�� � y. 5.37Ž .1 12
2 2� �

Now

� d p dq
� . 5.38Ž .

q 0

Therefore the first integral for the second order equation is

1 11 �2 2I � y�� � ��� y. 5.39Ž .2

Just as a little note we observe that � is 
 2, 
 � , � 2 and so we have

I � y�
 � y
 � 5.40Ž .1

I � y�� � y� � 5.41Ž .3
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and then
1 1
2 2I � y� 
 � � y 
 � � . 5.42Ž . Ž . Ž .2

The I is curious. Both I and I are well known from quadratic time-2 1 3
� �dependent Hamiltonian systems 7 .

6. THIRD ORDER EQUATION

Ž .The general third order equation of maximal symmetry 4.4 is
1y	 � � x y� � � � x y � 0. 6.1Ž . Ž . Ž .2

Ž . Ž . Ž .The Riccati transformation 3.1 , y � exp H u d x , transforms 6.1 to the
second order differential equation

13u� � 3u�u � u � � u � � � � 0. 6.2Ž .2

Ž . 2 2Equation 6.1 has ten contact symmetries. If 
 , 
 � , and � are solutions
Ž .of 6.1 , we can list the ten contact symmetries as

�
2G � 
 6.3Ž .1 � y

�
G � 
 � 6.4Ž .2 � y

�
2G � � 6.5Ž .3 � y

� �
2G � 
 � 2

 �y 6.6Ž .4 � x � y

� �
G � 
 � � 
 �� � � �
 y 6.7Ž . Ž .5 � x � y

� �
2G � � � 2�� �y 6.8Ž .6 � x � y

�
G � y 6.9Ž .7 � y

�
2G � 2 y�
 � 2 y

 �Ž .8 � x

�
2 2 2 2 2� y� 
 � 2 y �
 � 
 �
 � 
 � 6.10Ž . Ž .Ž .

� y
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�
G � 2 y�
 � � y 
 �� � 
 � �Ž .Ž .9 � x

�
2 2� y� 
 � � 2 y �
 � � 
 � � � 2
 �� � � 
 � � 6.11Ž . Ž .Ž .

� y

�
2G � 2 y�� � 2 y�� �Ž .10 � x

�
2 2 2 2 2� y� � � 2 y � � � � � � � � � . 6.12Ž . Ž .Ž .

� y

Ž . Ž .Under the Riccati transformation 6.3 � 6.12 become

�
2G � exp � u d x 2

 � � 
 u 6.13Ž . Ž .H1 � u

�
G � exp � u d x 
 �� � � �
 � 
 �u 6.14Ž . Ž .H2 � u

�
2G � exp � u d x 2�� � � � u 6.15Ž . Ž .H3 � u

� �
2 2G � 
 � 2
 � � 2

 � � 2

 �u 6.16Ž . Ž .4 � x � u

� �
G � 
 � � 
 � � � 2
 �� � � 
 � � � u 
 �� � � �
 6.17Ž . Ž .Ž .5 � x � u

� �
2 2G � � � 2� � � 2�� � � 2�� �u 6.18Ž . Ž .6 � x � u

G vanishes7

�
2G � 2 exp u d x u
 � 2

 �Ž .H8 � x

�
2� � �
 � 2

 �� � 
 	
 � 3
 �
 �Ž .

� u

�
2 2 2 2 3� exp u d x 2u�
 � 2u 

 � � 2u
 � � 
 u � 2u

 �Ž .H

� u
6.19Ž .
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�
G � 2 exp u d x u
 � � 
 �� � 
 � �Ž .H9 � x

�
� �
 �� � �
 � � � � �
 � � 
 	�Ž .

� u

2 3� exp u d x u 
 �� � 
 � � � u 
 � � 2u�
 �Ž .H
�

�2
 � 	 � 6
 �� � � 6
 � � � 6.20Ž .
� u

�
2G � 2 exp u d x u� � 2�� �Ž .H10 � x

�
2� � �� � 2�� �� � � 	� � 3� �� �Ž .

� u

�
2 2 2 2 3� exp u d x 2u� � � 2u �� � � 2u� � � � u � 2u�� � .Ž .H

� u
6.21Ž .

