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a b s t r a c t

Scheduling coupled-operation jobs with exact time-lags on a single machine has a wide
range of applications. In that problem, each job consists of two operations with given
processing times, which should be scheduled on a single machine observing a given
time-lag. The general case of the problem with arbitrary processing times of operations
and arbitrary time lags is known to be NP-hard in the strong sense and the problem
remains NP-hard for many special cases. In order to develop a local search algorithm for
the problem, we first explore two possible approaches for representing feasible solutions
and their neighborhoods based on maintaining a permutation of first operations of the
jobs or maintaining a full permutation of all operations. The first representation appears
to be unpromising since, as we prove, the problem of finding an optimal sequence
of second operations for a fixed sequence of first operations is NP-hard in the strong
sense even in the case of unit processing times. We elaborate the second approach by
developing a tabu search heuristic based on efficient job re-insertion. Empirical evaluation
demonstrates superiority of the developed algorithm in comparison with the earlier
published algorithms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Coupled-operation scheduling has been the subject of intensive research since the late 90s. In a typical problem of this
type each job consists of two operations which should be processed one after another with a pre-specified time-lag in-
between. During the delay interval, the machine may process operations of other jobs. The objective is to sequence all
operations on one machine so that the makespan is minimum.

The coupled-operation problem arises in various applications: radar controllers receive signals after a delay since the
pulse emission [10,11,23,25]; some health care treatmentsmust follow delivery patterns with strictly defined time-lags [9];
in distributed computing the master processor organizes data transmission and the time-lags in-between transmissions of
input and output files correspond to the execution stage by a slave processor [18,19].

The coupled-operation problem is known to be NP-hard and theoretical aspects of complexity analysis have received
considerable attention of the researchers. Publications on solution techniques are mainly focused on approximation
algorithms and ILP-based methods for real-world applications [10,25]. The most systematic study of heuristics for the
coupled-operation scheduling problem is presented in [22] where the authors establish a number of important properties
of the problem and develop several construction heuristics and local search algorithms.

Formally, in the model under consideration each job j of the set N = {1, 2, . . . , n} consists of a pair of operations aj and
bj which should be processed without preemption by a single machine. Job j is characterized by a triple paj , Lj, pbj , where paj
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and pbj are processing times of aj and bj and Lj is the duration of a given time-lag. If the first operation aj starts at time saj ,
then the second operation bj should start exactly at time

sbj = saj + paj + Lj. (1)

The machine can be used for processing other jobs in-between aj and bj, but the time-lag of duration Lj between completing
aj and starting bj should be observed. The completion time of the second operation determines the completion time cj of job
j,

cj = sbj + pbj .

The objective is to sequence all 2n operations of jobs N so that the machine processes at most one operation at a time
and the makespan Cmax = maxj∈N


cj

is minimum. Extending the notation from [12,21] we denote the problem by

1 | aj, bj, Lj | Cmax.
The introducedmodel is characterized by exact time-lags: in accordance with (1), the difference sbj −


saj + paj


between

the starting time of bj and completion time of aj should be exactly equal to Lj. There are several related models of coupled-
operation scheduling in which time-lags are treated differently. In the model with flexible time-lags, denoted by 1 | aj, bj,
ℓj, uj | Cmax, the difference between the starting time of bj and completion time of aj should be within given boundaries,

ℓj ≤ sbj −

saj + paj


≤ uj. (2)

In the model with minimum time-lags, denoted by 1 | aj, bj, ℓj, uj = ∞ | Cmax, the upper bound is unlimited so that the
time-lag between the first and the second operations can be indefinitely large.

All formulated versions of the coupled-operation problem are strongly NP-hard, see [21,24,26]. Polynomial-time
algorithms are known only for special cases and most of the results for the problem with exact time-lags are formulated
in [21] where a detailed classification of NP-hard and polynomially solvable cases is given. The long-standing open question
on the complexity of problem 1 | aj = bj = p, Lj = L | Cmax has been recently resolved in [5], where the O (log n)-time
dynamic programming algorithm is proposed improving the preliminary results from [3]. Themost recent research ismainly
focused on various special cases of the problem with equal job parameters (e.g., equal processing times), but in a more
general setting: coupled-operation jobs are replaced by chains of several operations, see [8,20].

As far as approximation algorithms are concerned, the problem with exact time-lags 1 | aj, bj, Lj | Cmax is approximable
within a factor of 7/4 in the case of unit-time operations aj = bj = 1 [1], within a factor of 5/2 in the case of equal-length
operations aj = bj and within a factor of 7/2 in the general case (arbitrary aj and bj) [2]; it is also shown in [2] that for the
latter problem no polynomial-time algorithm exists with an approximation ratio 2 − ε unless P = NP .

Another stream of research considers coupled-operation problems with precedence constraints, see, e.g., the paper by
Blazewicz et al. [6]. Even if precedence constraints define a complete sequence π of all operations, finding the optimum
starting times is a non-trivial task if time-lags are flexible. The algorithm involves the longest path calculation in a disjunctive
graph having positive- and negative-weight arcs (see [17,22]). Notice that the complexity status of the coupled-operation
problem with a given sequence πa of first operations or with a given sequence πb of second operations is unknown.

To the best of our knowledge, there is only one publication [22] which discusses heuristic algorithms for the coupled-
operation problem. It studies the version of the problem with flexible time-lags 1 | aj, bj, ℓj, uj | Cmax comparing different
construction heuristics and local search algorithms. Interestingly, the proposed local search algorithms appear to be less
efficient than the most successful construction heuristics and such inefficiency is explained by a high cost of generating and
evaluating infeasible solutions. Indeed, the algorithms developed in [22] for flexible time-lags are applicable to the version
with exact time-lags 1 | aj, bj, Lj | Cmax. However, due to the importance of the latter problem for real-world applications, it
is particularly desirable to design efficient problem-specific algorithms for it. As we show in our study, this can be achieved
by exploiting special properties of the problem.

Our main objective is to design a successful local search method. We start our study with the analysis of possible
representations of feasible solutions and the neighborhood structure. The local search approach from [22] developed for the
problem1 | aj, bj, ℓj, uj | Cmax with flexible time-lags represents feasible solutions as permutationsπ of all 2noperations and
generates neighbors by removing one operation fromπ and inserting it elsewhere. The quality of a new solution is evaluated
via the O


n2


longest path algorithm which either fixes the starting times of all operations observing given bounds ℓj, uj

for time-lags or identifies that no feasible solution exists. As noted in [22], the resulting local search approach performs
poorly in comparison with construction heuristics since infeasible solutions prevail around local optima. Moreover, the
performance is even worse for instances with no flexibility (i.e., for problem 1 | aj, bj, Lj | Cmax with exact time-lags) as
infeasible neighbors occurmore often for non-adjustable time-lags. Due to this reason, in our studywe pay special attention
to alternative representations of feasible solutions and alternative neighborhood structures.

For solution representation, one natural approach is based on considering permutationπa of a-operations or permutation
πb of b-operations. Notice that due to the problem symmetry for themakespan objective, a problemwith a fixed permutation
πa can be re-formulated as the problem with a fixed permutation πb. Using a single permutation πa (or permutation
πb) may seem attractive as this representation is compact and leads to simple strategies for neighbor generation. Such
a representation induces an important subproblem in which the permutation πa (or πb) is fixed and the objective is to
produce a complete schedule, i.e., to specify complete permutation π of all 2n operations and their starting times so that
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the makespan Cmax is minimum.We perform complexity analysis of that subproblem in Section 2 and demonstrate that it is
NP-hard in the strong sense even in the case of unit processing time. This negative result suggests that using representation
πa (or, equivalently, πb) is less preferable in comparison with the full permutation π .

As far as neighbor generation strategy is concerned, we take into account the conclusion from [22] on inefficiency of
re-insertion of a single operation in a given permutation π of 2n operations as it often leads to infeasible permutations.
The alternative neighbor generating strategy we suggest optimally re-inserts the whole job consisting of two operations. It
adapts a so-called short cycle theory developed in [13–15] for job re-insertion in job-shop models of special types.

Although the strategy of job re-insertion may look very similar to operation re-insertion from [22], the new strategy has
a dramatic effect on the performance of the local search algorithm: it always generates feasible solutions during the search
and the neighbors are obtained as solutions to a specially defined optimization problem. Enumerating neighbors of good
quality is perhaps one of the reasons of good performance of our method.

The formulated ideas are elaborated in the tabu search algorithm presented in Section 3. We suggest two enhancements
that improve the search:

– maintaining the pool of solutions ranked in accordancewith the estimates of possible improvements that can be achieved
if a neighbor is generated;

– creating the tabu list which keeps the main characteristics of the eliminated solutions in the format of critical paths.

