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1. Introduction

Suppose {X,(t),n =1,2,...,N}and {Y,(t),n = 1, 2, ..., N} are sequences of random functions on [0, 1] that satisfy
the linear relationship

1
Ya(t) = / W (s, H)Xn(s)ds + €;(t). (1.1)
0

For example, X, (t) and Y,(t) may be the exchange rates of two currencies on day n at time t, where the trading day is
normalized so that t ranges between 0 and 1. In other applications, X, can be the temperature and Y, the pollution level at
a given location. If ¢, = ¥, = ... = Wy, we say that the model is stable. However, as the underlying conditions change,
the ¥’s may also change. Our estimates for the assumed common ¥ as well as our predictions and inferences based on the
model would be flawed if we falsely assume that the ¥’s have not changed. To test the applicability of this model with an
unchanging ¥, we will test the null hypothesis,

Ho: Wi =W = = Wy, (1.2)
against the alternative

Hy =t = =W Fep = =¥ F W= =W
with some unknown integers k7, . .., ki'. The k;’s are called change-points, and the alternative, Hy, is that there are exactly

r change-points. We assume that (1.1) and Hp hold and that both {X,} and {e¢,} are stationary sequences. The model with
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non-changing (stable) ¥ has received considerable attention in the literature. If X, and ¢, are independent sequences of
independent processes, then (1.1) is a functional version of the classical linear model (cf. [7-10]). If X;; = Y;_1, then we have
the functional AR(1) model in (1.1) (cf. [5,15,18]). Aue et al. [3] investigated the stability of high-frequency portfolio betas
in the capital asset pricing model (CAPM). CAPM is a version of the model in (1.1) where, in our notation, a vector valued Y,
is a linear combination of vector valued X;,’s and an additional error term.

Let C(s, t) = var (Xu(t), Xq(s)) and D(s, t) = var (Y,(t), Yn(s)). Let {(vj(s), Aj), 1 < j < oo} and {(w;(t), 7;),1 <
i < oo} be eigenfunction-eigenvalue pairs associated with C(s, t) and D(s, t) respectively. This means that tjw;(t) =
fol D(t, s)w;i(s)ds and Ajvj(s) = fol C(s, t)v;(t)dt. Assume that A; is the jth largest eigenvalue of C(s, t) and that t; is the
ith largest eigenvalue of D(s, t). It can be assumed that the eigenfunctions of C(s, t) are orthonormal and also that the
eigenfunctions of D(s, t) are orthonormal. We assume that ¥ e L2[0, 1] and can therefore be expressed as

W, ) =YY YimwiD). (1.3)

i=1 j=1

Using (1.3) we can write the model (1.1) as

1
Y, (t) = f v, (s, )X, (s)ds + €,(t)
0

1 o© o0
/ DO Yiwiv($)Xa(s)ds + €n(t)
0 =

i=1 j=1
q )4 1
=) vijwit) [ Vi($)Xa(s)ds + € (), (1.4)
i=1 j=1 0
where
GO=a®+3 3 vw / X+ 33 g f (X (5)ds.
i=1 j=p+1 i=q+1 j=1

Eq. (1.4) means that we keep the parts of Y,, and X;, which are explained by the first g and p principle components.
To reduce the dimensionality of the model we will project both sides of (1.4) onto the space spanned by the functions
{w;i(t), 1 < i < q}. Doing this we obtain the linear model

(Yn, wy) Vi1 Vi o Yip\ /X, vr) (€, wi)
(Yn, wa) Vo1 Va2 o Yap | | Xnsv2) (€7, w2)

: =1 : : : + : : (1.5)
(Y, wq) %.1 Ilfq,z T l[fq,p (X, vp) (E::, wq)

Instead of testing the null hypothesis, (1.2), exactly as it is stated, we would like to test if the coefficients {y;;, 1 < i <
g, 1 < j < p} remained constant during the observation period. Essentially, we are testing the stability of ¥ (s, t) over
the space spanned by the most important principle components of the X;’s and the Y;’s. Eq. (1.5) has the form of a linear
model, but it is not a classical linear model because the regressors are random variables and are correlated with the errors.
Unfortunately, we cannot use (1.5) directly, since the covariance functions, D(s, t) and C(s, t), and hence the elgenfunctlons
{wi(t),i=1,2,...,q}and {v;(t),j = 1, 2, ..., p}, are unknown. Instead, we will use the estimates DN (s, t) and CN(s t)
and their corresponding eigenfunctions, {@; y(t),i= 1,2, ..., q}and {O;n(s),j = 1,2, ..., p}, where

