On the noncommutative geometry of square superpotential algebras

Charlie Beil ${ }^{1}$
Simons Center for Geometry and Physics, State University of New York, Stony Brook, NY 11794-3636, USA

A R T I C L E I N F O

Article history:

Received 12 April 2010
Available online 30 August 2012
Communicated by Michel Van den Bergh

MSC:

14A22
16R20
16G20

Keywords:

Noncommutative crepant resolution
Superpotential algebra
Dimer model
Azumaya locus
Calabi-Yau algebra
Noncommutative algebraic geometry

Abstract

A superpotential algebra is square if its quiver admits an embedding into a two-torus such that the image of its underlying graph is a square grid, possibly with diagonal edges in the unit squares; examples are provided by dimer models in physics. Such an embedding reveals much of the algebras representation theory through a device we introduce called an impression. Let A be a square superpotential algebra, Z its center, and \mathfrak{m} the maximal ideal at the origin of $\operatorname{Spec} Z$. Using an impression, we

- give a classification of all simple A-modules up to isomorphism, and give algebraic and homological characterizations of the simple A-modules of maximal k-dimension;
- show that Z is a 3-dimensional normal toric domain and $Z_{\mathfrak{m}}$ is Gorenstein, by determining transcendence bases and Z-regular sequences; and
- show that $A_{\mathfrak{m}}$ is a noncommutative crepant resolution of $Z_{\mathfrak{m}}$, and thus a local Calabi-Yau algebra.

A particular class of square superpotential algebras, the $Y^{p, q}$ algebras, is considered in detail. We show that the Azumaya and smooth loci of the centers coincide, and propose that each ramified maximal ideal sitting over the singular locus is the exceptional locus of a blowup shrunk to zero size.
© 2012 Elsevier Inc. All rights reserved.

[^0]
Contents

1. Introduction 208
1.1. Overview 208
1.2. Square superpotential algebras 210
2. Impressions 211
2.1. Definition and utility 211
2.2. The case when $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ 214
3. Impressions of square superpotential algebras 219
3.1. An impression 219
4. 3-Dimensional normal Gorenstein centers 222
4.1. Transcendence basis 222
4.2. $\quad Z$-regular sequence and socle 224
4.3. Main result 228
5. Classification of simple modules 229
6. Noncommutative crepant resolutions 230
6.1. Homological homogeneity 230
6.2. Endomorphism rings 236
7. The $Y^{p, q}$ algebras 238
7.1. Azumaya loci and (non-local) global dimensions 238
7.2. Exceptional loci with zero volume: a proposal 242
Acknowledgments 244
Appendix A. Proof of Lemma 3.2 245
Appendix B. A math-physics dictionary for quivers 247
References 248

1. Introduction

1.1. Overview

Superpotential algebras are a class of quiver algebras that have arisen in string theory and have found mathematical interest in their own right. We will consider a special class of these algebras, which we call square superpotential algebras; the quiver of such an algebra admits an embedding into a two-torus such that the image of its underlying graph is a square grid, possibly with diagonal edges in the unit squares.

We briefly state the main results of the paper. In Section 2 we introduce a device called an impression and establish a few key properties. An impression (τ, B) of a representable algebra A is a closely related commutative algebra B that contains the center Z as a subalgebra, together with an algebra monomorphism $\tau: A \hookrightarrow M_{d}(B)$ with certain properties. An impression is useful because, in contrast to the definition of an order, it explicitly determines both the center of A and all simple A-module isoclasses of maximal k-dimension - what we call the large modules. In favorable cases the large module isoclasses are parameterized by the smooth locus of the algebras center. ${ }^{2}$ Specifically we show

Proposition A. Let (τ, B) be an impression of a finitely-generated algebra A module-finite over its center, with B prime. If V is a large A-module then there is some $\mathfrak{q} \in \operatorname{Max} B$ such that $V \cong(B / \mathfrak{q})^{d}$, where av $:=\tau_{\mathfrak{q}}(a) v$.

We then prove some general results that will be useful in our analysis of square superpotential algebras, such as the following theorem (see also Proposition 2.15 and Theorem 2.16).

[^1]Theorem B. Let $A=k Q / I$ be a quiver algebra that admits a pre-impression (τ, B) such that $\tau\left(e_{i}\right)=E_{i i}$ and $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ for each $i, j \in Q_{0}$. Then A and its center Z are noetherian rings, A is a finitelygenerated Z-module, and

$$
Z=k\left[\sum_{i \in Q_{0}} \gamma_{i} \in \bigoplus_{i \in Q_{0}} e_{i} A e_{i} \mid \bar{\tau}\left(\gamma_{i}\right)=\bar{\tau}\left(\gamma_{j}\right) \text { for each } i, j \in Q_{0}\right] .
$$

In particular, $Z \cong Z e_{i}=e_{i} A e_{i}$ for each $i \in Q_{0}$.
In Section 3 we determine an impression of square superpotential algebras. In Sections 4, 5, and 6 we use this impression to prove the following two theorems. Let A be a square superpotential algebra, Z its center, \mathfrak{m} the origin of Max Z, and ($\left.\tau, B=k\left[x_{1}, x_{2}, y_{1}, y_{2}\right]\right)$ an impression of A.

Theorem C. Z is a 3-dimensional normal toric domain and the localization $Z_{\mathfrak{m}}$ at the origin \mathfrak{m} of $\operatorname{Max} Z$ is Gorenstein. Furthermore, $A_{\mathfrak{m}}:=Z_{\mathfrak{m}} \otimes_{z}$ A is a noncommutative crepant resolution of $Z_{\mathfrak{m}}$, and consequently a local Calabi-Yau algebra of dimension 3.

Theorem D. Let A be a square superpotential algebra with impression (τ, B), and let V be a simple A-module. Set $\mathfrak{p}:=\operatorname{ann}_{A} V$ and $\mathfrak{m}:=\mathfrak{p} \cap Z \in \operatorname{Max} Z$. Then $\operatorname{dim}_{k} e_{i} V \leqslant 1$ for each $i \in Q_{0}$. Furthermore, one of the following holds.
(1) V is a vertex simple A-module, in which case $A / \mathfrak{p} \cong V$ as A-modules.
(2) V is supported on a single cycle c in A up to cyclic permutation.
(a) If Q is not McKay then $\bar{\tau}(c)$ is divisible by precisely two of $x_{1}, x_{2}, y_{1}, y_{2}$.
(b) If Q is McKay with τ defined in Proposition 4.5, then $\bar{\tau}(c)$ divisible by precisely one of x, y, z.
(3) V is a large A-module, in which case
(a) $A / \mathfrak{p} \cong V^{\left|Q_{0}\right|}$ as A-modules;
(b) there is a point $\mathfrak{q} \in \operatorname{Max} B$ such that $V \cong(B / \mathfrak{q})^{\left|Q_{0}\right|}$, where the module structure of $(B / \mathfrak{q})^{\left|Q_{0}\right|}$ is given by av $:=\tau_{\mathfrak{q}}(a) v$; and
(c) the projective dimension of V is determined by \mathfrak{m} :

$$
\operatorname{pd}_{A}(V)=\operatorname{pd}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}\right)=\operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right)
$$

A special class of square superpotential algebras conjecturally related to Sasaki-Einstein manifolds, the $Y^{p, q}$ algebras, is considered in Section 7. Recall that the Azumaya locus U of a prime finitelygenerated algebra A over an algebraically closed field k, module-finite over its center Z, is the open dense set of points $\mathfrak{m} \in \operatorname{Max} Z$ such that $A / A \mathfrak{m} \cong M_{d}(k)$, where d is the k-dimension of the large modules [S, Theorem 4.2.7] (or equivalently the PI degree of A [MR, Proposition 13.7.14]). U then consists of the points in Max Z whose 'noncommutative residue fields' have full rank.

Theorem E. Let A be a (non-localized) $Y^{p, q}$ algebra. Then the following hold.
(1) If $p \neq q$ and V is a simple A-module, then V is either a vertex simple module or a large module.
(2) The Azumaya locus of A coincides with the smooth locus of Z.
(3) A is homologically homogeneous of global dimension 3.

Finally, we introduce a proposal regarding 'point-like' exceptional loci by using symplectic reduction on the impression of the $Y^{p, q}$ algebras.

Section 6.2 is based on joint work with Alex Dugas, and I thank him for kindly allowing me to publish it here. Questions regarding dimer models and noncommutative crepant resolutions have also been studied [UY,M,Bo,Bro].

Conventions k denotes an algebraically closed field of characteristic zero. All algebras are unital and finitely-generated over k. By module we mean left module. For brevity the term quiver algebra is used
in place of path algebra modulo relations. By a cycle in a quiver we mean an oriented cycle. The set of paths of length n in a quiver Q is denoted Q_{n}, and the set of all (k-linear combinations of) paths of length greater than or equal to n is denoted $Q \geqslant n$ (resp. $k Q \geqslant n$). $h(p)$ and $t(p)$ denote the head vertex and tail vertex of a path p, respectively. Path concatenation is read right to left (following the composition of maps). By a cyclic proper subpath we mean a subpath of nonzero length. The term superpotential algebra is synonymous with vacualgebra and quiver with potential.

1.2. Square superpotential algebras

A superpotential algebra is a type of quiver algebra where the relations are derived from certain equations of motion in a physical theory. A quiver algebra is a quotient of a path algebra, which is an algebra whose basis consists of all paths in a quiver, including the vertices, and multiplication is given by path concatenation: the product of two paths is their concatenation if it is defined, and zero otherwise. A representation of (or module over) a quiver algebra is obtained by associating a vector space to each vertex of the quiver, representing each arrow by a linear map from the vector space at its tail to the vector space at its head, and requiring these linear maps satisfy the relations of the algebra.

We now define a superpotential algebra. Let Q be a quiver and $k Q$ its path algebra. Two paths p and p^{\prime} are cyclically equivalent if p is a cyclic permutation of the arrows of p^{\prime}, so all non-cyclic paths are cyclically equivalent to zero. The trace space of $k Q$, denoted $\operatorname{tr}(k Q)$, is the k-vector space spanned by the paths of Q up to cyclic equivalence, and an element of $\operatorname{tr}(k Q)$ is called a superpotential. For each $a \in Q_{1}$, define a k-linear map $\partial_{a}: \operatorname{tr}(k Q) \rightarrow k Q$ as follows: for each path $b_{n} \cdots b_{1} \in Q \geqslant 1$ with $b_{1}, \ldots, b_{n} \in Q_{1}$, set

$$
\partial_{a}\left(b_{n} \cdots b_{1}\right):=\sum_{1 \leqslant j \leqslant n} \delta\left(a, b_{j}\right) e_{\mathrm{t}\left(b_{j}\right)} b_{j-1} \cdots b_{1} b_{n} \cdots b_{j+1},
$$

for each $e \in Q_{0}$, set $\partial_{a} e:=0$, and extend k-linearly to $\operatorname{tr}(k Q)$. For $W \in \operatorname{tr}(k Q)$, set

$$
\partial W:=\left\langle\partial_{a} W \mid a \in Q_{1}\right\rangle .
$$

The superpotential algebra with quiver Q and superpotential W is then the quiver algebra $k Q / \partial W$. In this paper we are interested in a particularly simple class of superpotential algebras that arise from what are called brane tilings - specifically, brane boxes and brane diamonds - in string theory (see [FHHU] and references therein). Embedding these relatively simple superpotential algebras into a two-torus is standard; what we introduce here that is new is a relationship between a particular choice of embedding (when it exists) and the representation theory of the corresponding algebras.

Definition 1.1. Let Q be a quiver. Suppose there are non-colinear elements $u, v \in \mathbb{Z}^{2} \subset \mathbb{R}^{2}$ such that the underlying graph \bar{Q} of Q embeds into the two-torus $\mathbb{R}^{2} /(\mathbb{Z} u \oplus \mathbb{Z} v)$ with the property that the preimage of \bar{Q} under the quotient map

$$
\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} /(\mathbb{Z} u \oplus \mathbb{Z} v)
$$

is a square grid with vertex set $\pi^{-1}\left(\bar{Q}_{0}\right)=\mathbb{Z}^{2}$, and with at most one diagonal edge in each unit square. Further suppose that Q has an orientation where each unit square with no diagonal and each triangle with two unit length sides forms an oriented cycle; we call these the unit cycles of Q. Let Γ_{c} (resp. $\Gamma_{c c}$) denote the clockwise (resp. counterclockwise) unit cycles up to cyclic equivalence. We then call the quiver algebra $A=k Q / \partial W$ with superpotential

$$
\begin{equation*}
W=\sum_{d \in \Gamma_{c}} d-\sum_{d^{\prime} \in \Gamma_{c c}} d^{\prime} \in \operatorname{tr}(k Q) \tag{1}
\end{equation*}
$$

Fig. 1. The 6 possible 'building blocks' for the quiver of a square superpotential algebra.

$$
\begin{aligned}
& W=x y z-z y x \\
& A=Z(A) \cong k[x, y, z]
\end{aligned}
$$

$$
\begin{aligned}
W= & y_{1} x_{2} y_{2} x_{1}-y_{2} x_{2} y_{1} x_{1} \\
Z(A) & \cong k[a, b, c, d] /(a b-c d) \\
& \cong k\left[x_{1} y_{1}, x_{2} y_{2}, x_{1} y_{2}, x_{2} y_{1}\right] \subset k\left[x_{1}, x_{2}, y_{1}, y_{2}\right]
\end{aligned}
$$

Fig. 2. Examples of square superpotential algebras: \mathbb{A}_{k}^{3} and the conifold.

Fig. 3. The building blocks for the $Y^{p, q}$ quivers.
It will be useful to consider the covering quiver \widetilde{Q} (or periodic quiver in the physics literature) of Q, whose underlying graph is $\pi^{-1}(\bar{Q})$. By abuse of notation we will write $\pi: \widetilde{Q} \rightarrow Q$ for the corresponding projection of quivers.

Example 1.2. The two quiver algebras given in Fig. 2 are perhaps the simplest square superpotential algebras. The center of the second example is the coordinate ring for the conifold. The quivers on the right are drawn in the plane.

Example 1.3. The $Y^{p, q}$ algebras form a class of square superpotential algebras. In string theory they are conjecturally related to a class of Sasaki-Einstein manifolds, namely the $Y^{p, q}$ manifolds. This conjecture is based on a matching of symmetries, where certain 'global symmetries' of the algebras are identified with isometries of the manifolds (see [BFHMS]). The $Y^{p, q}$ quivers are constructed by vertically stacking p of any the three graphs given in Fig. 3, identifying vertices $(0, j)=(2, j)$ and $(i, 0)=\left(i+i_{0}, p\right)$ for each i, j and some $i_{0} \in\{0,1\}$, and choosing a compatible orientation. The label q is given by

Some examples are given in Fig. 4.

2. Impressions

2.1. Definition and utility

The definition we introduce in this section, called an impression, will serve as our main tool for analyzing square superpotential algebras. Recall that an algebra A is representable if there is an algebra

Fig. 4. Some examples of $Y^{p, q}$ quivers.
monomorphism $A \hookrightarrow M_{d}(B)$ for some commutative noetherian algebra B. An impression may be thought of as a way of placing (commutative) coordinates within a representable algebra.

Definition and Lemma 2.1. Let A be a representable algebra over an algebraically closed field k and denote by Z its center. Suppose there exists a commutative finitely-generated k-algebra B, an open dense subset $U \subseteq \operatorname{Max} B$, and an algebra monomorphism $\tau: A \rightarrow \operatorname{End}_{B}\left(B^{d}\right)$ with $d<\infty$, such that the composition with the evaluation map

$$
\tau_{\mathfrak{q}}: A \xrightarrow{\tau} \operatorname{End}_{B}\left(B^{d}\right) \rightarrow \operatorname{End}_{B}\left((B / \mathfrak{q})^{d}\right) \cong \operatorname{End}_{k}\left(k^{d}\right)
$$

is a simple representation for each $\mathfrak{q} \in U$. Then

$$
\begin{equation*}
Z \cong R:=\left\{f \in B \mid f 1_{d} \in \operatorname{im} \tau\right\} \subset B . \tag{2}
\end{equation*}
$$

If the map

$$
\begin{equation*}
\operatorname{Max} B \xrightarrow{\phi} \operatorname{Max} R, \quad \mathfrak{q} \mapsto \mathfrak{q} \cap R, \tag{3}
\end{equation*}
$$

is surjective then we call (τ, B) an impression of A.
Proof. k is algebraically closed, hence infinite, and B is finitely-generated over k, and therefore $B / \mathfrak{q} \cong k$ for each $\mathfrak{q} \in \operatorname{Max} B$ by [MR, 9.1.12]. We first prove (2). Suppose $a \in Z$. Identify $\operatorname{End}_{B}\left((B / \mathfrak{q})^{d}\right) \cong$ $M_{d}(B / \mathfrak{q})$, so $\tau_{\mathfrak{q}}(a)=\left(b_{i j}(\mathfrak{q})\right)$ is a matrix with entries $b_{i j}(\mathfrak{q})$ in k. For each $\mathfrak{q} \in U$, Shur's lemma implies $\tau_{\mathfrak{q}}(a) \in k 1_{d}$. Thus $b_{i j}(\mathfrak{q})=0$ whenever $i \neq j$, and $b_{i i}(\mathfrak{q})=b_{j j}(\mathfrak{q})$ for each i, j. Since U is dense in Max B it follows that $b_{i j} \sim 0$ for $i \neq j$ and $b_{i i} \sim b_{j j}$ for each i, j, that is, $\tau(a)=b_{11} 1_{d}$.

Conversely, suppose $f 1_{d} \in \operatorname{im} \tau$, say $\tau(a)=f 1_{d}$ for some $a \in A$. For any $b \in A, \tau(a b-b a)=$ $\tau(a) \tau(b)-\tau(b) \tau(a)=0$, so $a b=b a$ since τ is a monomorphism, and thus $a \in Z$.

We now prove ϕ is well defined. Recall our standing assumption that A and B are unital. Since $\tau_{\mathfrak{q}}$ is a simple representation for each $\mathfrak{q} \in U, \tau\left(1_{A}\right)=1_{d}$. Thus $1_{B} \in R$, so for any $\mathfrak{q} \in \operatorname{Max} B$ the composition $\psi: R \hookrightarrow B \rightarrow B / \mathfrak{q} \cong k$ is an epimorphism. It follows that $R / \operatorname{ker} \psi \cong k$, and so $\mathfrak{q} \cap R=$ ker $\psi \in \operatorname{Max} R$ since R is a unital commutative ring.

We call (τ, B) a pre-impression of A if ϕ is not assumed to be surjective. As we will see, a (pre-)impression of an algebra A may be useful because

- it determines the center of A;
- it may enable symplectic geometric concepts to be related to the representation theory of A;
- if B is prime and A is noetherian and module-finite over its center, then its impression explicitly determines all simple A-modules of maximal k-dimension up to isomorphism.

Lemma 2.2. If B is reduced and Z is finitely-generated then $\phi: \operatorname{Max} B \rightarrow \operatorname{Max} R$ is a morphism of varieties.
Proof. By Hilbert's Nullstellensatz [E, Corollary 1.10], the algebra monomorphism $R \hookrightarrow B$ induces the morphism ϕ defined by $\mathfrak{q} \mapsto \mathfrak{q} \cap R$ since B is reduced, whence Z is reduced, and k is algebraically closed.

Recall that a ring R is prime if its zero ideal is prime.

Lemma 2.3. Let (τ, B) be a pre-impression of an algebra A. If B is a prime ring then A and its center Z are both prime rings.

Proof. Since B is prime, $M_{d}(B) \cong \operatorname{End}_{B}\left(B^{d}\right)$ is prime [L, Proposition 10.20], and thus A is prime since τ is an algebra monomorphism. Z is an integral domain since by (2) it is a subring of an integral domain.

We call a simple module (resp. representation) of maximal k-dimension a large module (resp. large representation). Under suitable hypotheses given in Section 1.1, the large modules are parameterized by the smooth locus of the algebras center.

Lemma 2.4. For each $\mathfrak{q} \in U$, the composition $\tau_{\mathfrak{q}}$ is a large representation of A.

Proof. Let n be the maximal k-dimension of the simple A-modules; we claim that $d=n$. Since $\tau_{\mathfrak{q}}$ is simple, $n \geqslant d$. Conversely, let V be a large A-module and set $\mathfrak{p}:=\operatorname{ann}_{A} V$. A is a PI ring of PI degree $d^{\prime} \leqslant d$ since $A \cong \tau(A) \subset M_{d}(B)$ and B is commutative [MR, 13.3.3.ii], so A / \mathfrak{p} is a primitive PI ring of PI degree $r \leqslant d^{\prime}[M R, 13.7 .2 . i]$, and thus A / \mathfrak{p} is a central simple algebra isomorphic to $M_{r}\left(\operatorname{End}_{A / \mathfrak{p}} V\right)$ with center $E^{\operatorname{End}}{ }_{A / \mathfrak{p}} V[M R, 13.3 .8]$. But $\operatorname{End}_{A / \mathfrak{p}} V \cong k$ since k is algebraically closed. It follows that there is a faithful simple representation $M_{r}(k) \cong A / \mathfrak{p} \hookrightarrow M_{n}(k)$, so $r=n$, whence $n=r \leqslant d$.

Proposition 2.5. Let (τ, B) be an impression of a finitely-generated algebra A module-finite over its center, with B prime. If V is a large A-module then there is some $\mathfrak{q} \in \operatorname{Max} B$ such that $V \cong(B / \mathfrak{q})^{d}$, where $a v:=$ $\tau_{\mathfrak{q}}(a) v$.

Proof. First note that A and its center Z are noetherian since A is finitely-generated over k and module-finite over Z [MR, 13.9.7], and A is prime by Lemma 2.3.

Let V be a large A-module and $\mathfrak{p}=\operatorname{ann}_{A} V$ its annihilator. Since A is module-finite over its center, $\mathfrak{m}:=\mathfrak{p} \cap Z$ is a maximal ideal of $Z[S$, Theorem 4.2.2(2)]. Since ϕ is surjective there is some $\mathfrak{q} \in \operatorname{Max} B$ such that $\phi(\mathfrak{q})=\mathfrak{m}$. But then $\mathfrak{m}=\phi(\mathfrak{q})=\operatorname{ann}_{Z}\left((B / \mathfrak{q})^{d}\right)$.

Let W be a nonzero simple submodule of $(B / \mathfrak{q})^{d}$ and \mathfrak{p}^{\prime} its annihilator. Then $\operatorname{ann}_{Z} W \supseteq$ $\operatorname{ann}_{Z}(B / \mathfrak{q})^{d}=m$, and so since \mathfrak{m} is a maximal ideal it must be that $\mathfrak{p}^{\prime} \cap Z=\operatorname{ann}_{Z} W=\mathfrak{m}$. Since \mathfrak{m} is in the Azumaya locus of A (that is, $A_{\mathfrak{m}}$ is Azumaya over $Z_{\mathfrak{m}}$) and A is prime, noetherian, and module-finite over its finitely-generated center, W must be of maximal k-dimension [BG, Proposition 3.1], namely d, so $W \cong(B / \mathfrak{q})^{d}$. Moreover, since $A_{\mathfrak{m}}$ is Azumaya over $Z_{\mathfrak{m}}$ and \mathfrak{m} is a maximal ideal of $Z_{\mathfrak{m}}, A_{\mathfrak{m}} / \mathfrak{m} A_{\mathfrak{m}}$ is a central simple algebra [MR, Proposition 13.7.11]. But $A_{\mathfrak{m}} / \mathfrak{m} A_{\mathfrak{m}} \cong A / \mathfrak{m} A$ as algebras [MR, Lemma 13.7.12], so $A / \mathfrak{m} A$ is central simple. Therefore, since V and W are both simple modules over $A / \mathfrak{m} A$, we have $V \cong W$ as $A / \mathfrak{m} A$-modules. Since V and W are both annihilated by \mathfrak{m}, we also have $V \cong W$ as A-modules. Therefore $V \cong W \cong(B / \mathfrak{q})^{d}$ as A-modules.

Remark 2.6. Suppose B is a field and (τ, B) is an impression of A. Then $\tau: A \xlongequal{\cong} \operatorname{End}_{B}\left(B^{d}\right)$ is an isomorphism, U consists of the zero ideal, and $Z \cong B$.

Remark 2.7. Supposing R is a normal noetherian domain, an R-order is a particular type of prime PI ring: an R-order is an R-algebra $A \subset M_{n}(\operatorname{Frac}(R))$ that is a finitely-generated R-module satisfying $\operatorname{Frac}(R) \otimes_{R} A \cong M_{n}(\operatorname{Frac}(R))$, and thus R and A are in some sense birationally equivalent. We will show in Section 6.2 that any square superpotential algebra A with center Z is indeed a Z-order, but the impression ring B will be quite different from $\operatorname{Frac}(Z)$.

Notation 2.8. Let $A=k Q / I$ be a quiver algebra and let $\tau: A \rightarrow \operatorname{End}_{B}\left(B^{d}\right)$ be an algebra homomorphism. For each $i, j \in Q_{0}$ set $d_{i}:=\operatorname{rank} \tau\left(e_{i}\right)$ and define the k-linear map

$$
\bar{\tau}: e_{j} A e_{i} \rightarrow \operatorname{Hom}_{B}\left(B^{d_{i}}, B^{d_{j}}\right),
$$

where for each $a \in e_{j} A e_{i}, \bar{\tau}(a)$ is the restriction of $\tau(a)$ to

$$
B^{d_{i}} \cong \tau\left(e_{i}\right) B^{d} \rightarrow B^{d_{j}} \cong \tau\left(e_{j}\right) B^{d}
$$

Our interest here will be in the case $d_{i}=d_{j}=1$, so $\bar{\tau}\left(e_{j} A e_{i}\right) \subseteq \operatorname{Hom}_{B}(B, B) \cong B$. If $a \in e_{j} k Q e_{i}$ is a representative of an element $a+I \in A$, then set $\bar{\tau}(a):=\bar{\tau}(a+I)$.

2.2. The case when $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$

Throughout, denote by $E_{j i}$ the matrix with a 1 in the ($j i$)-th slot and zeros elsewhere. In this section we collect results for a general quiver algebra $A=k Q / I$ that admits a pre-impression (τ, B), where $d=\left|Q_{0}\right|, \tau\left(e_{i}\right)=E_{i i}$ for each $i \in Q_{0}$, and $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ for each $i, j \in Q_{0}$. In the next section we will show that square superpotential algebras admit such impressions. We identify $\operatorname{End}_{B}\left(B^{d}\right) \cong M_{d}(B)$.

