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ABSTRACT 

A sign-nonsingular matrix or L-mahix A is a real m X n matrix such that the 
columns of any real m X n matrix with the same sign pattern as A are linearly 
independent. The problem of recognizing square L-matrices is equivalent to that of 
finding an even cycle in a directed graph. In this paper we use graph theoretic 
methods to investigate L-matrices. In particular, we determine the maximum number 
of nonzero elements in square L-matrices, and we characterize completely the 
semicomplete L-matrices [i.e. the square L-matrices (a, j) such that at least one of a,, 
and ajl is nonzero for any i, j] and those square L-matrices which are combinatori- 
ally symmetric, i.e., the main diagonal has only nonzero entries and a, j = 0 iff a jr = 0. 
We also show that for any n X n L-matrix there is an i such that the total number of 
nonzero entries in the i th row and i th column is less than n unless the matrix has a 
completely specified structure. Finally, we discuss the algorithmic aspects. 

1. INTRODUCTION 

Two m X n real matrices A =(a, .) and B = (bij) are said to have the 
same sign pattern if a i j = 0 if and on y if bi j = 0 and a, j and b, j have the i 
same sign otherwise. When b E R”, the linear system Ax = b is sign-solv- 
abb if it is solvable and, for each A’ with the same sign pattern as A and 
each b’ with the same sign pattern as b, the solutions of the two systems 
Ax = b, A’x = b’ have the same sign pattern. Sign-solvability problems occur 

in certain models in economics [ 111. 
The difficulty in deciding whether or not the system Ar = b is sign-solv- 

able lies in recognizing an L-matrix associated with the system (see [6]). Klee, 
Ladner, and Manber [6] showed that it is NPcomplete to decide whether or 
not an m X n matrix is an L-matrix if m = n + 1 nl/k], where k is any (fixed) 
natural number. However, they left the important special case m = n open. 
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As observed by Maybee [lo], this problem can be formulated in terms of 
digraphs (directed graphs). Consider an n x n matrix A = (aij). A necessary 
condition for A to be an L-matrix is that its rows and columns can be 
permuted such that the entries in the main diagonal of the resulting matrix 
are all nonzero. These operations do not destroy the property of being an 
L-matrix, and the existence of such operations is precisely the problem of 
finding a perfect matching in a bipartite which can be solved by a fast (i.e. 
polynomially bounded) algorithm (see [6]). We shall therefore assume in what 
follows that aii = 1 for 1~ i < n (since multiplying a row of an L-matrix by a 
nonzero constant results in an L-matrix). Now D(A) denotes the digraph 
whose vertices are pi, us,. . . , v, and whose arcs are all vi vi such that a i j # 0, 
i # j. [In graph theoretic terms, D(A) is the digraph whose adjacency matrix 
is A - 1.1 Moreover, we associate the weight 1 (respectively zero) to vivj if 
a i j > 0 (respectively a i j < 0). Such a digraph is called weighted. Clearly, A is 
an L-matrix iff the standard expression of det A has only positive terms, 
which is the case iff D(A) has no cycle (i.e. directed cycle) of even weight. 
(The weight of a cycle is the sum of the arc weights. Our notation here is 
slightly different from that of [6, 81.) Clearly, D(A) has a cycle of even 
weight iff there is a cycle of even length in the digraph obtained from D(A) 
by subdividing all arcs of weight zero. So from an algorithmic point of view, 
the problem of recognizing a square L-matrix is equivalent with that of 
finding a cycle of even length in a digraph, which is equivalent with deciding 
whether or not a O-l square matrix is an L-matrix. 

In this paper we use graph theoretic methods to investigate L-matrices. 
There are L-matrices with no zero elements, but we show than an n x n 
L-matrix has at least $(n -3)+ 1 zero entries and we characterize the 
extremal matrices. We also characterize another class of dense n x n L- 
matrices, namely those L-matrices (aij) which are semicomplete, i.e., at least 
one of aij and a ji is nonzero for all i, j. We describe completely the 
combinatorially symmetric n x n L-matrices. These are all sparse [they have 
at most 4( n - 1) nonzero entries] and exist only if n is even. Finally, we 
observe that there are good algorithms for recognizing special classes of 
L-matrices. 