The performance of the tabu search algorithm is evaluated empirically comparing itwith thewinningmethod from [22]—
the randomized construction heuristic. Its adaptation for the model with exact time-lags is described in Section 4 followed
by the summary of computational experiments in Section 5. Conclusions are drawn in Section 6.

2. NP-hardness of the problem with a given sequence of first operations

It is known that if the permutation π of 2n operations is given, then their optimum starting times can be found in O

n2


time as a solution to a specially defined longest path problem [22]. In this section we consider the related problem in which
the permutation πa of a-operations is given while permutation of b-operations is not fixed. Without loss of generality we
assume that the jobs are numbered in accordance with the permutation of a-operations so that πa = (1, 2, . . . , n). The
objective is to find the starting times of all operations and a complete permutation π of all operations so that the makespan
Cmax is minimum.

Our main result is the proof that the coupled-operation problemwith a given permutation πa of a-operations is NP-hard
in the strong sense even if all operations have unit processing times. Using the 3-field notation, the problem is denoted by
1|aj = bj = 1, Lj, πa|Cmax. The decision version of this problem consists in verifying whether there exists a feasible solution
with the makespan not-exceeding a given threshold value T . To simplify the notation, the latter problem is denoted by
COET (πa, T ), where COET stays for Coupled-Operation problem with Exact Time-lags.

We reduce the following Coupled-Operation problem with Minimum Time-lags and a given makespan threshold t ,
denoted by COMT(t), to problem COET (πa, T ).

Problem COMT(t): given a set of jobs Q = {1, 2, . . . , q}, each job j ∈ Q consisting of two unit-time operations separated
by a time-lag of duration no less than ℓj, does there exist a feasible schedule with themakespan no larger than t? A schedule
is feasible if no two operations are processed simultaneously and the second operation of each job j starts after at least ℓj
time units elapse since the first operation of that job is completed. It is known that COMT(t) is NP-complete in the strong
sense, see [26].

Given an instance I(t) of problem COMT(t), we construct an instance I′ (πa, T ) of problem COET (πa, T ) as follows. The
set of jobsN in instanceI′ (πa, T ) consists of n = 3tq+1 coupled-operation jobs. Their time-lags Lj are defined in accordance
with the job type.

• There are q sets F1, . . . , Fq of the so-called filler jobs, each set Fh = {(3t − 2)(h − 1) + 1, . . . , (3t − 2)h}, 1 ≤ h ≤ q,
consisting of 3t − 2 jobs with time-lags

Lj = 3tq, j ∈ Fh.

• There is one set R consisting of a single sentinel job, R = {(3t − 2) q + 1}, with time-lag

Lj = t(3q + 1), j ∈ R.

• There are q setsU1, . . . ,Uq ofU-jobs, each setUh = {(3t − 2)q + 2h} , 1 ≤ h ≤ q, consisting of a single jobwith time-lag

Lj = 3t (q − h) + 2t − 1, j ∈ Uh.

• There are q sets V1, . . . , Vq of V -jobs, each set Vh = {(3t − 2)q + 2h + 1} , 1 ≤ h ≤ q, consisting of a single job with
time-lag

Lj = 3t (q − h) + 2t − 1 + ℓh, j ∈ Vh,

where ℓh is the minimum time-lag from instance I(t) of problem COMT(t).
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Fig. 1. An example of a feasible schedule for instance I(t) of problem COMT(t) with t = 5 and two coupled-operation jobs with minimum time-lags
ℓ1 = 1 and ℓ2 = 2.

Observe that

Lj ≥ 2t − 1 for j ∈ Uh ∪ Vh. (3)

The makespan threshold value is T = 6tq + t + 2 and the sequence of a-operations is πa = (1, 2, . . . , 3tq + 1):

πa = (1, . . . , 3t − 2  
F1

, 3t − 1, . . . , 2 (3t − 2)  
F2

, . . . , (3t − 2) (q − 1) + 1, . . . , (3t − 2) q  
Fq

,

(3t − 2) q + 1  
R

, (3t − 2)q + 2  
U1

, (3t − 2)q + 3  
V1

, (3t − 2)q + 4  
U2

, (3t − 2)q + 5  
V2

, . . . , 3tq
Uq

, 3tq + 1  
Vq

). (4)

An example of a feasible schedule for instanceI(t) of problemCOMT(t)withmakespan t = 5 and two coupled-operation
jobs (q = 2) withminimum time-lags ℓ1 = 1 and ℓ2 = 2 is shown in Fig. 1. The corresponding feasible schedule for instance
I′ (πa, T ) of problem COET(πa, T ) with T = 6tq + t + 2 = 67 is shown in Fig. 2.

In what follows, we use the following notation for single-element sets:

R = {r},
Uh = {u(h)} ,

Vh = {v(h)} .

Theorem 1. If there exists a feasible schedule for instance I(t) of problem COMT(t), then there exists a feasible schedule for
instance I′(πa, T ) of problem COET (πa, T ).

Proof. Let a feasible solution S for instance I(t) be given by starting times sah and sbh , h ∈ Q , of its a- and b-operations. We
construct a feasible schedule S ′ for instance I′(πa, T ) with permutation πa given by (4). First we describe the structure of
that schedule and then specify the starting times s′aj and s′bj , j ∈ N , for all operations.

There are five types of time intervals:

• q time intervals λ1, λ2, . . . , λq, each of length 3t , such that in interval

λh = [3t (h − 1) , 3th] , 1 ≤ h ≤ q,

all first operations of the jobs from Fh are processed; since there are 3t − 2 jobs in Fh and the length of interval λh is 3t ,
there are two idle time intervals of unit length in each interval λh;

• one unit-length time interval

ξ = [3tq, 3tq + 1]

for processing the first operation of the sentinel job from R;
• q time intervals µ1, µ2, . . . , µq, each of length 3t , such that in interval

µh = [3t (q + h − 1) + 1, 3t (q + h) + 1] , 1 ≤ h ≤ q,

all second operations of the jobs from Fh are processed together with the first operations of the jobs fromUh and Vh; since
there are 3t − 2 jobs in Fh, one job in Uh and one job in Vh, there are no idle time slots in µh;

• one interval τ of length t defined as

τ = [6tq + 1, 6tq + 1 + t]

for processing the second operations of the jobs from ∪
q
h=1 Uh and ∪

q
h=1 Vh;

• one unit-length time interval

η = [6tq + t + 1, 6tq + t + 2]

for processing the second operation of the sentinel job from R.
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Fig. 2. An example of a feasible schedule for instance COET (πa, 67) generated from a feasible schedule for problem COMT(5)with two coupled-operation
jobs with minimum time-lags ℓ1 = 1 and ℓ2 = 2.

To give a full description of the schedule, we specify the starting times s′b1 , s
′

b2
, . . . , s′bn , of the b-operations of jobs N; the

starting times of the corresponding a-operations are then derived as s′aj = s′bj − Lj − 1.
The job completing at time T in the schedule for instance I′ (πa, T ) is the sentinel job r ∈ R and its two operations are

processed in time intervals ξ and η:

s′br = T − 1 = 6tq + t + 1, s′ar = (6tq + t + 1) − t (3q + 1) − 1 = 3tq.

Scanning the schedule for instance I′ (πa, T ) from its right end backwards, we define the starting times of the jobs from
Vq,Uq, Vq−1,Uq−1, . . . , V1,U1. In the expressions below, s′av(h)

, s′bv(h)
and s′au(h) , s

′

bu(h)
are the starting times of the operations

of jobs v(h) and u(h), 1 ≤ h ≤ q, for instance I′ (πa, T ) and they are calculated on the basis of the starting times sah and sbh
of the two operations of job h ∈ Q , 1 ≤ h ≤ q, in a feasible schedule for instance I(t):

s′bv(h)
= 6tq + 1 + sbh , s′av(h)

=

6tq + 1 + sbh


− (3t (q − h) + 2t − 1 + ℓh) − 1

= 3t (q + h) + sbh − 2t + 1 − ℓh,

s′bu(h) = 6tq + 1 + sah , s′au(h) =

6tq + 1 + sah


− (3t (q − h) + 2t − 1) − 1

= 3t (q + h) + sah − 2t + 1.

(5)

Observe that the partial schedule for I′ (πa, T ) in the interval τ involves the second operations of jobs u(h) and v(h), 1 ≤

h ≤ q, and it coincides with the full schedule of length t for instance I(t):

s′bu(h) = (6tq + 1) + sah ,

s′bv(h)
= (6tq + 1) + sbh .
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As far as the first operations of jobs u(h) and v(h) are concerned, they satisfy the following properties:

(i) for each h, 1 ≤ h ≤ q, the first operations of u (h) and v(h) are both processed in time interval µh;
(ii) the first operation of job v(h) starts after the first operation of job u(h):

s′av(h)
≥ s′au(h) + 1.