2.2.1. Noetherianity

Lemma 2.9. Let $A=k Q / I$ be a quiver algebra, and suppose there exists an algebra monomorphism $\tau: A \rightarrow$ $\operatorname{End}_{B}\left(B^{\left|Q_{0}\right|}\right)$ such that

$$
\begin{equation*}
\tau\left(e_{i}\right)=E_{i i} \quad \text { and } \quad \bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B \quad \text { for each } i, j \in Q_{0} . \tag{4}
\end{equation*}
$$

Then for each $i \in Q_{0}$, there is an algebra isomorphism

$$
e_{i} A e_{i} \cong \bar{\tau}\left(e_{i} A e_{i}\right) \subset B
$$

Therefore there is an isomorphism of corner rings $e_{i} A e_{i} \cong e_{j} A e_{j}$.

Proof. For $c, d \in e_{i} A e_{i}$ we have

$$
\bar{\tau}(d c) E_{i i}=\tau(d c)=\tau(d) \tau(c)=\bar{\tau}(d) E_{i i} \bar{\tau}(c) E_{i i}=\bar{\tau}(d) \bar{\tau}(c) E_{i i}
$$

so $\bar{\tau}(d c)=\bar{\tau}(d) \bar{\tau}(c)$, and similarly $\bar{\tau}(c+d)=\bar{\tau}(c)+\bar{\tau}(d)$. If $c \in e_{i} A e_{i}$ satisfies $\bar{\tau}(c)=0$ then $\tau(c)=$ $\bar{\tau}(c) E_{i i}=0$, whence $c=0$, and so the restriction $\bar{\tau}: e_{i} A e_{i} \rightarrow B$ is also an algebra monomorphism. It follows that $e_{i} A e_{i} \cong \bar{\tau}\left(e_{i} A e_{i}\right)$ as algebras.

Lemma 2.10. Let $A=k Q / I$ be a quiver algebra, and suppose there exists an algebra monomorphism $\tau: A \rightarrow$ $\operatorname{End}_{B}\left(B^{\left|Q_{0}\right|}\right)$ such that (4) holds. Then each corner ring $e_{i} A e_{i}$ is a finitely-generated subalgebra.

Proof. The corner ring $e_{i} A e_{i}$ is generated by representative cycles $c \in e_{i} k Q e_{i}$ such that $c \neq b_{2} e_{i} b_{1}$ for any cycles b_{1}, b_{2} of nonzero length. We claim that any cycle $c=c_{2} d c_{1} \in e_{i} k Q e_{i}$, with a cyclic proper subpath $d \in e_{j} k Q e_{j}$, is equal to some cycle $b_{2} e_{i} b_{1} \in e_{i} k Q e_{i}$ modulo I. Since $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right)$, there exists a $d^{\prime} \in e_{i} k Q e_{i}$ such that $\bar{\tau}\left(d^{\prime}\right)=\bar{\tau}(d)$. Since $\operatorname{rank} \tau\left(e_{\ell}\right)=1$ for each $\ell \in Q_{0}$, we have

$$
\begin{aligned}
\bar{\tau}\left(d^{\prime} c_{2} c_{1}\right) E_{i i} & =\tau\left(d^{\prime} c_{2} c_{1}\right)=\tau\left(d^{\prime}\right) \tau\left(c_{2}\right) \tau\left(c_{1}\right) \\
& =\bar{\tau}\left(d^{\prime}\right) E_{i i} \bar{\tau}\left(c_{2}\right) E_{i j} \bar{\tau}\left(c_{1}\right) E_{j i}=\bar{\tau}\left(d^{\prime}\right) \bar{\tau}\left(c_{2}\right) \bar{\tau}\left(c_{1}\right) E_{i i}
\end{aligned}
$$

so $\bar{\tau}\left(d^{\prime} c_{2} c_{1}\right)=\bar{\tau}\left(d^{\prime}\right) \bar{\tau}\left(c_{2}\right) \bar{\tau}\left(c_{1}\right)$. Similarly $\bar{\tau}\left(c_{2} d c_{1}\right)=\bar{\tau}\left(c_{2}\right) \bar{\tau}(d) \bar{\tau}\left(c_{1}\right)$. But then

$$
\bar{\tau}\left(d^{\prime} c_{2} c_{1}\right)=\bar{\tau}\left(c_{2} d c_{1}\right)
$$

and the claim follows since $\bar{\tau}: e_{i} A e_{i} \rightarrow B$ is an algebra monomorphism by Lemma 2.9. $e_{i} A e_{i}$ is therefore generated by cycles without cyclic proper subpaths, and the lemma follows since $\left|Q_{0}\right|<\infty$.

Theorem 2.11. Let $A=k Q / I$ be a quiver algebra that admits a pre-impression (τ, B) such that (4) holds. Then A and its center Z are noetherian rings, A is a finitely-generated Z-module, and

$$
\begin{equation*}
Z=k\left[\sum_{i \in Q_{0}} \gamma_{i} \in \bigoplus_{i \in Q_{0}} e_{i} A e_{i} \mid \bar{\tau}\left(\gamma_{i}\right)=\bar{\tau}\left(\gamma_{j}\right) \text { for each } i, j \in Q_{0}\right] \tag{5}
\end{equation*}
$$

In particular, $Z \cong Z e_{i}=e_{i} A e_{i}$ for each $i \in Q_{0}$.

Proof. (5) follows from Lemma 2.1 (2). In particular, for each $i \in Q_{0}$ there is an algebra epimorphism $Z \rightarrow Z e_{i}$ given by $z \mapsto z e_{i}$. This map is injective: first note that $z e_{j}=z e_{j}^{2}=e_{j} z e_{j}$ for each $j \in Q_{0}$ since $z \in Z$. Suppose $z e_{i}=0$; then $\bar{\tau}\left(e_{i} z e_{i}\right)=0$, so $\bar{\tau}\left(e_{j} z e_{j}\right)=0$ for each $j \in Q_{0}$, so $\tau(z)=0$ since $z=z \sum_{j \in Q_{0}} e_{j}=\sum_{j \in Q_{0}} e_{j} z e_{j}$, whence $z=0$ since τ is injective. Therefore $Z \cong Z e_{i}$. Furthermore, (5) implies $e_{i} A e_{i} \subseteq Z e_{i}$ since by assumption $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right)$ for each $i, j \in Q_{0}$, so $e_{i} A e_{i}=Z e_{i}$. By Lemma 2.10, $Z \cong Z e_{i}=e_{i} A e_{i}$ is finitely-generated, and so Z is noetherian.

We claim that ${ }_{Z} A$ is generated by all paths in Q of length $\leqslant m:=\left|Q_{0}\right|$, modulo I. Let $\ell(p)$ denote the length of a path $p \in k Q$. If $a \in Q_{>m}$ is a path, then a must have a (non-vertex) cyclic subpath, say $a=b^{\prime} c b$ where c is a cycle in Q and b, b^{\prime} are paths. Since c is not a vertex and $\ell(a)<\infty$, we have that $\ell\left(b^{\prime} b\right)<\ell(a)$. Since $e_{\mathrm{t}(c)} A e_{\mathrm{t}(c)}=Z e_{\mathrm{t}(c)}$, there exists a $\tilde{c} \in Z$ such that $\tilde{c} e_{\mathrm{t}(c)}=c+I$, so

$$
a+I=b^{\prime} c b+I=b^{\prime} \tilde{c} e_{\mathrm{t}(c)} b+I=b^{\prime} \tilde{c} b+I=\tilde{c} b^{\prime} b+I
$$

But $b^{\prime} b \in k Q$ is a path representative of $b^{\prime} b+I \in A$, so we may repeat this process with $b^{\prime} b$ in place of a, and then do so a finite number of times until $a+I \in Z\left(b^{\prime \prime}+I\right)$ with $\ell\left(b^{\prime \prime}\right) \leqslant m$. We may then extend this argument k-linearly to $k Q$, proving our claim. A is therefore module-finite over its center Z. Since A is also finitely-generated, A is noetherian by the Artin-Tate lemma [S, 4.2.1].

The following corollary will be used in later sections.
Corollary 2.12. Suppose a quiver algebra $A=k Q / I$ admits a pre-impression (τ, B), where B is an integral domain and (4) holds. If $a \in e_{i} A$ and $b \in A e_{i}$ are nonzero, then ba is nonzero as well.

Proof. Suppose $b a=0$. By Lemma $2.3 A$ is prime and by Theorem $2.11 e_{i} A e_{i}=Z e_{i}$ for each $i \in Q_{0}$, so $b r a \neq 0$ for some $r \in e_{i} A e_{i}=Z e_{i}$. But then there is a $z \in Z$ such that $z e_{i}=r$, so $b r a=b z a=z b a=0$, a contradiction.

2.2.2. Large modules

Suppose $A=k Q / I$ is a quiver algebra that admits a pre-impression (τ, B) with $d=\left|Q_{0}\right|$ and $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ for each $i, j \in Q_{0}$. By Lemma 2.4, the large A-modules (that is, the simple A-modules of maximal k-dimension) have k-dimension $\left|Q_{0}\right|$. In this subsection we give algebraic and homological characterizations of these modules.

Recall that if a k-algebra A is finitely-generated and module-finite over its center Z, and V is a simple A-module, then $\operatorname{ann}_{Z} V$ will be a maximal ideal of Z [S, Theorem 4.2.2].

Lemma 2.13. Suppose a quiver algebra $A=k Q / I$ admits a pre-impression (τ, B), where B is an integral domain and (4) holds. Then a simple A-module V is large if and only if $\operatorname{ann}_{Z} V \in \operatorname{Max} Z$ is contained in the Azumaya locus of A.

Proof. A and Z are prime noetherian algebras and A is a finitely-generated Z-module by Theorem 2.11 and Lemma 2.3. The lemma then follows from [BG, Proposition 3.1] since k is assumed to be algebraically closed.

We will consider the Ore localizations $A_{\mathfrak{m}}:=Z_{\mathfrak{m}} \otimes_{Z} A$ with $\mathfrak{m} \in \operatorname{Max} Z$. When \mathfrak{m} is in the Azumaya locus, $A_{\mathfrak{m}}$ is local with unique maximal ideal $\mathfrak{m}_{\mathfrak{m}} A_{\mathfrak{m}}$ [MR, 13.7.9]. A simple A-module V can be localized to an $A_{\mathfrak{m}}$-module by setting $V_{\mathfrak{m}}:=Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}} \otimes_{k} V$, and is only nonzero if $\mathfrak{m}=a_{n} V$. There is an obvious A-module isomorphism $\phi: V \rightarrow V_{\mathfrak{m}}$ defined by $\phi(v)=1 \otimes v,{ }^{3}$ so V may be viewed as an $A_{\mathfrak{m}}$-module by setting $b v:=\phi^{-1}(b \phi(v))$, and the inverse map $\phi^{-1}: V_{\mathfrak{m}} \rightarrow V$ is then an $A_{\mathfrak{m}}$-module isomorphism since $b \phi^{-1}(w)=b v=\phi^{-1}(b \phi(v))=\phi^{-1}(b w) . V$ and $V_{\mathfrak{m}}$ are thus isomorphic modules over both A and $A_{\mathfrak{m}}$.

Lemma 2.14. Let A be a prime noetherian algebra, module-finite over its center, let V be a large A-module with annihilator \mathfrak{p}, and set $\mathfrak{m}:=\mathfrak{p} \cap Z$. Then there are A-module and $A_{\mathfrak{m}}$-module isomorphisms

$$
\begin{equation*}
A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}} \cong A / \mathfrak{p} \cong V^{\oplus d} \cong\left(V_{\mathfrak{m}}\right)^{\oplus d} \tag{6}
\end{equation*}
$$

where $d:=\operatorname{dim}_{k}(V)$. This holds in particular if $A=k Q / I$ is a quiver algebra that admits a pre-impression (τ, B), where B is an integral domain and (4) holds; in this case $d=\left|Q_{0}\right|$.

Proof. First note that the PI degree of A is d [BG, 3.1.a]. The factor A / \mathfrak{p} is then a primitive PI ring, so by Kaplansky's theorem [MR, 13.3.8] it is a central simple algebra whose only simple is V, so the PI degree of A / \mathfrak{p} is also d, and thus it has dimension d^{2} over its center. By the Artin-Wedderburn theorem there is an isomorphism of A-modules, $A / \mathfrak{p} \cong V^{\oplus d}$. ${ }^{4}$

For the special case, A is noetherian and module-finite over its center by Theorem 2.11, prime by Lemma 2.3, and $d=\left|Q_{0}\right|$ by Lemma 2.4.

[^2]Recall that a ring is semiperfect if every finitely-generated left (right) module V admits a projective cover P, that is, there is an epimorphism $P \rightarrow V$ such that, for any submodule $L \subset P$, ker $\phi+L=P$ implies $L=P$. If a projective resolution is constructed from projective covers then its length will give the precise projective dimension rather than just an upper bound, and in (10) we determine the (unique) projective covers of the large $A_{\mathfrak{m}}$-modules. Also, recall that a set of idempotents in a ring S is basic if it is a complete set of orthogonal idempotents e_{1}, \ldots, e_{n} such that $S e_{1}, \ldots, S e_{n}$ is a complete irredundant set of representatives of the S-modules of the form $S e$ for some primitive idempotent e [AF, Section 27].

Proposition 2.15. Suppose a quiver algebra $A=k Q / I$ admits a pre-impression (τ, B), where B is an integral domain and (4) holds. Further suppose $I \subset k Q \geqslant 2$. Let V be a large A-module, and set $\mathfrak{p}:=\operatorname{ann}_{A} V, \mathfrak{m}:=$ $\mathfrak{p} \cap Z \in \operatorname{Max} Z$. Then the localization $A_{\mathfrak{m}}$ is semiperfect and

$$
\begin{aligned}
A_{\mathfrak{m}} e_{i} \cong A_{\mathfrak{m}} e_{j}, & \mathfrak{p}_{\mathfrak{m}} e_{i} \cong \mathfrak{p}_{\mathfrak{m}} e_{j} \\
A e_{i} \nsubseteq A e_{j}, & \mathfrak{p} e_{i} \not \approx \mathfrak{p} e_{j}
\end{aligned}
$$

while as A-modules,

$$
\begin{equation*}
A e_{i} / \mathfrak{p} e_{i} \cong A e_{j} / \mathfrak{p} e_{j} \cong V \tag{7}
\end{equation*}
$$

Consequently, any single vertex forms a basic set of idempotents for $A_{\mathfrak{m}}$, while the set of all vertices forms a basic set for A.

Proof. By Lemma $2.13, \mathfrak{m}$ is in the Azumaya locus of A, so $A_{\mathfrak{m}}$ contains only one primitive ideal, namely $\mathfrak{p}_{\mathfrak{m}}$, and thus the Jacobson radical of $A_{\mathfrak{m}}$ is $J=\mathfrak{p}_{\mathfrak{m}}$ [MR, 13.7.5, 9]. Moreover, $A_{\mathfrak{m}}$ has a complete set of orthogonal idempotents e_{1}, \ldots, e_{n}, and for each $i \in Q_{0}$, the corner ring $e_{i} A_{\mathfrak{m}} e_{i}$ is local:

$$
\begin{equation*}
e_{i} A_{\mathfrak{m}} e_{i}=Z_{\mathfrak{m}} \otimes_{Z} e_{i} A e_{i} \cong Z_{\mathfrak{m}} \otimes_{Z} Z \cong Z_{\mathfrak{m}} \tag{8}
\end{equation*}
$$

It follows [AF, Theorem 27.6] that $A_{\mathfrak{m}}$ is semiperfect and the set

$$
A_{\mathfrak{m}} e_{1} / \mathfrak{p}_{\mathfrak{m}} e_{1}, \ldots, A_{\mathfrak{m}} e_{n} / \mathfrak{p}_{\mathfrak{m}} e_{n}
$$

is the set of all simple $A_{\mathfrak{m}}$-modules, with

$$
A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}=A_{\mathfrak{m}} e_{1} / \mathfrak{p}_{\mathfrak{m}} e_{1} \oplus \cdots \oplus A_{\mathfrak{m}} e_{n} / \mathfrak{p}_{\mathfrak{m}} e_{n}
$$

Since $A_{\mathfrak{m}}$ is Azumaya there is only one simple $A_{\mathfrak{m}}$-module, ${ }^{5}$ so

$$
\begin{equation*}
A_{\mathfrak{m}} e_{i} / \mathfrak{p}_{\mathfrak{m}} e_{i} \cong A_{\mathfrak{m}} e_{j} / \mathfrak{p}_{\mathfrak{m}} e_{j} \cong V_{\mathfrak{m}} \tag{9}
\end{equation*}
$$

The following characterizes projective covers [AF, 27.13]: Suppose S is a semiperfect ring with a basic set of idempotents e_{1}, \ldots, e_{n} and Jacobson radical J, and let M be a finitely-generated S-module. Then if

$$
M / J M \cong\left(S e_{1} / J e_{1}\right)^{\left(k_{1}\right)} \oplus \cdots \oplus\left(S e_{n} / J e_{n}\right)^{\left(k_{n}\right)}
$$

[^3]there is a unique projective cover $S e_{1}^{\left(k_{1}\right)} \oplus \cdots \oplus S e_{n}^{\left(k_{n}\right)} \rightarrow M / J M \rightarrow 0$. Consider the case $S=A_{\mathfrak{m}}$ and $M=A_{\mathfrak{m}} e$. As mentioned above, $J\left(A_{\mathfrak{m}}\right)=\mathfrak{p}_{\mathfrak{m}}$, so
\[

$$
\begin{equation*}
A_{\mathfrak{m}} e_{i} \xrightarrow{\phi=1} V_{\mathfrak{m}} \cong A_{\mathfrak{m}} e_{i} / \mathfrak{p}_{\mathfrak{m}} e_{i} \tag{10}
\end{equation*}
$$

\]

is the unique projective cover of $V_{\mathfrak{m}}$. Therefore by (9), ϕ must factor through $A_{\mathfrak{m}} e_{j}$, so by symmetry

$$
\begin{equation*}
A_{\mathfrak{m}} e_{i} \cong A_{\mathfrak{m}} e_{j} \tag{11}
\end{equation*}
$$

Of course, $A e_{i} \not \nexists A e_{j}$ when $i \neq j$ (argument in [C, p. 4]: otherwise there would be some $f \in e_{i} A e_{j}$ and $g \in e_{j} A e_{i}$ with $f g=e_{i}, g f=e_{j}$, so $e_{i}=f g \in A e_{j} A$. But by assumption $I \subset k Q \geqslant 2$, and therefore $e_{i} \notin A e_{j} A$, a contradiction). We remark that $A_{\mathfrak{m}} e_{i}$ is indecomposable since its endomorphism ring $\operatorname{End}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} e_{i}\right) \cong e_{i} A_{\mathfrak{m}} e_{i}$ is local by (8). By [AF, Corollary 17.20] $J\left(A_{\mathfrak{m}}\right) e_{i}$ is the unique maximal submodule of $A_{\mathfrak{m}} e_{i}$, and so by (11),

$$
\mathfrak{p}_{\mathfrak{m}} e_{i}=J\left(A_{\mathfrak{m}}\right) e_{i} \cong J\left(A_{\mathfrak{m}}\right) e_{j}=\mathfrak{p}_{\mathfrak{m}} e_{j}
$$

Now since $\mathfrak{m}=\operatorname{ann}_{Z} V$, it follows by (9) that the following are isomorphic both as A-modules and $A_{\mathfrak{m}}$-modules:

$$
A e_{i} / \mathfrak{p} e_{i} \cong A_{\mathfrak{m}} e_{i} / \mathfrak{p}_{\mathfrak{m}} e_{i} \cong A_{\mathfrak{m}} e_{j} / \mathfrak{p}_{\mathfrak{m}} e_{j} \cong A e_{j} / \mathfrak{p} e_{j},
$$

and these are also isomorphic to V and $V_{\mathfrak{m}}$.
Note that an alternative proof of (6), namely $A / \mathfrak{p} \cong V^{\oplus\left|Q_{0}\right|}$, is immediate from Proposition 2.15.
Theorem 2.16. Suppose a quiver algebra $A=k Q / I$ admits an impression (τ, B), where B is an integral domain and (4) holds. Let V be a large A-module, and set $\mathfrak{p}:=\operatorname{ann}_{A} V, \mathfrak{m}:=\mathfrak{p} \cap Z \in \operatorname{Max} Z$. Then

$$
\begin{equation*}
\operatorname{pd}_{A}(V)=\operatorname{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}\right)=\operatorname{pd}_{A}(A / \mathfrak{p})=\operatorname{pd}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}\right)=\operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right) \tag{12}
\end{equation*}
$$

Proof. (i) We first claim $\operatorname{pd}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}\right) \leqslant \operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right)$. Consider a projective resolution of the residue field $Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}$ over the local ring $Z_{\mathfrak{m}}$,

$$
\begin{equation*}
\cdots \rightarrow\left(Z_{\mathfrak{m}}\right)^{\oplus n} \rightarrow Z_{\mathfrak{m}} \xrightarrow{\cdot 1} Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}} \rightarrow 0 \tag{13}
\end{equation*}
$$

By Lemma 2.13, \mathfrak{m} is in the Azumaya locus of A, so the localization $A_{\mathfrak{m}}$ is an Azumaya algebra, and thus (by definition) $A_{\mathfrak{m}}$, and hence the direct summand $A_{\mathfrak{m}} e$ for any e in a basic set of idempotents for $A_{\mathfrak{m}}$, is a free $Z_{\mathfrak{m}}$-module [MR, 13.7.6]. But then $A_{\mathfrak{m}} e$ is a flat $Z_{\mathfrak{m}}$-module as well, so the functor $-\otimes_{Z_{\mathfrak{m}}} A_{\mathfrak{m}} e$ is exact. Applying this functor to the resolution (13) we obtain the exact sequence

$$
\begin{align*}
\cdots & \rightarrow\left(Z_{\mathfrak{m}}\right)^{\oplus n} \otimes Z_{\mathfrak{m}} A_{\mathfrak{m}} e \cong\left(A_{\mathfrak{m}} e\right)^{\oplus n} \rightarrow Z_{\mathfrak{m}} \otimes_{Z_{\mathfrak{m}}} A_{\mathfrak{m}} e \cong A_{\mathfrak{m}} e \\
& \xrightarrow{\rightarrow} Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}} \otimes_{Z_{\mathfrak{m}}} A_{\mathfrak{m}} e \rightarrow 0 . \tag{14}
\end{align*}
$$

The modules in this sequence are now over $Z_{\mathfrak{m}} \otimes_{z_{\mathfrak{m}}} A_{\mathfrak{m}} \cong A_{\mathfrak{m}}$. By [MR, 13.7.9], the ideal $\mathfrak{p}_{\mathfrak{m}} \subset A_{\mathfrak{m}}$ is generated by \mathfrak{m}, that is, $\mathfrak{p}_{\mathfrak{m}}=\mathfrak{m} A_{\mathfrak{m}}$, and so

$$
Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}} \otimes_{Z_{\mathfrak{m}}} A_{\mathfrak{m}} e \cong Z_{\mathfrak{m}} \otimes_{Z_{\mathfrak{m}}} A_{\mathfrak{m}} e /\left(\mathfrak{m}_{\mathfrak{m}}\left(A_{\mathfrak{m}} e\right)\right) \cong A_{\mathfrak{m}} e / \mathfrak{p}_{\mathfrak{m}} e .
$$

Claim (i) then follows by the exactness of (14).
(ii) We now claim $\operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right) \leqslant \operatorname{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}\right)$. Consider a projective resolution of $V_{\mathfrak{m}}$ over $A_{\mathfrak{m}}$,

$$
\begin{equation*}
\cdots \rightarrow P_{1} \xrightarrow{\delta_{1}} P_{0} \xrightarrow{\delta_{0}} V_{\mathfrak{m}} \rightarrow 0 \tag{15}
\end{equation*}
$$

Fix a vertex e and consider the sequence of $e A_{\mathfrak{m}} e$-modules,

$$
\begin{equation*}
\cdots \rightarrow e P_{1} \xrightarrow{\delta_{1} l e P_{1}} e P_{0} \xrightarrow{\delta_{0} \mid e P_{0}} e V_{\mathfrak{m}} \rightarrow 0 . \tag{16}
\end{equation*}
$$

By Theorem 2.11, $e A e \cong Z$ as algebras, and by Proposition 2.5 and (2), $e V \cong Z / \mathfrak{m}$ as $e A e$-modules. Thus $e A_{\mathfrak{m}} e \cong Z_{\mathfrak{m}}$ as algebras and $e V_{\mathfrak{m}} \cong Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}$ as $e A_{\mathfrak{m}} e$-modules. For each i we have the following inclusions:

- $\operatorname{ker}\left(\delta_{i} \mid e P_{i}\right) \subseteq e\left(\operatorname{ker} \delta_{i}\right)$:

If $v \in \operatorname{ker}\left(\delta_{i} \mid e P_{i}\right)$ then $v \in e P_{i}$ and $\delta_{i}(v)=0$, so $v \in \operatorname{ker} \delta_{i} \cap e P_{i}=e\left(\operatorname{ker} \delta_{i}\right)$.

- $\operatorname{ker}\left(\delta_{i} \mid e P_{i}\right) \supseteq e\left(\operatorname{ker} \delta_{i}\right)$:

If $v \in e\left(\operatorname{ker} \delta_{i}\right)$ then $v \in e P_{i}$ and $\delta_{i}(v+w)=0$ for some $w \in P_{i}$ satisfying ew $=0$. But $v \in e P_{i}$ implies $\delta_{i}(v)=\delta_{i}(e v)=e \delta_{i}(v) \in e P_{i-1}$, and similarly $\delta_{i}(w) \notin e P_{i-1}$, so $\delta_{i}(v)+\delta_{i}(w)=\delta_{i}(v+w)=0$ implies $\delta_{i}(v)=0$, and thus $v \in \operatorname{ker}\left(\delta_{i} \mid e P_{i}\right)$.