Our terminolom is the same as in [2]. In particular, a digraph is semzcorn- 
plete if every two vertices are joined by an arc, and a digraph is k-connected 
if the removal of any set of fewer than k vertices leaves a strong (i.e. strongly 
connected) digraph. If S is a set of vertices of the digraph D, then D(S) 
denotes the digraph induced by S. The symmetric digraph associated with 
the undirected graph G is denoted G *. The undirected cycle of length n is 
denoted C,,. When we speak of a cycle in a digraph we always mean a 
directed cycle. A double cycle is a digraph of the form Cz. 
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FIG. 1. Examples of even digraphs. 

A weighted digraph is a digraph such that a weight (0 or 1) is associated 
to each arc. The weight of a cycle in a weighted digraph is the sum of its arc 
weights. 

Finally, we say that a digraph D is even if D contains a cycle of even 
weight whenever weights are assigned to the arcs of D. Equivalently, D is 
even if and only if each subdivision of D contains a cycle of even length. A 
subdivision of a digraph D is a digraph obtained from D by replacing some 
(or all) arcs by directed paths. If x is a vertex in a digraph D, and we split x 
up into two vertices ri and x2 such that x1 (respectively xs) is incident with 
all arcs directed towards x (respectively away from x), and we add the arc 
xrxs and denote the resulting digraph by D’, then it is easy to see that D is 
even if and only if D’ is even. It is also easy to see that the double cycle C,,* is 
even whenever n is odd, and so is any subdivision of every digraph obtained 
from Cz (n odd) by splitting vertices as indicated above. Figure 1 shows the 
even digraphs obtained from Cs* in this way. 

2. THE MAXIMUM NUMBER OF NONZERO ENTRIES 
IN L-MATRICES AND EVEN DIGRAPHS 
WITH LARGE DEGREES OR ARC DENSITY 

Seymour [12] proved that a S-colorcritical hypergraph with n vertices 
must have at least n hyperedges. He showed that the problem of deciding 
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whether or not a given hypergraph with n vertices and n hyperedges is 
S-color-critical is equivalent with finding an even cycle in a certain digraph 
with n vertices. Using the aforementioned connection between L-matrices 
and digraphs without cycles of even weight, Seymour’s result can be ex- 
pressed as follows: Consider an n X n L-matrix A whose entries are all 0 or 1 
(and whose main diagonal consists of ones). Suppose further that D( A ) is 
strong and contains no cycle of even weight. Then the rows of A are the 
incidence vectors of a S-colorcritical hypergraph. Moreover, every 3-color- 
critical hypergraph with n vertices and n hyperedges can be obtained in this 
way. Seymour [ 121 conjectured that any S-color-critical hypergraph must have 
an edge with less than 1O’O vertices (or, equivalently, any O-l square L-matrix 
has a row with at most 1O’O ones). This conjecture, which was also mentioned 
by Lo&z [7] (formulated as an even cycle problem), was disproved by the 
author [14, Theorem 3.11 as follows: 

THEOREM 2.1. For each natural number n >, 4, there exists an n x n 
Lmutrix A such that all entries are 0 or 1 and such that A has at least 
+ log a n ones in each row. 

The bound i log, n is not sharp, but it has the right order of magnitude, 
as shown by the next result, which is sharp. 

THEOREM 2.2 [14, Theorem 3.21. For each natural number n > 2 there 
exists an L-matrix with [log, n1 + 1 nonzero entries in each row. On the 
other hand, any n X n L-matrix has a row with at most [log, n] + 1 nonzero 
entries. 

Klee et al. [6] showed that every special L-matrix (defined in [6]) has a 
row with at most three nonzero entries. 

Theorem 2.2 asserts that any digraph with n vertices each of which has 
outdegree greater than log, n is even and that there are digraphs which are 

not even and in which all vertices have outdegree [log, n 1. For total degrees 
we have the following 

PROPOSITION 2.3. lf D is a digraph with n vertices such that all vertices 

have degree at least n + 1, then D is even. 

