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Abstract

In this paper we give the derived equivalence classification of cluster-tilted algebras of type An. We show
that the bounded derived category of such an algebra depends only on the number of 3-cycles in the quiver
of the algebra.
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Introduction

Cluster categories were introduced in [BMRRT] as a framework for a categorification of
Fomin–Zelevinsky cluster algebras [FZ1]. In [CCS1], a category was introduced independently
for type A, which was shown to be equivalent to the cluster category. For any finite-dimensional
hereditary algebra H over a field k, the cluster category CH is the quotient of the bounded derived
category DH = Db (mod H) by the functor F = τ−1[1], where τ denotes the AR-translation.
CH is canonically triangulated [K], and it has AR-triangles induced by the AR-triangles in DH .

In a cluster category CH , tilting objects are defined as objects which have no self-extensions,
and are maximal with respect to this property. The endomorphism rings of such objects are called
cluster-tilted algebras [BMR1]. These algebras are of finite representation type if and only if H

is the path algebra of a simply-laced Dynkin quiver.

✩ The authors were supported by Storforsk grant No. 167130 from the Norwegian Research Council.
* Corresponding author.

E-mail addresses: aslakb@math.ntnu.no (A.B. Buan), dvatne@math.ntnu.no (D.F. Vatne).
0021-8693/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2008.01.007



2724 A.B. Buan, D.F. Vatne / Journal of Algebra 319 (2008) 2723–2738
Cluster-tilted algebras have several interesting properties. In particular, by [BMR1] their rep-
resentation theory can be completely understood in terms of the representation theory of the
corresponding hereditary algebra H . Furthermore, their relationship to tilted algebras is well
understood by [ABS1,ABS2], see also [Rin].

Homologically, they are very different from hereditary and tilted algebras, since they have in
general infinite global dimension. In fact they are Gorenstein of dimension 1 and in particular
they have finitistic dimension 1, by [KR]. Cluster-tilted algebras also play a role in the construc-
tion of cluster algebras from cluster categories [CK1,CK2], see also [BMRT].

The purpose of this paper is to describe when two cluster-tilted algebras from the cluster
category CH have equivalent derived categories, where H is the path algebra of a quiver whose
underlying graph is An. We will get an exact description of the quivers of such algebras, and
their relations are given by [CCS1]. The main result is the following.

Theorem. Two cluster-tilted algebras of type An are derived equivalent if and only if their quiv-
ers have the same number of 3-cycles.

For this, we show that if we have an almost complete cluster-tilting object T in CH with
complements Ti and T ∗

i such that the cluster-tilted algebras given by Γ = EndCH
(T � Ti)

op and
Γ ′ = EndCH

(T � T ∗
i )op have quivers with the same number of 3-cycles, then Γ ′ is in a natural

way isomorphic to the endomorphism ring of a tilting module over Γ . Then it is well known that
Γ and Γ ′ are derived equivalent, see [Ha,CPS].

The outline of the paper is as follows: After some basic notions, we describe the mutation
class of An, that is, the quivers of cluster-tilted algebras of An-type. In Section 4 we give a
simple proof of a special case of a result by Holm [Ho], which is a formula for the determinant
of the Cartan matrices of the cluster-tilted algebras of An-type. We use this to distinguish between
algebras of this type which are not derived equivalent. In Section 5 we prove the main result.

For notions and basic results about finite-dimensional algebras, we refer the reader to [ASS]
or [ARS].

1. Preliminaries

We will now review some basic notions concerning cluster-tilted algebras. This theory is
developed in [BMRRT,BMR1], and in the Dynkin case there is an independent approach in
[CCS1,CCS2].

Throughout, H will denote the path algebra k �An of a quiver �An with underlying graph An.
By mod H we will mean the category of finitely generated left H -modules. Then the AR-quiver
of the derived category D = Db (mod H) is isomorphic to the stable translation quiver ZAn (see
e.g. [Ha]). D does not depend on the orientation of �An.

If τ is the AR-translation in D, we consider the functor F = τ−1[1] and the orbit category
C = D/F . Then C is called the cluster category of type An. This is a Krull–Schmidt category,
and it follows from [K] that it has a triangulated structure inherited from D.