- $\operatorname{im}\left(\delta_{i} \mid e P_{i}\right) \subseteq e\left(\operatorname{im} \delta_{i}\right):$

If $v \in \operatorname{im}\left(\delta_{i} \mid e P_{i}\right)$ then there is some $u \in e P_{i}$ such that $v=\delta_{i}(u)=\delta_{i}(e u)=e \delta_{i}(u) \in e P_{i-1}$, so $v \in \operatorname{im}\left(\delta_{i}\right) \cap e P_{i-1}=e\left(\operatorname{im} \delta_{i}\right)$.

- $\operatorname{im}\left(\delta_{i} \mid e P_{i}\right) \supseteq e\left(\operatorname{im} \delta_{i}\right)$:

If $v \in e\left(\operatorname{im} \delta_{i}\right)$ then $v \in e P_{i-1}$ and $v+w=\delta_{i}(u)$ for some $w \in P_{i-1}$ satisfying $e w=0$ and $u \in P_{i}$. But then $v=e(v+w)=e\left(\delta_{i}(u)\right)=\delta_{i}(e u)$, so $v \in \operatorname{im}\left(\delta_{i} \mid e P_{i}\right)$.

Since (15) is an exact sequence, it follows that for each i,

$$
\operatorname{ker}\left(\delta_{i} \mid e P_{i}\right)=e\left(\operatorname{ker} \delta_{i}\right)=e\left(\operatorname{im} \delta_{i+1}\right)=\operatorname{im}\left(\left.\delta_{i+1}\right|_{e P_{i+1}}\right),
$$

so (16) is also an exact sequence, and thus (16) is a projective resolution of $Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}} \cong e V_{\mathfrak{m}}$ over $Z_{\mathfrak{m}} \cong e A_{\mathfrak{m}} e$.
(iii) For any ring S and family of S-modules $M_{i}, \operatorname{pd}_{S}\left(\bigoplus_{i} M_{i}\right)=\sup \left\{\operatorname{pd}_{S}\left(M_{i}\right)\right\}[R$, Proposition 5.1.20]. Thus by Lemma 2.14,

$$
\operatorname{pd}_{A}(A / \mathfrak{p})=\operatorname{pd}_{A}(V) \quad \text { and } \quad \operatorname{pd}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}\right)=\operatorname{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}\right)
$$

Consequently, by claims (i) and (ii),

$$
\operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right) \leqslant \operatorname{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}\right)=\operatorname{pd}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}\right) \leqslant \operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right)
$$

so $\operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right)=\operatorname{pd}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}\right)$.
(iv) Finally, $\mathrm{pd}_{A}(V)=\mathrm{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}\right)$ since exactness is preserved under localization. ${ }^{6}$

3. Impressions of square superpotential algebras

3.1. An impression

In this section we give an explicit impression for all square superpotential algebras. To do this, we first determine an algebra monomorphism $\tau: A \rightarrow \operatorname{End}_{B}\left(B^{\left|Q_{0}\right|}\right)$, and then we show that $\bar{\tau}\left(e_{i} A e_{i}\right)=$ $\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ for each $i, j \in Q_{0}$ and apply the results of Section 2.2.

[^4]

Fig. 5. A labeling of arrows in the quiver of a square superpotential algebra that specifies an impression.
Notation 3.1. Let $A=k Q / \partial W$ be a square superpotential algebra with covering quiver \widetilde{Q} and projection $\pi: \widetilde{Q} \rightarrow Q$. For brevity we will write $p \sim p^{\prime}$ in place of $p=p^{\prime}$ modulo ∂W; similarly for $p, q \in k \widetilde{Q}$, we will write $p \sim q$ whenever $\pi(p) \sim \pi(q)$. If p is a path in $k Q$ then we will refer to $p+\partial W$ as a path in A since if $p^{\prime} \sim p$ then clearly p^{\prime} must be a path as well.

Throughout, set $B:=k\left[x_{1}, x_{2}, y_{1}, y_{2}\right]$. Recall that the underlying graph \widetilde{Q}° of the covering quiver $\pi^{-1}(Q)=\widetilde{Q}$ of Q embeds into \mathbb{R}^{2} as a square grid with vertex set $\mathbb{Z} \times \mathbb{Z}$, and with at most one diagonal arrow in each unit square. For each $a \in \widetilde{Q}_{1}$, define $\bar{\tau}(a)$ to be the monomial corresponding to the orientation of a given in Fig. 5.

For each $a \in \widetilde{Q}_{1}$, set $\bar{\tau}(\pi(a)):=\bar{\tau}(a)$. Let $E_{j i}$ denote the matrix with a 1 in the ($\left.j i\right)$-th slot and zeros elsewhere. Define the k-algebra homomorphism

$$
\begin{equation*}
\tau: A \rightarrow M_{\left|Q_{0}\right|}(B) \cong \operatorname{End}_{B}\left(B^{\left|Q_{0}\right|}\right) \tag{17}
\end{equation*}
$$

on the generating set $Q_{0} \cup Q_{1}$, by

$$
e_{i} \mapsto E_{i i} \quad \text { for each } i \in Q_{0} \quad \text { and } \quad a \mapsto \bar{\tau}(a) E_{\mathrm{h}(a), \mathrm{t}(a)} \text { for each } a \in Q_{1} .
$$

We will show that (τ, B) is an impression of A. Note that τ is well defined since the paths satisfy the same multiplication as the matrices $E_{i j}$, that is, A is isomorphic to the matrix ring

$$
A \cong\left[\begin{array}{cccc}
e_{1} A e_{1} & e_{1} A e_{2} & \cdots & e_{1} A e_{\left|Q_{0}\right|} \\
e_{2} A e_{1} & e_{2} A e_{2} & & \\
\vdots & & \ddots & \\
e_{\left|Q_{0}\right|} A e_{1} & & & e_{\left|Q_{0}\right|} A e_{\left|Q_{0}\right|}
\end{array}\right]
$$

and the labeling of arrows given in Fig. 5 is preserved under ∂W. Also, note that the definition of $\bar{\tau}$ given above extends to the definition of $\bar{\tau}$ as a k-linear map given in Notation 2.8.

For the following lemma, denote a path $p \in k Q e_{i}$ by its ordered monomial labeling in the noncommuting variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}$. If a subword $\mathrm{x}_{\alpha} \mathrm{y}_{\beta}$ corresponds to a diagonal arrow, then set $x_{\alpha} y_{\beta}=y_{\beta} x_{\alpha}$. The proof is given in Appendix A.

Lemma 3.2. Consider a path $p=\mathrm{t}_{n} \cdots \mathrm{t}_{2} \mathrm{t}_{1} \mathrm{us}_{m} \cdots \mathrm{~s}_{1}$ with $\mathrm{s}_{\ell}, \mathrm{t}_{\ell}, \mathrm{u} \in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}\right\}$. Suppose there exists an arrow $a \neq u$ whose head (resp. tail) is a vertex subpath of $\mathrm{t}_{n} \cdots \mathrm{t}_{1}$ (resp. $\mathrm{s}_{\mathrm{m}} \cdots \mathrm{s}_{1}$) such that $u \mid \bar{\tau}(a)$ and $\bar{\tau}(a) \mid \bar{\tau}(p)$. Then

$$
\begin{gather*}
p \sim \mathrm{t}_{n} \cdots \mathrm{t}_{2}\left(\mathrm{ut}_{1}\right) \mathrm{s}_{m} \cdots \mathrm{~s}_{1} \quad \text { or } \quad p \sim \mathrm{t}_{n} \cdots \mathrm{t}_{3}\left(\mathrm{ut}_{i} \mathrm{t}_{j}\right) \mathrm{s}_{m} \cdots \mathrm{~s}_{1} \\
\left(\text { resp. } p \sim \mathrm{t}_{n} \cdots \mathrm{t}_{1}\left(\mathrm{~s}_{m} \mathrm{u}\right) \mathrm{s}_{m-1} \cdots \mathrm{~s}_{1} \text { or } p \sim \mathrm{t}_{n} \cdots \mathrm{t}_{1}\left(\mathrm{~s}_{i} \mathrm{~s}_{j} \mathrm{u}\right) \mathrm{s}_{m-2} \cdots \mathrm{~s}_{1}\right) \tag{18}
\end{gather*}
$$

where $i, j \in\{1,2\}$ (resp. $i, j \in\{m, m-1\})$ are distinct.
Referring to the proof of Lemma 3.2, we remark that when $u=y_{1}$ and $t_{2} t_{1}=x_{\alpha} y_{2}$ is a diagonal arrow, we have $t_{2} t_{1} u \sim u t_{2} t_{1}$, whereas when $u=y_{1}$ is a vertical arrow and $t_{2} t_{1}=y_{2} x_{\alpha}$, we have $\mathrm{t}_{2} \mathrm{t}_{1} \mathrm{u} \sim \mathrm{ut}_{1} \mathrm{t}_{2}$. These two cases illustrate how the order of t_{1} and t_{2} in (18) may depend on the path p. We also remark that the lemma will fail in general without the assumption on the existence of the arrow a.

Any square superpotential algebra A admits a \mathbb{Z}-grading determined by τ : the horizontal and vertical arrows (the first four arrows in Fig. 5) have degree 1 while the diagonal arrows (the latter four arrows in Fig. 5) have degree 2. Clearly if p and p^{\prime} are two paths and $p \sim p^{\prime}$ then p and p^{\prime} have the same degree. The following two lemmas will be proved by induction on degree.

Lemma 3.3. If p and p^{\prime} are two paths in Q with the same tail such that $\bar{\tau}(p)=\bar{\tau}\left(p^{\prime}\right)$, then $p \sim p^{\prime}$. Consequently the map τ in (17) is an algebra monomorphism.

Proof. If p has degree 1 or 2 then clearly $p \sim p^{\prime}$. Suppose the assertion holds for paths of degree $<n$, and that p has degree n. Further suppose $u \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ divides the $\bar{\tau}$-image of the leftmost arrow subpath a of p. Since $\bar{\tau}(p)=\bar{\tau}\left(p^{\prime}\right)$ we have $\bar{\tau}(a) \mid \bar{\tau}\left(p^{\prime}\right)$. Therefore by Lemma 3.2 we can 'commute' the leftmost arrow subpath of p^{\prime} whose $\bar{\tau}$-image is divisible by u to the left, to form a path $p^{\prime \prime} \sim p^{\prime}$ whose leftmost arrow coincides with the leftmost arrow of p, and satisfies $\bar{\tau}\left(p^{\prime \prime}\right)=\bar{\tau}\left(p^{\prime}\right)=\bar{\tau}(p)$. The proof then follows by induction.
τ is injective: Suppose $p, p^{\prime} \in A$ satisfy $\tau(p)=\tau\left(p^{\prime}\right)$. Then the corresponding matrix entries must be equal, so we may assume $p, p^{\prime} \in e_{j} A e_{i}$ for some $i, j \in Q_{0}$. In this case, $\tau(p)=\tau\left(p^{\prime}\right)$ is equivalent to $\bar{\tau}(p)=\bar{\tau}\left(p^{\prime}\right)$.

The following lemma will be essential throughout.
Lemma 3.4. If p and p^{\prime} are two paths in Q with the same tail such that $\bar{\tau}(p)=m \bar{\tau}\left(p^{\prime}\right)$ for some monomial $m \in B$, then there exists a path $q \in e_{\mathrm{h}(p)} k Q e_{\mathrm{h}\left(p^{\prime}\right)}$ such that $\bar{\tau}(q)=m$ and $p \sim q p^{\prime}$.

Proof. We proceed by induction.
First suppose p^{\prime} is an arrow, and so has degree 1 or 2, and suppose $u \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ divides $\bar{\tau}\left(p^{\prime}\right)$. Since $\bar{\tau}\left(p^{\prime}\right) \mid \bar{\tau}(p)$, Lemma 3.2 (with $p^{\prime}=a$) implies that we can 'commute' the rightmost arrow subpath of p whose $\bar{\tau}$-image is divisible by u to the right, to form a path $q p^{\prime} \sim p$. Then $\bar{\tau}(q)=$ $\bar{\tau}(p) / \bar{\tau}\left(p^{\prime}\right)=m$.

Now suppose the assertion holds for paths of degree $<n$, and that p^{\prime} has degree n. Let $p^{\prime \prime}$ be the subpath of p^{\prime} obtained by removing the leftmost arrow b from p^{\prime}. Since the degree of $p^{\prime \prime}$ is $<n$, by induction there is a path $q^{\prime} \in e_{\mathrm{h}(p)} k Q e_{\mathrm{h}\left(p^{\prime \prime}\right)}$ such that $\bar{\tau}\left(q^{\prime}\right)=\bar{\tau}(p) / \bar{\tau}\left(p^{\prime \prime}\right)=m \bar{\tau}(b)$. Since b is an arrow, its degree is also $<n$, so again by induction there is a path $q \in e_{\mathrm{h}(p)} k Q e_{\mathrm{h}(b)}$ such that $\bar{\tau}(q)=\bar{\tau}\left(q^{\prime}\right) / \bar{\tau}(b)=m \bar{\tau}(b) / \bar{\tau}(b)=m$, proving our claim.

Finally, p and $q p^{\prime}$ have coincident tails and $\bar{\tau}(p)=\bar{\tau}(q) \bar{\tau}\left(p^{\prime}\right)=\bar{\tau}\left(q p^{\prime}\right)$, whence $p \sim q p^{\prime}$ by Lemma 3.3.

Notation 3.5. For each $i, j \in \widetilde{Q}_{0}$, denote by $\bar{\tau}: e_{j} k \widetilde{Q} e_{i} \rightarrow B$ the k-linear map defined by $\bar{\tau}(a):=$ $\bar{\tau}(\pi(a))$. Also, set $\sigma:=x_{1} x_{2} y_{1} y_{2}$ (though later σ will denote a cycle whose $\bar{\tau}$-image is $x_{1} x_{2} y_{1} y_{2}$).

Lemma 3.6. If c is a cycle in $\widetilde{\mathbb{Q}}$ then $\bar{\tau}(c)=\sigma^{m}$ for some $m \geqslant 0$.
Proof. Suppose that $\sigma^{m} \mid \bar{\tau}(c)$ but $\sigma^{m+1} \nmid \bar{\tau}(c)$. By Lemma 3.4 there is a cycle d in \widetilde{Q} at $\mathrm{t}(c)$ such that $\bar{\tau}(d)=\bar{\tau}(c) \sigma^{-m}$. But then $\sigma \nmid \bar{\tau}(d)$, and so d must be the vertex $e_{\mathrm{t}(c)}$.

We now prove that the labeling of arrows given in Fig. 5 determines an impression of any square superpotential algebra, and has the property that $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ for each $i, j \in Q_{0}$.

Theorem 3.7. Let A be square superpotential algebra. Then A admits an impression ($\tau, B=k\left[x_{1}, x_{2}, y_{1}, y_{2}\right]$), where τ is given by the labeling of arrows in Fig. 5 and $\tau\left(e_{i}\right)=E_{i i}$ for each $i \in Q_{0}$. Furthermore, $\bar{\tau}\left(e_{i} A e_{i}\right)=$ $\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ for each $i, j \in Q_{0}$.

Proof. We first show that (τ, B) is an impression of A. By Lemma 3.3, $\tau: A \rightarrow \operatorname{End}_{A}\left(B^{\left|Q_{0}\right|}\right)$ is an algebra monomorphism.

Let \mathfrak{q} be any point in the dense open subset

$$
U:=\left\{x_{1} x_{2} y_{1} y_{2} \neq 0\right\} \subset \operatorname{Max} B
$$

Then for each $\mathfrak{q} \in U, \tau_{\mathfrak{q}}$ is a simple representation of A : each arrow a is represented by a nonzero scalar multiple of $E_{\mathrm{h}(a), \mathrm{t}(a)}$, and there is a path from i to j for each $i, j \in \mathrm{Q}_{0}$.

Finally, the map $\phi: \operatorname{Max} B \rightarrow \operatorname{Max} R, \mathfrak{q} \mapsto \mathfrak{q} \cap R$, is surjective: for any $\mathfrak{m} \in \operatorname{Max} R, B \mathfrak{m}$ is a (nonzero) proper ideal of B since the only units of B are the scalars. Since B is noetherian there is a maximal ideal $\mathfrak{q} \in \operatorname{Max} B$ containing $B \mathfrak{m}$. But then $\mathfrak{q} \cap R \supseteq B \mathfrak{m} \cap R=\mathfrak{m}$, and since \mathfrak{m} is a maximal ideal of R, $\mathfrak{q} \cap R \subseteq \mathfrak{m}$, so $\mathfrak{q} \cap R=\mathfrak{m}$.

We now show that $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ for each $i, j \in Q_{0}$. Since the cycles in $e_{j} A e_{j}$ generate $e_{j} A e_{j}$, it suffices to consider a cycle $p \in e_{j} k Q e_{j}$. Consider paths r and s in \widetilde{Q} from $i^{\prime} \in \pi^{-1}$ (i) to $j^{\prime} \in \pi^{-1}(j)$ and j^{\prime} to i^{\prime}, respectively. By Lemma $3.6 \bar{\tau}(r s)=\sigma^{m}$ for some $m \geqslant 0$. Consequently $\sigma^{m} \mid \bar{\tau}(\pi(s) p \pi(r))$, so by Lemma 3.4 there exists a cycle $p^{\prime} \in e_{i} k Q e_{i}$ such that $\bar{\tau}\left(p^{\prime}\right)=\bar{\tau}(p)$.

By algebraic variety, we mean an irreducible affine variety.
Corollary 3.8. Both a square superpotential algebra A and its center Z are prime noetherian rings, $\operatorname{Max} Z$ is a toric algebraic variety, and A is a finitely-generated Z-module.

Proof. By Theorems 2.11 and 3.7, A and Z are noetherian and A is module-finite over Z. By Lemma 2.3, A and Z are prime since $B=k\left[x_{1}, x_{2}, y_{1}, y_{2}\right]$ is prime.

We now show Z is the coordinate ring for a toric algebraic variety: for each $i \in Q_{0}, e_{i} A e_{i}$ is generated by cycles, and the $\bar{\tau}$-image of a cycle is a monomial in B, so $\bar{\tau}\left(e_{i} A e_{i}\right) \subset B$ is generated by monomials in the polynomial ring B. By Lemma 2.9 and Theorem 2.11, $Z \cong e_{i} A e_{i} \cong \bar{\tau}\left(e_{i} A e_{i}\right)$. Z is therefore prime, noetherian, and isomorphic to a subalgebra of a polynomial ring generated by monomials.

4. 3-Dimensional normal Gorenstein centers

Throughout this section $A=k Q / \partial W$ denotes a square superpotential algebra, Z denotes its center, and \widetilde{Q} denotes the covering quiver with projection $\pi: \widetilde{Q} \rightarrow Q$. Recall that Z is noetherian by Corollary 3.8.

Recall that a vertex simple is a simple module in which every path, with the exception of a single vertex, is represented by zero. The Z-annihilators of the vertex simple A-modules are all equal, and we call this maximal ideal \mathfrak{m} the origin of Max Z. We will show that Z is a 3-dimensional normal domain, and that the localization $Z_{\mathfrak{m}}$ is Gorenstein.

4.1. Transcendence basis

In this section we show that the Krull dimension of the center of a square superpotential algebra is 3 .

Lemma 4.1. If p and p^{\prime} are two paths in $\widetilde{\mathbb{Q}}$ with the same tail such that $p \sim p^{\prime}$, then $\mathrm{h}(p)=\mathrm{h}\left(p^{\prime}\right)$.
Proof. Set $\left(v_{1}, v_{2}\right)=\mathrm{h}(p)-\mathrm{t}(p) \in \widetilde{\mathrm{Q}}_{0}=\mathbb{Z}^{2}$. There is some $s, t \geqslant 0$ such that

$$
\bar{\tau}(p)=x_{n\left(v_{1}\right)}^{\left|v_{1}\right|} y_{n\left(v_{2}\right)}^{\left|v_{2}\right|}\left(x_{1} x_{2}\right)^{s}\left(y_{1} y_{2}\right)^{t},
$$

where $n\left(v_{i}\right)=1$ or 2 if $\operatorname{sign}\left(v_{i}\right)>0$ or $\operatorname{sign}\left(v_{i}\right)<0$, respectively.
Lemma 4.2. Modulo ∂W, there is a unique path p without cyclic proper subpaths between any two vertices in the covering quiver $\widetilde{\mathrm{Q}}$.

Proof. Recall that $\sigma:=x_{1} x_{2} y_{1} y_{2}$. Suppose p is a path in \widetilde{Q} without cyclic subpaths and $\bar{\tau}(p)=$ $x_{1}^{a} y_{1}^{b}\left(x_{1} x_{2}\right)^{c}\left(y_{1} y_{2}\right)^{d}$. Then $c=0$ or $d=0$, since otherwise $\sigma \mid \bar{\tau}(p)$ whence p has a cyclic subpath by Lemma 3.4. Let p^{\prime} be another path in \widetilde{Q} from $\mathrm{t}(p)$ to $\mathrm{h}(p)$ without cyclic subpaths; then similarly $\bar{\tau}\left(p^{\prime}\right)=x_{1}^{a} y_{1}^{b}\left(x_{1} x_{2}\right)^{c^{\prime}}\left(y_{1} y_{2}\right)^{d^{\prime}}$ with $c^{\prime}=0$ or $d^{\prime}=0$. We claim $c=c^{\prime}$ and $d=d^{\prime}$; the lemma will then follow from Lemma 3.3. It suffices to consider the following two cases.
(i) Suppose $d=d^{\prime}=0$ and $c \leqslant c^{\prime}$. Then $\bar{\tau}(p) \mid \bar{\tau}\left(p^{\prime}\right)$. Thus by Lemma 3.4 there is a cycle in \widetilde{Q} with $\bar{\tau}$-image $\left(x_{1} x_{2}\right)^{c^{\prime}-c}$. Since the underlying graph of \widetilde{Q} embeds into the plane, we must have $c^{\prime}-c=0$. Therefore $\bar{\tau}\left(p^{\prime}\right)=\bar{\tau}(p)$.
(ii) Now suppose $c=d^{\prime}=0$ and $d \leqslant c^{\prime}$. Then $\bar{\tau}(p) \mid \sigma^{d} \bar{\tau}\left(p^{\prime}\right)=\bar{\tau}\left(u^{d} p^{\prime}\right)$, where u is a unit cycle at $\mathrm{h}(p)$. Thus by Lemma 3.4 there is a cycle in $\widetilde{\mathbb{Q}}$ with $\bar{\tau}$-image $\left(x_{1} x_{2}\right)^{c^{\prime}+d}$. Again since the underlying graph of \widetilde{Q} embeds into the plane, we must have $c^{\prime}+d=0$. Since $c^{\prime}, d \geqslant 0$, this implies $c^{\prime}=d=0$, and so $\bar{\tau}\left(p^{\prime}\right)=\bar{\tau}(p)$.

Fix $i \in Q_{0}$ and consider the sublattice $\pi^{-1}(i) \subset \widetilde{Q}_{0}=\mathbb{Z}^{2}$. Let $u, v \in \pi^{-1}(i)$ be \mathbb{Z}-generators of $\pi^{-1}(i)$ with respect to a fixed origin $(0,0) \in \pi^{-1}(i)$,

$$
\begin{equation*}
\pi^{-1}(i)=\mathbb{Z} u \oplus \mathbb{Z} v \tag{19}
\end{equation*}
$$

Let $\alpha \in e_{i} A e_{i}$ (resp. $\beta \in e_{i} A e_{i}$) be the π-image modulo ∂W of a path of minimal length from $(0,0)$ to u (resp. v) in \widetilde{Q}; these paths are unique by Lemma 4.2. Further, by abuse of notation let $\sigma \in e_{i} A e_{i}$ be the (unique) cycle satisfying $\bar{\tau}(\sigma)=x_{1} x_{2} y_{1} y_{2}$.

Proposition 4.3. Let Z be the center of a square superpotential algebra A. Then $Z e_{i}$ has transcendence basis $\{\alpha, \beta, \sigma\}$ over k, and so the Krull dimension of $Z \cong Z e_{i}$ is 3 .

Proof. We claim that the set $\{\alpha, \beta, \sigma\}$ is algebraically independent over k. Consider a nonzero polynomial

$$
f(\alpha, \beta, \sigma)=\sum_{\ell=1}^{n} b_{\ell} \alpha^{r_{\ell}} \beta^{s_{\ell}} \sigma^{t_{\ell}}
$$

with coefficients ${\underset{\sim}{Q}}_{\ell} \in k$. Fix $1 \leqslant \ell \leqslant n$, and let d_{ℓ} be the lift of $\alpha^{r_{\ell}} \beta^{s_{\ell}} \sigma^{t_{\ell}}$ in \widetilde{Q} with tail at $(0,0) \in \pi^{-1}(i) \subset \widetilde{Q}_{0}=\mathbb{Z}^{2}$. We may assume, without loss of generality, that $\mathrm{h}\left(d_{\ell}\right)=\mathrm{h}\left(d_{1}\right)$ in $\widetilde{\mathrm{Q}}$ since otherwise there is no relation between d_{ℓ} and d_{1} by Lemma 4.1. This yields $r_{\ell} u+s_{\ell} v=\mathrm{h}\left(d_{\ell}\right)=$ $\mathrm{h}\left(d_{1}\right)=r_{1} u+s_{1} v$. Thus, since u and v are linearly independent, $r_{\ell}=r_{1}$ and $s_{\ell}=s_{1}$. Therefore $d_{\ell} \sim \alpha^{r_{1}} \beta^{s_{1}} \sigma^{t_{\ell}}$. Since this holds for each ℓ, we have

$$
f(\alpha, \beta, \sigma)=\alpha^{r_{1}} \beta^{s_{1}} \sum_{\ell} b_{\ell} \sigma^{t_{\ell}} .
$$

But $\bar{\tau}(\sigma)$ is algebraically independent over k, whence $f(\alpha, \beta, \sigma) \neq 0$.
We now claim that if $g \in Z e_{i}=e_{i} A e_{i}$ is a cycle, then $\{\alpha, \beta, \sigma, g\}$ is algebraically dependent over k. Let g^{+}be the lift of g with tail at $(0,0) \in \pi^{-1}(i) \subset \widetilde{Q}_{0}$. Then $\mathrm{h}\left(g^{+}\right)=m u+n v$ for some $m, n \in \mathbb{Z}$. It suffices to suppose $m, n \geqslant 0$. Denote by h the path in \widetilde{Q} obtained by removing all cyclic proper subpaths of g^{+}, and denote by h^{\prime} the lift of $\alpha^{m} \beta^{n}$ with tail at $(0,0)$. Since the lifts of α and β have no cyclic proper subpaths by definition, h^{\prime} also has no cyclic proper subpaths. Therefore, since h and h^{\prime} have coincident heads and tails in \widetilde{Q}, Lemma 4.2 implies $h \sim h^{\prime}$. h and g^{+}also have coincident heads and tails in \widetilde{Q}, and $\bar{\tau}(h) \mid \bar{\tau}\left(g^{+}\right)$, and so Lemma 3.4 implies that there is a cycle c in \widetilde{Q} at $(0,0)$ such that $h c \sim g^{+}$. Moreover, Lemma 3.6 implies that $\pi(c) \sim \sigma^{r}$ for some $r \geqslant 0$. Therefore

$$
g=\pi\left(g^{+}\right) \sim \pi(h c)=\pi(h) \pi(c) \sim \pi\left(h^{\prime}\right) \pi(c) \sim \alpha^{m} \beta^{n} \sigma^{r},
$$

proving our claim.