We now define the time intervals for the filling jobs. Consider the set Fh for some h, 1 ≤ h ≤ q. The 3t −2 jobs in Fh have
their second operations processed in time interval µh. The length of the latter interval is 3t and two unit-time slots within
µh are already fixed for u(h) and v(h), see (5). Thus there is a unique way to allocate the jobs from Fh in time interval µh
keeping them in the order of their numbering and avoiding clashes with u(h) and v(h).

Having allocated the second operations of the jobs from Fh in intervalµh, their first operations are automatically allocated
in interval λh. Since the time-lags for the jobs in Fh are equal, the order of the first operations is the same as the order of
the second operations and it satisfies the given permutation πa. Taking into account observation (i), the order given by πa
is satisfied for all jobs. �

In the remaining part we prove that if there exists a feasible schedule for instance I′(πa, T ) of problem COET (πa, T ), then
there exists a feasible schedule for the related instance I(t) of problem COMT(t). We assume that t satisfies the following
two conditions:

t ≥ ℓj + 2, j ∈ Q , (6)

t ≥ 2q; (7)

otherwise COMT(t) does not have a feasible solution since the makespan of the coupled-operation schedule cannot be
smaller either of the values, the length of a single job or the combined length of q jobs consisting of two unit-time operations.

We start with a lemma which characterizes the structure of a feasible solution for instance I′(πa, T ).

Lemma 1. In any feasible solution S ′ for instance I′(πa, T ) of problem COET (πa, T ) the following properties hold:

1) the a-operations of all jobs from N are processed in one of the time intervals λ1, . . . , λq, ξ , µ1, . . . , µq, i.e.,

s′aj ≤ 6tq, j ∈ N;

2) the a-operation of the sentinel job r ∈ R is processed in time interval ξ or earlier, i.e.,

s′ar ≤ 3tq;

3) the a-operations of all jobs from ∪
q
h=1 Fh are processed in time intervals λ1, . . . , λq, i.e.,

s′aj ≤ 3tq − 1, j ∈ Fh;

4) the b-operations of all jobs from Fh, 1 ≤ h ≤ q, are processed in time intervals µ1, . . . , µq, i.e.,

3tq + 1 ≤ s′bj ≤ 6tq, j ∈ Fh;

5) each unit time slot of intervals µ1, . . . , µq has an operation allocated to it; the set of operations allocated to intervals
µ1, . . . , µq consists of all b-operations of the jobs from ∪

q
h=1 Fh and exactly one operation of each job from ∪

q
h=1 (Uh ∪ Vh).

6) job f = (3t − 2)q, which is the last job of the set Fq, starts at time 3tq − 1;
7) the a-operations of all jobs from ∪

q
h=1 (Uh ∪ Vh) are processed in time intervals µ1, . . . , µq, i.e.

s′aj ≥ 3tq + 1, j ∈ ∪
q
h=1 (Uh ∪ Vh) ;

8) the b-operations of all jobs from ∪
q
h=1 (Uh ∪ Vh) are processed in time interval τ , i.e.

6tq + 1 ≤ s′bj ≤ 6tq + t, j ∈ ∪
q
h=1 (Uh ∪ Vh) .

Proof.
1) For any job j from ∪

q
h=1 (Uh ∪ Vh), its time-lag satisfies inequality (3), while all other jobs have even larger time-lags.

For any job j ∈ N , its completion time should not be larger than T = 6tq + t + 2, which implies that

s′aj ≤ T − Lj − 2 ≤ (6tq + t + 2) − (2t − 1) − 2 = 6tq − t + 1 ≤ 6tq.

2) To be completed within the threshold makespan value T , the starting time of the a-operation of job r ∈ R should satisfy

s′ar ≤ T − Lr − 2 = (6tq + t + 2) − t(3q + 1) − 2 = 3tq.
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3) In accordance with sequence πa, any filler job from ∪
q
h=1 Fh must start before the sentinel job from R, i.e., at time 3tq − 1

or earlier.
4) By the previous property, all filler jobs from ∪

q
h=1 Fh have their starting times within [0, 3tq − 1]. Since all of them have

the same time-lag of 3tq, the b-operations start within time interval [3tq + 1, 6tq].
5) Due to the property 4) of the current lemma, there are (3t − 2)q b-operations of the jobs from ∪

q
h=1 Fh which have their

starting times in [3tq + 1, 6tq], leaving room for at most 2q additional unit-time operations in µ1, . . . , µq. We show that
exactly 2q operations of the jobs from ∪

q
h=1 Uh and ∪

q
h=1 Vh, are scheduled in µ1, . . . , µq, one operation of each job.

Consider a job j ∈ ∪
q
h=1 (Uh ∪ Vh). If

s′aj ≥ 3tq + 1, (8)

then due to property 1), the a-operation of job j is processed within µ1, . . . , µq.
For the alternative case with

s′aj ≤ 3tq, (9)

we show that the corresponding b-operation is processed within µ1, . . . , µq.
To prove that the left boundary 3tq + 1 of µ1 is observed, we derive the lower bounds on s′aj and s′bj . Since the set of jobs

which precede j in permutation πa includes (3t − 2) q operations of filler jobs from ∪
q
h=1 Fh and one sentinel job from R,

s′aj ≥ (3t − 2) q + 1.

Taking into account condition (3), we obtain:

s′bj = s′aj + Lj + 1 ≥ ((3t − 2) q + 1) + (2t − 1) + 1 = 3tq + 2 (t − q) + 1 ≥ 3tq + 2q + 1,

where the last inequality is due to assumption (7).
To prove that the right boundary 6tq of µq is observed, we derive the upper bound on s′bj using condition (9) and the fact

that the time-lag Lj is bounded by themaximum time-lag in the set∪q
h=1 (Uh ∪ Vh), which is Lv(1) = 3t (q − 1)+2t−1+ℓ1.

We conclude:

s′bj = s′aj + Lj + 1 ≤ 3tq + (3t (q − 1) + 2t − 1 + ℓ1) + 1 = 6tq − t + ℓ1 ≤ 6tq − 2,

where the last inequality is due to assumption (6).
Thus in any case, (8) or (9), at least one operation of job j ∈ ∪

q
h=1 (Uh ∪ Vh) is processed within intervals µ1, . . . , µq.

Taking into account that there are 2q unit time intervals left after allocation of the b-operations of∪q
h=1 Fh, we conclude that

exactly one operation of every job j is processed within intervals µ1, . . . , µq.
6) Consider job f = (3t − 2)q, which is the last one in the set Fq. By property 3) of this lemma,

s′af ≤ 3tq − 1.

To prove that

s′af ≥ 3tq − 1

we show that

s′bf ≥ 6tq.

Suppose that s′bf < 6tq. By property 5), there is a job j ∈ ∪
q
h=1 (Uh ∪ Vh) allocated to time interval [6tq, 6tq + 1]. If it is

the first operation of j, i.e., s′aj = 6tq, then the deadline T is violated:

s′bj = s′aj + Lj + 2 ≥ 6tq + (2t − 1) + 2 > T ,

where the first inequality is due to (3). If it is the second operation of j, i.e.,

s′bj = 6tq,

then job j would have two operations processed within µ1, . . . , µq since its time-lag satisfies

Lj ≤ 3t (q − 1) + 2t − 1 + ℓh ≤ 3tq − 3,

which implies

s′aj = s′bj − Lj − 1 ≥ 6tq − (3tq − 3) − 1 = 3tq + 2,

a contradiction to property 5) of this lemma.
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7) In accordance with permutation πa, the starting time of the last job of the set Fq with index f = (3t − 2)q is smaller than
that of the sentinel job r ∈ Rwhich in its turn is smaller than the starting time of any job j ∈ ∪

q
h=1 (Uh ∪ Vh):

s′af < s′ar < s′aj ,

so that

s′aj ≥ s′af + 2.

The statement now follows from property 6).
8) The total length of time intervals µ1, . . . , µq is 3tq and in accordance with properties 5) and 7) of this lemma there
are exactly 3tq operations allocated there: (3t − 2) q operations from ∪

q
h=1 Fh and 2q a-operations from ∪

q
h=1 (Uh ∪ Vh).

Therefore all b-operations of the jobs from ∪
q
h=1 (Uh ∪ Vh) are processed after time intervals µ1, . . . , µq.

It remains to show that no b-operation from ∪
q
h=1 (Uh ∪ Vh) can be processed in time interval η. If it is a case, then for

the sentinel job r ∈ R,

s′br ≤ 6tq + t,

s′ar = s′br − Lr − 1 = s′br − t (3q + 1) − 1 ≤ 3tq − 1.

The latter condition cannot happen since, due to property 6), the a-operation of the last job f = (3t − 2) q from Fq is assigned
to time slot [3tq − 1, 3tq] and it should precede the a-operation of the sentinel job. �

Based on the properties formulated in Lemma1,wenowprove Theorem2which, in combinationwith Theorem1, implies
NP-completeness of problem COET (πa, T ).