Proof. By a remark above it is sufficient to show that D contains a 
subdivision of Cs*. We can assume that D is strong (otherwise we consider 
any strong component of D instead of D). Let D’ be a strong subdigraph of 
D which has fewer vertices than D and which is maximal under this 
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condition. It is easy to see that D’ = D - u for some vertex v in D. [In 
general, if D’ is a strong subdigraph of a strong digraph D, and D’ has fewer 
vertices than D and is maximal under these conditions, then D \ V( D’) is a 
path, and if it has length at least one, then all its vertices have indegree 1 and 
outdegree 1 in D.] 

Now D’ has n - 1 vertices each of which has degree at least n - 1 in D’, 
and hence, by Ghouila-Houri’s theorem (see [2, Theorem 1.1.2]), D’ has a 
Hamiltonian cycle C. Also, u is incident with at least two 2cycles which 
together with C form a subdivision of C;. n 

We shall later extend Proposition 2.3, but first we apply it to give a short 
proof of the following: 

PROPOSITION 2.4. An n x n Lmutrix has at least zero entries. 

Proof. Proposition 2.4 asserts that a digraph D with n vertices and more 

than n(n-l)- nil 
( 1 

arcs is even. We prove this by induction on n, by 

showing that D contains a subdivision of Cz. For n < 3 there is nothing to 
prove, so we proceed to the induction step assuming n >, 4. If all vertices of 
D have degree at least n + 1, we apply (the proof of) Proposition 2.3. So 
assume that x is a vertex of degree at most n. Then D - r has n vertices and 

more than n-l 
! 1 2 

+ n - 2 arcs, and hence D - x contains a subdivision of 

CL;. n 

Proposition 2.4 cannot be extended to m X n L-matrices. Indeed, the 
matrix whose rows are the 2” + l-vectors with n entries is an L-matrix with 
no zero elements. It also shows that an m X n L-matrix need not contain an 
n x n L-matrix when n >, 3. 

The bounds in Propositions 2.3 and 2.4 are sharp. To see this we consider 
a caterpillar T, i.e., a tree which consists of a paths x1x2. . . xk, k 2 3, 
together with a (possibly empty) set of vertices each of which is joined to 
precisely one of x2, xs,. . . , xk _ r. Now we consider T *, and we add all arcs 
from xi (and all end vertices joined to xi in T) to x j (and all end vertices 
joined to x j) whenever i > j. Also we add arcs such that the end vertices 
joined to xi induce a transitive tournament for each i = 2,3,. . . , k - 1. The 
resulting semicomplete digraph is called an extended caterpillar, and xlxZ 
. . . xk its basic path. Clearly, any extended caterpillar or n vertices has 

n 

( 1 
2 +( n - 1) arcs, and all vertices have degree n or more. Moreover, if we 

assign weights to the arcs in T * such that all 2-cycles of T * have odd weight, 
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then each arc outside T * can be assigned a weight (in only one way) such 
that the extended caterpillar has no cycle of even weight. We shall prove that 
the extended caterpillars are the extremal digraphs in Proposition 2.4, and 
that they contain all extremal digraphs in Proposition 2.3. For this we need 
the following result, which is of independent interest. 

THEOREM 2.5. Let D be a strong semicomplete digraph. Then D is even 
if and only if it is not a subdigraph of an extended caterpillar. 

Proof. Suppose D is not even. We prove, by induction on n, the number 
of vertices of D, that D is a subdigraph of an extended caterpillar. For n = 3 
this is obvious, so assume n >, 4. We consider first the case where D has a 
vertex x such that D - x is not strong, i.e., the vertex set of D - x can be 
partitioned into sets A, B such that no vertex in A dominates any vertex in B. 

Since D is strong, x dominates some vertex b in B. If y is a vertex in A 
such that x does not dominate y, then we add the arc xy. The resulting 
digraph D’ is not even, because we can assign ‘he weight of the path xby 
(taken modulo 2) to xy. This will not create any cycle of even weight. Now 
the subdigraph of D’ induced by A U { x } is a subdigraph of an extended 
caterpillar with basic path xixs . . . xk say. Since x dominates all vertices of 
A, we must have x = xk or x = xk_ i. Similarly, the subdigraph of D induced 
by B U {x } is a subdigraph of an extended caterpillar with basic path 

YlY2 * . . y,,, where x = yi or x = y,. Hence D is a subdigraph of an extended 
caterpillar with basic path xixs . . . xk _ i . . . ym, and the proof is complete. 