Fig. 6. Redrawing the quiver of a McKay square superpotential algebra.
If $g \in Z e_{i}$ is a linear combination of cycles, then we may apply this argument to each monomial summand of g to conclude that the set $\{\alpha, \beta, \sigma, g\}$ is algebraically dependent.

Although $\{\alpha, \beta, \sigma\}$ is algebraically independent over k, it does not in general form a $Z e_{i}$-regular sequence, so that is what we now determine.

4.2. Z-regular sequence and socle

Throughout, \mathfrak{m} denotes the maximal ideal at the origin of $\operatorname{Max} Z$ (or $\operatorname{Max}\left(Z e_{i}\right)$, depending on context). If a prime, finitely-generated k-algebra is homologically homogeneous and module-finite over its center, then its center is Cohen-Macaulay [SV, Theorem 2.2] and normal [BH, Theorem 6.1]. It will then follow from Proposition 6.7 below that the localization $Z_{\mathfrak{m}}$ is Cohen-Macaulay and normal. In this section we will show that Z is normal and $Z_{\mathfrak{m}}$ is Gorenstein. To show Gorenstein, we will first determine an explicit Z-regular sequence s in \mathfrak{m} (thus providing a direct proof that $Z_{\mathfrak{m}}$ is CohenMacaulay), and then we will show that the zero-dimensional local ring $Z_{\mathfrak{m}} /(s)$ has a simple socle.

Lemma 4.4. The center of a square superpotential algebra is normal.
Proof. By Corollary 3.8, Max Z is a toric algebraic variety. Thus we want to show that the semigroup $S \subseteq \mathbb{N}^{4}$ of $\operatorname{Max} Z$ is saturated in the lattice it generates $\mathbb{Z} S \subseteq \mathbb{Z}^{4}$, that is, $\mathbb{Z} S \cap \mathbb{N}^{4}=S$ [CLS, Theorem 1.3.5]. Let $w \in \mathbb{Z} S \cap \mathbb{N}^{4}$. Then

$$
w=\sum_{i=1}^{n} r_{i} u_{i}-\sum_{j=1}^{n^{\prime}} s_{j} v_{j} \quad \text { for some } u_{i}, v_{j} \in S \text { and } r_{i}, s_{j} \geqslant 0 .
$$

Let $m_{w}, m_{u_{i}}, m_{v_{j}} \in B$ be the monomials corresponding respectively to w, u_{i}, and v_{j}. Then $m_{w} m_{v_{1}}^{s_{1}} \cdots m_{v_{n^{\prime}}}^{s_{n^{\prime}}}=m_{u_{1}}^{r_{1}} \cdots m_{u_{n}}^{r_{n}}$. Since the u_{i}, v_{j} are in S, the monomials $m_{u_{i}}, m_{v_{j}}$ are $\bar{\tau}$-images of cycles. Therefore by Lemma 3.4, m_{w} is the $\bar{\tau}$-image of a cycle, so $w \in S$ as well, proving the lemma.

Proposition 4.5. Let A be a square superpotential algebra. Suppose there is a cycle c in Q such that $\bar{\tau}(c)=x_{\alpha}^{n}$ or y_{β}^{n} for some $n \geqslant 1$. Then A is the McKay quiver algebra of a representation in $\mathrm{SL}_{3}(k)$ of an abelian group, and we say that Q is McKay. In particular, $Z_{\mathfrak{m}}$ is Gorenstein. Moreover, A admits an impression (τ, B) where B is the polynomial ring $k[x, y, z]$ in three variables.

Proof. If there is a cycle whose $\bar{\tau}$-image is only divisible by x_{α} (resp. y_{β}), then for each $i \in Q_{0}$ there is a cycle in $e_{i} A e_{i}$ whose $\bar{\tau}$-image is only divisible by x_{α} (resp. y_{β}) by Theorem 3.7. Recalling Fig. 1 , it follows that each row (resp. column) of building blocks in the covering quiver \widetilde{Q} must consist of identical building blocks, and each building block must contain a diagonal arrow. In this case \widetilde{Q} can be redrawn so that there are only three orientations of arrows, namely one horizontal, one vertical, and one diagonal, as shown in Fig. 6.

Let $\bar{\tau}$ now be defined by the orientation of the arrows in the redrawn covering quiver, and denote by x, y, and z the respective $\bar{\tau}$-images of the horizontal, vertical, and diagonal arrows. It follows from Theorem 3.7 that $\bar{\tau}$ defines an impression of A, with $B=k[x, y, z]$.

Fix $i \in Q_{0}$ and recall the sublattice $\pi^{-1}(i) \subset \widetilde{Q}_{0}=\mathbb{Z}^{2}$ in (19). Suppose the horizontal and vertical arrows point left and up, respectively. Let ϵ_{x} and ϵ_{y} be the standard basis vectors in \mathbb{R}^{2}. Then

$$
\mathbb{Z}^{2}=\mathbb{N} \epsilon_{x} \oplus \mathbb{N} \epsilon_{y} \oplus \mathbb{N}\left(-\epsilon_{x}-\epsilon_{y}\right)
$$

where

$$
(a, b) \mapsto \begin{cases}(a, b, 0) & \text { if } a \geqslant 0, b \geqslant 0, \\ (a+|b|, 0,|b|) & \text { if } b<0, b \leqslant a, \\ (0, b+|a|,|a|) & \text { if } a<0, a \leqslant b\end{cases}
$$

Furthermore, elements of $\mathbb{N} \epsilon_{x} \oplus \mathbb{N} \epsilon_{y} \oplus \mathbb{N}\left(-\epsilon_{x}-\epsilon_{y}\right)$ may be viewed as monomials in B, where $(a, b, c) \mapsto x^{a} y^{b} z^{c}$. Under this identification,

$$
\begin{equation*}
\bar{\tau}\left(e_{i} A e_{i}\right)=k\left[\pi^{-1}(i)\right][x y z], \tag{20}
\end{equation*}
$$

where $x y z$ has been adjoined since there is precisely one cycle in \widetilde{Q} at $(0,0) \in \pi^{-1}$ (i) without cyclic proper subpaths by Lemma 3.6, namely the unit cycle with $\bar{\tau}$-image xyz.

By the general theory of abelian groups, the quotient $G:=\mathbb{Z}^{2} / \pi^{-1}(i)$ is a finite abelian group. Moreover, there is a faithful representation $\rho: G \rightarrow \operatorname{SL}_{3}(k), g \mapsto \operatorname{diag}\left(\omega_{g, x} \quad \omega_{g, y} \quad \omega_{g, x}^{-1} \omega_{g, y}^{-1}\right)$, with $\omega_{g, x}, \omega_{g, y} \in k$ roots of unity, such that the ring of invariants under the diagonal action of $\rho(G)$ on $k[x, y, z]$ is

$$
k[x, y, z]^{\rho(G)}=k\left[\pi^{-1}(i)\right][x y z] .
$$

Therefore by (20),

$$
Z \cong \bar{\tau}\left(e_{i} A e_{i}\right)=k\left[\pi^{-1}(i)\right][x y z]=k[x, y, z]^{\rho(G)} .
$$

We remark that $A=k Q / \partial W$ is the standard McKay quiver algebra

$$
A=k Q /\langle[x, y],[y, z],[z, x]\rangle,
$$

where x, y, and z are the sums of all the horizontal, vertical, and diagonal arrows, respectively (in the projection of the redrawn covering quiver), of the representation ρ of G.

Proposition 4.6. Suppose Q is not McKay and let $i \in Q_{0}$. Then for each $\alpha, \beta \in\{1,2\}$ there exists a unique cycle in $e_{i} A e_{i}$, without cyclic proper subpaths, whose $\bar{\tau}$-image is of the form $x_{\alpha}^{s} y_{\beta}^{t}$ for some $s, t \geqslant 1$.

Proof. We first show existence. We claim that for any choice of $\alpha, \beta \in\{1,2\}$, there is a cycle whose $\bar{\tau}$-image is not divisible by x_{α} and y_{β}. Indeed, each vertex is the tail of an arrow whose $\bar{\tau}$-image is not divisible by x_{α} or y_{β}; see Fig. 1. We can therefore construct a path in Q of arbitrary length whose $\bar{\tau}$-image is not divisible by x_{α} and y_{β}. Since $\left|Q_{0}\right|<\infty$ we can suppose this path intersects itself, say at vertex j, thereby forming a cycle at j whose $\bar{\tau}$-image is not divisible by x_{α} and y_{β}. By Theorem 3.7, $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right)$, so there is a cycle at i whose $\bar{\tau}$-image is not divisible by x_{α} and y_{β}, and therefore is of the form $x_{\alpha+1}^{s} y_{\beta+1}^{t}$ (with indices mod 2). Since Q is not McKay, Proposition 4.5 implies $s, t \geqslant 1$.

We now show uniqueness. Fix $i \in Q_{0}$. Without loss of generality, consider two cycles $p_{1}, p_{2} \in$ $e_{i} A e_{i}$ without cyclic proper subpaths whose respective $\bar{\tau}$-images are $x_{1}^{s_{1}} y_{2}^{t_{1}}$ and $x_{1}^{s_{2}} y_{2}^{t_{2}}$, with $s_{1}<s_{2}$. Consider the lifts p_{1}^{+}and p_{2}^{+}of p_{1} and p_{2} with tails at $(0,0) \in \pi^{-1}(i) \subset \widetilde{Q}_{0}=\mathbb{Z}^{2}$. Since the $\bar{\tau}$-images of p_{1} and p_{2} are only divisible by x_{1} and y_{1}, the head of p_{1}^{+}is at $\left(s_{1}, t_{1}\right)$ and the head of p_{2}^{+}is at $\left(s_{2}, t_{2}\right)$. Clearly there exists a path d in \widetilde{Q} from $\left(s_{1}, t_{1}\right)$ to (s_{2}, t_{2}) with $\bar{\tau}$-image $x_{1}^{s_{2}-s_{1}} y_{1}^{u_{1}} y_{2}^{u_{2}}$ for some
$u_{1}, u_{2} \geqslant 0$. Since B is a polynomial ring and x_{2} does not divide $\bar{\tau}(d)$ or $\bar{\tau}\left(p_{1}^{+}\right), x_{2}$ does not divide their product $\bar{\tau}(d) \bar{\tau}\left(p_{1}^{+}\right)=\bar{\tau}\left(d p_{1}^{+}\right)$. Thus $\sigma \nmid \bar{\tau}\left(d p_{1}^{+}\right)$, so $d p_{1}^{+}$has no cyclic proper subpaths by Lemma 3.6. Therefore $d p_{1}^{+}$have p_{2}^{+}have coincident heads and tails in \widetilde{Q} and no cyclic proper subpaths, whence $p_{2} \sim \pi(d) p_{1}$ by Lemma 4.2. Since p_{2} has no cyclic proper subpaths, $\pi(d)$ must be the vertex $\mathrm{h}\left(p_{2}\right)$. Therefore $\left(s_{1}, t_{1}\right)=\left(s_{2}, t_{2}\right)$, contradicting our assumption that $s_{1}<s_{2}$.

Suppose Q is not McKay and fix $i \in Q_{0}$. Denote by $a, b, c, d \in e_{i} A e_{i}=Z e_{i}$ the unique cycles, without cyclic proper subpaths, of the form

$$
\begin{equation*}
\bar{\tau}(a)=x_{1}^{s_{a}} y_{1}^{t_{a}}, \quad \bar{\tau}(b)=x_{2}^{s_{b}} y_{2}^{t_{b}}, \quad \bar{\tau}(c)=x_{1}^{s_{c}} y_{2}^{t_{c}}, \quad \bar{\tau}(d)=x_{2}^{s_{d}} y_{1}^{t_{d}}, \tag{21}
\end{equation*}
$$

with $s_{*}, t_{*} \geqslant 1$. Denote by $\sigma \in Z e_{i}$ the unique cycle satisfying $\bar{\tau}(\sigma)=x_{1} x_{2} y_{1} y_{2}$.
Lemma 4.7. The sequence $(c-d, a, b)$ is a $Z e_{i}$-regular sequence.
Proof. If α and β are elements of $R \subset B$ and β is a zerodivisor on $R /(\alpha) R$, then β will also be a zerodivisor on $B /(\alpha) B$. It follows by the contrapositive that if $\alpha_{1}, \ldots, \alpha_{n} \in R$ is a B-regular sequence and $R /\left(\alpha_{1}, \ldots, \alpha_{n}\right) R$ is nonzero, then $\alpha_{1}, \ldots, \alpha_{n}$ will be an R-regular sequence.

Clearly the sequence $s:=(\bar{\tau}(c)-\bar{\tau}(d), \bar{\tau}(a), \bar{\tau}(b))$ is a B-regular sequence. Furthermore, let $\gamma \in Z e_{i}$ be the cycle satisfying $\bar{\tau}(\gamma)=\bar{\tau}(a b c) \bar{\tau}(\sigma)^{-1}$, which exists by Lemma 3.4 and is unique by Lemma 4.2. Then clearly $\bar{\tau}(\gamma) \in R$ is not in the ideal $(s) R$, so $R /(s) R$ is nonzero. Therefore, by the previous paragraph, s is also an R-regular sequence. By Theorem 3.7, $R=\bar{\tau}\left(e_{i} Z e_{i}\right)=\bar{\tau}\left(Z e_{i}\right)$, and so s is a $\bar{\tau}\left(Z e_{i}\right)$-regular sequence. Moreover, by Lemma 3.3, $\bar{\tau}: Z e_{i} \rightarrow \bar{\tau}\left(Z e_{i}\right)$ is an algebra isomorphism. Therefore ($c-d, a, b$) is a $Z e_{i}$-regular sequence.

Remark 4.8. A ring R is Cohen-Macaulay if depth $\mathfrak{m}=\operatorname{codim} \mathfrak{m}$ for every maximal ideal \mathfrak{m} of $R[E$, Section 18.2], and as noted above, $Z_{\mathfrak{m}}$ is Cohen-Macaulay since $A_{\mathfrak{m}}$ is homologically homogeneous. However, this also follows directly from Lemma 4.7 and Proposition 4.3 since

$$
3 \leqslant \text { depth } \mathfrak{m} \leqslant \operatorname{codim} \mathfrak{m}=3 .
$$

Let (R, \mathfrak{m}) be a commutative noetherian local ring. Recall that the socle of an R-module M is the annihilator in M of the unique maximal ideal \mathfrak{m} of R. Also recall that if R is zero-dimensional, then R is Gorenstein if $R \cong \omega$, where the canonical module ω is the injective hull of the residue field $R / \mathfrak{m}[\mathrm{E}$, definition in Section 21.2], and this is equivalent to the socle of R being simple [E , Proposition 21.5]. More generally, if R is Cohen-Macaulay then R is Gorenstein if there is a nonzerodivisor $x \in R$ such that $R /(x)$ is Gorenstein [E, definition in Section 21.3].

Proposition 4.9. Denote by $I \subset Z e_{i}$ the ideal generated by the $Z e_{i}$-regular sequence ($c-d, a, b$), and consider the zero-dimensional local ring $\left(R:=\left(Z e_{\mathfrak{i}}\right)_{\mathfrak{m}} / I_{\mathfrak{m}}, \mathfrak{m}_{\mathfrak{m}} / I_{\mathfrak{m}}\right)$. The socle $\operatorname{ann}_{R}\left(\mathfrak{m}_{\mathfrak{m}} / I_{\mathfrak{m}}\right)$ of R is a simple R-module, and so R is Gorenstein.

Proof. By abuse of notation, in the following denote by $a, b, c, d \in B$ the respective $\bar{\tau}$-images of the cycles $a, b, c, d \in Z e_{i}$. Set $S:=R_{\mathfrak{m}} /(c-d) R_{\mathfrak{m}}$, which is nonzero since $c-d \in \mathfrak{m}$. Clearly for $\eta \in R_{\mathfrak{m}}$, $\eta \in \operatorname{ann}_{R_{\mathfrak{m}}}\left(\mathfrak{m}_{\mathfrak{m}} /(a, b, c-d)\right.$) if and only if $\eta \mathfrak{m}_{\mathfrak{m}} \subseteq(a, b, c-d) R_{\mathfrak{m}}$, if and only if $\eta\left(\mathfrak{m}_{\mathfrak{m}} /(c-d)\right) \subseteq(a, b) S$.
(I) Denote by $\sigma:=x_{1} x_{2} y_{1} y_{2}$ the $\bar{\tau}$-image of a unit cycle at vertex i. Since a, b, c, and σ are $\bar{\tau}$-images of cycles at i, Lemma 3.4 implies that there is a cycle γ at i whose $\bar{\tau}$-image is $\frac{a b c}{\sigma}$. Thus, since $\frac{a b c}{\sigma}$ is the $\bar{\tau}$-image of a cycle, it is in \mathfrak{m}. Moreover, it is clear that $\frac{a b c}{\sigma}$ is not in the ideal $(a, b, c-d) R$. Therefore $\frac{a b c}{\sigma}$ is nonzero in $\mathfrak{m}_{\mathfrak{m}} /(a, b, c-d)$.
(II) We claim that $\frac{a b c}{\sigma}\left(\mathfrak{m}_{\mathfrak{m}} /(c-d)\right) \subseteq(a, b) S$.

First let $m \in \mathfrak{m} S$ be a monomial. If $x_{1} y_{1}$ or $x_{2} y_{2}$ divides m then a or b respectively divides $\frac{a b c}{\sigma} m$, yielding $\frac{a b c}{\sigma} m \in(a, b) S$. Since Q is not McKay, there is no monomial in $R_{\mathfrak{m}}$ of the form x_{α}^{n} or y_{β}^{n} by

Proposition 4.5. Thus if both $x_{1} y_{1}$ and $x_{2} y_{2}$ do not divide m, then it must be that $m=c^{n}=d^{n}$ for some $n \geqslant 1$. But $\sigma \mid c d$, and so we have

$$
\frac{a b c}{\sigma} m=\frac{a b c}{\sigma} c^{n}=c^{n-1} \frac{c d}{\sigma} a b \in(a, b) S .
$$

Now consider a polynomial $p=\sum_{j} m_{j} \in \mathfrak{m} S$, with each m_{j} a (nonconstant) monomial. Then $\frac{a b c}{\sigma} p=\sum_{j} \frac{a b c}{\sigma} m_{j}$ is in $(a, b) S$ since each term $\frac{a b c}{\sigma} m_{j}$ is in $(a, b) S$ by the previous paragraph. This proves (II).
(III.1) Suppose $\eta \in R$ is a monomial which is not in $(a, b, c-d) R$ and satisfies

$$
\begin{equation*}
\eta\left(\mathfrak{m}_{\mathfrak{m}} /(c-d)\right) \subseteq(a, b) S . \tag{22}
\end{equation*}
$$

We claim that $\eta=\frac{a b c}{\sigma}$.
Since σ is in \mathfrak{m}, by (22) we may view $\eta \sigma$ as an element of $(a, b) S$. Since η is a monomial, this implies $\frac{a}{x_{1} y_{1}}$ or $\frac{b}{x_{2} y_{2}}$ divides η. Without loss of generality, we may therefore suppose there are integers $\alpha, \beta_{1}, \beta_{2} \geqslant 0$ such that

$$
\eta=\frac{a}{x_{1} y_{1}} x_{2}^{\alpha} y_{1}^{\beta_{1}} y_{2}^{\beta_{2}}
$$

Since η is not in $(a, b, c-d) R$, we must have

$$
\begin{gather*}
b \nmid x_{2}^{\alpha} y_{2}^{\beta_{2}} \tag{23}\\
d \nmid x_{2}^{\alpha} y_{1}^{\beta_{1}-1} \tag{24}
\end{gather*}
$$

where (24) holds because otherwise $c y_{1}=d y_{1}$ divides $x_{2}^{\alpha} y_{1}^{\beta_{1}}$ in S, whence $x_{1} y_{1}$ divides $x_{2}^{\alpha} y_{1}^{\beta_{1}}$ in S, yielding $a \mid \eta$ in S.

Set $\alpha_{1}:=\min \left\{\alpha, s_{b}-1\right\}$ and $\alpha_{2}:=\alpha-\alpha_{1} \geqslant 0$.
(III.1.a) We first claim $x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}} \left\lvert\, \frac{b}{x_{2} y_{2}}\right.$. By condition (23) there are two possibilities:
(i) $x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}}=\frac{b}{x_{2}} y_{2}^{r}=\frac{b}{x_{2} y_{2}} y_{2}^{r+1}, \quad r \geqslant-t_{b}$,
(ii) $x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}}=\frac{b}{y_{2}} x_{2}^{r^{\prime}}, \quad r^{\prime} \geqslant-s_{b}$.

First consider (i): Suppose to the contrary that $r \geqslant 0$. By assumption $x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}}=\frac{b}{x_{2}} y_{2}^{r}$, so $\beta_{2}=t_{b}+r$, and therefore $\beta_{2} \geqslant t_{b}$.

If $\alpha_{2} \geqslant 1$ then $\alpha \geqslant 1+\alpha_{1}>\alpha_{1}$, so $\alpha_{1}=s_{b}-1$, whence

$$
\alpha \geqslant 1+\alpha_{1}=1+\left(s_{b}-1\right)=s_{b} .
$$

But then $\beta_{2} \geqslant t_{b}$ and $\alpha \geqslant s_{b}$, which implies $b=x_{2}^{s_{b}} y_{2}^{t_{b}} \mid x_{2}^{\alpha} y_{2}^{\beta_{2}}$, contrary to (23). Therefore the assumption $r \geqslant 0$ implies that $\alpha_{2}=0$, and so $\alpha=\alpha_{1}$. In this case,

$$
\eta=\frac{a}{x_{1} y_{1}} x_{2}^{\alpha} y_{1}^{\beta_{1}} y_{2}^{\beta_{2}}=\frac{a}{x_{1} y_{1}} x_{2}^{\alpha_{1}} y_{1}^{\beta_{1}} y_{2}^{\beta_{2}}=\frac{a}{x_{1} y_{1}} \frac{b}{x_{2} y_{2}} y_{2}^{r+1} y_{1}^{\beta_{1}}=\frac{a b}{\sigma} y_{2}^{r+1} y_{1}^{\beta_{1}}
$$

But η, $a b$, and σ are $\bar{\tau}$-images of cycles, so Lemma 3.4 implies there must exist a cycle with $\bar{\tau}$-image $y_{2}^{r+1} y_{1}^{\beta_{1}}$, a contradiction. Therefore

$$
\begin{equation*}
-t_{b} \leqslant r \leqslant-1 \tag{25}
\end{equation*}
$$

For (ii): By assumption $x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}}=\frac{b}{y_{2}} x_{2}^{r^{\prime}}$, so $\alpha_{1}=s_{b}+r^{\prime}$. But $\alpha_{1}<s_{b}$, so $r^{\prime} \leqslant-1$, yielding

$$
\begin{equation*}
-s_{b} \leqslant r^{\prime} \leqslant-1 \tag{26}
\end{equation*}
$$

By (25) and (26) we therefore have $x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}} \left\lvert\, \frac{b}{x_{2} y_{2}}\right.$, proving (III.1.a).
(III.1.b) We now claim $x_{2}^{\alpha_{2}} y_{1}^{\beta_{1}} \mid d$. Since $a b$ and σ are $\bar{\tau}$-images of cycles at i and $\frac{a}{x_{1} y_{1}} x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}}$ divides $\frac{a b}{x_{1} x_{2} y_{1} y_{2}}=\frac{a b}{\sigma}$ by (a), Lemma 3.4 implies that there must be a cycle at i whose $\bar{\tau}$-image is $\frac{a}{x_{1} y_{1}} x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}}$. But $\eta=\frac{a}{x_{1} y_{1}} x_{2}^{\alpha} y_{1}^{\beta_{1}} y_{2}^{\beta_{2}}$ is also the $\bar{\tau}$-image of a cycle, and so $x_{2}^{\alpha_{2}} y_{1}^{\beta_{1}}$ must be the $\bar{\tau}$-image of a cycle as well, again by Lemma 3.4. Therefore $x_{2}^{\alpha_{2}} y_{1}^{\beta_{1}}=d^{n}$ for some $n \geqslant 1$ by the uniqueness in Proposition 4.6. Furthermore, n must equal 1 for otherwise (24) would not hold, proving (III.1.b).