A (cluster) tilting object in C is an object T with n non-isomorphic indecomposable direct
summands such that Ext1C(T ,T ) = 0. An object in C with n−1 non-isomorphic direct summands
satisfying the same Ext-condition will be called an almost complete (cluster) tilting object. An
indecomposable object M such that T � M is a tilting object is said to be a complement of T .

We will use the following result, which is one of the main results in [BMRRT], and which
uses the notion of approximations from [AS]:



A.B. Buan, D.F. Vatne / Journal of Algebra 319 (2008) 2723–2738 2725
Theorem 1.1. An almost complete tilting object T in C has exactly two complements M and M∗.
These are related by unique triangles

M → B → M∗ →
and

M∗ → B ′ → M →
where the maps M → B and M∗ → B ′ are minimal left addT -approximations and the maps
B → M∗ and B ′ → M are minimal right addT -approximations.

For a tilting object T in C, we call the endomorphism ring ΓT = EndC(T )op a cluster-tilted
algebra. There is a close connection between the module category of ΓT and C, from [BMR1]:

Theorem 1.2. With ΓT as above, the functor G = HomC(T ,−) : C → mod ΓT is full and dense
and induces an equivalence

G : C/ add(τT ) → mod ΓT .

By [BMR2], the cluster-tilted algebras of type An are exactly the algebras given by quivers
obtained from An-quivers by mutation, an operation which will be described in Section 2, with
certain relations determined by the quiver [BMR3].

2. The mutation class of An

In this section we will provide an explicit description of the mutation class of An-quivers. The
ideas underlying our presentation can be found already in [CCS1], where a geometric interpre-
tation of mutation of An-quivers is given. The mutation class is implicit in [CCS1], see also [S]
for an explicit, but slightly differently formulated description. The technical Lemma 2.3 will be
crucial in the proof of our main theorem in Section 5.

Quiver mutation was introduced by Fomin and Zelevinsky [FZ1] as a generalisation of the
sink/source reflections used in connection with BGP functors [BGP]. Any quiver Q with no loops
and no cycles of length two, can be mutated at vertex i to a new quiver Q∗ by the following rules:

• The vertex i is removed and replaced by a vertex i∗, all other vertices are kept.
• For any arrow i → j in Q there is an arrow j → i∗ in Q∗.
• For any arrow j → i in Q there is an arrow i∗ → j in Q∗.
• If there are r > 0 arrows j1 → i, s > 0 arrows i → j2 and t arrows j2 → j1 in Q, there

are t − rs arrows j2 → j1 in Q∗. (Here, a negative number of arrows means arrows in the
opposite direction.)

• All other arrows are kept.

Note that if we mutate Q at vertex i, and then mutate Q∗ at i∗, the resulting quiver is iso-
morphic to (and will be identified with) Q. We want to describe the class of quivers which can
be obtained by iterated mutation on a quiver of type An. Such quivers are said to be mutation
equivalent to An, as iterated mutation produces an equivalence relation.

The following lemma is a well-known fact:
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Lemma 2.1. All orientations of An are mutation equivalent.

From now on, let Qn be the class of quivers with n vertices which satisfy the following:

• all non-trivial cycles are oriented and of length 3,
• a vertex has at most four neighbours,
• if a vertex has four neighbours, then two of its adjacent arrows belong to one 3-cycle, and

the other two belong to another 3-cycle,
• if a vertex has exactly three neighbours, then two of its adjacent arrows belong to a 3-cycle,

and the third arrow does not belong to any 3-cycle.

Note that by a cycle in the first condition we mean a cycle in the underlying graph, not passing
through the same edge twice. In particular, this condition excludes multiple arrows. We will show
that Qn is the mutation class of An.

Lemma 2.2. Qn is closed under quiver mutation.

Proof. Let Q ∈ Qn. We will see what happens locally when we mutate.
If we mutate at a vertex i which is a source or a sink, then the arrows to or from i changes

direction, and everything else is left unchanged. Thus the new quiver Q∗ will also satisfy the
conditions in the description of Qn.