R 1 N _ B _ 1 N
Du(s. t) = Z(Ykm = Wy O)(Ye(s) = Vn(s)  with T (6) = = 3 Vi(o),
k= i=1

N

Cn(s. ) = Z(xk(r) — Xn (D) (Xe(s) — Xn(s))  with Xy(6) = Zx,m.
k i=1

Eigenfunctions corresponding to unique eigenvalues are uniquely determined up to signs. For this reason, we cannot expect

more than to have @; y be close to d; yw; and v; y be close to ¢; yvj, where d; y, C; v are random signs (cf. Theorem 5.2). In

order to obtain a linear model similar to Eq. (1.5) that is usable, we must use our estimates for the eigenfunctions. We replace
Eq. (1.4) with

q )4 1
Yat) =D dintijGnidin (0) / BN ($)Xa($)ds + €37(0), (16)
0

i=1 j=1
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where

q o9 1 00 00 1
0 = e+ Y > Yigwilt) / YEXa®)ds+ Y D Yrwi(t) f vj(5)Xy (5)ds
0 0

i=1 j=p+1 i=q+1 j=1
q )4 R 1 q p 1
=Y dinigGniin(t) f DN (©Xn(S)ds + Y > Y jwi(t) / U($)Xn(5)ds.
i=1 j=1 0 i=1 j=1 0

By projecting both sides of (1.6) onto the space spanned by the functions {w;n(t), 1 < j < g}, we can replace the linear
model (1.5) with the empirical linear model

(Yo, W1n) dintiain din¥ioben - dinbiplon /(X diw) (eg", in)
(Yn, wan) don21Cin o226 o0 donYoplon (Xn, V2,n) (2", Wan)
= . ) . . + . . (1.7)
(Y, &)q.N> aq,qu,lel,N aq,NWq,Zez,N . aq,qu,pep,N (X, f)p.N> <€:*, qu,N>
The signs {a,»,N, 1 <i<gq}and {éj,N, 1 <j < p} are computed from X;, X5, ..., Xy and Yy, Ys, ..., Yy and they will not

change during the testing procedure. Therefore, testing the stability of {ai,Nw,-,jej,N, 1 <i<gq,1<j<p}isequivalent to
testing the stability of {;;, 1 <i<gq,1<j <p}.
Letting ® be the Kronecker product, we can express Eq. (1.7) in a more condensed form:

Y(n) =Z(m)B+ A(n), 1<n=<N, (18)
where
(Ya, 12)1,1\1) (er”, 1?1.N)
N (Yn, waN) R (€™, WaN)
Y(n) = . , A(n) = . ,
(Yna ﬁ)q.N) (e;qk*a ﬁ)q,N>

d],N‘/fl,lel,N

al.NW]. Con
g=1% .pCp,

PN = vec({dinyij6in. 1 <i<q. 1<j<p),
dz,Nl/fz.lCLN PPN

dgn Vg pp
and
Z(n) =1, ®M(n) with M(n) = ((Xa, D1n)s - - s Xns Dpon)) -
The least squares estimator for g is defined by
X ara N1 arn
By = (ZLZN> 27y,

where the vectors ?LNt 1 and the matrices iuvr | foreach t € [0, 1] are defined by

Y(1) Z(1)
) Y(2) . Z(2)
YLNtJ = . and ZLNU = :
Y([Nt)) Z(|Nt))

Our testing procedure is based on the cumulative sums process of the weighted residuals,
~ INe] ~ N ~
Vy(t) = N~12 [Z Z'(mY(m) —t Y ZT(n)Y(n):| , telo, 1], (1.9)
n=1 n=1

where ?(n) = ?(n) - i(n)iiN, 1 < n < N stands for the residuals.
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2. Main results

In this section we formally state all of the assumptions that we need and then we state our main theorem. Throughout
this paper we use |-| to mean the absolute value of a scalar or the largest of the absolute values of the elements of a vector
or matrix. It will always be clear from the context which is meant.