By (III.1.a) and (III.1.b), we have

$$
\left.\eta=\frac{a}{x_{1} y_{1}} x_{2}^{\alpha} y_{1}^{\beta_{1}} y_{2}^{\beta_{2}}=\frac{a}{x_{1} y_{1}}\left(x_{2}^{\alpha_{1}} y_{2}^{\beta_{2}}\right)\left(x_{2}^{\alpha_{2}} y_{1}^{\beta_{1}}\right) \right\rvert\, \frac{a b d}{\sigma} .
$$

Therefore, since η is the $\bar{\tau}$-image of a cycle at i, Lemma 3.4 implies that there is a cycle h at i whose $\bar{\tau}$-image is $\frac{a b d}{\sigma} \eta^{-1}$. If h is a cycle of positive length, then $\bar{\tau}(h) \in \mathfrak{m}$, yielding

$$
\eta=\frac{a b c}{\sigma} \bar{\tau}(h) \in(a, b, c-d) R,
$$

a contradiction to our choice of η. Therefore h must be a vertex, hence $\eta=\frac{a b c}{\sigma}$, which is not in $(a, b, c-d) R$ by (I). This proves our claim (III.1).
(III.2) Now suppose $\eta=\sum_{\ell} \eta_{\ell} \in S$ is a polynomial which is not in (a, b) S and satisfies (22). Then for any polynomial $p=\sum_{j} m_{j}$ in $\mathfrak{m S}$ with nonconstant monomials summands m_{j}, there are polynomials $\mu_{a}, \mu_{b} \in S$ such that

$$
\begin{equation*}
\eta p=\mu_{a} a+\mu_{b} b \tag{27}
\end{equation*}
$$

But any representative of a monomial in $S=R /(c-d)$ is a monomial in R, and R is a subalgebra of the polynomial ring B. Thus each monomial summand $\eta_{\ell} m_{j}$ on the left hand side of (27) equals some monomial summand on the right hand side, so $\eta_{\ell} m_{j}$ is in $(a) S$ or (b)S, and so is in (a, b)S. Furthermore, since m_{j} is a nonconstant monomial, $m_{j} \in \mathfrak{m S}$. Therefore we may apply (III.1) to conclude that η_{ℓ} is a scalar multiple of $\frac{a b c}{\sigma}$, so η itself is a scalar multiple of $\frac{a b c}{\sigma}$.
(IV) By (III.1) and (III.2), the only nonzero elements of $\operatorname{ann}_{R}(\mathfrak{m} /(a, b, c-d)$) are scalar multiples of $\frac{a b c}{\sigma}$. Thus upon localizing at \mathfrak{m} we have

$$
\operatorname{ann}_{R_{\mathfrak{m}}}\left(\mathfrak{m}_{\mathfrak{m}} /(a, b, c-d)\right)=\left\{\left.\frac{f}{g} \frac{a b c}{\sigma} \right\rvert\, f, g \in R \backslash \mathfrak{m}\right\} \cup\{0\}
$$

Therefore $\operatorname{ann}_{R_{\mathfrak{m}}}\left(\mathfrak{m}_{\mathfrak{m}} /(a, b, c-d)\right)$ is a simple $R_{\mathfrak{m}}$-module generated by $\frac{a b c}{\sigma}$.

4.3. Main result

Theorem 4.10. Let Z be the center of a square superpotential algebra. Then Z is a 3-dimensional normal domain and the localization $Z_{\mathfrak{m}}$ at the origin \mathfrak{m} of $\operatorname{Max} Z$ is Gorenstein.

Proof. Z is 3-dimensional by Proposition 4.3; normal by Lemma 4.4; and prime by Lemma 2.3. Furthermore, $Z_{\mathfrak{m}} \cong Z_{\mathfrak{m}} e_{i}$ is Gorenstein since $Z_{\mathfrak{m}}$ is Cohen-Macaulay by Remark 4.8; $(c-d, a, b)$ is a $Z_{\mathfrak{m}} e_{i}$-regular sequence by Lemma 4.7; and the zero-dimensional local ring $R=Z_{\mathfrak{m}} e_{i} /(c-d, a, b)_{\mathfrak{m}}$ has a simple socle by Proposition 4.9.

5. Classification of simple modules

Let A be a square superpotential algebra. In this section we classify all simple A-modules up to isomorphism, and describe their 'noncommutative residue fields' $A / \mathrm{ann}_{A} V$ in terms of V when V is a vertex simple or large A-module. We note that the only simple modules over the localization $A_{\mathfrak{m}}$ at the origin \mathfrak{m} of $\operatorname{Max} Z$ are the vertex simples (see Lemma 6.1 and Remark 6.2 below), whereas the non-localized algebra A has at least an affine varieties worth of simples.

Lemma 5.1. Let $A=k Q / I$ be a quiver algebra and suppose there exists an algebra monomorphism $\tau: A \rightarrow$ $\operatorname{End}_{B}\left(B^{\left|Q_{0}\right|}\right)$ such that $\tau\left(e_{i}\right)=E_{i i}$ and $\bar{\tau}\left(e_{i} A e_{i}\right)=\bar{\tau}\left(e_{j} A e_{j}\right) \subset B$ for each $i, j \in Q_{0}$. If V is a simple A-module then $\operatorname{dim}_{k} e_{i} V \leqslant 1$ for each $i \in Q_{0}$. Therefore V may be identified with a vector space diagram on Q where each arrow is represented by a scalar (possibly zero).

Proof. Suppose S is a finitely-generated k-algebra with a complete set of orthogonal idempotents L, V is a simple S-module, and $e_{i} \in L$. We first claim that $e_{i} V$ is a simple $e_{i} S e_{i}$-module or zero. Suppose to the contrary that $e_{i} V \neq 0$ is not a simple $e_{i} S e_{i}$-module. Then there exists a nonzero proper $e_{i} S e_{i}$-submodule $W \subsetneq e_{i} V$. Let $u \in e_{i} V \backslash W$ and $w \in W$, with w nonzero. Since V is a simple S-module there is an $a \in S$ such that $a w=u$. Since L is a complete set of idempotents, $S=\sum_{e_{j}, e_{k} \in L} e_{j} S e_{k}$, so we may write $a=\sum_{j, k} a_{j k}$ with $a_{j k} \in e_{j} S e_{k}$. But then by orthogonality,

$$
u=e_{i} u=e_{i}(a w)=e_{i} \sum_{j, k} a_{j k} w=e_{i} \sum_{j, k} e_{j} a_{j k} e_{k}\left(e_{i} w\right)=a_{i i} w
$$

so $a_{i i} w=u$ and $a_{i i} \in e_{i} S e_{i}$, contradicting our choice of w. Consequently if $e_{i} S e_{i}$ is a commutative finitely-generated k-algebra and k is algebraically closed, then $\operatorname{dim}_{k} e_{i} V \leqslant 1$. For the case $S=A$, $\left\{e_{i}\right\}_{i \in Q_{0}}$ is a complete set of orthogonal idempotents, and for each $i \in Q_{0}, e_{i} A e_{i}$ is commutative by Lemma 2.9 and finitely-generated by Lemma 2.10.

Theorem 5.2. Let A be a square superpotential algebra with impression (τ, B), and let V be a simple A-module. Set $\mathfrak{p}:=\operatorname{ann}_{A} V$ and $\mathfrak{m}:=\mathfrak{p} \cap Z \in \operatorname{Max} Z$. Then $\operatorname{dim}_{k} e_{i} V \leqslant 1$ for each $i \in Q_{0}$. Furthermore, one of the following holds.
(1) V is a vertex simple A-module, in which case $A / \mathfrak{p} \cong V$ as A-modules.
(2) V is supported on a single cycle c in A up to cyclic permutation.
(a) If Q is not McKay then $\bar{\tau}(c)$ is divisible by precisely two of $x_{1}, x_{2}, y_{1}, y_{2}$.
(b) If Q is McKay with τ defined in Proposition 4.5, then $\bar{\tau}(c)$ divisible by precisely one of x, y, z.
(3) V is a large A-module, in which case
(a) $A / \mathfrak{p} \cong V^{\left|Q_{0}\right|}$ as A-modules;
(b) there is a point $\mathfrak{q} \in \operatorname{Max} B$ such that $V \cong(B / \mathfrak{q})^{\left|Q_{0}\right|}$, where the module structure of $(B / \mathfrak{q})^{\left|Q_{0}\right|}$ is given by av $:=\tau_{\mathfrak{q}}(a) v$; and
(c) the projective dimension of V is determined by \mathfrak{m} :

$$
\operatorname{pd}_{A}(V)=\operatorname{pd}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}\right)=\operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right)
$$

Proof. Lemma 5.1 applies since (τ, B) is an impression of A by Theorem 3.7.
If V is the vertex simple A-module at $i \in Q_{0}$, then there is an obvious A-module isomorphism $A / \mathfrak{p} \rightarrow V=k v$ given by $e_{i} \mapsto v$, where $0 \neq v \in V$.

So suppose V is a non-vertex simple A-module. Then there is an arrow g that does not annihilate V; set $i=\mathrm{t}(\mathrm{g})$. Since V is simple, g must be a subpath of a cycle $c \in e_{i} A e_{i}$ that does not annihilate V. But then $c^{n} \notin \operatorname{ann}_{A} V$ for any $n \geqslant 1$ by Lemma 5.1. Therefore we may suppose c has no cyclic proper subpaths.

We first consider the case where Q is not McKay. Suppose at least three of $x_{1}, x_{2}, y_{1}, y_{2}$ divide $\bar{\tau}(c)$, say x_{1}, x_{2}, and y_{1}. Pick $j \in Q_{0}$. Clearly there is a path p from i to j whose $\bar{\tau}$-image
is only divisible by x_{1}, x_{2}, and y_{1}. For $n \geqslant 1$ sufficiently large, $\bar{\tau}\left(c^{n}\right)=m \bar{\tau}(p)$ for some monomial $m \in B$. Thus by Lemma 3.4 there exists a path $q \in e_{i} A e_{j}$ such that $c^{n}=q p$ (and $\bar{\tau}(q)=m$). But then $q e_{j} p=c^{n} \notin \operatorname{ann}_{A} V$, so $e_{j} \notin \operatorname{ann}_{A} V$. Thus $\operatorname{dim}_{k} V \geqslant\left|Q_{0}\right|$. But $\operatorname{dim}_{k} V \leqslant\left|Q_{0}\right|$ by Lemma 5.1, whence $\operatorname{dim}_{k} V=\left|Q_{0}\right|$, so V is a large module. By Corollary 3.8, A is prime, noetherian, and module-finite over Z. Therefore (a) follows from Lemma 2.14; (b) follows from Proposition 2.5; and (c) follows from Theorem 2.16.

Otherwise suppose that the $\bar{\tau}$-image of each cycle that does not annihilate V, including c, is divisible by at most two of $x_{1}, x_{2}, y_{1}, y_{2}$. Since we are assuming that Q is not McKay, Proposition 4.5 implies that c is divisible by precisely two of $x_{1}, x_{2}, y_{1}, y_{2}$. Since the underlying graph of \widetilde{Q} embeds into the plane, it is not possible for $\bar{\tau}(c)=x_{1}^{m} x_{2}^{n}$ or $\bar{\tau}(c)=y_{1}^{m} y_{2}^{n}$ for any $m, n \geqslant 1$. Therefore $\bar{\tau}(c)=$ $x_{\alpha}^{m} y_{\beta}^{n}$ for some $m, n \geqslant 1$ and $\alpha, \beta \in\{1,2\}$.

If there is a cycle d at i whose $\bar{\tau}$-image is divisible by $x_{\alpha+1}$ or $y_{\beta+1}$ (indices modulo 2) and does not annihilate V, then the cycle $c d$ has $\bar{\tau}$-image divisible by three of $x_{1}, x_{2}, y_{1}, y_{2}$ and does not annihilate V, contrary to our assumption. Moreover, by Proposition $4.6 c$ is the only cycle at i without cyclic proper subpaths whose $\bar{\tau}$-image is divisible by x_{α} and y_{β} (modulo ∂W). Therefore the only cycles at i which do not annihilate V are c^{n} for $n \geqslant 0$, with $c^{0}=e_{i}$.

If e_{j} does not annihilate V, then e_{j} and e_{i} must be contained in a cycle that does not annihilate V since V is simple. Thus e_{j} must be a vertex subpath of c^{n} for some $n \geqslant 0 . V$ will then be large if and only if each vertex is a subpath of c^{n} (modulo ∂W) for sufficiently large n.

We now consider the case where Q is Mckay. Suppose at least two of x, y, z divide $\bar{\tau}(c)$, say x and y. Pick $j \in Q_{0}$. There is a path p from i to j whose $\bar{\tau}$-image is only divisible by x and y, so we may apply the argument in the non-McKay case to conclude that V is a large module.

Otherwise suppose that the $\bar{\tau}$-image of each cycle that does not annihilate V, including c, is divisible by precisely one of x, y, z; say $\bar{\tau}(c)=x^{n}$ for some $n \geqslant 1$. If there is a cycle d at i whose $\bar{\tau}$-image is divisible by y or z and does not annihilate V, then the cycle $c d$ has $\bar{\tau}$-image divisible by two of x, y, z and does not annihilate V, contrary to our assumption. Moreover, c is the only cycle at i without cyclic proper subpaths whose $\bar{\tau}$-image is divisible by x. Therefore the only cycles at i which do not annihilate V are c^{n} for $n \geqslant 0$, again with $c^{0}=e_{i}$. As in the non-McKay case, V will then be large if and only if each vertex is a subpath of c^{n} for sufficiently large n.

6. Noncommutative crepant resolutions

We recall two definitions. A noncommutative crepant resolution of a normal Gorenstein domain R is a homologically homogeneous R-algebra of the form $A=\operatorname{End}_{R}(M)$, where M is a reflexive R-module [V, Definition 4.1]. Furthermore, a ring A which is a finitely-generated module over a central normal Gorenstein subdomain R is Calabi-Yau of dimension n if (i) $\operatorname{gl} \cdot \operatorname{dim} A=K \cdot \operatorname{dim} R=n$; (ii) A is a maximal Cohen-Macaulay module over R; and (iii) $\operatorname{Hom}_{R}(A, R) \cong A$, as A-bimodules [Br, Introduction].

Throughout \mathfrak{m} will denote the origin of $\operatorname{Max} Z$, which is defined to be the Z-annihilator of the vertex simple A-modules. The main result of this section is that the localization $A_{\mathfrak{m}}$ of a square superpotential algebra A is a noncommutative crepant resolution of $Z_{\mathfrak{m}}$, and consequently a local Calabi-Yau algebra. Section 6.2 is based on joint work with Alex Dugas.

6.1. Homological homogeneity

In this section we show that the localization $A_{\mathfrak{m}}=Z_{\mathfrak{m}} \otimes_{Z} A$ of a square superpotential algebra A at the origin \mathfrak{m} of $\operatorname{Max} Z$ is homologically homogeneous with global dimension 3. Recall that if S is a commutative noetherian equidimensional k-algebra and A is a module-finite S-algebra, then A is homologically homogeneous if all simple A-modules have the same projective dimension (see [BH], [V , Section 3]). We denote by V^{i} the vertex simple A-module in which every path, with the exception of vertex i, is represented by zero. In physics terms, the vertex simples are (often) the fractional branes that probe the apex of a tangent cone on a singular Calabi-Yau variety.

Lemma 6.1. Let $A=k Q / I$ be a quiver algebra that admits a pre-impression (τ, B) such that (4) holds. Then the only simple modules over the localization $A_{\mathfrak{m}}$ of A at the origin \mathfrak{m} of $\operatorname{Max} Z$ are the vertex simples.

Proof. Suppose $V_{\mathfrak{m}}=Z_{\mathfrak{m}} \otimes_{Z} V$ is a simple $A_{\mathfrak{m}}$-module which is not annihilated by $1 \otimes a$, where a is an arrow. Then clearly V is a simple A-module not annihilated by a.

By Theorem 5.2, $\operatorname{dim}_{k} e_{j} V \leqslant 1$ for each $j \in Q_{0}$. Thus, viewing V as a vector space diagram on Q, a is represented by a nonzero scalar. Since V is simple, a must be contained in some cycle $c_{i} \in e_{i} A e_{i}$ that is also represented by a nonzero scalar $\rho\left(c_{i}\right)$. By Theorem 2.11 there is a central element $c=$ $\sum_{j \in Q_{0}} c_{j} \in Z$, where each $c_{j} \in e_{j} A e_{j}$ is a cycle. If $\rho\left(c_{j}\right)$ is nonzero, then since V is simple there must be a path q from i to j such that $\rho(q)$ is nonzero. But then $\rho(q) \rho\left(c_{i}\right)=\rho\left(q c_{i}\right)=\rho\left(c_{j} q\right)=\rho\left(c_{j}\right) \rho(q)$. Dividing both sides by $\rho(q)$ we find

$$
\rho\left(c_{j}\right)= \begin{cases}\rho\left(c_{i}\right) & \text { if } e_{j} V \neq 0 \tag{28}\\ 0 & \text { if } e_{j} V=0\end{cases}
$$

Set $\gamma=\rho\left(c_{i}\right) 1_{A}$. Then (28) implies that $c-\gamma$ annihilates V.
Again by Theorem 2.11, $\bar{\tau}\left(c_{j}\right)=\bar{\tau}\left(c_{i}\right)$ for each $j \in Q_{0}$. Thus, since c_{i} is a cycle of nonzero length, each cycle summand c_{i} of c will have nonzero length. Therefore c annihilates each vertex simple, and so $c-\gamma$ annihilates no vertex simple. In particular, $c-\gamma \in Z \backslash \mathfrak{m}$.

Therefore, for any $1 \otimes v \in V_{\mathfrak{m}}$,

$$
1 \otimes v=\frac{c-\gamma}{c-\gamma} \otimes v=\frac{1}{c-\gamma} \otimes(c-\gamma) v=0
$$

whence $V_{\mathfrak{m}}=0$.
Remark 6.2. Lemma 6.1 does not hold in general. For example, if A is a non-cancellative superpotential algebra obtained from a brane tiling then its center will be nonnoetherian, and the simple module isoclasses over the localization $A_{\mathfrak{m}}$ of A at the origin \mathfrak{m} of $\operatorname{Max} Z$ (i.e., the Z-annihilator of the vertex simples) will be parameterized by a positive dimensional affine variety; see [B2].

We establish notation. If $g, h \in Q_{1}$, set $\delta_{h, g}=e_{\mathrm{t}(g)}+e_{\mathrm{h}(\mathrm{g})}$ if $g=h$ and 0 otherwise. For $p=$ $g_{n} \cdots g_{1} \in Q \geqslant 1, g_{i}, h \in Q_{1}$, set

$$
\begin{aligned}
\vec{\delta}_{h} p & :=\delta_{h, g_{n}} g_{n-1} \cdots g_{1} \\
p \overleftarrow{\delta}_{h} & :=g_{n} \cdots g_{2} \delta_{h, g_{1}}
\end{aligned}
$$

and for any $i \in Q_{0}$,

$$
\vec{\delta}_{h} e_{i}=e_{i} \overleftarrow{\delta}_{h}:=0
$$

Extend k-linearly to $k Q$.
Lemma 6.3. Let Q be a quiver and $W \in \operatorname{tr}\left(k Q_{\geqslant 2}\right)$ a superpotential. Then for each $i \in Q_{0}, g \in Q_{1} e_{i}$, and $h \in e_{i} Q_{1}$,

$$
\vec{\delta}_{h}\left(\partial_{g} W\right)=\left(\partial_{h} W\right) \overleftarrow{\delta}_{g}=: W_{h g}
$$

Consequently

$$
\begin{equation*}
\partial_{h} W=\sum_{g \in Q_{1} e_{i}} W_{h g} g \quad \text { and } \quad \partial_{g} W=\sum_{h \in e_{i} Q_{1}} h W_{h g} \tag{29}
\end{equation*}
$$

Proof. Let $i \in Q_{0}$ and $p=\left(d_{n} g h\right) \cdots\left(d_{2} g h\right)\left(d_{1} g h\right) \in e_{i} Q \geqslant 1 e_{i}$, with $g, h \in Q_{1}$ and $g h$ not a subpath of d_{j} for each $1 \leqslant j \leqslant n$ (though g or h separately may be). Then

$$
\begin{aligned}
& \partial_{g} \sum_{\text {cyc }} p=\left(h d_{n} g h \cdots d_{1}\right)+\left(h d_{n-1} g h \cdots d_{n}\right)+\cdots+\left(h d_{1} g h \cdots d_{2}\right)+A, \\
& \partial_{h} \sum_{\text {cyc }} p=\left(d_{n} g h \cdots d_{1} g\right)+\left(d_{n-1} g h \cdots d_{n} g\right)+\cdots+\left(d_{1} g h \cdots d_{2} g\right)+B,
\end{aligned}
$$

where $\vec{\delta}_{h} A=B \overleftarrow{\delta}_{g}=0$. Thus

$$
\begin{aligned}
\vec{\delta}_{h}\left(\partial_{g} \sum_{\mathrm{cyc}} p\right) & =\left(d_{n} g h \cdots d_{1}\right)+\left(d_{n-1} g h \cdots d_{n}\right)+\cdots+\left(d_{1} g h \cdots d_{2}\right) \\
& =\left(\partial_{h} \sum_{\mathrm{cyc}} p\right) \overleftarrow{\delta}_{g}
\end{aligned}
$$

Lemma 6.4. Let $A=k Q / \partial W$ be a square superpotential algebra with center Z, let \mathfrak{m} be the maximal ideal at the origin of $\operatorname{Max} Z$, and let $V_{\mathfrak{m}}^{i}$ be the vertex simple $A_{\mathfrak{m}}$-module at $i \in Q_{0}$. Write $Q_{1} e_{i}=\left\{g_{1}, \ldots, g_{n}\right\}$, $e_{i} Q_{1}=\left\{h_{1}, \ldots, h_{n}\right\}$, and set $\mathfrak{p}_{\mathfrak{m}}:=\operatorname{ann}_{A_{\mathfrak{m}}} V_{\mathfrak{m}}^{i}$. Then the sequence

$$
\begin{align*}
& 0 \rightarrow A_{\mathfrak{m}} e_{i} \xrightarrow{\delta_{2}:=\cdot\left[h_{1} \cdots h_{n}\right]} \bigoplus_{1 \leqslant k \leqslant n} A_{\mathfrak{m}} e_{\mathrm{t}\left(h_{k}\right)} \\
& \xrightarrow{\delta_{1}:=\left[W_{h_{k} g_{j}}\right]_{k, j}} \bigoplus_{1 \leqslant j \leqslant n} A_{\mathfrak{m}} e_{\mathrm{h}\left(g_{j}\right)} \xrightarrow{\delta_{0}:=\cdot\left[\begin{array}{c}
g_{1} \\
\vdots \\
g_{n}
\end{array}\right]} A_{\mathfrak{m}} e_{i} \xrightarrow{\phi=\cdot 1} A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}} \cong V_{\mathfrak{m}}^{i} \rightarrow 0, \tag{30}
\end{align*}
$$

is a projective complex.
Proof. Note that the modules $\bigoplus_{1 \leqslant k \leqslant n} A_{\mathfrak{m}} e_{\mathrm{t}\left(h_{k}\right)}$ and $\bigoplus_{1 \leqslant j \leqslant n} A_{\mathfrak{m}} e_{\mathrm{h}\left(g_{j}\right)}$ are considered as row spaces. Each term of the sequence is a direct summand of a free A-module and so is projective. The sequence is a complex by Lemma 6.3.

We call (30) the Berenstein-Douglas complex. In [BD, Section 5.5], Berenstein and Douglas constructed this complex for a general superpotential algebra A and raised the question: under what conditions is this complex a projective resolution of a vertex simple A-module? We will show by example that in general the complex may fail to be exact in both the second and third terms. However, we will also show that when A is a square superpotential algebra the complex is indeed a projective resolution of any vertex simple module.

Lemma 6.5. Let $A=k Q / \partial W$ be a square superpotential algebra and V a vertex simple A-module. Then $\operatorname{im} \delta_{2}=\operatorname{ker} \delta_{1}$ and $\operatorname{im} \delta_{1}=\operatorname{ker} \delta_{0}$ in the Berenstein-Douglas complex.