We can assume that D is e-connected. In particular, each vertex has 
indegree and outdegree at least 2. Let x be any vertex of D. By the induction 
hypothesis, D - x is a subdigraph of an extended caterpillar with basic path 
xix2 . . * Xk, k > 3. Since all vertices in D have indegree and outdegree at 
least 2, x dominates xk and all other vertices of indegree 1 in D - x, and is 
dominated by xi and all other vertices of outdegree 1 in D - x. Let D, be 
obtained from D - x by adding an arc from xi to each vertex of indegree 1 
in D - x. Then D, is not even, because any new arc x,y can be assigned the 
same weight as in the path xixy. So D, is a subdigraph of an extended 
caterpillar. In particular, D, has two distinct vertices zi and zs of outdegree 
and indegree (respectively) 1 in D,. Since each vertex in D - x has indegree 
at least 1, and no vertex other than x2 is dominated by xi in D - x, we must 
have k = 3 and zs = x2, and in D - x, x2 is dominated by xi only. We then 
form the digraph D, by adding to D - x all arcs yx, where y has outdegree 
1 in D - x, and, as above, we conclude that in D - x, x2 dominates xg only. 
So D-x is the 3-cycle x1xzx3x1. We have shown that the deletion of any 
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vertex from D results in a 3-cycle. But this is impossible and the proof is 
complete. n 

We can now characterize the extremal Lmatrices in Proposition 2.4 in 
terms of their associated digraphs. 

THEOREM 2.6. A digraph D with n vertices and n( n - l)- 

more arcs is even if and only if D is not an extended caterpillar. 

or 

Proof (by induction on n). For n < 3 the statement is easily verified. So 

assume that D has at least n(n - 1) - n-l 
( i 

2 arcs and is not even. As in the 

proof of Proposition 2.4, we consider a vertex of degree at most n. By the 
induction hypothesis, D - x is an extended caterpillar and hence x has 
degree n. Since D - x has a Hamiltonian cycle, x is not incident with two 
cycles of length 2. (Otherwise D contains a subdivision of C,*.) So x is 
adjacent to all vertices of D - x, and hence D is semicomplete. Now the 
result follows from Theorem 2.5. n 

We conclude this section by characterizing the extremal digraphs in 
Proposition 2.3. 

THEOREM 2.7. Zf D is a strong digraph with n vertices and of minimum 
degree at least n, and D is not even, then D is a subdigraph of an extended 
caterpillar or else D is isorrwrphic to C2* or Cd*. 

Proof (by induction on n). For n < 3 the statement is easily verified. So 
assume that n > 4. We consider first the case where D has a vertex x which 
dominates only one vertex, say y. Then r is dominated by all vertices of 
D - x. Now the digraph D, obtained from D - x by adding all arcs from 
D - x - y to y is not even, and it satisfies the assumption of Theorem 2.7. 
Hence D, is a subdigraph of an extended caterpillar whose basic path has y 
as its first or second vertex. Hence also D is a subdigraph of an extended 
caterpillar whose first and second vertex are x and y, respectively. 

We consider next the case where D has a vertex x such that D - x is not 
strong, i.e., the vertex set of D - x has a decomposition A U B such that no 
vertex in A dominates any vertex in B. Suppose without loss of generality 
that IAl < 1 BI. Then any vertex of A is dominated by some vertex of B (since 
all vertices have degree at least n). Let D’ denote the digraph obtained from 
D by adding all arcs from x to A. As in the proof of Theorem 2.5, we see that 
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D’ is not even. Now the subdigraph D, of D’ induced by {x} U A satisfies 
the assumption of Theorem 2.7 and is therefore a subdigraph of an extended 
caterpillar. Hence Dz has a vertex distinct from X, which dominates only one 
vertex in D, (and hence also in D). We have already disposed of that case. 