Theorem 2. If there exists a feasible schedule for instance I′ (πa, T ) of problem COET (πa, T ), then there exists a feasible schedule
for instance I(t) of problem COMT(t).

Proof. Consider a feasible schedule for instance I′ (πa, T ). By construction of instances I(t) and I′ (πa, T ), for any job h of
instance I(t), its two operations ah and bh correspond to the following two operations of instance I′ (πa, T ): the b-operation
of job u(h) ∈ Uh and the b-operation of job v(h) ∈ Vh.

Due to property 8) of Lemma 1, all b-operations of the jobs from∪
q
h=1 (Uh ∪ Vh) are processed in time interval τ of length

t . We define a solution to instance I(t) via the partial solution to instance I′ (πa, T ) in the time interval τ . For any job
h, 1 ≤ h ≤ q, of instance I(t), the starting times of its two operations are defined as

sah := s′bu(h) − (6tq + 1) , u(h) ∈ Uh,

sbh := s′bv(h)
− (6tq + 1) , v(h) ∈ Vh.

It remains to show that in instance I(t)

sbh ≥ sah + 1 + ℓh,

or equivalently

s′bv(h)
≥ s′bu(h) + 1 + ℓh.

Indeed, due to permutation πa which is observed in the solution to instance I′ (πa, T ),

s′av(h)
≥ s′au(h) + 1.

Taking into account that

Lu(h) = 3t (q − h) + 2t − 1,
Lv(h) = 3t (q − h) + 2t − 1 + ℓh,

we conclude:

s′bv(h)
− s′bu(h) =


s′av(h)

+ Lv(h) + 1


−


s′au(h) + Lu(h) + 1


≥


s′au(h) + 1 + (3t (q − h) + 2t − 1 + ℓh)


−


s′au(h) + (3t (q − h) + 2t − 1)


≥ ℓh + 1. �

The NP-hardness result proved in this section holds also for the symmetric counterpart of the problem in which
permutation πb of b-operations is fixed, i.e., for 1|aj = bj = 1, Lj, πb|Cmax. Indeed, any instance of problem 1|aj = bj =

1, Lj, πa|Cmax with πa = (1, 2, . . . , n) can be converted into an equivalent instance of problem 1|aj = bj = 1, Lj, πb|Cmax by
swapping a- and b-operations of each job and renumbering the jobs in the reverse order so that for the resulting instance
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permutation πb = (1, 2, . . . , n) is fixed. For that pair of instances, there exists a one-to-one correspondence between pairs
of feasible schedules: if saj , sbj , j ∈ N , are the starting times for one problem, then Cmax − sbj − 1 and Cmax − saj − 1 are the
starting times for its counterpart.

Observe that problem 1|aj = bj = 1, Lj, πa|Cmax considered in this section is a special case of the problem with equal
processing times 1|aj = bj = p, Lj, πa|Cmax which in its turn is a special case of a more general problem 1|aj, bj, Lj, πa|Cmax.
This fact implies that the latter two problems are also NP-hard in the strong sense, as well as their counterparts with the
fixed sequence πb.

3. Tabu search algorithm

One of the key decisions in the design of a tabu search algorithm is the choice of the solution representation and neighbor
generation strategy. The representation based on the fixed permutation of a-operations (or b-operations) seems to be
attractive as it is compact and supports well studied neighbor generation rules. However, as shown in the previous section,
that representation incurs an NP-hard problem of sequencing all operations and finding job starting times minimizing the
makespan. Due to this reason we use an alternative representation given by permutation π of all 2n operations. We suggest
a neighbor generation strategy based on removing both operations of a selected job j and inserting them elsewhere so that
the makespan is minimized and the sequence of the remaining 2 (n − 1) operations is unchanged. An efficient insertion
algorithm for finding the optimum re-allocation of job j is based on the disjunctive graph model (see, e.g., [7]) and the short
cycle property formulated in [13–15] for the job shop environment.

We start with describing the disjunctive graph model and the insertion algorithm (Section 3.1). Then we describe
the neighborhood structure (Section 3.2). Finally, we conclude with the general description of the tabu search algorithm
(Section 3.3).

3.1. Disjunctive graph model and the insertion algorithm

In this section we present an efficient procedure for solving the problem of inserting two operations of a given job j into
a partial schedule defined for n− 1 jobs N \ {j}. We assume that the sequence of operations of the jobs N \ {j} is fixed and an
upper bound CUB

max on the makespan value is given; the objective is to find a complete feasible schedule, if one exists, with
job j inserted such that the order of operations from N \ {j} is not altered and the upper bound CUB

max is not exceeded.
The algorithm is based on the disjunctive graph model which can be described as follows. A disjunctive graph G =

(V , A, E, E, c) is a directed graph with the vertex-set V , the set of conjunctive arcs A, the set of disjunctive arcs E, the family
E ⊆ 2E of disjunctive sets and the arc cost function c .

Set V contains vertices vi, i = 1, 2, . . . , 2n, representing 2n operations of the coupled-operation problem and two
additional dummy nodes: origin v0 and terminal v∗. If vi represents the a-operation (b-operation) of job j, notation aj (bj,
respectively) is used in line with vi.

Conjunctive arcs A and the costs associated with them, set restrictions on the minimum difference in the starting times
of the operations they connect: if there is an arc


vi, vj


, then the starting times svi and svj should satisfy

svj ≥ svi + cvivj .

There are four conjunctive arcs for each job j ∈ N:

– two arcs

aj, bj


and


bj, aj


represent precedence constraints between operations of the same job; their costs cajbj =

paj + Lj and cbjaj = −(paj + Lj) specify the exact distance between the starting times of aj and bj;
– one arc


v0, aj


from origin v0 to the a-operation of job j has a zero cost cv0aj = 0;

– one arc

bj, v∗


from the b-operation of job j to the terminal node v∗ has the cost cbjv∗

= pbj .

One additional conjunctive arc (v∗, v0) connects the terminal node and the origin; its cost is based on the given value of the
makespan upper bound: cv∗v0 = −CUB

max, which implies

sv0 ≥ sv∗
− CUB

max

or equivalently

Cmax = sv∗
≤ sv0 + CUB

max.

Set E contains pairs (e, ē) of disjunctive arcs e =

vi, vj


and ē =


vj, vi


which connect two operations of different jobs.

We call ē the mate of e and vice versa. In a complete solution, one of the disjunctive arcs of the pair is selected specifying
the order between the two operations while the other arc is dropped. The cost of a disjunctive arc


vi, vj


is defined as the

processing time of the operation corresponding to node vi.
The family of disjunctive sets E ⊆ 2E has the meaning that for each pair (e, ē), where e =


vi, vj


and ē =


vj, vi


, at

least one of the disjunctive constraints should be satisfied:

svj ≥ svi + cvivj or svi ≥ svj + cvjvi .

An example of a disjunctive graph for three coupled-operation jobs is shown in Fig. 3.
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Fig. 3. Disjunctive graph for three coupled-operation jobs (pairs of disjunctive arcs are represented by dashed lines).

The scheduling decision consists in finding a selection of disjunctive arcs F ⊆ E containing no more than one mate from
a pair. Selection F is feasible if it is complete (exactly one arc is selected from each pair of arcs (e, ē)) and positive acyclic
(digraph (V , A ∪ F , c) does not contain cycles of positive cost). A feasible selection F specifies a schedule S in which the
starting time of every operation vi is defined as the length of the longest path from origin v0 to the corresponding node vi
in digraph (V , A ∪ F , c). The makespan of the schedule is equal to the length of the critical path, i.e., the longest directed
path from the origin v0 to the terminal node v∗. Notice that for an infeasible selection the critical path does not exist since
it would have an infinite cost; for a feasible selection a critical path can be found in O


|V |

2

time.

We can now introduce the neighbor generation problem for the coupled-operation problem. It is defined for the current
partial solution S corresponding to selectionF and job j ∈ N to be inserted in S. We assume thatF is complete and positive
acyclic for the subproblem defined by the nodes V \


aj, bj


; otherwise inserting two operations of job j cannot lead to a

feasible solution. For the insertion set J = {aj, bj} we define the set of disjunctive arcs E(J) ⊆ E and the set of conjunctive
arcs A(J) ⊆ A which connect nodes in J and the remaining nodes V \ J . Notice that conjunctive arcs


aj, bj


and


bj, aj


are

not included in A(J).

Definition 1. Given a job j with operations J = {aj, bj} and a selection F feasible for the nodes V \ J and not containing
any disjunctive arcs from E(J), the job insertion problem consists in finding a selection F J

⊂ E(J) such that the combined
selection F ∪ F J is feasible:

–
F J

 =
1
2 |E(J)|,

– the resulting graph G = (V , A ∪ F ∪ F J , c) is positive acyclic.

