serial changes of everolimus-eluting stent incomplete stent apposition: an optical coherence tomography subanalysis from the reset trial

Poster Contributions
Poster Sessions, Expo North
Sunday, March 10, 2013, 9:45 a.m.-10:30 a.m.

Session Title: Intravascular Imaging: IVUS and OCT
Abstract Category: 38. TCT@ACC-i2: Intravascular Imaging and Physiology
Presentation Number: 2108-236

Authors: Kunihiro Shimamura, Takashi Akasaka, Yasushi Ino, Yoshihisa Nakagawa, Keiichi Igarashi, Ken'go Tanabe, Yoshihiro Morino, Masashi Iwabuchi, Kazuo Kimura, Ken Kozuma, Takeshi Kimura, Wakayama Medical University, Wakayama, Japan

Background: The long term outcome of incomplete stent apposition (ISA) after stent implantation remains unclear. The aim of this study was to evaluate serial changes of ISA after everolimus-eluting stent implantation by using optical coherence tomography (OCT).

Methods: Randomized Evaluation of Sirolimus-eluting versus Everolimus-eluting stent Trial (RESET) was a prospective dual-arm randomized trial of everolimus-eluting stents (EES) and sirolimus-eluting stents (SES) in 3197 patients with coronary artery disease. From the RESET trial, 44 patients with everolimus-eluting stents who underwent serial OCT examination (post-stenting and 12-month follow-up) were investigated.

Results: At post-stenting, ISA was observed in 38 (86%) EES. Mean malapposed distance (distance from stent strut to lumen surface) was 366 ± 225 μm at post-stenting. At 12-month follow-up, 27 (76%) ISA was resolved, however 9 (24%) was persistent. The mean malapposed distance was 165 ± 276 μm at 12-month follow-up. Receiver-operating curve analysis identified a malapposed distance > 410μm, (area under the curve, 0.95) as separating persistent from resolved ISA.

Conclusions: The stent with malapposed distance > 410μm at post-stenting has a high risk for persistent stent malapposition at 12-month follow-up in EES. OCT can predict persistent stent malapposition and provide useful information to optimize percutaneous coronary intervention.