So we can assume that D is e-connected. If D has no cycle x rx2 . . x, lrl 
missing precisely one vertex r, then, by a result of Haggkvist and Thomassen 
[5], n is even and D is isomorphic to the symmetric complete bipartite 

digraph K,*/2, n/23 which for n = 4 is isomorphic to Cd* and which for n > 6 
contains a subdivision of C,*, contrary to the assumption that D is not even. 
So assume that the cycle x rr2 . * * xn _ 1 1 x exists. We show that this leads to a 
contradiction. Since D contains no subdivision of Cs*, x is incident with only 
one S-cycle. So x is adjacent to all vertices of D - x, and we can assume that 
D contains the e-cycle XX, _ ix. If there exist natural numbers i, j such that 
1 < i < j < n -2 and the arcs xxi, xix are present, then D contains a 
subdivision of the second digraph in Figure 1 and hence D is even, a 
contradiction. So there exists a k, 1~ k < n -3, such that x is dominated by 
x n 1’ x1> x2,. . . , xk and no other vertex, and x dominates rk+ r, . . . , x, _ 1 and 
no other vertex. We now define the digraph D' as follows: If x, 1 has 
degree at least n - 1 in D - r, we put D’ = D - x. Otherwise, there exists a 
vertex xi, 1 < i < k, such that x n _ 1 is not dominated by xi, or there exists a 
vertex x j, k + 1~ j < n - 2, such that x, _ 1 does not dominate x j. Then D’ 
is obtained from D - x by adding either xix, _ 1 or x, _ rxj. Clearly, D’ 
satisfies the assumption of the theorem, and hence D’ = Cd* or D’ is a 
subdigraph of an extended caterpillar. Since D is not even, we can assume 
that the second alternative holds. Let z1z2 . . . z, be the basic path of D'. 
Since D is 2connected, x is dominated by zr and dominates z,. Since an 
extended caterpillar has only one Hamiltonian cycle, namely x1x2 . . . x, _ 1x1, 
we conclude that zlz2 . . . z, is a segment of that cycle. In particular, x, ; I 
is not in the path .z2z3 . . . z, _ 1. We can assume that x, i # z1 (otherwise, 
we consider the reverse digraph of D instead of D). NOW we let D” be 
obtained from D - x by adding all arcs z,y such that y is dominated by x in 
D. Clearly, D” is not even. Since x, _ i is dominated by r and x n 1 z z1 it 
follows that x, _ i has degree at least n - 1 in D” and hence, by the 
induction hypothesis, D” is a subdigraph of an extended caterpillar. But this 
is impossible. For in D’, z1 dominates z2 only and since zi has degree at 
least n in D, zi is dominated in D - x by all vertices other than zr. In 
particular, all vertices other than z2 have outdegree at least 2 in D - x. So 
the basic path in D” must start at .z2 and since zr has degree at least n in 
D”, the basic path in D” must include zr because all vertices outside the 
basic path have degree n - 1 in an extended caterpillar. Hence the basic path 
in D” ends at z,, i.e., zi has indegree 1 in D”. Since zi is dominated by all 
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vertices of D - x - z1 we have obtained a contradiction which proves the 
theorem. n 

3. COMBINATORIALLY SYMMETRIC L-MATRICES 
AND EVEN SYMMETRIC DIGRAPHS 

In Section 2 we considered digraphs (namely the extended caterpillars) 
which are not even and which are dense in the sense that they have large 
degrees or many arcs (or both). However, they all have vertices of outdegree 
or indegree 1. [The corresponding L-matrices contain a row (or column), 
respectively with only two nonzero entries.] In this section we consider 
2-connected digraphs which are not even. We say that an undirected graph G 
is euen if and only if the symmetric digraph G* is even. If G is not even and 
xy is an edge of G, then it is easy to verify that we obtain a noneven graph by 
adding a path xxixsy of length 3. In fact, two of the six arcs corresponding to 
the path xx,x,y can be weighted at random. Clearly, C, is noneven, and we 
define a C,-cockade as a graph which can be obtained from C, by repeated 
use of the 3-path operation above. 

Clearly, a C,cockade is 2-connected and has an even number n of 
vertices, and it has in - 2 edges. To any Cd-cockade G we associate the 
graph T(G) whose vertices are the 4-cycles in G such that two vertices are 
adjacent in T( G ) iff the corresponding 4-cycles have an edge in common. It is 
easy to see that T(G) is a tree. An end vertex of T(G) corresponds to 
a 4cycle in G which has two adjacent vertices of degree 2 in G. If T(G) is a 
path, as is the case if G is the second or third graph in Figure 2, then G has a 
unique Hamiltonian cycle C. For any edge e which is not in C, G is 
partitioned into two subgraphs each of which is a C,cockade and such that 
they have precisely e and the ends of e in common. 