Our first condition means that the processes X,, and ¢, are Bernoulli shifts:

Assumption 2.1. X;,(t) and €,(t) can be expressed as
Xa(t) = a(m,(t), 9,1 (t),...) and & (t) = b, (t), 9,1 (D), ...),
for some functionals a and b where {»,, —00 < k < oo} are iid vector-valued random functions.

Assumption 2.1 implies immediately that the vector-valued process (X, €;), 1 < n < o0 is stationary and ergodic. If Hy
holds, then (X;, €5, Y;), 1 < n < oo is also stationary and ergodic. We also require that the processes have at least 4
moments:

Assumption 2.2.

EX,(t) =0 and Ee,(t) =0, (2.1)
1 1

/ EX}(t)dt < oo and / Eel(t)dt < oco. (2.2)
0 0

Assumption 2.3. X;,(t) and €,(s) are uncorrelated, i.e. EX,(t)e,(s) = Oforall0 <t,s < 1.

Under Assumption 2.1 one can even have long-range dependence among the observations. However, in this paper we are
only interested in weakly dependent sequences which is stated in the next assumption:

Assumption 2.4. We assume that

1 1/4
Z (E/ (Xa () —X,E")(t))4 dt> < 00 (2.3)
1<k<oo 0
and
1 1/4
> (E / (en(t) — € (t))4dt> < o0 (2.4)
1<k<oo 0
with
XP () = ay (), Byeg (O, s Mg (O 10 (O, Dn 1 (D),
and
€M (t) = b (0) M1 (O, M1 (O, M (), 11 (D), ),
where {nfffz_,, —o0 < k, £,n < oo} are iid copies of 5,.

We note that, due to stationarity required by Assumption 2.1, it is enough to assume that (2.3) and (2.4) hold for at least
one n. Hormann and Kokoszka [ 13] call the processes satisfying Assumption 2.4 L*-k-decomposable processes. This property
appeared first in [16] and is used several times in [4] in case of random variables on the line. Aue et al. [3] use an analogue of
Assumption 2.4 for random vectors when they derive tests to detect a change in the covariance structure of the observations.
Wied et al. [28] investigate the change in the correlation under the same assumptions as in [3]. Aue et al. [2] provide several
examples when Assumptions 2.1 and 2.4 hold. For example, autoregressive, moving-average, linear processes in Hilbert
spaces satisfy this condition. Also, the non-linear functional ARCH(1) model (cf. [14]) and bilinear models (cf. [13]) also
satisfy Assumption 2.4.
Our next assumption ensures that the p and q largest eigenvalues of C and D, respectively, are unique.

Assumption 2.5.
)\.1 >)\.2> "'>}‘-p+1
and

‘(1>'L'2>"'>'(q+1.
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Assumption 2.6.

1 1
/ / wi(s, t)dtds < oo.
0 0

We note that under Assumptions 2.2 and 2.6 we also have that EY,,(t) = 0 and f01 EY,f(t)dt < 0. Let
ye=vec({y(i.j),1<i<q1<j=<p}),

where
ve(i, J) = (Xe, vj){ee, wi) + (Xe, vj) (Xe, ui),

and

o0
w(s) = Y Yirv(s), 1<i<gq.
r=p+1
Define X as
o0 o0
T =Eyoyo+ Y Evovi + Y _Evevp.
=1 =1
We now define our detector as

Vi (t) = V5 () Ey Un (D),

where \~/N(t) s defined in (1.9) and ¥y is an estimator (up to random signs) for X. The Bartlett-type estimator that we
propose for Xy is a function of the estimators ?; y(t) and w; y(t), which are estimators for v(t) and w(t) up to random

signs. For this reason, we cannot expect that Xy will be close to X. The best we can expect is that ¢y ENZ;N will be close to
¥, where ¢, is a matrix corresponding to the random signs, ¢j y and d; y. This is described in Assumption 2.7.

Next we introduce the diagonal matrices éN and f)N which consists of the random signs, i.e. éN = diag(Cyn, - - -» Cp.N),
DN = diag(dLN, ey dq.N) and CN = DN ® CN.

Assumption 2.7. Sy = I, ENCN is an estimator for ¥ such that

’EN—E‘ =op(1).