Next we consider the case where i is the source of exactly one arrow and the target of exactly
one arrow:

j i k

Two cases can occur. Suppose first that there is no arrow from k to j in Q. Then there is an arrow
from j to k in Q∗:

j i∗ k

Thus the numbers of neighbours for j and k increase by 1. It is impossible that j or k has four
neighbours in Q, since then the arrow to or from i would be part of a 3-cycle in Q, and i would
have a third neighbour. Thus j and k have � 4 neighbours in Q∗ as well. There are no other
(non-oriented) paths between j and k in Q∗ than the two pictured in the diagram above, so the
other conditions are also satisfied: If j or k has four neighbours in Q∗, then the last two arrows
will be part of a 3-cycle in both Q and Q∗.

In the other case, there is an arrow k → j in Q. Then this is removed in passing to Q∗. The
numbers of neighbours of j and k decrease by 1, and cannot be larger than 3. If, say, j has three
neighbours in Q∗, then it must have had four neighbours in Q, and the two arrows not involving i

or k are part of a 3-cycle in both Q and Q∗. The arrow i∗ → j is not part of a 3-cycle, since the
only arrow with i∗ as target comes from k, and there is no arrow j → k.
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We use similar arguments for the other cases, and just point out how the mutations work. Now
let i be a vertex of Q with three neighbours. Suppose first that the one arrow to or from i which
is not on a 3-cycle has i as the target:

l

j i k

Then the mutation will remove the lj -arrow and produce a new triangle i∗kl:

l

j i∗ k

Similarly for the case where the third arrow has i as the source.
Finally, let i be a vertex with four neighbours:

j k

i

l m

Mutate:

j k

i∗

l m

So for the cases where i has three or four neighbours, we see that neither in Q nor in Q∗ are there
other paths between j , k, l and m than those passing through the diagrams. By similar arguments
as above, Q∗ also satisfies the conditions in the description of Qn. �

We will need the following lemma for the proof of the main result in Section 5.

Lemma 2.3. If Q1 and Q2 are quivers in Qn, and Q1 and Q2 have the same number of 3-cycles,
then Q2 can be obtained from Q1 by iterated mutation where all the intermediate quivers also
have the same number of 3-cycles.



2728 A.B. Buan, D.F. Vatne / Journal of Algebra 319 (2008) 2723–2738
Proof. It is enough to show that all quivers in Qn can be mutated without changing the number
of 3-cycles to a quiver looking like this:

• • • •

• • • · · · • • • • · · · • • •

In this process we are only allowed to mutate in sinks, sources and vertices of valency three and
four, as these are the mutations which will not change the number of 3-cycles for quivers in Qn.

For the purposes of this proof, we introduce a distance function on the set of 3-cycles in
quivers in Qn. For each pair C, C′ of different 3-cycles in Q, we define dQ(C,C′) to be the
length of the unique minimal (perhaps non-oriented) path between C and C′, i.e. the number of
arrows in this path.

Let Q be a quiver in Qn, and suppose that the underlying graph of Q is not An. We now
define a total order on a subset SQ of the set of 3-cycles of Q. This subset is not uniquely
defined. Q must contain a 3-cycle which is only connected to other 3-cycles through (at most)
one of its vertices. Choose one such 3-cycle and call it C1. If there are more 3-cycles, let C2 be
the unique 3-cycle which minimises dQ(C1,−). If there are more 3-cycles, let C3 be one of the
at most two which minimise dQ(C2,−) among the 3-cycles not equal to C1.

If Ci is defined for some i � 3, and there exists one or more 3-cycles C such that dQ(Ci,C) <

dQ(Cj ,C) for j < i, let Ci+1 be one of the at most two which minimise dQ(Ci,−) among
3-cycles with this property. Continue in this way until Cs is defined, but Cs+1 cannot be defined.
Let SQ = {C1, . . . ,Cs} be our totally ordered set of 3-cycles.

Next, we will see that we have a procedure for moving 3-cycles in the quiver closer together.
Let C and C′ be a pair of neighbouring 3-cycles in Q (i.e. no edge in the path between them
is part of a 3-cycle) such that dQ(C,C′) � 1. We want to move C and C′ closer together by
mutation. Up to orientation on the arrow from d to e, it looks like the following diagram. The
other orientation gives a similar situation.