FIG. 2. C,-cockades. 
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It is easy to see that the arcs of the symmetric digraph associated with a 
C,-cockade with n vertices can be weighted in precisely 2” ~ ’ ways such that 
there is no cycle of even weight. When weights are associated to the arcs of a 
symmetric digraph whose underlying undirected graph has only blocks that 
are subgraphs of C,cockades (in such a way that there is no cycle of even 
weight) then that gives rise to a symmetric L-matrix. The next result shows 
that every symmetric L-matrix can be obtained in that way. 

THEOREM 3.1. Let G be a 2-connected undirected graph. Then the 
following statements are equivalent: 

(i) G is even. 
(ii) G = C,,, n odd, or G contains two vertices which are joined by three 

internally disjoint paths one of which has even length. 
(iii) G is not a subgraph of a C,cockade. 

Proof. Clearly (ii) implies (i) because the three paths in (ii) correspond to 
a subdigraph in G * containing a subdivision of the double cycle C,T+ i, where 
m is the even length occurring in (ii). Also (i) implies (iii) because a 
Cd-cockade is not even. So in order to complete the proof we show (by 
induction on the total number of vertices and edges of the graph) that if G 
does not satisfy (ii), then it is a subgraph of a Qockade. This is clearly true 
for graphs with at most 4 vertices, so assume that G has at least 5 vertices. 

We consider first the case where G has two adjacent vertices x, y, each of 
degree 2. Let x’ (respectively y’) be the other neighbor of x (respectively y). 
Then X’ # y’, because G is e-connected. Let G’ be obtained from G - {x, y } 
by adding the edge x’y’ if it is not already present. By the induction 
hypothesis, G’ is a subgraph of a C,cockade and so is G. 

So assume that G has no two adjacent vertices of degree 2. We shall 
obtain a contradiction from that. Let H be a maximal proper 2connected 
subgraph of G. It is easy to see that G arises from H by adding a path 
ZIZB . . . z,, where each of z2, zs,..., z,_i has degree 2 in G. By the above 
assumption, m < 3. Since G does not satisfy (ii), m is even, i.e., m = 2. By 
the induction hypothesis, H is a subgraph of a Cd-cockade H’. Since G has no 
two adjacent vertices of degree 2, the tree T( H ‘) has only two end vertices 
[i.e., T( H ‘) is a path] and zi and z2 belong to 4-cycles corresponding to the 
two end vertices of T(H’). By a previous remark, H’ has a unique Hamil- 
tonian cycle C, and since H is 2-connected, H contains C. Let x be the 
neighbor of zi which has degree 2 in H’ (and hence also in H ). The neighbor 
y of x distinct from zi has degree at least 3 in H. Let v be a neighbor of y 
such that yv is a chord of C in H. Then yv partitions H’ into two 
C,-cockades H, and H, such that H,, say, contains x and zi. Since T( H ‘) is 
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a path, zs is in H, - { y, } v an now H contains three internally disjoint yz, d 
paths one of which is yxz,. This contradiction proves the theorem. n 

The equivalence of (i) and (ii) in Theorem 3.1 was found independently 
by Harary et al. [4] and by Manber et al. [9]. 

4. ALGORITHMIC ASPECTS OF THE EVEN CYCLE PROBLEM 

Klee et al. [6] and the author [14] independently showed that it is 
NP-complete to decide whether or not a digraph has an even cycle through a 
given arc. This might indicate that the problem of finding an even cycle in a 
digraph is difficult. On the other hand, the problem of finding an odd cycle 
through a given arc is equivalent (from an algorithmic point of view) to the 
above problem, and yet it is easy to decide if a digraph has an odd cycle. 
Indeed, if D is a digraph and A is its adjacency matrix (i.e. A = {a ij}, where 
a i j = 1 if vertex i dominates vertex j and zero otherwise), then D has an odd 
cycle iff for some odd natural number k, Ak has a nonzero main diagonal and 
the smallest odd k for which this holds is the length of a shortest odd cycle in 
D. The problem of deciding whether or not a real matrix is an Lmatrix was 
also shown to be NP-complete by Klee et al. [6]. 