Proof. (i) We first show that $\operatorname{im} \delta_{2}=\operatorname{ker} \delta_{1}$. By Lemma 6.4 it suffices to show that $\operatorname{im} \delta_{2} \supseteq \operatorname{ker} \delta_{1}$. Order the sets $Q_{1} e_{i}=\left\{g_{1}, \ldots, g_{n}\right\}$ and $e_{i} Q_{1}=\left\{h_{1}, \ldots, h_{n}\right\}$ both clockwise, such that $g_{1} h_{1}$ a subpath of a term of W. Then

$$
\delta_{1}=\cdot\left[W_{h_{k} g_{j}}\right]_{k, j}=\cdot\left[\begin{array}{cccc}
a_{1} & 0 & \cdots & -b_{m} \\
-b_{1} & a_{2} & & 0 \\
0 & -b_{2} & & 0 \\
\vdots & & \ddots & \\
0 & 0 & & a_{m}
\end{array}\right] \text {, }
$$

where each a_{ℓ}, b_{ℓ} is nonzero. Suppose $\left[\begin{array}{ccc}d_{1} & \cdots & d_{n}\end{array}\right] \in \operatorname{ker} \delta_{1}$. Then $d_{\ell} a_{\ell}-d_{\ell+1} b_{\ell}=0$ for each $1 \leqslant$ $\ell \leqslant n$ (indices modulo n). By Corollary 2.12, $d_{\ell} a_{\ell}$ and $d_{\ell+1} b_{\ell}$ are each nonzero. Thus they must be in the same corner ring, hence $d_{\ell}, d_{\ell+1} \in e_{j} A$ for some $j \in Q_{0}$. Since this holds for each ℓ, we have $\left\{d_{1}, \ldots, d_{n}\right\} \subset e_{j} A$. Furthermore,

$$
\bar{\tau}\left(d_{\ell}\right) \bar{\tau}\left(a_{\ell}\right) E_{j, \mathrm{t}\left(a_{\ell}\right)}=\tau\left(d_{\ell} a_{\ell}\right)=\tau\left(d_{\ell+1} b_{\ell}\right)=\bar{\tau}\left(d_{\ell+1}\right) \bar{\tau}\left(b_{\ell}\right) E_{j, \mathrm{t}\left(b_{\ell}\right)}
$$

so $\bar{\tau}\left(d_{\ell}\right) \bar{\tau}\left(a_{\ell}\right)=\bar{\tau}\left(d_{\ell+1}\right) \bar{\tau}\left(b_{\ell}\right)$ since $\mathrm{t}\left(a_{\ell}\right)=\mathrm{h}\left(g_{\ell}\right)=\mathrm{t}\left(b_{\ell}\right)$. In addition, $h_{\ell} a_{\ell}-h_{\ell+1} b_{\ell}=0$. Therefore for each ℓ,

$$
\frac{\bar{\tau}\left(d_{\ell}\right)}{\overline{\bar{\tau}}\left(d_{\ell+1}\right)}=\frac{\bar{\tau}\left(b_{\ell}\right)}{\bar{\tau}\left(a_{\ell}\right)}=\frac{\bar{\tau}\left(h_{\ell}\right)}{\bar{\tau}\left(h_{\ell+1}\right)} .
$$

Thus

$$
\begin{equation*}
\frac{\bar{\tau}\left(d_{\ell+1}\right)}{\overline{\bar{\tau}}\left(h_{\ell+1}\right)}=\frac{\bar{\tau}\left(d_{\ell}\right)}{\bar{\tau}\left(h_{\ell}\right)}=\frac{r_{1}}{r_{2}} \in \operatorname{Frac} B, \tag{31}
\end{equation*}
$$

with $r_{1}, r_{2} \in B$ coprime.
Since $\bar{\tau}\left(d_{\ell}\right)$ and $\bar{\tau}\left(h_{\ell}\right)$ are elements of B and (31) holds for each ℓ, it must be that $r_{2} \mid \bar{\tau}\left(h_{\ell}\right)$ for each ℓ. But there are (two sets of) two arrows in $e_{i} Q_{1}$ whose $\bar{\tau}$-images are coprime in B, so $r_{2}=1$. This, together with (31) and $\mathrm{t}\left(d_{\ell}\right)=\mathrm{t}\left(h_{\ell}\right)$, implies that there is a path $p \in e_{\mathrm{h}\left(d_{\ell}\right)} A e_{\mathrm{h}\left(h_{\ell}\right)}=e_{j} A e_{i}$ such that $d_{\ell}=p h_{\ell}$ and $\bar{\tau}(p)=r_{1}$ by Lemma 3.4. Since this holds for each ℓ, we have

$$
\left[\begin{array}{lll}
d_{1} & \cdots & d_{n}
\end{array}\right]=p\left[\begin{array}{lll}
h_{1} & \cdots & h_{n}
\end{array}\right] \in \operatorname{im} \delta_{2} .
$$

(ii) We now show that $\operatorname{im} \delta_{1}=\operatorname{ker} \delta_{0}$, and again by Lemma 6.4 it suffices to show that $\operatorname{im} \delta_{1} \supseteq$ $\operatorname{ker} \delta_{0}$. Suppose $\left[\begin{array}{lll}d_{1} & \cdots & d_{n}\end{array}\right] \in \operatorname{ker} \delta_{0}$, so $d_{1} g_{1}+\cdots+d_{n} g_{n}=0$. By Corollary 2.12, each $d_{\ell} g_{\ell}$ is nonzero, so we may assume $\left\{d_{1}, \ldots, d_{n}\right\} \subset e_{j} A$ for some $j \in Q_{0}$. Furthermore, since the relations ∂W are generated by binomials, it suffices to suppose $d_{\ell} g_{\ell}+d_{\ell+1} g_{\ell+1}=0$. In addition, $-b_{\ell} g_{\ell}+a_{\ell+1} g_{\ell+1}=0$. Thus, similar to (i) we have

$$
\frac{\bar{\tau}\left(d_{\ell}\right)}{\bar{\tau}\left(d_{\ell+1}\right)}=\frac{-\bar{\tau}\left(g_{\ell+1}\right)}{\bar{\tau}\left(g_{\ell}\right)}=\frac{-\bar{\tau}\left(b_{\ell}\right)}{\bar{\tau}\left(a_{\ell+1}\right)} .
$$

Therefore

$$
\begin{equation*}
\frac{\bar{\tau}\left(d_{\ell}\right)}{\bar{\tau}\left(b_{\ell}\right)}=\frac{-\bar{\tau}\left(d_{\ell+1}\right)}{\bar{\tau}\left(a_{\ell+1}\right)}=\frac{r_{1}}{r_{2}} \in \operatorname{Frac} B, \tag{32}
\end{equation*}
$$

with $r_{1}, r_{2} \in B$ coprime. Moreover,

$$
\frac{-\bar{\tau}\left(d_{\ell+1}\right) \bar{\tau}\left(b_{\ell}\right)}{\bar{\tau}\left(a_{\ell+1}\right)}=\bar{\tau}\left(d_{\ell}\right) \in B
$$

and since $\bar{\tau}\left(a_{\ell+1}\right)$ and $\bar{\tau}\left(b_{\ell}\right)$ are coprime in B, it must be that $\bar{\tau}\left(a_{\ell+1}\right) \mid \bar{\tau}\left(d_{\ell+1}\right)$. Thus $r_{2}=1$. Therefore, similar to (i), (32) implies that there is path p such that $\bar{\tau}(p)=r_{1}$ and

$$
\left[\begin{array}{llllll}
0 & \cdots & d_{\ell} & d_{\ell+1} & \cdots & 0
\end{array}\right]=p\left[\begin{array}{llllll}
0 & \cdots & -b_{\ell} & a_{\ell+1} & \cdots & 0
\end{array}\right] \in \operatorname{im}\left(\delta_{1}\right)
$$

It follows that $\operatorname{ker} \delta_{0} \subseteq \operatorname{im} \delta_{1}$, whence $\operatorname{ker} \delta_{0}=\operatorname{im} \delta_{1}$.

Recall that a submodule K of a module M is superfluous if given any submodule $L \subseteq M$ satisfying $L+K=M$, we have $L=M$. Furthermore, a module epimorphism $\delta: M \rightarrow N$ is a projective cover if M is projective and $\operatorname{ker} \delta \subseteq M$ is a superfluous submodule.

Lemma 6.6. Let $A=k Q / I$ be a quiver algebra that admits a pre-impression (τ, B) such that (4) holds, let $\mathfrak{m} \in \operatorname{Max} Z$, and let N be an $A_{\mathfrak{m}}$-module. Suppose

$$
\delta: \bigoplus_{j=1}^{n} A_{\mathfrak{m}} e_{i(j)} \rightarrow N, \quad i(j) \in Q_{0}
$$

is an $A_{\mathfrak{m}}$-module epimorphism. If for each j, the intersection of $Z_{\mathfrak{m}} e_{i(j)}$ with the j-th summand of $\operatorname{ker} \delta$ is contained in $\mathfrak{m}_{\mathfrak{m}} e_{i(j)}$, then δ is a projective cover.

Proof. Let L be a submodule of $\bigoplus_{j} A_{\mathfrak{m}} e_{i(j)}$ such that $\operatorname{ker} \delta+L=\bigoplus_{j} A_{\mathfrak{m}} e_{i(j)}$. We claim that $L=$ $\bigoplus_{j} A_{\mathfrak{m}} e_{i(j)}$. Fix j and set $i:=i(j)$. Since $e_{i} \in Z_{\mathfrak{m}} e_{i}$ but $e_{i} \notin \mathfrak{m}_{\mathfrak{m}} e_{i}$, our intersection assumption implies that $e_{i} \notin \operatorname{ker} \delta$. Thus there must be some $b \in \operatorname{ker} \delta$ such that $e_{i}=(-b)+\left(e_{i}+b\right) \in \operatorname{ker} \delta+L$ with $e_{i}+b \in L$. Since e_{i} lives in the j-th summand of $\bigoplus_{\ell} A_{\mathfrak{m}} e_{i(\ell)}$, we may assume b also lives in the j-th summand. Therefore by Theorem 2.11 and our intersection assumption,

$$
e_{i} b \in(\operatorname{ker} \delta)_{j} \cap e_{i} A_{\mathfrak{m}} e_{i}=(\operatorname{ker} \delta)_{j} \cap Z_{\mathfrak{m}} e_{i} \subseteq \mathfrak{m}_{\mathfrak{m}} e_{i}
$$

so $e_{i} b=z e_{i}$ for some $z \in \mathfrak{m}_{\mathfrak{m}}$. Thus the element $(1+z)$ has an inverse in $A_{\mathfrak{m}}$, so

$$
e_{i}=(1+z)^{-1}(1+z) e_{i}=(1+z)^{-1} e_{i}\left(e_{i}+b\right) \in L
$$

Since this holds for each j, we have $L \supseteq \bigoplus_{j} A_{\mathfrak{m}} e_{i(j)}$, yielding $L=\bigoplus_{j} A_{\mathfrak{m}} e_{i(j)}$. Therefore ker δ is superfluous. Finally, since $\bigoplus_{j} A_{\mathfrak{m}} e_{i(j)}$ is a projective $A_{\mathfrak{m}}$-module, δ is a projective cover.

Proposition 6.7. Let A be a square superpotential algebra. If V is a vertex simple A-module with annihilator \mathfrak{p} then

$$
\operatorname{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}\right)=\operatorname{pd}_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}\right)=3,
$$

and (30) is a minimal projective resolution of $V_{\mathfrak{m}} \cong A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}$.
Proof. The Berenstein-Douglas sequence (30) is a projective resolution since it is a complex by Lemma $6.4 ; \operatorname{im} \delta_{2}=\operatorname{ker} \delta_{1}$ and $\operatorname{im} \delta_{1}=\operatorname{ker} \delta_{0}$ by Lemma 6.5 ; and $\operatorname{ker} \delta_{2}=0$ by Corollary 2.12.

Furthermore, $\operatorname{ker} \phi=\mathfrak{p}_{\mathfrak{m}} e_{i}$ is generated by paths of nonzero length that start at i, and the kernels of δ_{0}, δ_{1}, and δ_{2} are generated by certain sums of paths of nonzero length. It follows that the hypotheses of Lemma 6.6 are satisfied in each case, and so the boundary homomorphisms $\phi, \delta_{0}, \delta_{1}, \delta_{2}$ are projective covers. Therefore $\mathrm{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}\right) \geqslant 3$, whence $\mathrm{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}\right)=3$, and so the Berenstein-Douglas resolution is a minimal projective resolution of $V_{\mathfrak{m}}$.

We note that unlike the localized case we are considering, the A-module homomorphism $A e_{i} \xrightarrow{-1}$ A / \mathfrak{p} may not be a projective cover.

The following three superpotential algebras are examples where exactness fails in the second term, $\operatorname{im} \delta_{2} \subsetneq \operatorname{ker} \delta_{1}$, of the Berenstein-Douglas complex. Each algebra has a nontrivial noetherian center - specifically 1-dimensional - and infinite global dimension. In each case we show how the second connecting map may be realized in two different ways, which is why the exactness fails. V^{i} denotes the vertex simple at $i \in Q_{0}$, and the map $A e_{i} \xrightarrow{\cdot 1} V^{i}$ is defined via the A-module isomorphism $V^{i} \cong A / \operatorname{ann}_{A} V^{i}$.

Example 6.8.

- $Q: G W=a^{2} b$, so $Z=k\left[b^{2}\right]$.
A has infinite global dimension since the vertex simple V has projective resolution

$$
\cdots \xrightarrow{\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right]} A^{2} \xrightarrow{\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]} A^{2} \xrightarrow{\left[\begin{array}{ll}
b & a \\
a & 0
\end{array}\right]} A^{2} \xrightarrow{\left[\begin{array}{l}
a \\
b
\end{array}\right]} A \xrightarrow{\cdot 1} V \rightarrow 0 .
$$

The second map, δ_{1}, satisfies

$$
\left[\begin{array}{ll}
W_{a a} & W_{a b} \\
W_{b a} & W_{b b}
\end{array}\right]=\left[\begin{array}{cc}
* & * \\
W_{a b} & 0
\end{array}\right] .
$$

- Q :
 $W=c_{1} b a-c_{2} a b$, so $Z=k\left[c_{1}+c_{2}\right]$.

A has infinite global dimension:

$$
\cdots \xrightarrow{\left[\begin{array}{cc}
a & -c_{2} \\
0 & b
\end{array}\right]} A e_{1} \oplus A e_{2} \xrightarrow{\left[\begin{array}{ll}
b & c_{1} \\
0 & a
\end{array}\right]} A e_{2} \oplus A e_{1} \xrightarrow{\left[\begin{array}{cc}
a & -c_{2} \\
0 & b
\end{array}\right]} A e_{1} \oplus A e_{2} \xrightarrow{\cdot\left[\begin{array}{c}
c_{1} \\
a
\end{array}\right]} A e_{1} \xrightarrow{\cdot 1} V^{1} \rightarrow 0
$$

δ_{1} satisfies

$$
\left[\begin{array}{cc}
W_{b c_{1}} & W_{b a} \\
W_{c_{1} c_{1}} & W_{c_{1} a}
\end{array}\right]=\left[\begin{array}{cc}
* & * \\
0 & W_{a c_{2}}
\end{array}\right] .
$$

- Q :

W given by (1), with

A has infinite global dimension:

$$
\cdots \rightarrow A e_{5} \oplus A e_{3} \xrightarrow{\left[\begin{array}{ll}
y_{6} & x_{4} \\
x_{6} & y_{4}
\end{array}\right]} A e_{6} \oplus A e_{4} \xrightarrow{\cdot\left[\begin{array}{cc}
y_{1} & -x_{2} \\
-x_{1} & y_{2}
\end{array}\right]} A e_{1} \oplus A e_{2}
$$

$$
\xrightarrow{\left[\begin{array}{ll}
x_{5} & y_{3} \\
y_{5} & x_{3}
\end{array}\right]} A e_{5} \oplus A e_{3} \xrightarrow{\cdot\left[\begin{array}{cc}
x_{4} & -y_{6} \\
-y_{4} & x_{6}
\end{array}\right]} A e_{4} \oplus A e_{6} \xrightarrow{\cdot\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]} A e_{1} \xrightarrow{\cdot 1} V^{1} \rightarrow 0
$$

δ_{1} satisfies

$$
\left[\begin{array}{ll}
W_{x_{5} x_{1}} & W_{x_{5} y_{1}} \\
W_{y_{3} x_{1}} & W_{y_{3} y_{1}}
\end{array}\right]=\left[\begin{array}{ll}
W_{y_{5} y_{2}} & W_{y_{5} x_{2}} \\
W_{x_{3} y_{2}} & W_{x_{3} x_{2}}
\end{array}\right] .
$$

Next we consider a family of superpotential algebras where exactness fails in the third term, $\operatorname{ker} \delta_{2} \neq 0$. Each algebra has a nontrivial noetherian center (again 1-dimensional) and infinite global dimension.

Example 6.9. Let Q be the cycle quiver, consisting of a single oriented cycle $c=a_{n} \cdots a_{2} a_{1}, a_{i} \in Q_{1}$, up to cyclic equivalence, and let $W \in k[c]$. Then $Z \cong k[c] /\left(\frac{d W}{d c}\right)$.

If not both $n=1$ and $W=c^{2}$ then the global dimension of A is infinite:

$$
\begin{aligned}
& \cdots \rightarrow A e_{\mathrm{h}\left(a_{n-1}\right)} \xrightarrow{a_{n-1}} A e_{\mathrm{t}\left(a_{n-1}\right)} \xrightarrow{\cdot W_{a_{n-1}, a_{n}}} A e_{\mathrm{h}\left(a_{n}\right)} \xrightarrow{\cdot a_{n}} A e_{\mathrm{t}\left(a_{n}\right)} \\
& \quad \xrightarrow{\cdot W_{a_{n}, a_{1}}} A e_{\mathrm{h}\left(a_{1}\right)} \xrightarrow{\cdot a_{1}} A e_{\mathrm{t}\left(a_{1}\right)} \xrightarrow{\cdot 1} V^{\mathrm{t}\left(a_{1}\right)} \rightarrow 0 .
\end{aligned}
$$

6.2. Endomorphism rings

This section is based on joint work with Alex Dugas. We show that a square superpotential algebra is an endomorphism ring of a reflexive module over its center. For motivation, see [V, Section 4]. ${ }^{7}$

Note that $e_{i} A e_{k}$ is a Z-module for each $i \in Q_{0}$: if $z \in Z, a \in e_{i} A e_{k}$, then $z a=z e_{i} a=e_{i} z a \in e_{i} A e_{k}$.
Lemma 6.10. Let A be a square superpotential algebra. Then for each $i, j, k \in Q_{0}$, there is an isomorphism

$$
\begin{align*}
e_{j} A e_{i} & \xlongequal{\cong} \operatorname{Hom}_{Z}\left(e_{i} A e_{k}, e_{j} A e_{k}\right), \\
d & \mapsto f_{d} \tag{33}
\end{align*}
$$

where $f_{d}(a)=d a$.
Proof. Surjectivity: Suppose $f \in \operatorname{Hom}_{Z}\left(e_{i} A e_{k}, e_{j} A e_{k}\right)$. We want to show that there is some $d \in e_{j} A e_{i}$ such that $f=f_{d}$ is left multiplication by d, which then implies (33) is surjective.

Fix an element $a \in e_{i} A e_{k}$ and a path $h \in e_{k} A e_{i}$. By Theorem 2.11, $e_{i} A e_{i}=Z e_{i}$, so there is some $z \in Z$ such that $z e_{i}=a h$. Similarly, for any $a^{\prime} \in e_{i} A e_{k}$ there is some $z^{\prime} \in Z$ such that $z^{\prime} e_{k}=h a^{\prime}$, whence

$$
z^{\prime} f(a)-z f\left(a^{\prime}\right)=f\left(z^{\prime} a-z a^{\prime}\right)=f\left(a z^{\prime}-z a^{\prime}\right)=f\left(a\left(h a^{\prime}\right)-(a h) a^{\prime}\right)=f(0)=0
$$

Thus, since B is a domain,

$$
\begin{equation*}
\frac{\bar{\tau}\left(a^{\prime}\right) \bar{\tau}(f(a))}{\bar{\tau}(a)}=\frac{\bar{\tau}\left(z^{\prime}\right) \bar{\tau}(f(a))}{\bar{\tau}(z)}=\bar{\tau}\left(f\left(a^{\prime}\right)\right) \in B . \tag{34}
\end{equation*}
$$

It is clear that for each $w \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ there is a path from k to i whose $\bar{\tau}$-image is not divisible by w, since Q embeds into a torus. Therefore, since (34) holds for all $a^{\prime} \in e_{i} A e_{k}$, it must be that $\bar{\tau}(a) \mid \bar{\tau}(f(a))$. Set $m:=\bar{\tau}(f(a)) / \bar{\tau}(a)$.

Write $a=\sum_{\ell=1}^{s} \alpha_{\ell}$ and $f(a)=\sum_{\ell=1}^{t} \beta_{\ell}$, where $\alpha_{\ell}, \beta_{\ell}$ are (scalar multiples of) paths. Since $\bar{\tau}$ is k-linear,

$$
m \bar{\tau}\left(\alpha_{1}\right)+\cdots+m \bar{\tau}\left(\alpha_{s}\right)=m \bar{\tau}(a)=\bar{\tau}(f(a))=\bar{\tau}\left(\beta_{1}\right)+\cdots+\bar{\tau}\left(\beta_{t}\right) .
$$

[^5]$$
k(X) \otimes_{Z} A \cong \operatorname{End}_{k(X)}\left(k(X) \otimes_{Z} M\right)
$$
since $k(X) \otimes_{Z} M$ is a finite dimensional $k(X)$-vector space, and this holds if $A \cong \operatorname{End}_{Z}(M)$.

Since B is a polynomial ring and the $\bar{\tau}$-image of a path is a monomial, we have $s=t$, and by possibly re-indexing, $m \bar{\tau}\left(\alpha_{\ell}\right)=\bar{\tau}\left(\beta_{\ell}\right)$. Since $\mathrm{t}\left(\alpha_{\ell}\right)=k=\mathrm{t}\left(\beta_{\ell}\right)$, by Lemma 3.4 there is some $d_{\ell} \in e_{j} A e_{i}$ such that $d_{\ell} \alpha_{\ell}=\beta_{\ell}$ and $\bar{\tau}\left(d_{\ell}\right)=m$. By the injectivity of τ, there is a unique path in $e_{j} A e_{i}$ with $\bar{\tau}$-image m, so it must be that $d_{1}=\cdots=d_{s}=$: d. Therefore $f(a)=d a$. Since a was arbitrary, for any $b \in e_{i} A e_{k}$ we similarly have $f(a-b)=d(a-b)$. This yields $f(b)=f(a-(a-b))=f(a)-f(a-b)=d b=f_{d}(b)$, proving our claim.

Injectivity: Let $d \in e_{j} A e_{i}$ be nonzero. Since B is an integral domain, $d a \neq 0$ for any nonzero $d \in e_{i} A$ by Corollary 2.12, so f_{d} is injective, and in particular $f_{d} \neq 0$.

Proposition 6.11. Let A be a square superpotential algebra. Then for any $i \in Q_{0}, A e_{i}$ is a reflexive Z-module and

$$
A \cong \operatorname{End}_{Z}\left(A e_{i}\right)
$$

Proof. We first claim that for any $j \in Q_{0}, e_{j} A e_{i}$ is a reflexive Z-module, and so $A e_{i}$ is a reflexive Z-module. For $i, j \in Q_{0}$,

$$
\operatorname{Hom}_{Z}\left(e_{i} A e_{j}, Z\right)=\operatorname{Hom}_{Z}\left(e_{i} A e_{j}, Z e_{j}\right)=\operatorname{Hom}_{Z}\left(e_{i} A e_{j}, e_{j} A e_{j}\right) \cong e_{j} A e_{i}
$$

where the last isomorphism follows from Lemma 6.10 with $k=j$. Thus

$$
\operatorname{Hom}_{Z}\left(e_{i} A e_{j}, Z\right) \cong e_{j} A e_{i} \quad \text { and } \quad \operatorname{Hom}_{Z}\left(e_{j} A e_{i}, Z\right) \cong e_{i} A e_{j}
$$

proving our claim. Furthermore,

$$
\begin{aligned}
A & =\bigoplus_{j, k \in Q_{0}} e_{k} A e_{j} \\
& \cong \bigoplus_{j, k \in Q_{0}} \operatorname{Hom}_{Z}\left(e_{j} A e_{i}, e_{k} A e_{i}\right) \quad \text { by Lemma } 6.10 \\
& \cong \operatorname{Hom}_{Z}\left(\bigoplus_{j} e_{j} A e_{i}, \bigoplus_{k} e_{k} A e_{i}\right) \\
& =\operatorname{End}_{Z}\left(A e_{i}\right) .
\end{aligned}
$$

Note that Proposition 6.11 holds after localization:

$$
A_{\mathfrak{m}} \cong Z_{\mathfrak{m}} \otimes_{Z} \operatorname{End}_{Z}\left(A e_{i}\right) \cong \operatorname{End}_{Z_{\mathfrak{m}}}\left(A_{\mathfrak{m}} e_{i}\right)
$$

In the following examples, recall that $R \subset B$ is isomorphic to Z. We will denote by $R\left\{b_{1}, \ldots, b_{n}\right\}$ the (indecomposable) R-module minimally generated by $b_{1}, \ldots, b_{n} \in B$.

Example 6.12. Consider the $Y^{4,0}$ algebra A given in Fig. 7. A is isomorphic to the endomorphism ring of the direct sum of the reflexive R-modules $R_{i}:=\bar{\tau}\left(e_{i} A e_{1}\right) \subset B, i \in Q_{0}$, given in the figure. Note that the free R-module R can be placed at any vertex.

Example 6.13. The conifold quiver algebra A given in Example 1.2 is the $Y^{1,0}$ algebra, with center

$$
Z \cong R=k\left[x_{1} y_{1}, x_{2} y_{2}, x_{1} y_{2}, x_{2} y_{1}\right] \cong k[a, b, c, d] /(a b-c d)
$$

$$
\begin{aligned}
& R_{1}:=R \\
& R_{2}:=R\left\{x_{1} y_{1}^{2} y_{2}, x_{2} y_{1}^{2} y_{2}, x_{1}^{3} y_{1}^{5}, x_{1}^{2} x_{2} y_{1}^{5}, x_{1} x_{2}^{2} y_{1}^{5}, x_{2}^{3} y_{1}^{5}\right\} \\
& R_{3}:=R\left\{y_{1}, x_{1}^{2} y_{2}^{3}, x_{1} x_{2} y_{2}^{3}, x_{2}^{2} y_{2}^{3}\right\} \\
& R_{4}:=R\left\{x_{1} y_{1} y_{2}^{3}, x_{2} y_{1} y_{2}^{3}, x_{1} y_{1}^{3} y_{2}, x_{2} y_{1}^{3} y_{2}\right\} \\
& R_{5}:=R\left\{y_{1}^{2}, y_{2}^{2}\right\} \\
& R_{6}:=R\left\{x_{1} y_{1} y_{2}^{2}, x_{2} y_{1} y_{2}^{2}, x_{1} y_{1}^{3}, x_{2} y_{1}^{3}\right\} \\
& R_{7}:=R\left\{y_{2}, x_{1}^{2} y_{1}^{3}, x_{1} x_{2} y_{1}^{3}, x_{2}^{2} y_{1}^{3}\right\} \\
& R_{8}:=R\left\{x_{1} y_{1} y_{2}, x_{2} y_{1} y_{2}, x_{1}^{3} y_{1}^{4}, x_{1}^{2} x_{2} y_{1}^{4}, x_{1} x_{2}^{2} y_{1}^{4}, x_{2}^{3} y_{1}^{4}\right\}
\end{aligned}
$$

Fig. 7. A $Y^{4,0}$ quiver and its corresponding R-modules $R_{i}:=\bar{\tau}\left(e_{i} A e_{1}\right) \subset B$.

It is standard [V2, Section 1, example] to view A as the endomorphism ring

$$
A \cong \operatorname{End}_{R}(R \oplus I)=\left(\begin{array}{cc}
R & I \\
I^{-1} & R
\end{array}\right)
$$

where $I=(a, c)=\left(x_{1} y_{1}, x_{1} y_{2}\right)$ and $I^{-1}=(a, d)=\left(x_{1} y_{1}, x_{2} y_{1}\right)$. Our method realizes A as a slightly different endomorphism ring:

$$
A \cong \operatorname{End}_{R}\left(R \oplus R\left\{x_{1}, x_{2}\right\}\right) \cong \operatorname{End}_{R}\left(R \oplus R\left\{y_{1}, y_{2}\right\}\right)
$$

We now prove the main result of this section.

Theorem 6.14. Let A be a square superpotential algebra, Z its center, and \mathfrak{m} the maximal ideal at the origin of Max Z. Then the localization $A_{\mathfrak{m}}$ is a noncommutative crepant resolution of $Z_{\mathfrak{m}}$, and consequently a local Calabi-Yau algebra of dimension 3.

Proof. The only simple $A_{\mathfrak{m}}$-modules are the vertex simples by Lemma 6.1, and so the theorem follows from Theorem 4.10, Proposition 6.7, and Proposition 6.11. Moreover, by a result of Braun [Br, Example 2.22], a noncommutative crepant resolution A is locally Calabi-Yau if k is algebraically closed and Z is a normal Gorenstein finitely-generated k-algebra.

7. The $Y^{p, q}$ algebras

We now consider a particular class of square superpotential algebras in detail, namely the $Y^{p, q}$ algebras defined in Example 1.3. These algebras are conjecturally related to certain Sasaki-Einstein manifolds in the $\mathcal{N}=1, d=4 \mathrm{AdS} / \mathrm{CFT}$ correspondence in string theory.