Note in particular that
evve = vec ({Gndinye(i ) 1<i<q. 1=j <plf).
Note also that Assumption 2.7 and the continuous mapping theorem combined imply that 2;1 =y EIT Cy o5,

Although any estimator satisfying Assumption 2.7 can be used, we recommend using a Bartlett-type estimator as Xy,
which we will describe in Section 3.

Theorem 2.1. If Assumptions 2.1-2.7 hold, then we have
» X
Vn (D) — Y BZ(0),
=1

where {B,(t), £ = 1, ..., pq} areiid standard Brownian bridges.

The testing procedure can be based on Theorem 2.1, using functionals of Vy (t). The distribution of functionals of the limit
was considered by Kiefer [19] who provided formulae for the distribution functions of the supremum and L? functionals of
the limit. For tables, approximations and further discussion on the distribution of functionals of the limit we refer to [3].



L. Horvdth, R. Reeder / Journal of Multivariate Analysis 111 (2012) 310-334 315
3. Bartlett-type estimators

In this section we discuss the estimation of the long-run covariance matrix of the sums of weakly dependent vectors. We
start with estimators based on the sequence y,, 1 < £ < N. Since X is the spectral density at 0, the kernel-type estimators
discussed in [1,6,12,24-26,29] can be used. The estimator is defined by

N—-1

Iv=">_ Kk/Bu)dn

k=—(N—1)
where
1 min(N,N—k)

T
din = N Z YeVotr:
£=max(1,1—k)

The kernel K satisfies the following condition:

Assumption 3.1.
HK(@O) =1
(ii) K is a symmetric, Lipschitz function
(iii) K has a bounded support

>iv) IA<, the Fourier transform of K, is also Lipschitz and integrable.

These conditions are mild, and they are satisfied by the most commonly used kernels, like the triangle of Bartlett and
the polynomial kernel of [22,23]. Assumption 3.1(iii) makes the present proofs relatively technically simple and it could
be replaced with the assumption that K (x) decays sufficiently fast as |x| — oo. The next assumption is standard in the
estimation of spectral densities and long term variances and covariances.

Assumption 3.2.

By - 0o and By/N — 0, asN — oo.

Jansson [17] proved the consistency of covariance estimation for linear processes under the assumption By = o(N'/?).
Similarly, [13] obtained consistency results for the estimation of the long run covariance matrices of the projections of
functional observations assuming By = o(N'/?). Liu and Wu [20] established consistency results for estimation of spectral
densities under Assumption 3.2.

Theorem 3.1. If Assumptions 2.1-2.4, 2.6, 3.1 and 3.2 hold, then
I )

We would like to point out that the proof of Theorem 3.1 only requires that y; is a Bernoulli shift with zero mean and finite
second moment for which (5.13) holds.

The estimator, ¥y, cannot be computed since the variables y, are not observed directly and we need to estimate them
from the sample. We have estimators for v; as well as for w;, but we will also need an estimator for €,. We use the residuals
to get inference on &;:

q p
() = Ye(©) = D Y Wiin () (Xe, in),

i=1 j=1

where 1/31-,]- is the (i, j)th element of 3N when it is written in the matrix form, i.e. {fbl-’j, 1<i<ql1<j<p}= vec‘l(ﬁ,\,).
Now p, will be replaced with

po=vec({Pe(i ), 1<i<q 1<j=<p}),
where

Ve(,J) = (Xe, Ojn)(€e, Win)-
Now the Bartlett-type estimator is defined as

N—1

Iv= Y Kk/By)dyn. (3.1)

k=—(N—1)
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where
1 min(N,N—k)
o A AT
$n= Z YeVotk-
¢=max(1,1—k)

The next result states that the proposed estimator satisfies Assumption 2.7.
Theorem 3.2. If Assumptions 2.1-2.6 and 3.1 hold and

By — oo and By/N'? -0, (3.2)
then Assumption 2.7 is satisfied.

The estimator Xy is based on the empirical projections, 7, (i, j); in the proofs, this will be replaced with cAi,-,Néj,Nyg(i,j). We
point out that the rates in (5.5) and (5.6) of Theorem 5.2, which are optimal, allow us to use the relaxed assumption that
By/N'? — 0 instead of the typical assumption that By /N — 0.