Ž .We observe that the sl 2, R subalgebra remains invariant under the
Riccati transformation. In the case of the third order ordinary differential

Ž .equation the solution symmetries, the sl 2, R symmetries and the contact
symmetries originate from the same equation which is just the original

Ž .equation 6.1 .

7. FATE OF THE CONTACT SYMMETRIES

Consider the first extension of the intrinsically contact symmetry, G ,ic s
Ž .of 4.4 given by

� �
1 1�1� 2 2 2G � ��y � � y� � �� y � � y � � � y�Ž . Ž .ic s 2 2� x � y

�
1 1 12 2 2 2� � 	 y � �� yy� � ��y� � � yy� � ��y � � � y � � ,Ž .Ž .2 2 2 � y�

7.1Ž .

where � is a solution of the third order equation

1� 	 � �� � � ��� � 0. 7.2Ž .2
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Ž .Multiplication of 4.4 by y and one integration lead to

1 12 2yy� � y� � y � � k , 7.3Ž .2 2

Ž .where k is a constant. The coefficient of ��� y in 7.1 is

1 12 2 2� � �� y � � y � � � y� . 7.4Ž .2 2

Ž . Ž .Making use of 7.3 in 7.4 we have that

� � y �� y � � y� � k� . 7.5Ž . Ž .

Ž . Ž .The expression of � in 7.5 enables us to express 7.1 without the first
extension as

� � �
G � ��y � � y� � ��y � � y� �y � k� . 7.6Ž . Ž . Ž .ic s � x � y � y

Ž .Recall that � is a solution of 7.2 and so ���� y is a solution symmetry of
Ž . Ž .6.1 . We can therefore remove the term k���� y in 7.6 . This means that
we can write the intrinsically contact symmetry as

� �
G � ��y � � y� � ��y � � y� �y , 7.7Ž . Ž . Ž .ic s � x � y

Ž .where � is a solution of 7.2 . This is possible because we have taken into
account the integral consequences of the original differential equation
� � Ž .14 . In the case of the third order equation 4.4 , the solution symmetries,

Ž .the sl 2, R and the ICS originate from the same differential equation
Ž .which is a third order equation. From 7.7 we note that the coefficient of

��� x is the Jacobian of � and y. Under the Riccati transformation
Ž .u � y��y the ICS 7.7 becomes

� �
1 2G � exp u d x �� � � u � u � � 7.8Ž . Ž . Ž .Hic s 2ž / � y � u

Ž . Ž .when 7.2 and 7.3 are taken into account. The coefficient of ��� u in
Ž .7.8 is in the form of the first order Riccati equation

u� � u2 � � � 0 7.9Ž .

Ž .obtained from the reduction of 4.3 with u � y��y. That of ��� x is

� �exp u d x �� � � u � ��y � � y�. 7.10Ž .Hž /
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Now W � ��y � � y� is the Jacobian of � and y. This will enable us to
express the symmetries in terms of the Jacobian. We denote the symme-
tries of the third order ordinary differential equation as

�
G � 
 7.11Ž .si i � y

� �
�G � 
 � 
 y 7.12Ž .sl i i i� y � y

� �
� � 1 12 2 2G � 
 y � 
 y� � 
 y � 
 y � � 
 y� , 7.13Ž .Ž . Ž .ic s j j j j j j2 2� x � y

Ž .where the G are the solution symmetries, the G are the sl 2, Rsi sl i
symmetries, and the G are the ICS in the usual representation. We nowic s j
introduce the generalised symmetries. In the case of the second order
ordinary differential equation we can write

�
G � 
 7.14Ž .si i � y

�
�G � 
 y � 
 y� 7.15Ž . Ž .sl i i i � y

�
� �G � 
 y � 
 y� �y � 
 y � 
 y� y� 7.16Ž .Ž . Ž .ic s j j j j j � y

Ž .by using the fact that the generators 2.1 and

�
G � � � y�� 7.17Ž . Ž .