The associated insertion graph is denoted by GJ
= (V , A ∪ F , E(J), E (E(J)) , c), where E (E(J)) ⊂ E is the family of

disjunctive sets defined over E(J).
A feasible selection can be found efficiently by the procedure from [13] if insertion graph GJ has a so called short cycle

property. It states that for any selection F J , if the corresponding digraph (V , A∪F ∪F J , c) contains a positive cycle, then it
contains a short positive cycle visiting J exactly once. Here ‘a cycle visits J exactly once’ has themeaning that exactly one arc
of the cycle has the origin outside J and the end-node aj or bj, and exactly one arc has the start node aj or bj and the end-node
outside J . We first demonstrate that this property is satisfied for the insertion graph of the coupled-operation problem and
then describe how the algorithm from [13] can be applied to solving our insertion problem.

Proposition 1. An insertion graph GJ of the coupled-operation problem has the short-cycle property.

Proof. Suppose F J is a positive cyclic selection with more than two arcs from E(J). We show how a short positive cycle
visiting J exactly once can be constructed.

Let Z be a positive cycle with arcs from A∪A(J)∪F J which visits J twice or more. The possible components of cycle Z are
arcs


aj, bj


,

bj, aj


which may appear multiple times in Z and the fragments of the form ajPaj, bjQbj, ajRbj and bjTaj, where

P,Q , R and T are the paths consisting of nodes different from

aj, bj


.



2380 A. Condotta, N.V. Shakhlevich / Discrete Applied Mathematics 160 (2012) 2370–2388

If Z has a fragment of the form ajPaj (or bjQbj) and such a fragment is of positive length, then it is a required short positive
cycle; if that fragment is of non-positive length, it can be removed from Z so that the remaining cycle is positive and it has
less visits to J .

If Z has a fragment of the form ajRbj and its length c(R) satisfies

c(R) > cajbj , (10)

then a combination of that fragment with arc (bj, aj) is a short positive cycle ajRbjaj: it visits J only once and its length
c(R) + cbjaj is positive since cbjaj = −cajbj . Alternatively, if condition (10) does not hold, we replace fragment ajRbj of cycle
Z by a single arc


aj, bj


obtaining a new cycle with less visits to J and which length is positive since c(R) ≤ cajbj .

It is easy tomake sure that a similar transformation can be done for fragment bjTaj: one has to swap aj and bj in the above
arguments and replace condition (10) by c(T ) > cbjaj .

Thus considering the fragments of Z with end nodes in

aj, bj


we either construct a short positive cycle based on that

fragment or eliminate a part of cycle Z resulting in a new positive cycle with less arcs and less visits to J . Applying this
procedure we eventually produce a short positive cycle with exactly one visit to J . �

The short cycle property implies that a selection is feasible if and only if it does not includedisjunctive arcs of the following
two types:

(i) arc e ∈ E(J) which incurs a positive cycle in the digraph (V , A ∪ F ∪{e}, c);
(ii) a combination of two arcs u, v ∈ E(J) which incur a positive cycle in the digraph (V , A ∪ F ∪ {u, v} , c).

This restriction on the choice of disjunctive arcs can be modeled naturally as a conflict graph [13]. Formally, a conflict graph
HGJ = (X,U) has nodes X = E(J) corresponding to disjunctive arcs of the insertion graph GJ and undirected arcs U of two
types:

– loops (e, e) ∈ U for disjunctive arcs e of type (i),
– undirected arcs (u, v) ∈ U for every pair of disjunctive arcs u, v of type (ii).

Then any positive acyclic selection corresponds to a stable set in conflict graphHGJ , and the required feasible selectionF J for
graph GJ is the stable set of maximal cardinality in HGJ ,

F J
 =

1
2 |E(J)|. If the maximum cardinality of a stable set is less

than 1
2 |E(J)|, then no feasible solution exists.

Due to Proposition 1, HGJ is bipartite with node partition X = E+(J) ∪ E−(J), where E+(J) are the arcs of the set E(J)
outgoing from J and E−(J) are the arcs incoming to J . Clearly, if the insertion graph GJ does not have disjunctive arcs of
type (i), then a stable set of cardinality 1

2 |E(J)| can be selected as E+(J) or E−(J). In the presence of disjunctive arcs of type
(i), finding a stable set is not so straightforward; still it can be found efficiently, as suggested in [13], without employing
standard approach based on the minimum cut problem.

Disjunctive arcs of type (i) dictate some limitations on the choice of selection F J : arc e of type (i) cannot be included in
F J or equivalently the corresponding node e of the conflict graph cannot be included in the stable set. Hence for each e of
type (i) we should include its mate e in the stable set. Having included e in the stable set, all nodes f ∈ E(J) connected with
e by arcs (e, f ) in the conflict graph cannot be included in the stable set since arcs e, f are of type (ii). Prohibiting f implies
that its mate f should be selected and the procedure should be continued for f .

Having performed all ‘‘necessary’’ selections dictated by disjunctive arcs of type (i), the selected nodes and their mates
can be excluded from further consideration. The resulting subgraphHGJ ⊆ HGJ is bipartite and it contains only the nodes of
type (ii). A stable set forHGJ can be selected as one of the two bipartition sets.

The correctness of the described approach for the insertion problem with the short cycle property is rigorously proved
in [13] and it can be formally presented as the following procedure.
Procedure ‘Insert(G J , J)’

Given: job j with operations J = {aj, bj};
selection F feasible for the nodes V \ J and not containing any disjunctive arcs from E(J)

Objective: find feasible selection F J
⊂ E(J) such that

F J
 =

1
2 |E(J)| and the resulting graph G = (V , A ∪ F ∪ F J , c) is

positive acyclic
1. Construct the bipartite conflict graph HGJ = (X,U); identify all arcs e of type (i) and include their mates

Q = {e ∈ E : (e, e) ∈ U} in F J .
2. For every u ∈ Q find all nodes


f 1, f 2, . . . , f k


reachable in HGJ from u through alternating paths of the form

u, f1, f 1, f2, f 2, . . . , fk, f k

; denote the set of nodes reachable from Q by Q ∗,Q ⊆ Q ∗, and extend F J by

including Q ∗.
3. If Q ∗ is not stable, then terminate: no feasible selection exists.
4. Otherwise, consider a subgraph HGJ = (X,U) of HGJ by eliminating all nodes Q ∗, their mates and associated

arcs; define a stable set T inHGJ asX ∩ E+(J) orX ∩ E−(J).
Extend F J by including T .
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a b

Fig. 4. (a) Disjunctive graph G(V , E) and (b) conflict graph HG J for insertion set J = {a1, b1}.

Table 1
Short positive cycles of the graph in Fig. 4(a).

Positive cycle Cycle value Disjunctive arcs

c1 = (a1, b1, b2, a2) 3 (a2, a1) , (b1, b2)
c2 = (a1, a2, b2, b1) 4 (a1, a2) , (b2, b1)
c3 = (a1, a2, b2) 7 (a1, a2) , (b2, a1)
c4 = (a1, b2, b1) 1 (a1, b2) , (b2, b1)
c5 = (a2, b2, b1) 8 (b1, a2) , (b2, b1)
c6 = (v0, a2, b2, a1, b1, v∗) 3 (b2, a1)
c7 = (v0, a1, b1, a2, b2, v∗) 3 (b1, a2)

In the case of the coupled-operation scheduling problem, conflict graph HGJ has |X | = 8 (n − 1) nodes corresponding
to 2 (n − 1) pairs of disjunctive arcs connecting aj with the remaining 2 (n − 1) nodes and similarly 2 (n − 1) pairs of
disjunctive arcs incident to bj. Implementation of Step 1 requires O


n3


time: it incurs the all-pairs longest path algorithm

for preprocessing (e.g., the Floyd–Warshall algorithm, see [4]) and then it checks each disjunctive arc of GJ for property
(i) and each combination of two disjunctive arcs for property (ii). Steps 2 and 3 can be implemented in O


n2


time, while

Step 4 requires O(n) time. Thus the overall time complexity of the described procedure is O

n3


.

Observe that having introduced the arc (v∗, v0) of weight −CUB
max in the disjunctive graph model, we guarantee that

procedure ‘Insert’ finds a feasible schedule (if one exists) with the makespan no larger than CUB
max. In order to find a feasible

insertionminimizing themakespan, one can apply procedure ‘Insert’ in combinationwith binary searchwith trialmakespan
values in the range


C LB
max, C

UB
max


defined by the lower and upper bound of themakespan. One algorithm for calculating lower

bounds is discussed in Section 5.2.