4. A simulation study

In this section, we investigate the empirical size and power of a testing procedure using the integral of the detector,
f |V (t)|dt, as our test statistic. Seeking to obtain a test of size @« = .01, .05, or .10, a rejection region was chosen according
to the limiting distribution of the test statistic. Simulated data was then used to compute the outcome of the test statistic.
Iterating this procedure 10,000 times, we kept track of the proportion of times that the outcome fell in the predetermined
rejection region. When simulations are done under Hy, this gives us the empirical size of the test, which we expect to be
close to the nominal size, «, for large sample sizes. When simulations are done under the alternative, Hy, the proportion
gives us the empirical power of the test.

The X,,(t)’s and ¢,,(t)’s were generated according to the distribution of independent standard Brownian bridges. Then,
using ¥ (s, t) = e*“*‘)z, we obtained the first half of our sample according to (1.1). The second half of the sample was also

obtained from (1.1) but used ¥ (s, t) = ce~¢=9% Thus the power of the test is a function of the parameter c. In particular,
when ¢ = 1, the null hypothesis is true. The Bartlett estimator for X' uses the flat-top kernel

1 0<|t] < .1
K@) =111-1]t| 1<]t] < 1.1
0 It] > 1.1.

The resulting empirical size and power are given in Tables 1-4 for various values of p and q.

5. Random processes in Hilbert spaces

In this section we summarize some basic results on random variables in Hilbert spaces which are used in the proofs. Let
| - | denote the L2-norm of functions defined on the unit interval, the unit square or the unit cube.

Theorem 5.1. If Assumptions 2.1-2.4 hold, then we have

=0p(1), (5.1)

1 N
i 2 Xa(Oen(s)
n=1

1 N
N2 D Ga(0)Xa(s) — C(¢,9)) ‘ = 0p(1), (5.2)
n=1
1 N
i 2_(en(en(s) = F(t.5) | = 0p(1), (5.3)
n=1

with F(t, s) = E(e,(t)en(s)). If in addition Assumption 2.6 is also satisfied, then

1 N
i3 2 (a(OYa(s) = (. 9)) ‘ = 0p(D). (5.4)
n=1

Proof. It was pointed out in [13] that the k-approximable property in Assumption 2.4 implies (5.2) and (5.3). Using (1.1), we
get that the sums of X, (t)e€,(s) and Y, (t)Y,(s) are also k-approximable so the rest of the result again follows from Theorem
3.10f[13]. O
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Table 1
Empirical power of test (in %) using p = 1,q = 1, By = N'/3/4, and a flat-top kernel for K (t).
c N = 100 N =500 N = 1000
o =.01 o = .05 oa=.10 o = .01 o = .05 a=.10 o = .01 o =.05 o =.10
1.0 0.8 5 10.2 0.9 5.1 10 1.1 5.1 10.2
1.2 25 10.1 18 15.1 34.9 46.9 35.8 60.1 71.7
1.4 8.9 26.5 38.9 70.5 88.5 93.3 96.9 99.4 99.8
1.6 24.1 52.2 65.5 98 99.7 99.9 100 100 100
1.8 46.5 751 85.1 100 100 100 100 100 100
20 69.7 90.7 95.3 100 100 100 100 100 100
Table 2
Empirical power of test (in %) using p = 1,q = 2, By = N'/3/4, and a flat-top kernel for K (t).
c N = 100 N =500 N = 1000
o = .01 o = .05 o =.10 o = .01 o = .05 oa=.10 o = .01 o = .05 oa=.10
1.0 0.6 4.5 9.4 1 5.1 10.4 1.1 53 10.3
1.2 1.5 7.9 15.8 10.1 26.7 38.7 25.9 50.2 63
14 5.7 19.5 309 58 80.9 88.6 93.6 98.5 99.4
1.6 15.3 40.5 55.2 95.8 99.2 99.6 100 100 100
1.8 35. 65.4 78.2 100 100 100 100 100 100
2.0 56.6 83.6 91.6 100 100 100 100 100 100
Table 3
Empirical power of test (in %) using p = 1,q = 3, By = N'/3/4, and a flat-top kernel for K (t).
a = .01 o = .05 a=.10 o =.01 a = .05 a=.10 a = .01 a = .05 a=.10
1.0 0.7 4.4 9.6 0.7 53 10.2 0.8 5.1 10.2
1.2 14 9.5 17.5 18.8 41.8 54.8 50 74.2 83.5
14 7.9 279 42.3 87.8 96.9 98.5 99.8 100 100
1.6 249 57.2 72.1 99.9 100 100 100 100 100
1.8 53.2 82.7 90.8 100 100 100 100 100 100
2.0 76 9456 97.8 100 100 100 100 100 100
Table 4
Empirical power of test (in %) using p = 2, q = 2, By = N'/3/4, and a flat-top kernel for K (t).
c N =100 N =500 N = 1000
a = .01 o = .05 o =.10 o =.01 o = .05 a=.10 o =.01 o = .05 o =.10
1.0 14 5.9 10.7 0.9 48 9.6 1 49 10
1.2 2.1 8 14.1 7.6 20.8 31.2 19 39.8 52.7
14 49 15.5 254 458 70.2 80.5 88 96.5 98.4
1.6 111 29.9 43.4 90.4 97.6 98.9 100 100 100
1.8 233 48.8 62.6 99.7 100 100 100 100 100
2.0 38.6 68 80.6 100 100 100 100 100 100
Theorem 5.2. If Assumptions 2.1-2.6 hold, then we have
A q —-1/2
max || v (6) — dyvwi®)l] = 0p (N2, (55)
1<i<q
A A -1/2
max [[3jn(t) — &nvj(t)]| = 0p (N7'/?) (5.6)
1<sj=<p
and
A —-1/2
max |y — 7| = 0p (N / ). (5.7)
1=<i<q
N —-1/2
max |y — Ajl = 0p (N71/2). (5.8)
1<j=q