By [15, Theorem 4.11 a digraph D contains a vertex meeting all cycles in 
D if and only if D does not contain two disjoint cycles or a subdivision of any 
of the digraphs is Figure 1. This gives a good (i.e. polynomially bounded) 
algorithm for finding an even cycle in a digraph D with no two disjoint 
cycles: For each vertex x, we investigate if D - x has a cycle. If this is the 
case for each vertex X, then D has a cycle of even length. On the other hand, 
if D - x is acyclic for some X, then we can find the cycle length distribution 
of D (i.e., the number of 2cycles, the number of 3cycles etc.) in polynomial 
time. More generally, we have 

THEOREM 4.1. Let k be a fixed natural number. If D is a digraph 
containing a set S of at most k vertices such that D - S is acyclic, then the 
cycle lengths in D can be found in polyrwmial time. 

Proof. Any cycle C in D contains a vertex in S and can therefore be 
described as the union of paths 

P,uL,uQ,uR,uP,UL,UQ,UR,u ... UP,UL,UQ*UR,, 

where the paths P,, Pz,. . . , P, are pair-wise disjoint paths with vertices in S; 
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Ql> Qz>-.., Qm are pair-wise disjoint paths in D - S; and for i = 1,2,. . . , m, Li 
is an arc from the end of P, to the starting vertex of Qi, and Ri is an arc from 
the end of Qi to the starting vertex of Pi + i (where P,,, + 1 = PI). The number 
of possibilities for the ordered sequence P,, Pz,. . . , P,,, is less than 2kk!, and 
the number of possibilities for L,, L, ,..., L,, R,, R, ,..., R, is less than nzk. 
So it is sufficient to show that, for fixed P,, L,, R,, . . . , P,,, L,, R,, the 
possible values of the total lengths of the paths Qr, Qs, . . . , Qm can be found in 
polynomial time. For this we use an idea of Fortune, Hopcroft, and Wyllie 
[3]. We consider the digraph D* whose vertices are all m-tuples consisting of 
distinct vertices of D - S such that there is an arc in D* from 2 = 
(z,, zs, * * * > z,) to z’=(z;,z;,..., zL) if there is a j E {1,2,...,m} such 
that zi = z,! for i E {1,2,..., k } \ { j } and D - S contains the arc z jz; and 
contains no path from zi to zj whenever i # j. It is easy to see that a path of 
length q in D* corresponds to a path system of total length Q in D - S. Also, 
D* is acyclic, and hence the number of paths of a given length from a given 
vertex Z to another vertex Z’ can be calculated in polynomial time (for 
example, by using powers of the adjacency matrix). If we let Z (respectively, 
Z’) consist of the ends of L,, L,, . . . , L, (respectively, the starting vertices of 
R,, Rs,..., R,), we complete the proof. n 

The digraphs satisfying the condition of Theorem 4.1 correspond to those 
n x n matrices A = { a i j } which (after appropriate row and column permuta- 
tions) satisfy the condition a i j = 0 whenever i > j > k. Thus we can check, in 
polynomial time, if such a matrix is an L-matrix. 

Consider a strong weighted digraph D containing a vertex I, such that 
D - z is not strong, i.e., D - z consists of two disjoint digraphs D, and D, 
and possibly some arcs from D, to D,. We now consider two digraphs D; 
and 0; with vertex sets V( Dl) U { z } and V( D,) U { .z }, respectively. For 
each arc xy with r E V( Dl) and y E V( D,) we consider a cycle CX,, contain- 
ing xy. If CXY has odd weight, we add the arcs xz and zy and assign weights 
to these new arcs such that Cxy U { xz, zy } has no cycle of even weight. Then 
we delete the arc ry. With this notation we have 

LEMMA 4.2. D has a cycle of even weight if and only if either one of the 
cycles C,, has even weight or either Di or 04 has a cycle of even weight. 