Qa Qb

a b

Qc c
C

d e · · · f
C′

g Qg

(In the diagram, the Qi are subquivers.) Mutating at d will produce a quiver Q∗ which looks like
this:

Qa Qb

a b

Qc c d∗ C∗
e · · · f

C′
g Qg
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The only differences between Q and Q∗ are that dQ∗(C∗,C′) = dQ(C,C′)−1, and there is after
the mutation a path of length 1 between C∗ and Qc.

This is the kind of mutation we use for moving 3-cycles closer together.
Suppose that there is a 3-cycle C in Q which is not in our sequence SQ. We will now use the

procedure of moving 3-cycles to produce a new quiver Q∗ with a sequence SQ∗ of 3-cycles such
that the size of SQ∗ equals the size of SQ plus one.

The quiver Q, with its sequence SQ, looks like this:

Q1 Qi Qs

x1 xi xs

z1
C1

y1 zi
Ci

yi zs
Cs

ys

(1)

where the Qi are subquivers, and C is in Qi for some i = 2,3, . . . , s − 1. (This follows from
the definition of C1 and s.) Without loss of generality, we may assume that C is the 3-cycle in
Qi which is closest to Ci . C may be moved towards xi using the procedure above. So we may
perform this procedure until C and Ci share the vertex xi , and xi has four neighbours. We then
mutate at the vertex xi :

z′
i y′

i z′
i y′

i

xi
mutate at xi

x∗
i

zi
Ci

yi zi yi

Call the resulting quiver Q∗. After a suitable labelling, we now have a sequence C∗
1 , . . . ,C∗

s+1
of 3-cycles in the quiver Q∗, where C∗

j = Cj for j < i and C∗
j = Cj−1 for j > i + 1. This may

serve as a sequence SQ∗ .
Enlarging our totally ordered set like this the necessary number of times will give a quiver

where all the 3-cycles are in a sequence C1, . . . ,Cs as in diagram (1) for some s, and the sub-
quivers Q1, . . . ,Qs are just (non-directed) paths.

If ys in diagram (1) has valency 3, we now move Cs to the right by mutating at ys and
continuing in the same way. When we reach a diagram as in (1) above where ys has only two
neighbours (xs and zs ), we shrink Qs by mutating at xs and continuing until the new xs has
only ys and zs as neighbours. By suitably orienting Qs beforehand as in Lemma 2.1, we can do
this in such a way that ys still only has two neighbours, and Cs is connected to the rest of the
quiver only through zs . Successively doing this to Cs−1, . . . ,C1 will give a quiver consisting of
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a sequence of 3-cycles with dQ(Ci,Ci+1) = 0 for neighbouring Ci and Ci+1, and possibly with
some non-directed path connected to it:

x1 xs−1 xs

• • • z1
C1

y1 zs−1
Cs−1

zs
Cs

ys

(2)

The orientation of Cs does not matter, since we can just flip it in the diagram. If i is the biggest
number < s such that Ci is not oriented in the clockwise direction, we mutate at yi = zi+1 and
get a similar diagram where the new Ci+1 is oriented in the anticlockwise direction, and the
new Ci is oriented clockwise. Doing this the necessary number of times, we get the quiver we
want. �

It should be remarked that the following proposition follows from Lemma 2.2 and the fact
that quivers in Qn are 2-finite [FZ2], see also [S]. However, we can now give an independent
argument:

Proposition 2.4. A quiver Q is mutation equivalent to An if and only if Q ∈ Qn.

Proof. Obviously, all orientations of An are in Qn.
It follows from the proof of Lemma 2.3 that all members of Qn can be reached by iterated

mutation on an An-quiver, since mutating the quiver in (2) in all the xi will give a quiver with
underlying graph An, and we can reverse the procedure in the proof to come to any Q ∈Qn. �
3. Relations

In this section we give the relations on the quivers of cluster-tilted algebras of type An, which
are given in [CCS1] and have been generalised in [CCS2] and [BMR3]. This gives the complete
description of this class of algebras, and we use it to establish that these algebras are gentle.

Proposition 3.1. The cluster-tilted algebras of type An are exactly the algebras kQ/I where Q

is a quiver in Qn and I is the ideal generated by the directed paths of length 2 which are part of
a 3-cycle.

Given such a quiver Q, we will sometimes denote the corresponding cluster-tilted algebra
kQ/I by ΓQ.