Example. Consider an instance with two jobs with processing times pa1 = 1, pb1 = 2, pa2 = 1, pb2 = 3, time-lags L1 = 2
and L2 = 2 and maximum makespan value CUB

max = 8. The corresponding disjunctive graph G(V , E) is shown in Fig. 4(a).
The costs of disjunctive arcs are placed next to the nodes they originate from. For the insertion set J = {a1, b1}, the conflict
graph HG J is shown in Fig. 4(b). All short positive cycles are listed in Table 1.

Notice that procedure ‘Insert(GJ , J)’ finds a feasible insertion of J = {a1, b1}by fixing disjunctive arcsF J
= {e1, e2, ē3, e4}.

3.2. Neighborhood structure

Given a current complete schedule S specified by a feasible selection F , we define the neighborhood of S via removing
one of the critical jobs from that solution and inserting it optimally without altering the order of other operations. Job j is
critical if operation aj, operation bj or both operations belong to the critical path in the disjunctive graph.

Unlike the earlier approach from [22], instead of re-inserting a chosen critical operation, we re-insert a critical job
consisting of two operations ensuring that the resulting solution is feasible and has the minimum makespan. In order to
guarantee that the neighbor differs from S, we force one of the disjunctive arcs e belonging to the critical path in S to be
replaced by its mate e oriented in the opposite direction. We call e a disjunctive critical arc and we select e to be incident
to an operation of the critical job chosen for re-insertion. Formally, the neighbor generating procedure can be described as
follows.
Procedure ‘Neighbor(S, j, e)’

Given: current solution S = (V , A ∪ F , c);



2382 A. Condotta, N.V. Shakhlevich / Discrete Applied Mathematics 160 (2012) 2370–2388

selected critical job j;
selected disjunctive critical arc e ∈ F incident to j

Objective: generate a neighbor of S by re-inserting j and replacing e by its mate e
1. Define the insertion set J =


aj, bj


and the insertion graph GJ by removing all disjunctive arcs E(J) incident

to operations aj and bj from F :
GJ

= (V , A ∪ (F \ E(J)) , E(J), E (E(J)) , c) .
2. Include themate e of the given disjunctive critical arc e into the selection and apply procedure ‘Insert(GJ , J)’ in

combination with binary search to find a new feasible selection (F \ E(J))∪{e}∪F J for which themakespan
value is minimum. Denote the resulting schedule by S′

j,e.
3. Return schedule S′

j,e as the neighbor of S.

Observe that procedure ‘Insert(GJ , J)’ presented in the previous section does not guarantee that the required arc
e is selected. However, this can be easily ensured if a loop (e, e) ∈ U is included in the conflict graph HGJ so that
Procedure ‘Insert’ is forced to select e.

In what follows we are mainly interested in the best possible neighbor S′

j of the current solution S obtained via re-
inserting job j. In order to find S′

j , we need to identify all disjunctive critical arcs E ′
⊂ F incident to j, apply procedure

‘Neighbor(S, j, e)’ for each arc e ∈ E ′ and select the neighbor S′

j with the smallest makespan value:

Cmax

S′

j


= min

e∈E′


Cmax


S′

j,e


.

Notice that the set E ′ contains two disjunctive arcs if job j has one operation on the critical path, or four disjunctive arcs, if
both operations of job j belong to the critical path.

Consider now the problem of finding a neighbor of the current solution S having the smallest possible makespan. The
straightforward approach consists in generating neighbor schedulesS′

j for all critical jobs j and finding the required neighbor
with the smallest value Cmax


S′

j


. This, however, is computationally expensive due to the high computational cost of the

relatively slow procedure ‘Insert’ combined with binary search.
A possible alternative approach is to calculate some estimates σ


S′

j


of the makespan value of each neighbor schedule

S′

j assuming that a potentially good neighbor has the lowest estimate. For a fast method, we consider only Step 1 of
Procedure ‘Neighbor’without taking into account the selected disjunctive critical arc e and the subsequent ‘Insert’ procedure.
The resulting estimate can be used as a quality measure of the insertion graph GJ . The most accurate characteristic of GJ is
its makespan, which can be found in O


n2


time via the longest path calculation:

σ1

S′

j


= Cmax


GJ . (11)

A faster but less accurate characterization of GJ can be found in O(1) time as

σ2

S′

j


= Cmax (S) − ∆, (12)

where ∆ is a possible decrease in the makespan that can be achieved if job j is removed from (S),

∆ =


paj + Lj + pbj , if operations aj and bj appear in the critical path in the order aj, bj,
pbj , if operations aj and bj appear in the critical path in the order bj, aj,
paj , if only one operation aj appears in the critical path,

pbj , if only one operation bj appears in the critical path.

Notice that

Cmax

GJ

≤ Cmax

S′

j


since inserting job j in GJ can only increase Cmax


GJ


. Therefore estimate (11) can be considered as the lower bound on the

value of Cmax

S′

j


,

σ1

S′

j


≤ Cmax


S′

j


.

However, estimate (12) may satisfy

σ2

S′

j


≤ Cmax


S′

j


or σ2


S′

j


≥ Cmax


S′

j


since either condition

σ2

S′

j


≤ Cmax


GJ or σ2


S′

j


≥ Cmax


GJ

may hold.
Empirical evaluation of the described techniques has demonstrated that generating all neighbor schedules of the current

schedule S and calculating their makespan values is not efficient since it slows down the search procedure. Having
performed experiments with two types of estimates we conclude that calculating σ2 is much faster in comparison with
σ1 and leads to better results as a wider part of the solution space is examined fast enough. Therefore the approach adopted
in computational experiments generates only one potentially good neighbor on the basis of the estimate σ2.
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3.3. Description of the tabu search implementation

In this sectionwedescribe implementation details of our tabu search algorithm. The algorithmmaintains tabu list T of the
characteristics of themost recent visited solutions to prevent reproducing those solutions and to avoid generating solutions
with similar characteristics, see [16] for the general description of the tabu search algorithm.

The visited solutions are represented in the tabu list by their critical paths. For a critical path recorded in the list, we keep
two additional characteristics:

• a hit counter which specifies how many solutions with that critical path were visited,
• a serial number of the last visited solution with that critical path.

Once a new neighbor is generated, its critical path is added to the tabu list, if it does not duplicate an existing entry in
the tabu list; otherwise a hit counter of the existing entry is incremented and a serial number is updated.

Whenever the number of entries in the tabu list reaches a given threshold on the list size, the list is halved by removing
the entries with the smallest hit counter values (i.e., solutions visited less often); in case of ties, the entries with the smallest
serial numbers (i.e., the older solutions) are eliminated first. In the updated list, the hit counters are set to zero for all
entries. This elimination strategy guarantees that the tabu list contains critical paths of the solutions which are visited most
frequently during the search and, in addition, generated most recently.

While a traditional tabu search algorithm considers one current solution at a time and performsmoves from one current
solution to its neighbor, in our implementation we maintain a pool Q of current solutions, which have unvisited neighbors.
Initially, the pool is filled in with solutions generated by the construction heuristics, which we describe in Section 4. Each
time a solution is generated, we find estimates of all its neighbors. As discussed in Section 3.2, we use estimate σ2 to find
characteristics of neighbors fast enough. In each iteration we consider solutions of poolQ, select an unvisited neighbor with
the minimum estimate and generate it. The newly generated neighbor is either rejected, if its critical path is in the tabu list,
or, otherwise, it is accepted and included in pool Q. Whenever the number of entries in pool Q reaches a given threshold
value, Q is emptied and refilled with a given number of schedules generated by construction heuristics.

Since it is important to have a fast procedure to recognize whether a neighbor has been previously examined or not, we
maintain for each schedule S ∈ Q the list χ (S) of critical jobs of that schedule which re-insertion results in an unvisited
neighbor: if j ∈ χ (S), then the corresponding neighbor S′

j of schedule S has not been considered yet.
Formally our implementation of the tabu search algorithm can be described as follows.

Algorithm ‘tabu-search’

1. Initialize an empty tabu list T .
Generate a given number of solutions by construction heuristics and create pool Q.
For each schedule S ∈ Q, find its critical path, initiate the list χ (S) of critical jobs for neighbor generation and use (12)
to produce estimates σ2 for all possible neighbors.

2. Repeat steps 3–4 while the computation time is less than the pre-specified time limit.
3. Find solution S ∈ Q which neighbor S′

j has the smallest estimate σ2,

σ2

S′

j


= min

S∈Q
min
k∈χ(S)


σ2


S′

k


| S′

k is a obtained from S by re-inserting k

. (13)

Generate S′

j using procedure ‘Insert’ and remove job j from list χ (S).
Replace the record of the best solution found so far, if S′

j beats it.
If S′

j is the only non-visited neighbor of S while all other neighbors have been visited, remove S from pool Q.
4. If the critical path of S′

j belongs to tabu list T , update the hit counter and the serial number of the corresponding entry in
T and eliminate S′

j from further consideration.
Otherwise perform Steps 4.1–4.2.
4.1. Add the critical path of S′

j to T setting the hit counter to 1 and serial number to the current number of S′

j .
Calculate estimates of all possible neighbors of solution S′

j .
If the size of T reaches a given threshold value, remove half of the entrieswhich have the smallest hit counter values;
in case of ties eliminate the entries with the smallest serial numbers.