7.1. Azumaya loci and (non-local) global dimensions

Proposition 7.1. Let Z be the center of a $Y^{p, q}$ algebra A. Then there is some $0 \leqslant r \leqslant 2 p$ such that

$$
\begin{equation*}
Z \cong k\left[x_{\alpha_{1}} x_{\alpha_{2}} y_{1} y_{2}, y_{1}^{p} \prod_{\ell=1}^{2 p-r} x_{\beta_{\ell}}, y_{2}^{p} \prod_{\ell=1}^{r} x_{\gamma_{\ell}} \mid \alpha_{\ell}, \beta_{\ell}, \gamma_{\ell} \in\{1,2\}\right] \tag{35}
\end{equation*}
$$

where in the McKay cases $r \in\{0,2 p\}$, set $y_{\alpha}^{p} \prod_{\ell=1}^{0} x_{\beta_{\ell}}:=y_{\alpha}^{p}$.

Fig. 8. Cases in Proposition 7.1.

Proof. For any $i \in Q_{0}, Z \cong Z e_{i}=e_{i} A e_{i} \cong \bar{\tau}\left(e_{i} A e_{i}\right)=$: R by Theorem 2.11 and Lemma 2.9. R is therefore generated by the $\bar{\tau}$-images of cycles in $e_{i} A e_{i}$ without cyclic proper subpaths. Denote by R^{\prime} the algebra on the right hand side of (35). Fix $i \in Q_{0}$ and $(0,0) \in \pi^{-1}(i) \subset \widetilde{Q}_{0}=\mathbb{Z}^{2}$.

We first claim that $R^{\prime} \subseteq R$. As is clear from Fig. 8, a vertex is the tail of an arrow with $\bar{\tau}$-image x_{1} (resp. $x_{1} y_{\beta}$) if and only if it is also the tail of an arrow with $\bar{\tau}$-image x_{2} (resp. $x_{2} y_{\beta}$). Therefore, since the width of the fundamental domain of Q is 2 , if c is a cycle whose $\bar{\tau}$-image is divisible by x_{α}, then there is a cycle c^{\prime} satisfying

$$
\begin{equation*}
\bar{\tau}\left(c^{\prime}\right)=\bar{\tau}(c) \frac{x_{\alpha+1}}{x_{\alpha}} \tag{36}
\end{equation*}
$$

Since the width of the fundamental domain of Q is 2 , either $(0, p) \in \pi^{-1}$ (i) or $(1, p) \in \pi^{-1}$ (i). Suppose $(0, p) \in \pi^{-1}$ (i) (resp. $(1, p) \in \pi^{-1}(i)$), and let c be a path in \widetilde{Q} from (0,0) to ($0, p$) (resp. $(1, p))$ without cyclic proper subpaths. Then $\pi(c) \in e_{i} A e_{i}$ is a cycle with $\bar{\tau}$-image $y_{1}^{p} x_{1}^{s} x_{2}^{t}$, where $s=$ $t \leqslant p$ (resp. $s=t+1 \leqslant p$). Set $r:=s+t \leqslant 2 p$. Since $s, t \leqslant p$, we have $\bar{\tau}(c) \mid \sigma^{p}$, and so by Lemma 3.4 there exists a cycle d in Q satisfying $\bar{\tau}(d)=y_{2}^{p} x_{1}^{p-s} x_{2}^{p-t}$. Furthermore, $(p-s)+(p-t)=2 p-r$. Thus, by (36) there are cycles in Q with $\bar{\tau}$-images $y_{1}^{p} \prod_{\ell=1}^{2 p-r} x_{\beta_{\ell}}$ and $y_{2}^{p} \prod_{\ell=1}^{r} x_{\gamma_{\ell}}$ for each $\beta_{\ell}, \gamma_{\ell} \in\{1,2\}$.

Finally, since the unit cycle at i has $\bar{\tau}$-image $x_{1} x_{2} y_{1} y_{2}$, (36) implies that there are cycles with $\bar{\tau}$-images $x_{1}^{2} y_{1} y_{2}$ and $x_{2}^{2} y_{1} y_{2}$.

We now claim that $R \subseteq R^{\prime}$. It is sufficient to determine the $\bar{\tau}$-images of all the cycles in $e_{i} A e_{i}$ without cyclic proper subpaths, as these images form a generating set for R. Denote by J the set of vertices $j \in \pi^{-1}$ (i) for which there is a path c^{+}in \widetilde{Q} from $(0,0)$ to j whose projection c is a cycle in Q without cyclic proper subpaths. Since the lift of a cycle in Q without cyclic proper subpaths is a path in \widetilde{Q} without cyclic proper subpaths, such a path c^{+}from $(0,0)$ to j is unique (modulo ∂W) by Lemma 4.2. Therefore there is a bijection between the vertices in J and the cycles in $e_{i} A e_{i}$ without cyclic proper subpaths, minus the unit cycle at i.

Set $u:=(2,0)$ and $v:=\left(v_{1}, p\right)$, with $v_{1} \in\{0,1\}$ chosen so that $\pi^{-1}(i)=\mathbb{Z} u \oplus \mathbb{Z} v$. For $j \in \pi^{-1}(i)$, write $j=j_{1} u+j_{2} v$. We claim that

$$
J=\left\{ \pm u, j_{1} u \pm v \mid-p \leqslant j_{1} \leqslant p\right\}
$$

If $j_{2}=0$ then it is clear that $j_{1}= \pm 1$.
Now suppose $j_{2} \geqslant 1$. Then there is a cycle c without cyclic proper subpaths whose lift c^{+}has height $j_{2} p$. For each $0 \leqslant m \leqslant j_{2}$, there is some $s_{m} \in \mathbb{Z}$ such that $\left(s_{m}, m p\right) \in \widetilde{Q}_{0}$ is a vertex subpath of c^{+}. Since the width of the fundamental domain of Q is 2 and c has no cyclic proper subpaths,

$$
\begin{equation*}
\pi\left(\left(s_{m} \pm 1, m p\right)\right)=\pi((0,0))=\mathrm{t}(c) \quad \text { for } 0<m<j_{2} \tag{37}
\end{equation*}
$$

Therefore $j_{2} \leqslant 2$.
Suppose to the contrary that $j_{2}=2$. Let d_{1} and d_{2} be paths in \widetilde{Q} without cyclic proper subpaths, respectively from $(0,0)$ to $\left(s_{1}+1, p\right)$, and from $\left(s_{1}+1, p\right)$ to $\left(s_{2}, 2 p\right)$. By (37), the projections $\pi\left(d_{1}\right)$
and $\pi\left(d_{2}\right)$ are cycles in $e_{i} A e_{i}$ whose $\bar{\tau}$-images are of the form $y_{1}^{p} \prod_{\ell=1}^{2 p-r} x_{\beta \ell}$ in R^{\prime}. Since B is a polynomial ring and y_{2} does not divide $\bar{\tau}\left(d_{1}\right)$ and $\bar{\tau}\left(d_{2}\right)$ in B, y_{2} does not divide their product $\left.\bar{\tau}\left(d_{2} d_{1}\right)=\bar{\tau}\left(d_{1}\right) \bar{\tau}\left(d_{2}\right) \dot{\mathbb{Q}}\right)$ Therefore σ does not divide $\bar{\tau}\left(d_{2} d_{1}\right)$. Thus, by Lemma $3.6 d_{2} d_{1}$ has no cyclic proper subpaths (in \widetilde{Q}). Therefore, since c^{+}and $d_{2} d_{1}$ have coincident heads and tails in \widetilde{Q} and no cyclic proper subpaths, Lemma 4.2 implies

$$
c \sim \pi\left(d_{2} d_{1}\right)=\pi\left(d_{2}\right) \pi\left(d_{1}\right) .
$$

This contradicts our assumption that c has no cyclic proper subpaths. Therefore j_{2} must equal 1 , and so for some $s, t \geqslant 0$,

$$
\bar{\tau}(c)=y_{1}^{p} x_{1}^{s} x_{2}^{t} .
$$

Suppose $t=0$, so that $j=\frac{s}{2} u+v$, and in particular $j_{1}=\frac{s}{2}$. Consider a subpath ba of c, where a and b are arrows. If $\bar{\tau}(a)=x_{1}$ then $\bar{\tau}(b) \neq x_{1}$ since the width of the fundamental domain of Q is 2 and \widetilde{Q} has vertical symmetry. Thus s can be at most $2 p$; the maximum $s=2 p$ occurs if there is a path $c=b_{p} a_{p} \cdots b_{2} a_{2} b_{1} a_{1}$, where a_{ℓ} and b_{ℓ} are arrows satisfying $\bar{\tau}\left(a_{\ell}\right)=x_{1}$ and $\bar{\tau}\left(b_{\ell}\right)=x_{1} y_{1}$. The cases $t \neq 0$ are obtained similarly by applying (36).

Finally, the case $j_{2} \leqslant-1$ is similar to the case $j_{2} \geqslant 1$, proving our claim.
Lemma 7.2. If $p \neq q$, then the only singular point in $\operatorname{Max} Z$ is the origin.
Proof. Referring to (35), set $s:=2 p-r$ and denote by \mathcal{G} the set of generators of $R=\bar{\tau}\left(e_{i} A e_{i}\right) \subset B$,

$$
\begin{array}{lll}
t_{0}=y_{1}^{p} x_{1}^{s} & u_{0}=y_{2}^{p} x_{1}^{r} & \\
t_{1}=y_{1}^{p} x_{1}^{s-1} x_{2} & u_{1}=y_{2}^{p} x_{1}^{r-1} x_{2} & v_{1}=x_{1}^{2} y_{1} y_{2} \\
\quad \vdots & \vdots & v_{2}=x_{1} x_{2} y_{1} y_{2} \\
t_{s}=y_{1}^{p} x_{2}^{s} & u_{r}=y_{2}^{p} x_{2}^{r} & v_{3}=x_{2}^{2} y_{1} y_{2}
\end{array}
$$

Since $p \neq q$, we have $0<r<2 p$. Thus all the coordinate functions $g\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \in \mathcal{G}$ vanish if $x_{1}=x_{2}=0$ or $y_{1}=y_{2}=0$. In particular, the only ideal \mathfrak{m} in $\operatorname{Max} R$ containing both $x_{1} B \cap R$ and $x_{2} B \cap R$, or both $y_{1} B \cap R$ and $y_{2} B \cap R$, is the origin $(g \mid g \in \mathcal{G}) R \in \operatorname{Max} R$. Therefore it suffices to show that any point $\mathfrak{m} \in \operatorname{Max} R$ is smooth if it does not contain $x_{\alpha} B \cap R$ and $y_{\beta} B \cap R$ for some $\alpha, \beta \in\{1,2\}$. So without loss of generality suppose \mathfrak{m} does not contain $x_{1} B \cap R$ and $y_{1} B \cap R$; in particular, $t_{0}=x_{1}^{s} y_{1}^{p} \notin \mathfrak{m}$, that is, $t_{0}(\mathfrak{m}) \neq 0$.

Denote by \mathcal{R} a minimal generating set for the relations among the coordinate variables $g \in \mathcal{G}$. Then by abuse of notation, $R \cong k[\mathcal{G}] /(\mathcal{R})$. Consider the submatrix K of the Jacobian of R at \mathfrak{m},

$$
J(\mathfrak{m})=\left[\frac{\partial g}{\partial r}(\mathfrak{m})\right]_{(g, r) \in \mathcal{G} \times \mathcal{R}}
$$

given by Table 1. In the table, for each $0 \leqslant n \leqslant r$ the indices $i_{n}, j_{n} \in\{1,2,3\}$ are suitably chosen and the exponents k_{n}, ℓ_{n} satisfy $k_{n}+\ell_{n}=2 p$. Since K is a lower triangular $(2 p+2) \times(2 p+2)$ square matrix with nonzero diagonal entries $t_{0}(\mathfrak{m})$, the rank of K is $2 p+2$. But the rank of $J(\mathfrak{m})$ is at most the dimension of the ambient space $k[\mathcal{G}]$ minus the dimension of R, namely $(2 p+5)-3=2 p+2$, so the rank of $J(\mathfrak{m})$ is precisely $2 p+2$. Therefore \mathfrak{m} is a smooth point of Max R. The case where x_{1} and y_{2} (resp. $x_{2}, y_{1} ; x_{2}, y_{2}$) are nonzero is similar with u_{0} (resp. $t_{s} ; u_{r}$) in place of t_{0}.

Theorem 7.3. Let A be a (non-localized) $Y^{p, q}$ algebra. Then the following hold.
(1) If $p \neq q$ and V is a simple A-module, then V is either a vertex simple module or a large module.

Table 1
The partial derivatives of relations specifying the square submatrix K of the Jacobian.

	$\partial_{t_{2}}$	\cdots	$\partial_{t_{s}}$	$\partial_{v_{2}}$	$\partial_{v_{3}}$	$\partial_{u_{0}}$	\cdots	$\partial_{u_{r}}$
$t_{0} t_{2}-t_{1} t_{1}$	t_{0}		0					
\vdots		\ddots		0		0		
$t_{0} t_{s}-t_{1} t_{s-1}$	\star		t_{0}					
$t_{0} v_{2}-t_{1} v_{1}$		\star		t_{0}	0		0	
$t_{0} v_{3}-t_{2} v_{1}$				0	t_{0}			
$t_{0} u_{0}-v_{i_{0}}^{k_{0}} v_{j_{0}}^{\ell_{0}}$					t_{0}		0	
\vdots	0	\star		\ddots				
$t_{0} u_{r}-v_{i_{r}}^{k_{r}} v_{j_{r}}^{\ell_{r}}$					0		t_{0}	

(2) The Azumaya locus of A coincides with the smooth locus of Z.
(3) A is homologically homogeneous of global dimension 3.

Proof. (1) We only need to consider case (2) in Theorem 5.2. Suppose the cycle $c \in e_{i} A e_{i}$ does not annihilate V, and suppose c has no cyclic proper subpaths. Since c is a path, $\bar{\tau}(c)$ cannot be of the form $x_{1}^{s} x_{2}^{t}$ or $y_{1}^{s} y_{2}^{t}$ since the underlying graph of Q embeds into a surface. Furthermore, since $p \neq q$, Q is not McKay, and so without loss of generality we may assume $\bar{\tau}(c)=x_{1}^{s} y_{1}^{t}$ for some $s, t \geqslant 1$ by Proposition 4.5; the other cases are similar.

We claim that each vertex in Q is a subpath of c modulo ∂W. Referring to Fig. 8, in all 6 cases at least one of s_{1} or s_{2} is a vertex subpath of c since the width of the fundamental domain of Q is 2 . So suppose s_{1} is a vertex subpath of c. The cyclic permutation $c_{s_{1}}$ of c at s_{1} also has $\bar{\tau}$-image $\bar{\tau}(c)=x_{1}^{s} y_{1}^{t}$. Observe that in all cases except (iv), there is a path a denoted by solid arrows from s_{1} that passes through both vertices t_{1} and t_{2}, whose $\bar{\tau}$-image is only divisible by x_{1} and y_{1}.
(a) Consider all cases except (iv). By Proposition 4.6 there is a unique cycle in $e_{s_{1}} A e_{s_{1}}$ without cyclic proper subpaths whose $\bar{\tau}$-image is of the form $x_{1}^{s} y_{1}^{t}$, namely $c_{s_{1}}$, so a must be a subpath of $c_{s_{1}}$ (modulo ∂W). Thus a is also a subpath of the cyclic permutation c of $c_{s_{1}}$. Therefore t_{1} and t_{2} are both vertex subpaths of c.
(b) Now consider case (iv). Observe that (iv), (v), or (vi) must be directly below (iv).

First suppose either (v) or (vi) is directly below (iv) in \widetilde{Q}. By (a), in both (v) and (vi) the arrow from t_{2} to t_{1} is a subpath of c. But since (iv) is directly above, this arrow is the arrow from s_{2} to s_{1} in (iv), and so all the bold arrows in (iv), as well as the arrow from s_{1} to t_{1}, are subpaths of c. Therefore the vertices t_{1} and t_{2} are subpaths of c as well.

Now suppose (iv) is directly below (iv). Since Q is not McKay, Q cannot consist entirely of 'building blocks' of the form (iv). Thus there is a row of the form (v) or (vi) below (iv) in \widetilde{Q}. It therefore follows by induction that both t_{1} and t_{2} are subpaths of c.
(c) By (a) and (b), for each $j \in Q_{0}$ there are paths c_{1} and c_{2} such that $c=c_{2} e_{j} c_{1}$. Thus if c does not annihilate an A-module V then e_{j} also does not annihilate V. This implies $\operatorname{dim}_{k} e_{j} V \geqslant 1$. Therefore $\operatorname{dim}_{k} e_{j} V=1$ for each $j \in Q_{0}$ by Lemma 5.1, whence $\operatorname{dim}_{k} V=\left|Q_{0}\right|$, and so V is large.
(2) First suppose $p \neq q$. Let V be a simple A-module and set $\mathfrak{m}:=\operatorname{ann}_{Z} V \in \operatorname{Max} Z$. We have just shown that V is either a vertex simple module or a large module. Therefore, if V is (not) a large module then \mathfrak{m} is (not) in the Azumaya locus of A by Lemma 2.13, and \mathfrak{m} is (not) a smooth point of Max Z by Lemma 7.2. Thus the Azumaya locus is the open dense subset Max $Z \backslash\{0\}$.

The case $p=q$ is similar, noting that there are clearly two distinct isoclasses of simple modules whose Z-annihilators are in the locus $\phi\left(\left\{x_{1}=x_{2}=0\right\}\right.$) (with ϕ as in Lemma 2.1 (3)). In this case the Azumaya locus is $\operatorname{Max} Z \backslash \phi\left(\left\{x_{1}=x_{2}=0\right\}\right)$.
(3) The $Y^{p, p}$ algebras are McKay quiver algebras for certain finite abelian subgroups of $\mathrm{SL}_{3}(\mathbb{C})$, and the claim is well known in this case. So suppose $p \neq q$. If V is a vertex simple A-module then $\operatorname{pd}_{A}(V)=3$ by Proposition 6.7. If V is a non-vertex simple, then V is large by (1), so $\mathfrak{m}=\operatorname{ann}_{Z} V$ is in the Azumaya locus by Lemma 2.13, so \mathfrak{m} is in the smooth locus of Max Z by (2). Thus $\operatorname{pd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}}\right)=3$ by Proposition 4.3, whence $\mathrm{pd}_{A}(V)=3$ by Theorem 2.16. By [Ba, Proposi-

Table 2
The $Y^{p, q} R$-charge assignments determined from a-maximization.

$$
\begin{aligned}
R\left(x_{1} y_{1}\right)=R\left(x_{2} y_{1}\right) & =\left(3 q-2 p+\sqrt{4 p^{2}-3 q^{2}}\right) / 3 q \\
& =\frac{1}{3}(-1+\sqrt{13}) \\
R\left(x_{1}\right)=R\left(x_{2}\right) & =2 p\left(2 p-\sqrt{4 p^{2}-3 q^{2}}\right) / 3 q^{2} \\
& =\frac{4}{3}(4-\sqrt{13}) \\
R\left(y_{2}\right) & =\left(-4 p^{2}+3 q^{2}+2 p q+(2 p-q) \sqrt{4 p^{2}-3 q^{2}}\right) / 3 q^{2} \\
& =-3+\sqrt{13} \\
R\left(y_{1}\right) & =\left(-4 p^{2}+3 q^{2}-2 p q+(2 p+q) \sqrt{4 p^{2}-3 q^{2}}\right) / 3 q^{2} \\
& =\frac{1}{3}(-17+5 \sqrt{13}) \\
R\left(x_{1} y_{2}\right)=R\left(x_{2} y_{2}\right) & =\left(3 q+2 p-\sqrt{4 p^{2}-3 q^{2}}\right) / 3 q
\end{aligned}
$$

tion III.6.7(a)], if S is a noetherian ring module-finite over its center then $\operatorname{gl} \operatorname{dim}(S)=\sup \left\{\operatorname{pd}_{S}(M) \mid\right.$ M simple\}. But A has these properties by Corollary 3.8, so A has global dimension 3. Also by Corollary 3.8, Max Z is irreducible, hence equidimensional, and thus A is homologically homogeneous.

To conclude this section, we show that the ' R-charge' of an arrow determined by a-maximization is consistent with its impression given in Theorem 3.7. Let A be a superpotential algebra modulefinite over its center Z; then the R-charge of an arrow $a \in Q_{1}$ is conjectured to be the volume of the 'zero locus' of a in Max Z, that is, the locus consisting of the maximal ideals $\mathfrak{m} \in \operatorname{Max} Z$ such that $a \in \mathfrak{m}_{\mathfrak{m}} A_{\mathfrak{m}}$. In physics terms, the R-charge of a field is conjectured to be the volume of the locus where symmetry is not broken in the vev moduli space. This has been explored in [BFZ,BB], for example. We verify that when A is a $Y^{p, q}$ algebra the labeling of arrows given in Fig. 5 is consistent with the numerical R-charge assignments determined by a-maximization [IW], as first computed for the $Y^{2,1}$ quiver in [BBC], and then for general (p, q) in [BFHMS].

Proposition 7.4. The (numerical) R-charge assignments of the arrows in a $Y^{p, q}$ quiver determined by a-maximization are consistent with the labels given in Fig. 5.

Proof. Denote an arrow a by its label $\bar{\tau}(a)$ given in Fig. 5. The R-charge assignments as computed in [BHK] are shown in Table 2. To check consistency, one verifies that $R\left(x_{\alpha} y_{\beta}\right)=R\left(x_{\alpha}\right)+R\left(y_{\beta}\right)$ in each of the four cases $\alpha, \beta \in\{1,2\}$.

7.2. Exceptional loci with zero volume: a proposal

Let A be a $Y^{p, q}$ algebra with center Z and let V^{i} be the vertex simple A-module at $i \in Q_{0}$. The origin \mathfrak{m} of Max Z is then in the compliment of the Azumaya locus - the ramification locus - by Theorem 7.3, and clearly $A / \mathfrak{m} A \cong \bigoplus_{i \in Q_{0}} V^{i}$. In Theorem 6.14 we found that $A_{\mathfrak{m}}$ is a noncommutative crepant resolution of $Z_{\mathfrak{m}}$, and so the points in the exceptional locus of the noncommutative resolution should in principle be the simple $A_{\mathfrak{m}}$-modules, which are the vertex simples $V_{\mathfrak{m}}^{i}$. It is important to note that quiver stability does not appear sufficient to capture these points since $\bigoplus_{i \in Q_{0}} V^{i}$ is not stable for any stability parameter with dimension vector $(1, \ldots, 1)$.

In Proposition 6.7 we showed that the vertex simple $A_{\mathfrak{m}}$-modules are smooth in the sense that $\operatorname{pd}_{A_{\mathfrak{m}}}\left(V_{\mathfrak{m}}^{i}\right)=3=\operatorname{dim} Z_{\mathfrak{m}}$ for each $i \in Q_{0}$. In this section we introduce a proposal that provides a geometric reason for this behavior. Specifically, we propose that certain points in Max A that sit over the ramification locus of Max Z are the irreducible components of the exceptional locus of a resolution $Y \rightarrow$ Max Z shrunk to zero size. In physics terms, fractional branes probing a singularity see the
variety they are immersed in as smooth since they are wrapping exceptional divisors that have been shrunk to point-like spheres. In what follows we use the symplectic quotient construction on the impression of a $Y^{p, q}$ algebra, and set $k=\mathbb{C}$.

In Corollary 3.8, Max Z was shown to be a toric algebraic variety. Z is therefore the ring of invariants of some torus action on $B=\mathbb{C}\left[x_{1}, x_{2}, y_{1}, y_{2}\right]$, which we determine in the following lemma. It is straightforward to verify with Proposition 7.1.

Lemma 7.5. The center $Z \subset B$ of a $Y^{p, q}$ algebra is the ring of invariants of the torus action

$$
\begin{equation*}
\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \mapsto\left(\lambda^{-p} \omega^{-1} x_{1}, \lambda^{-p} \omega^{-1} x_{2}, \lambda^{2 p-r} \omega^{2} y_{1}, \lambda^{r} y_{2}\right) \tag{38}
\end{equation*}
$$

with torus $\mathbb{C}^{*} \times \mu_{r} \ni(\lambda, \omega)$, for some $0 \leqslant r \leqslant 2 p$.
In the special case $(p, q)=(1,0), r=1$ by Proposition 7.1 , whence $\omega=1$. Therefore Z is the coordinate ring for the conifold (i.e., quadric cone) given in Example 1.2. Moreover, in the case (p, q) = $(2,1)$ again $r=1$, yielding $\omega=1$, and it is straightforward to check that Z is the complex cone over the first del Pezzo surface $d P_{1}$ (i.e., $\mathbb{C P}^{2}$ blownup at one point), verifying an argument that this should indeed be the case given in [BHOP, Section 2]. ${ }^{8}$

Before considering the associated $Y^{p, q}$ moment map, recall the following standard construction. The symplectic manifold $\left(\mathbb{C}^{2}, \omega=\frac{i}{2}(d x \wedge d \bar{x}+d y \wedge d \bar{y})\right)$ admits a hamiltonian action of the maximal compact subgroup $\mathbb{T}:=\left\{t \in \mathbb{C}^{*}| | t \mid=1\right\}$ of \mathbb{C}^{*} given by $(x, y) \mapsto(t x, t y)$. The dual g^{*} of the Lie algebra of \mathbb{T} is then \mathbb{R}, so there is a moment map

$$
\mu: \mathbb{C}^{2} \rightarrow \mathrm{~g}^{*} \cong \mathbb{R}, \quad \mu(x, y)=\frac{1}{2}\left(|x|^{2}+|y|^{2}\right)
$$

It follows that

$$
\mu^{-1}(1 / 2) / \mathbb{T}=\left\{\left.(x, y) \in M| | x\right|^{2}+|y|^{2}=1\right\} / \mathbb{T}=\left\{\mathbb{C P}^{1} \text { with radius } 1\right\},
$$

and more generally

$$
\mu^{-1}\left(|a|^{2} / 2\right) / \mathbb{T}=\left\{\left.(a x, a y) \in M| | x\right|^{2}+|y|^{2}=1\right\} / \mathbb{T}=\left\{\mathbb{C P}^{1} \text { with radius }|a|\right\} .
$$

Varying $|a|$ is then equivalent to varying the radius of the $\mathbb{C P}{ }^{1} .{ }^{9}$ In particular, $|a| \rightarrow 0$ is equivalent to the radius vanishing.