If Q is a finite quiver and I is an ideal in the path algebra kQ, then kQ/I is special biserial
[SkW] if it satisfies

• for every vertex p in Q, there are at most two arrows starting in p and at most two arrows
ending in p.

• For every arrow β in Q, there is at most one arrow α1 in Q with βα1 /∈ I and at most one
arrow γ1 in Q with γ1β /∈ I .

A special biserial algebra kQ/I is gentle [AsSk] if it also satisfies
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• I is generated by paths of length 2.
• For every arrow β in Q there is at most one arrow α2 such that βα2 is a path and βα2 ∈ I ,

and at most one arrow γ2 such that γ2β is a path and γ2β ∈ I .

Corollary 3.2. Cluster-tilted algebras of type An are gentle.

4. Cartan determinants

The Cartan matrix (Cij ) of a finite-dimensional k-algebra Λ is by definition the matrix with
ij th entry Cij = dimk eiΛej , that is, the columns are the dimension vectors of the indecompos-
able projectives. The determinant of the Cartan matrix is invariant under derived equivalence.
(See [BoSk] for a proof.)

Since cluster-tilted algebras of type An are gentle, the following result is a special case of a
result by Holm [Ho]. We include the proof, which is a lot simpler than in the general case.

Proposition 4.1. If Γ is a cluster-tilted algebra of type An, then the determinant of the Cartan
matrix of Γ is 2t , where t is the number of 3-cycles in the quiver of Γ .

Proof. Let Q be any quiver with relations R, and let ΛQ,R be the corresponding algebra. We will
study the behaviour of the Cartan determinant of the algebra under two types of enlargements of
Q and R. All quivers in the mutation class of An can be built by successive enlargements of this
kind, and this will yield the result.

Let k denote the number of vertices in Q.
The first type of enlargement goes as follows. Construct Q′ from Q by adding one new vertex

labelled k + 1 and one arrow α between Q and k + 1. We assume that k + 1 is the target of α.
(The proof is similar in the other case.) Let the relations R′ on Q′ be R, i.e. Q′ just inherits the
relations from Q. Then the Cartan matrix C(ΛQ′,R′) is

⎛
⎜⎜⎝

∗ · · · ∗ 0
...

...
...

∗ · · · ∗ 0
∗ · · · ∗ 1

⎞
⎟⎟⎠

where the Cartan matrix C(ΛQ,R) sits in the top left corner. We see that the determinant of
C(ΛQ′,R′) equals the determinant of C(ΛQ,R), so this construction does not change the Cartan
determinant.

We now turn to the second type of enlargement. Construct a quiver Q′′ from Q by adding two
vertices k + 1 and k + 2, and three arrows α, β , γ such that γβα is a 3-cycle running through
k+1 and k+2. We may assume that the third vertex in this 3-cycle is labelled k. Let the relations
on Q′′ be given by R′′ = R ∪ {βα,γβ,αγ }.

Since the minimal relations involving α, β and γ do not involve the relations in R, we have,
for i � k,

ck+1,i = dimk ek+1(ΛQ′′,R′′)ei = dimk ek(ΛQ,R)ei = ck,i ,

ci,k+2 = dimk ei(ΛQ′′,R′′)ek+2 = dimk ei(ΛQ,R)ek = ci,k.
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This gives the following (k + 2) × (k + 2) Cartan matrix of C(ΛQ′′,R′′),

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ · · · ∗ | 0 |
...

... | ... |
∗ · · · ∗ | 0 |
− − − 1 0 1
− − − 1 1 0
0 · · · 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Here, rows k and k+1 are equal except for the two rightmost entries, and similarly for columns k

and k + 2. Again, we find C(ΛQ,R) in the top left corner. Expanding the determinant along the
bottom row, we get

∣∣C(ΛQ′′,R′′)
∣∣ = Mk+2,k+2 − Mk+2,k+1

where Mij denotes the ij th minor. We see that Mk+2,k+2 = |C(ΛQ,R)|, while

Mk+2,k+1 =

∣∣∣∣∣∣∣∣∣∣

∗ · · · ∗ | |
...