4.2. Add S′

j to the pool of current solutions Q. If the size of Q reaches a given threshold value, Q is emptied and refilled
with a given number of schedules generated by construction heuristics.

In our implementation, we do not re-calculate estimates σ2

S′

j


in Step 3 in each iteration; instead for every schedule S′

j
in pool Q we keep the estimates of its neighbors.

Step 4 involves the search in tabu list T to verify if the critical path of the generated new solution S′

j belongs to it. In
order to perform that search operation fast enough, we implement tabu list T as a radix tree (Patricia trie) with alphabet
{1, 2, . . . , 2n} needed to specify critical operations and their sequences.
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4. Construction heuristics

To the best of our knowledge, there are noheuristics developed specifically for the coupled-operation scheduling problem
with exact time-lags. The most relevant algorithms presented in [22] are aimed at solving a more general version of the
problem in which time-lags are flexible, i.e., can vary within given limits (see Section 2). Computational experiments show
that for the problemwith flexible time-lags randomized construction heuristic outperforms local-search algorithms. In this
section we adapt the most successful construction heuristic JOIN-DECOMPOSE [22] to our problem and, in addition, we
develop a simple but efficient EARLIEST-FIT dispatching rule. Both heuristics are used to evaluate the performance of tabu
search in the computational experiments of Section 5.

JOIN-DECOMPOSE (JD) is a construction heuristic introduced in [22] for the problem with flexible time-lags. The
algorithm first iteratively creates composite jobs at the join stage; then composite jobs are scheduled one after another and
after that they are broken down into individual jobs at the decompose stage. The algorithm maintains a pool of composite
jobs which is initiated as the set of individual input jobs. At the join stage, two jobs in the pool are selected and replaced
by their combination: a new composite job. The procedure is repeated until the jobs in the pool cannot be combined any
more. Composite jobs are placed into a schedule one after another without interleaving and at the decompose stage they
are broken down into individual jobs.

In [22], the authors describe 12 rules for generating combined jobs and additional rules for selecting the best combined
job. The same rules can be used for the problem with exact time-lags by setting the flexibility parameter to zero. In
our experiments, we use the randomized version of heuristic JD with randomness introduced for rule selected. Repeated
application of the algorithm generatesmany feasible scheduleswithin a given time limit fromwhich the best one is selected.

In addition to adopting JD from [22], we propose an alternative heuristic EARLIEST-FIT (EF). It is based on a greedy
dispatching rule which schedules the jobs one at a time. At each iteration, it selects one unscheduled job and includes it into
the current partial schedule at the earliest feasible starting time so that no job already scheduled is postponed and all time-
lags are observed. Formally, for a coupled-operation job j, starting time t is feasible if the machine is idle in time intervals
t, t + paj


and


t + paj + Lj, t + paj + Lj + pbj


where operations aj and bj can be processed. In our experiments, heuristic

EF is run multiple times in a similar fashion as heuristic JD; randomness in this case is achieved through a probabilistic
choice of a current job for inserting in the partial schedule.

Both algorithms JOIN-DECOMPOSE and EARLIEST-FIT have time complexity O

n2


.

5. Computational experiments

In order to evaluate the performance of our tabu search algorithm, we compare it with the two construction heuristics
JD and EF presented in Section 4. JD is a winning algorithm for the coupled-operation problem with flexible time-lags [22]
and hence it can be considered as a benchmark. For this reason we mainly repeat the experimental design from [22] with
some extensions.

Notice that the computational experiments in [22] are aimed at analyzing the algorithms for the coupled-operation
problem with flexible time-lags which satisfy (2), and therefore for time-lag generation, the following two parameters are
used:

– parameter α for generating the lower bound ℓj for a time-lag of job j ∈ N;
– parameter β for generating the value of the time-lag flexibility fj,

fj = uj − ℓj.

Since in the problem we study the time-lags are fixed with fj = 0, j ∈ N , in the rest of this section, comparing our
algorithms with those from [22], we consider instance generation strategy from [22] with the flexibility parameter β set
equal to zero.

5.1. Instance generation

Computational experiments have been performed on two classes of instances: SIM and MIX. In the SIM class, all jobs
have similar time-lags; in the MIX class, job time-lags differ significantly.

Following the strategy from [22], we define processing times paj and pbj as integers drawn from a discrete uniform
distribution,

paj , pbj ∈ [1, 100] for each j ∈ N.

The time-lags Lj are also integers sampled fromauniformdistributiondepending onparameterα (its choicewill be explained
later on) and on the average processing time

pavg =
1
2n


j∈N


paj + pbj


.

For the SIM class the following formula is used:
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• Lj ∈

0.9αpavg, 1.1αpavg


with α ∈


1, n

5 ,
2n
5


(as in [22]).

For the MIX class, we distinguish between two subclasses of instances, MIX1 and MIX2, depending on the time-lag
calculation formula:

• Lj ∈ [1, α] is used for class MIX1, where α ∈ {5, 10, 25, 50} (as in [22]);
• Lj ∈


1, αpavg


is used for class MIX2, where α ∈


1, n

5 ,
2n
5


.

Notice that, the MIX instances from [22] correspond to our subclass MIX1. They are characterized by relatively small
time-lags in comparison with the average processing time of 50. As a consequence, feasible solutions for such instances
have only a few interleaving jobs and do not represent the complexity of the problem.

We keep subclass MIX1 in our experiments for completeness of the analysis and to allow a one-to-one comparison with
the results from [22]. In addition, we introduce subclass MIX2 with relatively large time-lags which allow for complex
interleaving of multiple jobs.

For each class SIM,MIX1 andMIX2, we consider all combinations of n ∈ {20, 30, 50, 100} andα, and for each combination
we generate 10 instances.

All algorithmswere coded in C and run on one core of a PC with processor Intel Quad Core 2.5 GHzwith 3 GB of RAM. The
parameters of the tabu search algorithm were tuned after several preliminary experiments: we set 500 as the maximum
length of the tabu list T and 200 as the maximum length of pool Q. Each time the pool is emptied, 50 random solutions are
generated using one of the construction heuristics from Section 4: JOIN-DECOMPOSE or EARLIEST-FIT. Depending on the
heuristic used, we call the corresponding tabu search algorithm as TS-JD and TS-EF. We compare the results of the two tabu
search algorithms with multiple runs of the two heuristics JD and EF applied independently.

5.2. Results

The performance of an algorithm on a given instance is measured in terms of the relative deviation ρ from the lower
bound:

ρ =
CBest
max − LB

LB
,

where CBest
max is the smallest makespan found by the algorithm and LB is the lower bound. The overall performance of an

algorithmon a set of instances is thenmeasured as the average valueρ of the relative deviation over all instances considered.
In the summary tables, we also indicate the time that the algorithm takes to generate best solutions, taken as the average
value Tavg over all instances of the dataset.

For lower bound calculation we use the approach described in [22]. It starts with identifying a subset of jobs N1 ⊆ N
containing the jobs which cannot be interleaved with another job from N . In particular, job j is included in this set if none
of the sequences


ak, aj, bj, bk


,

ak, aj, bk, bj


,

aj, ak, bj, bk


or


aj, ak, bk, bj


is feasible for any k ∈ N \ {j}. Then the

contribution of all jobs from N1 is

LB (N1) =


j∈N1


paj + Lj + pbj


.

The contribution of the remaining jobs N2 = N \ N1, which can be interleaved, is no less than their total processing
requirement and it is also no less than the length of the longest job in that set:

LB (N2) = max


j∈N2


paj + pbj


,max

j∈N2


paj + Lj + pbj


.

The lower bound is then

LB = LB (N1) + LB (N2) .

In the experiments, we set up a time limit of 600 s for tabu search and for multiple runs of each of the two heuristics.
Each time a new solution is generated, its makespan is compared with the lower bound LB to check if an optimum is found
and the program may terminate immediately. This happened frequently only in our experiments with MIX1 instances.

Table 2 summarizes the average accuracy of the two versions of the tabu search algorithm TS-EF and TS-JD and the two
construction heuristics EF and JD on classes MIX and SIM. Algorithms are listed in the order of their overall performance
measured in terms of the average value ρ of the relative ratio ρ calculated over 10 test instances. The second characteristic
of each algorithm is the average time (in seconds) of finding the best solution.

Tabu search algorithms outperform construction heuristics in terms of the solution quality. JD construction heuristic
tends to generate the best solution early and then it keeps running until the 600-second limit is reached without any
improvement. Each version of tabu search continues improving the best solution for a longer period of time in comparison
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Table 2
A summary of the results for all instances.