� y

� �are equivalent 1 in the context of generalised symmetries. For the second
Ž .order ordinary differential equation the sl 2, R subalgebra in terms of the

generalised symmetries now becomes

�
G � 
 �y � 
 y� 
Ž .sl1 � y

�
1G � 
 �y � 
 y� � � 
 � �y � �y� 
Ž . Ž .sl2 2 � y

7.18Ž .

�
G � � �y � �y� � .Ž .sl3 � y
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On the other hand in the case of the third order ordinary differential
Ž .equation associated with each sl 2, R subalgebra, G , G , and G , aresl1 sl2 sl3

the integrals I , I , and I , respectively where1 2 3

I � 
 2 y� � 
 2 �y� � 
 2 � y � 
 2� y 7.19Ž . Ž . Ž .1

I � 
 �y� � 
 � �y� � 
 � � y � 
 �� y 7.20Ž . Ž . Ž .2

I � � 2 y� � � 2 �y� � � 2 � y � � 2� y. 7.21Ž . Ž . Ž .3

The integral

J � I I � I 2 7.22Ž .1 3 2

which can be expressed as some explicit function of x, y, y�, . . . has
Ž .sl 2, R symmetry, viz.,

G�2� I I � I 2 � 0 7.23Ž .Ž .sl1 1 3 2

G�2� I I � I 2 � 0 7.24Ž .Ž .sl2 1 3 2

G�2� I I � I 2 � 0. 7.25Ž .Ž .sl3 1 3 2

Ž .For the sl 2, R subalgebra the integral J is the common integral. The
� �representation of J differs from that given by Leach et al. 8 by a factor of

Ž .a half. The half is due to the use of a different representation of sl 2, R .
Ž .For sl 2, R symmetries G I � 0. The actions of the symmetries on thesl i i

integrals are

G�2� I � 0, G�2� I � � W I , G�2� I � � 2W Isl1 1 sl1 2 2 1 sl1 3 2 2

G�2� I � W I , G�2� I � 0, G�2� I � � W I 7.26Ž .sl2 1 2 1 sl2 2 sl2 3 2 3

G�2� I � 2W I , G�2� I � W I , G�2� I � 0,sl3 1 2 2 sl3 2 2 3 sl3 3

where W � 
 �� � 
 � � and the form of G , j � 1, 2, 3, used is that given2 sl j
Ž .by 7.12 .

PROPOSITION 2. The intrinsically generalised symmetry with ‘‘super ’’ Jaco-
bian as coefficient of the ��� y term gi�en by

�� �G � 
 y � 
 y� �y � 
 y � 
 y� y� yŽ . Ž .	ass j j j j j

��� �� 
 y � 
 y� y � 
 y � 
 y� y� y�Ž . Ž . 4j j j j � y

Ž .is a symmetry of the differential equation 6.1 .
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When the differential equation is taken into account the symmetry Gass j
becomes

�
G � �2kW , 7.27Ž .ass j j � y

� 1 12 2where W � 
 y � 
 y� and k � yy� � y� � � y . It is easy to showj j j 2 2
�3� Ž .that G leaves 6.1 invariant.ass j

Ž . Ž .PROPOSITION 3. The Lie bracket relations corresponding to 7.11 � 7.13
are

�
� �G , G � � 
 
 � 
 
Ž .si s l j i j i j � y

� G 7.28Ž .si

� ��� � � �G , G � � 
 
 � 
 
 � 
 
 � 
 
 yŽ . Ž .si ic s j i j i j i j i j� x � y

�
� � � �� 
 
 � 
 
 � 
 
 � 
 
 � yŽ .i j i j i j i j � y

� G 7.29Ž .sl i

G , G � G . 7.30Ž .sl i ic s j ic s j

Ž . Ž .The proof of the relation 7.28 and 7.30 is trivial so we concentrate on
Ž .7.29 . Let

C � 
�
 � 
� 
� � 
 
� � 
 
 � . 7.31Ž .i j i j i j i j i j

It is easy to see that C is symmetric. The ordinary differential equationsi j
for 
 and 
 arei j

� � 1
 � �
 � � �
 � 0 7.32Ž .i i i2

� � 1
 � �
 � � �
 � 0. 7.33Ž .j j j2

Now

7.32 
 � 
 7.33 � 
�
 � 
�
 � � 
� 
 � 
� 
 � � �
 
 .Ž . Ž . Ž .j i i j j i i j j i i j

7.34Ž .