... | |
∗ · · · ∗ | |
− − − 1 1
− − − 1 0

∣∣∣∣∣∣∣∣∣∣

where rows k and k + 1 are equal except for the last entry, and similarly for columns k and k + 1.
The top left part is still C(ΛQ,R). Upon subtracting row k + 1 from row k and then expanding
the determinant along row k, we find that

Mk+2,k+1 = −∣∣C(ΛQ,R)
∣∣

and thus

∣∣C(ΛQ′′,R′′)
∣∣ = 2 · ∣∣C(ΛQ,R)

∣∣.

The statement in the proposition now follows from the following observation: Given any
cluster-tilted algebra Γ of type An, we may build the quiver of Γ with the appropriate relations
by starting with A1 and performing the above types of enlargements sufficiently many times. The
determinant of the Cartan matrix is multiplied by two for each 3-cycle added. �
5. Derived equivalence

We now prove the main result, namely that the cluster-tilted algebras of type An which have
the same Cartan determinant are also derived equivalent.

Theorem 5.1. Two cluster-tilted algebras of type An are derived equivalent if and only if their
quivers have the same number of 3-cycles.
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Proof. Let Γ and Γ ′ be two cluster-tilted algebras of type An.
If the quivers of Γ and Γ ′ do not have the same number of 3-cycles, then by Proposition 4.1

the determinants of their Cartan matrices are not equal, and thus they are not derived equivalent.
By the results in Section 2, and in particular Lemma 2.3, it is enough to show that if Γ and

Γ ′ are two cluster-tilted algebras of type An, and the quiver of one of them can be obtained by
mutating the quiver of the other in one vertex without changing the number of 3-cycles, then Γ

and Γ ′ are derived equivalent. The strategy is to show that replacing a certain direct summand of
the tilting object T in C with Γ = EndC(T )op, we find a tilting Γ -module whose endomorphism
ring is isomorphic to Γ ′.

If the vertex i for the necessary mutation is a source or a sink, the mutation just corresponds
to APR-tilting, so this is a well-known case [APR].

We consider the case where i is a vertex of the quiver of Γ with two arrows ending there.
There might be one or two arrows with i as the initial vertex. (Having proved the result for this
case, we need not do it for the case where i is a vertex with two arrows out and one arrow in,
since this is just the reverse operation of what we have done.)

l m

k i j

Let T = T � Ti be the tilting object in the cluster category C which gives rise to
Γ = EndC(T )op, and suppose Ti is the indecomposable summand which through the functor
HomC(T ,−) : C → mod Γ corresponds to the vertex where we must mutate to get the quiver
of Γ ′ from the quiver of Γ . Denote by T ∗

i the unique second indecomposable object which
completes T to a tilting object in C. Then

Γ ′ = EndC
(
T � T ∗

i

)op
.

By Theorem 1.2, the functor G = HomC(T ,−) : C → mod Γ is full and dense and induces an
equivalence

G : C/ add(τT ) → mod Γ.

Let T1, . . . , Tn be the indecomposable summands of T . The images of these objects under
HomC(T ,−) are the indecomposable projective Γ -modules:

Pi = G(Ti) = HomC(T ,Ti).

Denote by P ∗
i the image of T ∗

i :

P ∗
i = HomC

(
T ,T ∗

i

)
.

T ∗
i is found by completing a minimal left addT -approximation Ti → B into a triangle in C

(cf. Theorem 1.1):

Ti → B → T ∗ → . (3)
i
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We see that B in this triangle is Tj � Tk , where j and k are the labels on the vertices which
have arrows to i in the quiver of Γ . Recall that the AR-quiver of C is a Möbius band with
mod H ∨ H [1] as a fundamental domain for the functor F = τ−1[1], which takes the ZAn to
the Möbius band [BMRRT]. The AR-quiver is drawn in the following diagram, where the dotted
lines indicate a choice of fundamental domain for F .

Tl

Tj

T ∗
i

Ti

Ti

Tk Tm

We must show that P ∗
i 
= 0, which is the same as showing that T ∗

i is not in add(τT ). Since
T ∗

i is indecomposable, this would mean that T ∗
i = τTq for some q = 1,2, . . . , n. But by Serre

duality this would lead to

Ext1C(Tq, Tj ) � D HomC(Tj , τTq) = D HomC
(
Tj , T

∗
i

) 
= 0,

which is absurd, since T is a tilting object in C. Thus we conclude that P ∗
i 
= 0.