Proof. If one of CXY has even weight, we have finished, so assume that 
each CXY has odd weight. If one of Di, 0; has a cycle of even weight, it is 
easy to find a cycle of even weight in D (because of the way weights have 
been assigned to the new arcs). Suppose conversely that D has a cycle C of 
even weight, and assume that this is not in 0; or 04. Then C contains 
precisely one arc xy such that x E V( Dl) and y E V( D,). Since CXY has odd 
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weight, we can assume that the segments of Cx,, and C from .a to x have the 
same parity and that the segments of CXY and C from y to z have different 
parity. But then the cycle in D& consisting of the arc zy and the segment of C 
from y to z has even weight. n 

Lemma 4.2 reduces the problem of finding a cycle of even weight in a 
digraph D to the case where D is Zconnected. For if D is not e-connected 
we form 0; and 0; as above. If one (or both) of these is (are) not 
2connected we perform the same operation on 0; or 04. Continuing like 
this, we obtain in polynomial time a sequence of at most n = IV( D)l 2con- 
netted digraphs each of order at most n such that D has a cycle of even 
weight if and only if one of the e-connected digraphs in the sequence has a 
cycle of even weight. We can even go a step further. 

THEOREM 4.3. Zf D is a digraph of order n, then we can construct, in 
polynomial time, a sequence of at most n digraphs D,, D,, . . . each of order at 
most n such that D has a cycle of even weight if and only if one of 

D,, D2,. . . has such a cycle and, moreover, each of D,, D,, . . . is e-connected 
and has an underlying undirected graph which is either 3-connected or 
isomorphic to a cycle of length at most 5 or obtained from a 3-connected 
graph by subdividing some edges once. 

Proof. By the reasoning preceding Theorem 4.3 we can assume that D is 
e-connected. If the underlying undirected graph of D does not have the 
structure described in Theorem 4.3, then D is the union of two induced 
subdigraphs D = 0; u 0; such that V( D;)n V( 04) = {x, y } and each of 0; 
and 04 has at least four vertices. Since D is 2connected, D{ contains an xy 
path P, and a yx path Pz. If the weights of P, and Pz have different parity, 
then we denote by 0;’ the digraph obtained from Ds by adding arcs xy and 
yx whose weights have the same parity as the weights of P, and Ps, 
respectively. Otherwise, 0;’ will denote the digraph obtained from DB by 
adding a new vertex z and the new arcs w, xz, yz, zy such that the weights 
of the paths xzy and yzx have the same parity as the weight of P, and the 
cycles WC z and zyz have odd weights. We construct 0;’ analogously. It is 
easy to see that D has a cycle of even weight if and only if one of D;‘, 04’ 
has such a cycle. If 0;’ and 0;’ do not satisfy the conclusion of the theorem, 
then we iterate the above construction. This completes the proof. n 

If we apply the reductions in Theorem 4.3 on the noneven digraphs in this 
paper and also on those of large outdegrees in [ 141, then we end up with 
double cycles of length 2 or 4. Other “irreducible” digraphs are shown in 
Figure 3. 
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FIG. 3. Examples of Bconnected noneven digraphs. 

The digraph of Figure 3(c) was found by Sylvia Boyd (private communi- 
cation) and is the only known 2connected digraph with no cycle of even 
length. This raises the following question: 

QUESTION 1. Are there infinitely many 2connected digraphs with no 
cycle of even length? 

As we have seen, there are infinitely many weighted symmetric e-con- 
nected digraphs with no cycle of even weight. But perhaps those which 
cannot be reduced by Theorem 4.3 have such a simple structure that it can be 
checked in polynomial time whether or not a given digraph has that structure. 
If so, we would have a polynomial algorithm for finding a cycle of even 
weight in a digraph. This suggests the following question: 

QUESTION 2. Is every 3-connected digraph even? 

In case Question 2 has a negative answer, one can ask the same question 
with 10” instead of 3. The corresponding even length problem was raised by 
Lovasz [7]. 

Theorem 4.3 and Question 2 may be a first step towards explaining why a 
given digraph is noneven. It is also of interest to give a good characterization 
of the even digraphs. We have previously observed that any odd double cycle 
and any digraph which can be obtained from such a digraph by splitting 
vertices and subdividing arcs is even. This raises the question whether any 
even digraph must contain such a digraph. Theorem 3.1 and the proofs of 
Theorems 2.5, 2.7 show that this holds for symmetric digraphs, semicomplete 
digraphs, and digraphs with n vertices and minimum degree at least n. In a 
forthcoming paper Seymour and the author [ 131 answelr the above question in 
the affirmative. 
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