Now since the center of a $Y^{p, q}$ algebra is a normal toric variety, it is also a symplectic variety with a (non-degenerate) symplectic form obtained by pulling back the standard symplectic form on $\operatorname{Max} B=\mathbb{C}^{4}$. There is a hamiltonian action on Max B by the maximal compact subgroup $\mathbb{T}:=U(1) \times$ $\mu_{r} \ni(t, \omega)$,

$$
\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \mapsto\left(t^{-p} \omega^{-1} x_{1}, t^{-p} \omega^{-1} x_{2}, t^{2 p-r} \omega^{2} y_{1}, t^{r} y_{2}\right)
$$

Again the dual of the Lie algebra of \mathbb{T} is $g^{*} \cong \mathbb{R}$, and so there is a moment map

$$
\mu: \operatorname{Max} B \rightarrow \mathbb{R}, \quad \mu\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\frac{1}{2}\left(-p\left|x_{1}\right|^{2}-p\left|x_{2}\right|^{2}+(2 p-r)\left|y_{1}\right|^{2}+(r)\left|y_{2}\right|^{2}\right)
$$

The singular variety $\operatorname{Max} Z$ is then the symplectic reduction at the origin,

[^6]

Fig. 9. The supporting subquivers for two $\mathbb{C P}^{1}$-families of modules over a $Y^{4,2}$ algebra, related by a flop.

$$
\operatorname{Max} Z=\mu^{-1}(0) / \mathbb{T},
$$

and two different blowups of Max Z are given by $\mu^{-1}(\xi / 2) / \mathbb{T}$ for $\xi>0$ and $\xi<0$, respectively. From the previous example, $\sqrt{|\xi|} \in \mathrm{g}^{*}$ may be viewed as the radius of the exceptional locus in the respective blowup of Max Z.

For the following, suppose $p \neq q$ (the case $p=q$ is similar). Let \mathcal{M}_{ξ} denote the space of all representations $\tau_{\mathfrak{m}}$ where $m \in \mu^{-1}\left(\xi^{2} / 2\right) \subset \operatorname{Max} B$. We find the following:

- If $\xi>0, \mathcal{M}_{\xi}$ is parameterized by a blowup of $\operatorname{Max} Z$ at the origin (a $\mathbb{C P}^{1}$-family together with Max $Z \backslash\{0\}$);
- If $\xi<0, \mathcal{M}_{\xi}$ is parameterized by the flopped blowup; and
- If $\xi=0, \mathcal{M}_{0}$ is parameterized $\operatorname{Max} Z \backslash\{0\}$, together with the direct sum of vertex simples.

Specifically, $\xi=0$ determines the constraints

$$
\begin{aligned}
& x_{1}=x_{2}=0 \quad \Longleftrightarrow \quad y_{1}=y_{2}=0 \quad \text { when } p \neq q, \\
& x_{1}=x_{2}=0 \quad \Longleftrightarrow \quad y_{1}=0 \quad \text { when } p=q,
\end{aligned}
$$

and we claim that these are the same constraints obtained by requiring the A-modules be simple. Indeed, consider the case $p \neq q$. If a and b are arrows with respective $\bar{\tau}$-images x_{1} and x_{2} that annihilate V, then each arrow with $\bar{\tau}$-image divisible by x_{1} or x_{2} annihilates V by Proposition 2.5. Thus, since the only simple modules are vertex simples or large by Theorem $7.3, V$ must be a vertex simple. Therefore every arrow annihilates V, and in particular any arrow whose $\bar{\tau}$-image is divisible by y_{1} or y_{2} annihilates V. The case $p=q$ is similar.

As an example of what happens when $\xi \neq 0$, consider the $Y^{4,2}$ algebra given in Example 1.3. The supporting subquivers for the two $\mathbb{C P}^{1}$-families $\mathcal{M}_{\xi>0}$ and $\mathcal{M}_{\xi<0}$ are given in Fig. 9, where the dotted arrows are represented by zero. The $\bar{\tau}$-images of the solid arrows give explicit coordinates on each $\mathbb{C P}^{1}$, which are respectively $\left[y_{1}: y_{2}^{3}\right]$ and $\left[x_{1}: x_{2}\right]$.

Our proposal provides a geometric view of Van den Bergh's idea that the noncommutative resolution, loosely speaking, lies at the intersection between the various flops [V2]. However, the identification still needs to be made precise; progress in this direction is given in [B], but many questions remain.

Acknowledgments

I would like to give very special thanks to my advisors David Morrison and David Berenstein for all of their encouragement and guidance. I would also like to thank Alex Dugas and Ken Goodearl for
many useful discussions. I am grateful to a long list of people who have made helpful comments: Tom Howard, Birge Huisgen-Zimmermann, Paul Smith, Alastair King, James McKernan, Bill Jacob, Raphael Flauger, James Sparks, Bernhard Keller, Susan Siera, and Alastair Craw. I am especially grateful to an anonymous referee for their careful reading and valuable comments. Also thanks to Coral, Aidan, Kael, Tea Rose, Leonard, and my parents and family for their wonderful support.

Appendix A. Proof of Lemma 3.2

Without loss of generality, take $u=y_{1}$ and suppose $h(a)=h(p)$. We proceed in a case-by-case analysis. The following argument will be used repeatedly: if $w=y_{\alpha} x_{\beta} y_{\gamma}$ is a path with $\alpha \neq \gamma$, that is, w equals say

$$
\begin{equation*}
\mathrm{y}_{\alpha} \mathrm{x}_{\beta} \mathrm{y}_{\gamma} \sim \mathrm{y}_{\gamma} \mathrm{x}_{\beta} \mathrm{y}_{\alpha} \tag{39}
\end{equation*}
$$

Additionally, if say the factor $\mathrm{x}_{\beta} \mathrm{y}_{\gamma}$ is a diagonal arrow, then we also have

$$
\mathrm{y}_{\alpha} \mathrm{y}_{\gamma} \mathrm{x}_{\beta} \sim \mathrm{y}_{\alpha} \mathrm{x}_{\beta} \mathrm{y}_{\gamma} \sim \mathrm{y}_{\gamma} \mathrm{x}_{\beta} \mathrm{y}_{\alpha}
$$

Similarly for $\mathrm{x} \leftrightarrow \mathrm{y}$.

- $\mathrm{t}_{1}=\mathrm{y}_{2}$:
- If $n=1$ or $t_{2}=y_{2}$ then $s_{1}=x_{\alpha}$, hence $y_{1} x_{\alpha}$ is a diagonal arrow and $t_{1}=y_{2}$ is a vertical arrow. Apply (39).
- If $t_{2}=x_{\alpha}$ then at least one of the factors $\left(\mathrm{x}_{\alpha} \mathrm{y}_{2}\right),\left(\mathrm{y}_{1} \mathrm{~s}_{m}\right)$, must be a diagonal arrow. Both factors cannot be diagonal arrows since
- $t_{1}=x_{\alpha}$:
- If $t_{2}=y_{2}$, either y_{1} or $t_{2}=y_{2}$ is a vertical arrow since otherwise either the configuration or
* If y_{1} is a vertical arrow, apply (39).
* Suppose y_{1} is not a vertical arrow.
- If $x_{\alpha} \neq s_{m}=x_{\beta}$ then $y_{2} x_{\alpha} y_{1} s_{m}$ is a unit cycle and we are done.
- If $x_{\alpha}=s_{m}$ then the configuration
 is not possible, and so

$$
\mathrm{y}_{2} \mathrm{x}_{\alpha} \mathrm{y}_{1} \mathrm{~s}_{m} \sim \mathrm{x}_{\alpha} \mathrm{y}_{2} \mathrm{y}_{1} \mathrm{~s}_{m} \sim \mathrm{x}_{\alpha} \mathrm{y}_{2} \mathrm{~s}_{m} \mathrm{y}_{1} \sim \mathrm{x}_{\alpha} \mathrm{y}_{1} \mathrm{~s}_{m} \mathrm{y}_{2}
$$

- Suppose $t_{2}=x_{\beta}$.
* If $\mathrm{y}_{1} \mathrm{~s}_{m}$ is a diagonal arrow then $\mathrm{t}_{1}=\mathrm{x}_{\alpha}$ must be a horizontal arrow. Apply (39).
* If $\mathrm{x}_{\alpha} \mathrm{y}_{1}$ is a diagonal arrow then $\mathrm{t}_{2}=\mathrm{x}_{\beta}$ must be a horizontal arrow since otherwise the configuration
* Suppose y_{1} is a vertical arrow (that is, it is not 'half of a diagonal arrow').
. If $\alpha \neq \beta$ then $\mathrm{t}_{3} \mathrm{x}_{\beta}$ is a diagonal arrow, hence $\mathrm{t}_{3}=\mathrm{y}_{2}$. Apply (39) twice:

$$
\left(\mathrm{y}_{2} \mathrm{x}_{\beta}\right) \mathrm{x}_{\alpha} \mathrm{y}_{1} \sim\left(\mathrm{x}_{\beta} \mathrm{y}_{2}\right) \mathrm{x}_{\alpha} \mathrm{y}_{1} \sim \mathrm{x}_{\alpha} \mathrm{y}_{2} \mathrm{x}_{\alpha} \mathrm{y}_{1} \sim \mathrm{x}_{\alpha} \mathrm{y}_{1} \mathrm{x}_{\alpha} \mathrm{y}_{2},
$$

where the last equality holds since y_{1} is a vertical arrow.
Suppose $\alpha=\beta$, so $\bar{\tau}\left(\mathrm{t}_{2} \mathrm{t}_{1} \mathrm{u}\right)=x_{\alpha}^{2} y_{1}$. If the path $\mathrm{t}_{2} \mathrm{t}_{1} \mathrm{u}$ is in the configuration u
then $\mathrm{x}_{\alpha} \mathrm{y}_{1} \sim \mathrm{y}_{1} \mathrm{x}_{\alpha}$. Otherwise $\mathrm{t}_{2} \mathrm{t}_{1} \mathrm{u}$ is in the configuration
 since $\stackrel{i}{\stackrel{t_{1}}{\longrightarrow}}$ is not possible, and we may assume u is the leftmost y_{1} variable in p.

Repeating this argument we find that $p=x_{\alpha}^{n} y_{1} s_{m} \cdots s_{1}$ with $x_{\alpha}^{n} y_{1}$ in the configuration

By assumption there is an arrow a with head at $\mathrm{h}(p)$ satisfying $u=y_{1} \mid \bar{\tau}(a)$ and $\bar{\tau}(a) \mid \bar{\tau}(p)$. From (40) we see that $\bar{\tau}(a)=x_{\gamma} y_{1}$ with $\gamma \neq \alpha$. Therefore $x_{\gamma} \mid \bar{\tau}(p)$. Let b be the leftmost arrow in p such that x_{γ} divides $\bar{\tau}(b)$. We may apply the arguments in all the above cases with $\mathrm{y}_{1} \mapsto \mathrm{x}_{\gamma}$, with the exception of configuration (40), to show that x_{γ} can be moved leftward so that it is adjacent to $u=y_{1}$ in p modulo ∂W, and the result follows. But it is not possible that both y_{1} and x_{γ} are in the configuration (40):

$\vdots \quad \vdots$

- Suppose $n=1$.
* If $\mathrm{x}_{\alpha} \mathrm{y}_{1}$ is a diagonal arrow then $\mathrm{x}_{\alpha} \mathrm{y}_{1} \sim \mathrm{y}_{1} \mathrm{x}_{\alpha}$.
* If $y_{1} s_{m}$ is a diagonal arrow, then apply (39).
* If y_{1} is a vertical arrow, then apply the above case $p \sim x_{\alpha}^{n} y_{1} s_{m} \cdots s_{1}$ with $n=1$.

This completes the proof.

Appendix B. A math-physics dictionary for quivers

In reverse geometric engineering [Ber], a type of quiver algebra called a superpotential algebra is constructed from the (classical) vacuum equations of motion of an $\mathcal{N}=1$ supersymmetric quiver gauge theory. In the original physics proposal/conjecture of Berenstein, Douglas, and Leigh (see [Ber, $\mathrm{BD}, \mathrm{BL}]$ and references therein), the center of a superpotential algebra is the coordinate ring for an affine tangent cone (or at least some affine chart) on a 3 complex-dimensional singular ${ }^{10}$ Calabi-Yau variety - the hypothesized hidden internal space of our universe. ${ }^{11}$ The algebra itself is then viewed as a noncommutative ring of functions on the space of its simple modules, just as is the case in commutative algebraic geometry (when $k=\bar{k}$). They conjectured that, at least in physically relevant examples, this space is a noncommutative resolution of the algebra's singular center since D-branes supposedly see the variety they are embedded in as smooth [DGM].

The $Y^{p, q}$ quivers are of interest to physicists since they encode the gauge theory in the conjectured AdS/CFT correspondence when the horizon is a $Y^{p, q}$ Sasaki-Einstein 5-manifold, given by metric data on the topological space $S^{2} \times S^{3}$. The $Y^{p, q}$ quiver gauge theories were constructed to model these geometries using symmetry arguments in a process known as geometric engineering, by Benvenuti, Franco, Hanany, Martelli, Sparks, and Kazakopoulos [BFHMS,BHK]. In this paper we instead start with the $Y^{p, q}$ quiver gauge theories and derive their dual geometries by the methods of reverse geometric engineering; such a geometry is conjectured to coincide with the real cone over a $Y^{p, q}$ manifold (the horizon), but this is still unknown for $p>2$.

The following is a partial dictionary between quiver gauge theories, specifically in regards to the mesonic branch since that is the focus of this paper, and quiver representation theory. We begin with the following:

- quiver gauge theory \Leftrightarrow a quiver algebra and its representations;
in particular, a $d=4, \mathcal{N}=1$ supersymmetric quiver gauge theory \Leftrightarrow a path algebra modulo F-flatness constraints, i.e., a superpotential algebra;
- complexified $U(n)$ gauge group \Leftrightarrow general linear group;
(In this context, by $U(n)$ physicists usually mean $U(n)$ complexified, that is, if H_{1} and H_{2} are elements of the Lie algebra $u(n)$, then $\exp \left(H_{1}+i H_{2}\right) \in G L_{n}(\mathbb{C})$, and for any $L \in G L_{n}(\mathbb{C})$ there is some such H_{1} and H_{2} such that $L=\exp \left(H_{1}+i H_{2}\right)$.)
- gauge invariance (under complexified gauge group) \Leftrightarrow isomorphism classes of quiver representations;
- Seiberg dual gauge theories, that is, different gauge theories in the UV which flow to the same fixed point in the IR \Leftrightarrow different superpotential algebras that have the same centers or different superpotential algebras whose bounded derived categories of modules are equivalent [BD].

In Table 3 we sketch an $\mathcal{N}=1, d=4 \mathrm{AdS} / \mathrm{SCFT}$ correspondence, or more generally a procedure for geometric and reverse geometric engineering, for a superpotential algebra A. Note that the universe is thought to be a product $\mathcal{M} \times X$, where \mathcal{M} is $(3+1)$-dimensional Minkowski space and X is a compact 3 complex-dimensional (possibly singular) Calabi-Yau variety. A Dn-brane (with n odd) fixes

[^7]Table 3
A math-physics quiver dictionary for geometric engineering.

Gauge theory on \mathcal{M}	Geometry and physics of X	Quiver representations
	a stack of $\left\|Q_{0}\right\|$ fractional branes at the apex of the tangent cone $C_{p}(X)$ at a point $p \in X$	vertices of Q
$U(1)$ gauge group on the fractional brane at vertex i		the vertex simple A-module V^{i} (or its annihilator)
(complexified) $U(n)$ gauge group at vertex i		A-module V with $\operatorname{dim}_{\mathbb{C}} e_{i} V=n$
bifundamental field transforming in the fundamental representation of the gauge group at vertex j and the anti-fundamental representation of the gauge group at vertex i	open oriented string stretching from the fractional brane at vertex i to the fractional brane at vertex j	an arrow with tail at i and head at j
vev of a bifundamental field		matrix representation of the corresponding arrow
a possible configuration of vev's modulo the F-flatness constraints	a point in $C_{p}(X)$ (or a bulk D3-brane at a point in $C_{p}(X)$)	an isoclass of simple A-modules (or the corresponding primitive ideal)
(mesonic) chiral ring	coordinate ring for $C_{p}(X)$	center of A
mesonic field		cycle in the quiver

the endpoints of a string; mathematically it is a sheaf, or a complex of sheaves, supported on an $n+1$ real dimensional subvariety of $\mathcal{M} \times X$. Here we only consider D3-branes which extend into \mathcal{M} and are point-like, i.e., sky scraper sheaves, on X. More generally though one also includes various 5 - and 7-branes (such as in the physical realizations of dimer models), and D3-branes are allowed to wrap nontrivial cycles in X.

References

[AF] F. Anderson, K. Fuller, Rings and Categories of Modules, second ed., Springer-Verlag, 1992.
[Ba] H. Bass, Algebraic K-Theory, Benjamin, New York, 1968.
[B] C. Beil, The geometry of noncommutative singularity resolutions, arXiv:1102.5741.
[B2] C. Beil, Nonnoetherian geometry and toric superpotential algebras, in preparation, arXiv:1109.4601.
[BB] C. Beil, D. Berenstein, Geometric aspects of dibaryon operators, arXiv:0811.1819 [hep-th], 2008.
[BFHMS] S. Benvenuti, S. Franco, A. Hanany, D. Martelli, J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, J. High Energy Phys. 0506 (2005) 064.
[BHK] S. Benvenuti, A. Hanany, P. Kazakopoulos, The toric phases of the $Y^{p, q}$ quivers, J. High Energy Phys. 0507 (2005) 021.
[Ber] D. Berenstein, Reverse geometric engineering of singularities, J. High Energy Phys. 0204 (2002) 052.
[BL] D. Berenstein, R. Leigh, Resolution of stringy singularities by non-commutative algebras, J. High Energy Phys. 0106 (2001) 030.
[BD] D. Berenstein, M. Douglas, Sieberg duality for quiver gauge theories, arXiv:hep-th/0207027, 2002.
[BHOP] D. Berenstein, C. Herzog, C. Ouyang, S. Pinansky, Supersymmetry breaking from a Calabi-Yau singularity, J. High Energy Phys. 0509 (2005) 084.
[BBC] M. Bertolini, F. Bigazzi, A.L. Cotrone, New checks and subtleties for the AdS/CFT and a-maximization, J. High Energy Phys. 0412 (2004) 024.
[Bo] R. Bocklandt, Consistency conditions for dimer models, arXiv:1104.1592.
[Br] A. Braun, On symmetric, smooth and Calabi-Yau algebras, J. Algebra 317 (2007) 519-533.
[Bro] N. Broomhead, Dimer models and Calabi-Yau algebras, arXiv:0901.4662.
[BG] K. Brown, K. Goodearl, Homological aspects of noetherian PI Hopf algebras and irreducible modules of maximal dimension, J. Algebra 198 (1997) 240-265.
[BH] K. Brown, C. Hajarnavis, Homologically homogeneous rings, Trans. Amer. Math. Soc. 281 (1) (1984) 197-208.
[BFZ] A. Butti, D. Forcella, A. Zaffaroni, Counting BPS baryonic operators in CFTs with Sasaki-Einstein duals, J. High Energy Phys. 0706 (2007) 069.
[CLS] D. Cox, J. Little, H. Schenck, Toric Varieties, Amer. Math. Soc., 2011.
[C] W. Crawley-Boevey, Lectures on representations of quivers, lectures delivered at Oxford University in 1992, unpublished, available at http://www.amsta.leeds.ac.uk/~pmtwc/.
[DGM] M. Douglas, B. Greene, D.R. Morrison, Orbifold resolution by D-branes, Nuclear Phys. B 506 (1997) 84-106.
[E] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, 2004.
[FHHU] B. Feng, A. Hanany, Y. He, A. Uranga, Toric duality as Seiberg duality and brane diamonds, J. High Energy Phys. 0112 (2001) 035.
[IW] K. Intriligator, B. Wecht, The exact superconformal R-symmetry maximizes a, Nuclear Phys. B 667 (2003) 183-200.
[L] T.Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 2001.
[Le] L. Le Bruyn, Central singularities of quantum spaces, J. Algebra 177 (1995) 142-153, http://win.ua.ac.be/~lebruyn/ LeBruyn1994d.pdf.
[MS] D. Martelli, J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Comm. Math. Phys. 262 (2006) 51-89.
[MR] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings, Grad. Stud. Math., vol. 30, Amer. Math. Soc., 1987.
[MP] D.R. Morrison, R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3 (1999) 1-81.
[M] S. Mozgovoy, Crepant resolutions and brane tilings I: Toric realization, arXiv:0908.3475 [math.AG].
[R] L. Rowen, Ring Theory, vol. II, Academic Press, Inc., 1988.
[S] S.P. Smith, Non-commutative algebraic geometry, lectures delivered at the University of Washington in 1999, unpublished, available at http://www.math.washington.edu/~smith/Research/nag.pdf.
[SV] T. Stafford, M. Van den Bergh, Noncommutative resolutions and rational singularities, Michigan Math. J. 57 (2008) 659-674.
[UY] K. Ueda, M. Yamazaki, Brane tilings for parallelograms with application to homological mirror symmetry, arXiv: math/0606548.
[V] M. Van den Bergh, Non-commutative crepant resolutions, in: The Legacy of Hendrik Abel, Springer, 2002, pp. 749-770.
[V2] M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004) 423-455.

[^0]: E-mail address: cbeil@scgp.stonybrook.edu.
 ${ }^{1}$ The author was supported in part by the Simons Foundation, a DOE grant, and the PFGW grant, which he gratefully acknowledges.

[^1]: 2 If A is a finitely-generated k-algebra, module-finite over its center Z (hence noetherian [S, Theorem 4.2.1]), then the maximal k-dimension d of the simple A-modules is finite [S, Theorem 4.2.2]. If A is also prime and k is algebraically closed then the 'Azumaya locus' parameterizes the isoclasses of large modules [BG, Proposition 3.1.a]. Le Bruyn [Le, Theorem 1] and Brown and Goodearl [BG, Theorem 3.8] showed that if A is additionally Auslander-regular, Cohen-Macaulay, and if the compliment of the Azumaya locus has codimension at least 2 in Max Z, then the Azumaya and smooth loci coincide.

[^2]: ${ }^{3} \phi$ is injective since $\frac{1}{t} \cdot Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}} \otimes t v=1 \otimes v=\phi(v)=0$ implies $t v=0$, which implies $v=0$ since $t \notin \mathfrak{m}=\operatorname{ann}_{Z} V$.
 4 Of course there is a maximal left ideal \mathfrak{r} such that $V \cong A / \mathfrak{r}$ as A-modules, namely $\mathfrak{r}=\operatorname{ker} \phi_{v}$ where $\phi_{v}: A \rightarrow V$ is given by $a \mapsto a v$.

[^3]: ${ }^{5}$ Indeed, since $A_{\mathfrak{m}}$ is Azumaya, any simple $A_{\mathfrak{m}}$ has annihilator $\mathfrak{p}_{\mathfrak{m}}$. Thus any simple $A_{\mathfrak{m}}$-module is also a simple module over $A_{\mathfrak{m}} / \mathfrak{p}_{\mathfrak{m}}=A / \mathfrak{p}$. But A admits an embedding into a matrix ring, so A / \mathfrak{p} is primitive PI, and thus a central simple algebra by Kaplansky's theorem. Therefore A / \mathfrak{p}, hence $A_{\mathfrak{m}}$, has only one simple module up to isomorphism.

[^4]: ${ }^{6}$ This follows since $Z_{\mathfrak{m}}$ is a projective $Z_{\mathfrak{m}}$-module, and by [MR, 7.4.2.iii] $\mathrm{fd}_{Z}\left(Z_{\mathfrak{m}}\right)=\mathrm{fd}_{Z_{\mathfrak{m}}}\left(Z_{\mathfrak{m}}\right)=0$, so we may apply the exact functor $Z_{\mathfrak{m}} \otimes_{Z}$ - to a projective resolution of V over A, giving a projective resolution of $Z_{\mathfrak{m}} \otimes_{Z} V \cong Z_{\mathfrak{m}} / \mathfrak{m}_{\mathfrak{m}} \otimes_{Z} V=V_{\mathfrak{m}}$ over $Z_{\mathfrak{m}} \otimes_{Z} A=A_{\mathfrak{m}}$.

[^5]: 7 We give a partial account: A generalization of birationality is needed in order to view a homologically smooth noncommutative algebra as a resolution of its center. Two varieties are birational precisely when they have isomorphic function fields; we may take the 'function field' of a noncommutative algebra A with prime center Z to be $\operatorname{Frac}(Z) \otimes_{Z} A$. If X is an algebraic variety then A and $k[X]$ are said to be birational if their respective function fields are Morita equivalent, that is, $\operatorname{Frac}(Z) \otimes_{Z} A \cong \operatorname{End}_{k(X)}\left(k(X)^{n}\right)$ for some $n<\infty$, since requiring they be isomorphic is clearly too strong. Morita equivalence therefore holds if (and only if) (i) $\operatorname{Frac}(Z) \cong k(X)$ (by comparing centers), and (ii) there exists a finitely-generated Z-module M such that

[^6]: ${ }^{8}$ Martelli and Sparks proved that the real cone over the $Y^{2,1}$ manifold is the complex cone over $d P_{1}$ [MS], and so it follows that the real cone over the $Y^{2,1}$ manifold coincides with the maximal spectrum of the $Y^{2,1}$ algebra away from the origin.
 ${ }^{9}$ In physics terms, in the Lagrangian of an $\mathcal{N}=1$ physical theory, a is a Fayet-Iliopoulos parameter and the moment map constraints are the D-terms; see for example [MP], and in the case of the $Y^{p, q}$ manifolds (starting from a metric) [MS].

[^7]: 10 The Calabi-Yau variety need not be singular, but often theories with singularities are able to more closely model nature by, for example, breaking supersymmetry; see [BHOP].
 11 According to the AdS/CFT correspondence, this variety does not necessarily need to be actual physical space, but may instead just be a parameter space for something similar to mass ('vacuum expectation values') for certain fields that live in our $(3+1)$-dimensional spacetime manifold.