We will now show that no non-zero endomorphisms of T � T ∗
i factor through add(τT ).

Then G and the induced functor G will give the isomorphism

Γ ′ = EndC
(
T � T ∗

i

) � EndΓ

(
P � P ∗

i

)
,

f �→ HomC(T ,f ). (4)

It is only necessary to consider maps involving T ∗
i . Also, we see that if a non-zero map factors

T ∗
i → τTq → Ts , then q = i, for this implies the existence of an extension between T ∗

i and Tq .
We find the maps in EndC(T � T ∗

i ) from the AR-quiver of C, and we recall from [BMRRT] that
the k-dimension of HomC(X,Y ) is at most 1 when X and Y are summands of a tilting object.

We consider first the situation where i is the initial vertex of two arrows:

Tl τ−1Tl

Tj

T ∗
i

Ti τ−1Ti

Ti

Tk Tm τ−1Tm
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Suppose there is a non-zero map φ : T ∗
i → Ts for some s. Then φ factors through either Tl

or Tm, since the map T ∗
i → Tl � Tm is a minimal left add(T )-approximation. Also, φ cannot

factor through τ−1Tl or τ−1Tm since T is exceptional. Therefore Ts must be on one of the rays
starting in either Tl or Tm. Since there are arrows in the quiver of Γ from i to l and m, Ts cannot
be on the rays from Tl and Tm to Ti in the AR-quiver, so it must be on one of the rays starting
in T ∗

i , after Tl or Tm.
So the only way φ can factor through τTi is if one of the maps Tl → Ti and Tm → Ti is irre-

ducible. But this is impossible, since this would imply that there is a non-zero map τ−1Tl → Tk ,
i.e. an extension between Tl and Tk , or similarly for Tm and Tj .

Ts

Tk

Tl τ−1Tl

τTi Ti

Now consider the case where i is the initial vertex of only one arrow.

Tl τ−1Tl

Tj

T ∗
i

Ti τ−1Ti

Ti

Tk

Again, a non-zero map φ : T ∗
i → Ts must factor through Tl , since T ∗

i → Tl is a minimal left
add(T )-approximation. For the same reasons as above, it cannot factor through τ−1Tl , so Ts must
be on one of the rays starting in Tl , and it cannot be between Tl and Ti . The possibility that it is
on the same ray as Ti is then ruled out by the fact that the map T ∗

i → Tl → Ti is a composition
of two maps in a triangle and therefore zero. This forces us to the situation described above with
an irreducible map Tl → Ti , which is again impossible. Summarising, we have that no non-zero
morphisms T ∗

i → Ts can factor through a τTq .
Next note that a non-zero morphism Ts → T ∗

i factoring through a τTq would provide an
extension between Tq and Ts , which is not possible. Obviously, there cannot be any endomor-
phisms of T ∗

i factoring through other indecomposable objects. Hence, the isomorphism (4) is
established.

Our goal is now to show that P � P ∗
i is a tilting module over Γ . Then the isomorphism (4)

will imply that the derived categories Db (mod Γ ) and Db (mod Γ ′) are equivalent, by Happel’s
theorem [Ha,CPS].
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We now claim that in mod Γ the triangle (3) gives us a projective resolution of P ∗
i :

0 → Pi → Pj � Pk → P ∗
i → 0. (5)

So the Γ -module P ∗
i has projective dimension 1. Indeed, the triangle (3) provides the long exact

sequence

· · · → HomC
(
T , τ−1Tj � τ−1Tk

) → HomC
(
T , τ−1T ∗

i

)

→ HomC(T ,Ti) → HomC(T ,Tj � Tk) → ·· · (6)

and the map Pi → Pj � Pk in (5) is mono if and only if the first map in (6) is epi. To see that
this is the case, we consider maps ψ : τTs → T ∗

i , 1 � s � n, and show that they factor through
Tj � Tk . This is easily seen when s = i. If ψ factors through Ts , it will also factor through
Tj � Tk → T ∗

i , since this is an addT -approximation. If ψ does not factor through Ts , τTs must
be on one of the rays pointing to T ∗

i in the AR-quiver. Without loss of generality, assume that
this is the ray which Tk lies on. τTs cannot be between Tk and T ∗

i , since this would imply an
extension between Tk and Ts :

Tj

T ∗
i

τTs Ts

Tk

In the case where Tk is between τTs and T ∗
i , ψ factors through Tk , which was what we wanted

to show. Thus the first map in (6) is epi, and (5) is the projective resolution of P ∗
i .