Proof. Using Corollary 1.6 of [11, p. 99] we get that (5.5) follows from (5.4). According to Lemma 4.3 of [5], (5.4) implies
(5.7). Similarly, (5.2) yields (5.6) and (5.8).

The next result is a uniform version of Theorem 5.1.
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Theorem 5.3. If Assumptions 2.1-2.4 and 2.6 hold, then we have

1 k
max |5 > Xa(®)en(s) | = Op(logN), (5.9)
- n=1

1 k
max o > (Xn(OXn(5) = C(,9)) ’ = Op(logN). (5.10)
- n=1

1 k
max | > (en(t)en(s) — F(t,5))|| = Op(logN) (5.11)
- n=1

with F(t, s) = E(e,(t)en(s)). If in addition Assumption 2.6 is also satisfied, then

1<k<N

1 &
max N2 Z(Yn(t)Yn(s) — D(t,s))|| = Op(logN). (5.12)
n=1

Proof. Following the proofin Section A.1in [13] one can easily verify that there is an integrable function g(t, s) such that

k 2
E (Z xn(r)en<s)> < kg(t,s).

n=1

Hence by Menshov’s inequality (cf. [21]) we have that

k 2
E max (ana)en(s)) < (logN)*Ng(t. 5),
1<k<N —

implying (5.9). Similar arguments yield (5.10)-(5.12). O

The next results establish the weak convergence of the sum of the y,’s.
Theorem 5.4. If Assumptions 2.1-2.4 and 2.6 hold, then

1 & gy
N2 ZJ’@ — Wx(1),
=1

where Wy is a pq dimensional Brownian motion with zero mean and E(W 5 (t)W5(s)T) = min(t, s) X.

Proof. First we note that Assumptions 2.1-2.4 imply that
S ; (m) \2 172
> (B =y @) " < o0, (5.13)
m=1

where y; (i) and yz(m) (i) are the ith coordinates of the vectors y, and yim) with

P =vec(ly™ (. j). 1<i<q1<j<p}),

and
v (0,0 = ™ up)ed™  wi) + T o) (™, ).
The result now follows immediately from Theorem A.10f [3]. O
6. Proof of Theorem 2.1
First we outline the proof of Theorem 2.1. Using the definition of the residual vectors we can write that
V() = N2 (2 Vi — 2l ZinB) — ¢ (2050 — Zh2uBy))

=N ((Z{NIJALMJ - fZMN) + (mezum - tZLZN) (ﬁ B ﬂ”))

~ ~ PN iTN ithj — fiLiN ~
=N"1/? (Z{N”ALMJ — tZ,(,AN> + (LUN (ﬁ - ﬂN) ‘/ﬁ’ (6.1)
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with
A(D)
AQ2)
[Nt] = :
A(|Nt))
We show that
(ﬂ — ﬁN) VN =05 (1), (62)

(cf. Lemma 6.10) and we prove in Lemma 6.2 that

Ziy Zivg — tZyZy

su
b N

te[0,1]

=o0p(1). (6.3)

Combining (6.2) and (6.3) we conclude that

s ara
(ZLNtJZLNtJ fZNZN> (ﬂ—f%) IN

sup
te[0,1]

N :Op(]).