Ž .Upon integrating both sides of 7.34 we observe that

C � 
�
 � 
� 
� � 
 
� � 
 
 �i j i j i j i j i j

� a constant. 7.35Ž .
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This means that we can rewrite

� � ��� � � �G , G � � 
 
 � 
 
 � 
 
 � 
 
 y � C y .Ž . Ž .si ic s j i j i j i j i j i j� x � y � y

7.36Ž .

The C ’s vary depending upon the solution set used. To illustrate this wei j
Ž .consider the third order ordinary differential equation 6.1 for � � 1 and

� � 0, respectively. We have for the first case

	 4 	 4y	 � y� � 0, y � 1, sin x , cos x , 7.37Ž .
and

C � 1, C � 0, C � 011 21 31

C � 0, C � �1, C � 0 7.38Ž .12 22 32

C � 0, C � 0, C � � 1.13 23 33

The second case gives

1 2	 4y	 � 0, y � 1, x , x , 7.39Ž .	 42

and
C � 0, C � 0, C � 111 21 31

C � 0, C � �1, C � 0 7.40Ž .12 22 32

C � 1, C � 0, C � 0.13 23 33

� �These are in accordance with the table in 8 . We denote E byi j

� ��� � � �E � 
 
 � 
 
 � 
 
 � 
 
 y . 7.41Ž . Ž . Ž .i j i j i j i j i j� x � y

	 4 	 24For � � 0 and 
 � 1, x, 1�2 x we havei

E � 0, E � G , E � G11 21 sl1 31 sl2

E � �G , E � 0, E � G 7.42Ž .12 sl1 22 32 sl3

E � �G , E � � G , E � 0.13 sl2 23 sl3 33

	 4 	 24We also have that from the solution set 
 � 1, x, 1�2 x the Jacobiani
gives


� 
 � 
 
� � �
 7.43Ž .1 2 1 2 1


� 
 � 
 
� � �
 7.44Ž .1 3 1 3 2


� 
 � 
 
� � �
 . 7.45Ž .2 3 2 3 3
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It is clear to see that in this case the Jacobian is also a solution of the
Ž .differential equation and that the bracket relation 7.36 is

G , G � G . 7.46Ž .si ic s j s l i

PROPOSITION 4. For the third order ordinary differential equation the
Jacobian is a solution of the original differential equation and so the intrinsi-

Ž .cally contact symmetries G are of the same structure as the sl 2, Rics j
symmetries G .sl i

Ž .Proof. The third order ordinary differential equation 6.1 has symme-
tries

� �
�1�G � y � y� 7.47Ž .h � y � y�

� �
��1�G � 
 � 
 7.48Ž .si i i� y � y�

� � �
� ��1�G � 
 � 
 y � 
 y 7.49Ž .sl i i i i� x � y � y�

� ��� ��1�G � 
 y � 
 y� � 
 y � 
 y� yŽ . Ž .ic s j j j j j� x � y

���� 
 y � 
 y� y , 7.50Ž .Ž . �j j � y

which have been extended once and in which G is the homogeneityh
Ž .symmetry, G the solution symmetries, G the sl 2, R symmetries, andsi s l i

G the ICS. Note that here we are using generalised symmetries andic s j
� �have taken a first integral into account 14 . We now have the following

propositions.

PROPOSITION 5. Let w , . . . , w be linearly independent solutions of the1 n�1
Ž . Ž .nth order ordinary differential equation in the form of 4.1 or 4.2 . Then the

Ž .Jacobian W w , . . . , w is also a solution.1 n�1

PROPOSITION 6. Let the n fundamental solutions of the equation in the
Ž . Ž .form of 4.1 or 4.2 be arranged in the order of their correspondence to the

1 12 n�1 Žn.	 4fundamental set 1, x, x , . . . , x of y � 0. Then2 n � 1

W w , . . . , w � cw 7.51Ž . Ž .1 n�1 1

W w , . . . , w � cw , 7.52Ž . Ž .2 n n

where c is a constant.
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PROPOSITION 7. Let S be the Jacobian of the n first integrals of anw i
Ž . Ž .equation in the form of 4.1 or 4.2 . Then S is a solution of the originalw i

equation.
n

S � c w , i 	 7.53Ž .w i ii 2
n

S � c w , i � 7.54Ž .w i i�1i 2

pro�ided that the wording can be changed to render it correct.