We need to check that ExtaΓ (P ∗
i , Pl) = 0 for a = 1,2,3, . . . and all indecomposable projec-

tives Pl 
= Pi . Since P ∗
i has projective dimension 1, the a � 2 case is trivial. Passing to the

derived category DΓ = Db (mod Γ ), we identify P ∗
i with the deleted projective resolution

· · · → 0 → Pi → Pj � Pk → 0 → ·· ·

where Pj � Pk sits in degree 0. This derived category is equivalent to the homotopy category
K−,b(projΓ ) of upper bounded complexes of projective modules with non-zero homology only
in a finite number of positions. Since

Ext1 (X,Y ) � HomD
(
X,Y [1])
Γ Γ
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for objects X and Y of DΓ , we need to show that there are no non-zero (up to homotopy)
morphisms of complexes

· · · 0 Pi Pj � Pk 0 · · ·

· · · 0 Pq 0 0 · · ·

But all morphisms Pi → Pq where Pq is an indecomposable projective factor through Pi →
Pj � Pk , since this map is a minimal left addP -approximation, so all morphisms of complexes
as above are null-homotopic. Thus all the Ext-groups vanish.

Since the number of indecomposables in P �P ∗
i equals n, the number of simples over Γ , and

P � P ∗
i has projective dimension 1, it is a tilting module, and we are done. �
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[BoSk] R. Bocian, A. Skowroński, Weakly symmetric algebras of Euclidean type, J. Reine Angew. Math. 580 (2005)

157–199.
[BMR1] A. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (1) (2007) 323–332.
[BMR2] A. Buan, R. Marsh, I. Reiten, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (1)

(2008) 143–177.
[BMR3] A. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras of finite representation type, J. Algebra 306 (2) (2006)

412–431.
[BMRRT] A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv.

Math. 204 (2006) 572–618.



2738 A.B. Buan, D.F. Vatne / Journal of Algebra 319 (2008) 2723–2738
[BMRT] A. Buan, R. Marsh, I. Reiten, G. Todorov, Clusters and seeds for acyclic cluster algebras, with an appendix
by A. Buan, P. Caldero, B. Keller, R. Marsh, I. Reiten, G. Todorov, Proc. Amer. Math. Soc. 135 (10) (2007)
3049–3060.

[CCS1] P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Amer.
Math. Soc. 358 (3) (2006) 1347–1364.

[CCS2] P. Caldero, F. Chapoton, R. Schiffler, Quivers with relations and cluster tilted algebras, Algebr. Represent.
Theory 9 (2006) 359–376.

[CK1] P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math., in press,
arXiv:math.RT/0506018.

[CK2] P. Caldero, B. Keller, From triangulated categories to cluster algebras II, Ann. Sci. École Norm. Sup. (4) 39 (6)
(2006) 983–1009.

[CPS] E. Cline, B. Parshall, L. Scott, Derived categories and Morita theory, J. Algebra 104 (2) (1986) 397–409.
[FZ1] S. Fomin, A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2) (2002) 497–529.
[FZ2] S. Fomin, A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math. 154 (1) (2003) 63–121.
[Ha] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London

Math. Soc. Lecture Note Ser., vol. 119, Cambridge University Press, 1988.
[Ho] T. Holm, Cartan determinants for gentle algebras, Arch. Math. 85 (2005) 233–239.
[K] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005) 551–581.
[KR] B. Keller, I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math. 211 (1) (2007)

123–151.
[M] G. Murphy, PhD thesis, in preparation.
[Rin] C.M. Ringel, Some Remarks Concerning Tilting Modules and Tilted Algebras. Origin. Relevance. Future (An

appendix to the Handbook of Tilting Theory), London Math. Soc. Lecture Note Ser., vol. 332, Cambridge
University Press, 2007.

[S] A. Seven, Recognizing cluster algebras of finite type, Electron. J. Combin. 14 (1) (2007), Research Paper 3,
35 pp. (electronic).
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