Algorithm Overall MIX1 MIX2 SIM
ρ Tavg ρ Tavg ρ Tavg ρ Tavg

TS-EF 0.084 200 0.056 121 0.100 277 0.120 357
TS-JD 0.090 150 0.057 83 0.120 322 0.128 349
EF 0.198 186 0.071 115 0.250 272 0.336 281
JD 0.292 131 0.062 2 0.547 126 0.607 145

Table 3
Value ofρ forMIX instances obtained by the experiment in [22]
with the parameter β = 0.

Algorithm MIX (β = 0)

Best randomized heuristics RC 0.073
C 0.077

Best local search
SMD 0.074
RMD 0.086
LHTS 0.093

Table 4
Value of ρ for SIM instances depending on the instance size.

Algorithm SIM
Input size n 20 30 50 100

TS-EF 0.099 0.112 0.116 0.151
TS-JD 0.101 0.114 0.119 0.178
EF 0.188 0.264 0.377 0.636
JD 0.240 0.287 0.483 1.419

Table 5
Value of ρ for MIX instances depending on the instance size.

Algorithm MIX1 MIX2

Input size n 20 30 50 100 20 30 50 100

TS-EF 0.050 0.059 0.057 0.060 0.076 0.089 0.094 0.140
TS-JD 0.051 0.059 0.059 0.060 0.077 0.090 0.095 0.218
EF 0.056 0.066 0.077 0.086 0.145 0.200 0.272 0.382
JD 0.055 0.066 0.064 0.064 0.175 0.255 0.470 1.287

with the corresponding construction heuristic. Comparing the behavior of the algorithms on MIX and SIM instances we
observe that, as a rule, all algorithms find solutions closer to the lower bound for MIX1 instances.

For comparison purposes, we re-produce in Table 3 the best results from [22] obtained for instances with fixed time-lags
(flexibility parameterβ is 0). Such instances are comparable to our classMIX1. Heuristics C and RC are the counterparts of our
heuristic JD with additional rules dealing with job flexibility parameter β at the JOIN stage. Heuristic RC generates multiple
schedules applying selection rules randomly; heuristic C generates only one schedule using one selection rule. Heuristics
SMD, RMD and LHTS are local search algorithms based on operation re-insertion neighborhood: given a permutation of
operations, an operation from the critical path is removed and re-inserted in another random position. Differently from our
neighborhood, operation re-insertion can result in infeasible permutations which are discarded. SMD and RMD are descent
algorithms,which start the searchwith randomsolutions and seeded solutions, respectively; LHTS is a tabu search algorithm.
It is easy to see that our tabu search algorithms TS-JD and TS-EF outperform all best algorithms from [22]. Notice also that
local search algorithms SMD, RMD and LHTS are often unable to find better solutions than those found by construction
heuristics RC and C.

Tables 4 and 5 illustrate the behavior of the algorithms on instances of different sizes. For both classes of instances,
MIX and SIM, tabu search algorithms produce high quality solutions whichever the size of the instance is; the accuracy
only slightly deteriorates for larger values of n. Construction heuristics perform similarly on MIX1 instances, while they
show a substantial deterioration of the solution quality when n increases for MIX2 and SIM classes. Heuristic JD performs
particularly poorly on instances with n = 100 jobs resulting in deviation values ρ being more than twice the deviation of
EF heuristic. Notice that ρ values are quite similar for all instance sizes in MIX1, which supports our observation about the
special structure of MIX1 instances: their feasible solutions have a relatively small number of interleaving jobs and their
optimal grouping can be found early in the search.

Tables 6–8 illustrate the behavior of the algorithms on instances with different values of α-parameter (see Section 5.1).
Observe that ρ-value for construction heuristics increases as α increases. Differently, tabu search algorithms running on
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Table 6
Value of ρ for SIM instances depending on the α-value.

Algorithm SIM
α 1 n

5
2n
5

ρ Tavg ρ Tavg ρ Tavg

TS-EF 0.183 295 0.082 388 0.094 389
TS-JD 0.188 260 0.085 400 0.110 388
EF 0.281 276 0.334 261 0.484 307
JD 0.212 64 0.533 185 1.076 188

Table 7
Value of ρ for MIX1 instances depending on the α-value.

Algorithm MIX1

α 5 10 25 50
ρ Tavg ρ Tavg ρ Tavg ρ Tavg

TS-EF 0.006 60 0.028 59 0.081 128 0.111 273
TS-JD 0.006 15 0.028 17 0.083 130 0.113 172
JD 0.006 0 0.028 0 0.083 0 0.132 8
EF 0.006 2 0.028 59 0.089 128 0.162 273

Table 8
Value of ρ for MIX2 instances depending on the α-value.

Algorithm MIX2

α 1 n
5

2n
5

ρ Tavg ρ Tavg ρ Tavg

TS-EF 0.113 157 0.080 318 0.106 358
TS-JD 0.113 184 0.082 399 0.165 383
EF 0.161 185 0.277 341 0.310 292
JD 0.129 2 0.447 182 1.065 195

SIM and MIX2 instances seem to perform better when α > 1 in comparison with α = 1. This suggests that our tabu search
design is much more powerful than construction heuristics to generate schedules of good quality even if there are many
interleaving jobs. For MIX1 instances, all algorithms reach similar ρ-values due to the special structure of the class.

Summarizing, computational experiments show that the proposed tabu search algorithms based on job re-insertion
provide solutions of higher quality than the algorithms previously known. In particular, they compare favorably with
construction heuristics EF and JD. Notice that JD is the best published algorithm for the coupled-operation problem with
flexible time-lags.

JD performs poorly in comparison with our heuristic EF when run for a long period of time since it generates solutions
of a similar structure. Differently, heuristic EF explores broadly the solution space generating a wider variety of solutions in
comparison with JD. However, JD heuristic is an appropriate choice for instances of special structure, when good solutions
are needed within a short period of time.

6. Conclusions

In this paperwe propose a tabu search algorithm for scheduling n coupled-operation jobswith exact time-lags on a single
machine. In order to explore possible solution representations, we study the special case of the problemwith the fixed order
of the first n operations and establish its NP-hardness even for the special case of unit-time operations. Due to this reason
we select an alternative solution representation based on the permutation of all 2n operations.

For the neighbor generation strategy we adopt the insertion technique proposed in [13]. We show that an optimal
insertion of a job in a partial schedule can be found in polynomial time. The algorithm uses the disjunctive graph model
and exploits a so-called short cycle property. Notice that in the past the short cycle theory was successfully applied mainly
to some special job shop problems, see [13–15].

The tabu search algorithm we develop differs from the traditional version by maintaining a pool of current solutions
instead of a single solution. Due to this reason, it explores a broader part of the solution space. With a larger size of
the neighborhood, it becomes particularly important to select potentially good neighbors fast enough. To achieve this we
calculate makespan estimates for the neighbors and select the candidate with the smallest estimate.

The following two enhancements are introduced in tabu list implementation: (1) solutions are represented by their crit-
ical paths and (2) the entries of the tabu list are prioritized depending on how often the corresponding solutions are gener-
ated; whenever there is a need to reduce the size of the tabu list, the entries with the lowest frequency are removed first.
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Computational experiments demonstrate that the proposed tabu search is effective for solving the coupled-operation
problem with exact time-lags. It outperforms the earlier heuristics developed for the more general problem with flexible
time-lags, in particular the join-and-decompose (JD) heuristic, which is considered to be the most successful among those
studied in [22]. We believe that themain reason of good performance of our tabu search algorithm is related to the neighbor
generation strategy which always produces a feasible solution, while neighbor generation strategy from [22] often results
in infeasible solutions.

To summarize, the main outcomes of our study include the analysis of possible solution representations, an efficient
neighbor generation strategy and two enhancements for tabu search implementation. It should be noted that the
improvements achieved for the coupled-operation problem with exact time-lags cannot be immediately transferred to
the more general problem with flexible time-lags. In particular, the insertion technique for neighbor generations is not
applicable to the flexible time-lag version of the problem since the short cycle property is not satisfied for it.

Our work leads to several new research directions. First, it seems interesting to study other compact representations
of feasible coupled-operation schedules. In particular, a schedule can be given by two sequences πa and πb of a- and b-
operations. The associated problem is tomerge two sequences πa and πb so that the resulting coupled-operation schedule is
feasible and the makespan is minimum. If that problem can be solved in polynomial time, the new solution representation
can serve the basis for a new set of local search algorithms with a reduced solution space.

Another interesting research direction is related to the neighbor generation strategy based on the job re-insertion
problem. Proving that the proposedneighborhood is opt-connectedwould provide a stronger analytical argument to support
the efficiency of our tabu search algorithm.Notice that opt-connectivity remains anopenquestion for a similar neighborhood
proposed in [14] for the blocking job-shop problem.
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