PROPOSITION 8. None of the abo�e propositions apply if the equation is
Ž . Ž .not in the form of 4.1 or 4.2 . The proofs are left as a nontri�ial exercise.

The super Jacobian arises from taking the integral consequences into
account. This enables us to move from a contact to a generalised symme-
try. This comes from the fact that in the context of generalised symmetries
� � Ž .1 the operator 2.1 is equivalent to taking

�
G � � , 7.55Ž .

� y

where � � � � y�� .

8. A REMARK ON FIRST INTEGRALS
OF MAXIMAL SYMMETRY

It is interesting to note that

y Ž i� . � 0 8.1Ž .
has the solution symmetries

�
G � 8.2Ž .1 � y

�
G � x 8.3Ž .2 � y

1 �
2G � x 8.4Ž .3 2 � y

1 �
3G � x . 8.5Ž .4 6 � y

8.6Ž .
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� �Associated with each solution symmetry is a linear integral 3 . The four
functionally independent integrals are

1 13 2I � x y	 � x y� � xy� � y 8.7Ž .1 6 2

1 2I � x y	 � xy� � y� 8.8Ž .2 2

I � xy	 � y� 8.9Ž .3

I � y	. 8.10Ž .4

The two integrals I and I each have five point symmetries while the1 4
middle integrals I and I each have four point symmetries. When G and2 3 1

Ž .G are used in the reduction of 8.1 they each lead to a scalar third order4
ordinary differential equation Y 	 � 0 which is also an equation of maxi-
mal symmetry. This gives the relationship between the first integrals of
maximal symmetry associated with each symmetry G and G and the1 4
reduced equation Y 	 � 0 associated with each symmetry, respectively. In
the case of a second order ordinary differential equation y� � 0 the first
integrals are I � y� and I � xy� � y. The ratio of the two first integrals1 2
I �I � I also has the same number of point symmetries as I and I .2 1 3 1 2

9. CONCLUSION

We have used the Riccati transformation in the reduction of order of
Ž . Ž .the second and third order equations of maximal symmetry 4.3 and 4.4 ,

respectively. In the general structure of the symmetries we find that the
Ž .sl 2, R subalgebra is preserved under the Riccati transformation. On the

other hand the solution symmetries and the ICS become nonlocal symme-
tries. The homogeneity symmetry vanishes under the Riccati transforma-

Ž .tion. In the case of the third order equation 4.4 it is observed that the
Ž .solution symmetries, the sl 2, R , and the ICS all originate from the same

Ž .third order equation 4.4 . This is curious since equations in normal form
do not have this property. We also point out that a basis for the solution

Ž . Ž .set of equations of maximal symmetry 4.1 or 4.2 can be given in terms
of the solution set of a second order ordinary differential equation. In the

Ž .context of generalised symmetries we are able to express sl 2, R symme-
tries and the ICS in terms of a Jacobian. We further showed that the
‘‘super’’ Jacobian G is also a symmetry of the third order differentialass j

Ž .equation. The first integrals associated with each element of the sl 2, R
subalgebra were calculated and it was shown that the combination I I � I 2

1 3 2
Ž .has sl 2, R symmetry. This is in agreement with the results given by Leach
� �et al. 8 . It is also interesting to note that in terms of the scalar equation

y i� � 0 the four solution symmetries G , G , G , and G have the property1 2 3 4
that if G and G are used in the reduction, the resulting equation Y 	 � 01 4



ORDINARY DIFFERENTIAL EQUATIONS 863

Ž .is also an equation of maximal symmetry see Section 1 . Both G and G1 4
correspond to the integrals with five point symmetries I and I , respec-1 4
tively.
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