Thus we see that N~1/2 (i{m] A — ti,TVAN> is the leading term while the remainder can be disregarded when considering

the limiting distribution of our cumulative sum process (1.9).
We now start with the proof of (6.3).

Lemma 6.1. If Assumptions 2.1-2.5 hold, then we have

k

1
X Z(Xn’ i) (X, 1)) =5 M Wi =j} ask — oo.

n=1

Proof. We recall that X;,(t) is stationary and ergodic. Thus the ergodic theorem shows us that as k — oo

k 1 1
,%Z<Xn,v,-><xn,vj> . f Xa(s)vi(s)ds [ Xa()vy(t)dt
n=1 0 0

1 1
= E/ U]‘(t)/ Vi (8) Xy (6) Xy (s)dsdt
0 0

1 1
/ u(0) / U(S)E (X (0)Xa(5)) didt
0 0

1 1
= / v;(t) / vi(s)C(s, t)dsdt
0 0

1
/ vj(t)Aivi(t)dt
0
= A=,

completing the proof. O

Lemma 6.2. If Assumptions 2.1-2.5 hold, then we have

1 AT oA A A
N sup Z{NUZ[NU — tZLZN = Op (1) (64)
te[0,1]
and
1 A A P
ﬁz{,zN =194, (6.5)

where A = diag(Aq, Ay, ..., Ap).
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Proof. First we show that for § > 0and y > 0 there are Ky and Ny such that

k

1 ( ~ Y ~ ) 1i i
P sup |-+ E Xn, Vi Xn, Vin) — Ail{i =
Ko sl X ns Vi,N)\An, UjN i J

if N > No. Note that by the Cauchy-Schwarz inequality we have

> 8) <y, (6.6)

n=1

k
1 1 N " N N
. < 2 2 WXl — il + 1w — G-

n=1

M=~

((Xn, Din) (X, Din) — (X, Cin i) (Xns Gny))

~

n=1

Using the ergodic theorem we get that

1 k
sup % Z I1Xall?> < 00 ass.,
n=1

1<k<oo

s0 (6.6) follows from Theorem 5.2 and Lemma 6.1.
Assume N > Ny. It now follows that

p< sup |, 2o — 12320 > 4N8)
te0,1]
2T 5 2T 5 2T 5 2T 5
<P ( sup ‘ZLNtJZLNtJ - tZNZN’ + sup ZLNtJZLMJ - tZNZN’ > 4N(S>
0<t<Ko/N Ko/N<t<1

7' Zine) — tZ1Zy 7' Zn 207
<p sup [Nt &INt] N + sup [NeJ“INt]  LnEN < 43
0<t<Ko/N N Ko/N<t<1 Nt
2T B — (212 2T, A 373
<P sup L) LN N + sup Zine TN —C|+ | =X N _¢|> 45
0<t<Ko/N N Ko/N<t<1 Nt
7'7 KoZ'Z 7'7 7'z
<P( max |2 0NN LS NN el > 48 ).
1<k<Ky | N N2 Ko<k<N

For every Ko we have that P(max;<k<, |2zik|/N > 8) — 0and by (6.6) P(|K02Z,2N|/N2 > 8) = 0as N — oo. Using (6.6)
again we conclude P(maxy,<k<ny |i£ik/k — C| > 8) < y.Since y and § can be chosen as small as we wish, Lemma 6.2 is
established. O

We continue with the properties of 2{Nt | A|n). First we observe that

LNt
Z A =Y Z'0A®)

=1
LNt |

=Y vec ({{Xe. in) (e hin), 1<i<q1<j<p}). (6.7)
=1

We note that
€7 (t) = €o(t) + ne1 () + ne2(t) + 1e3() + nea(t) 4+ nes(t),

with

o0 o0 1 [e%e) o0
Ma() = Y Y yijwilt) fo UXa(S)ds = Y Y i wilt) (), Xa),

i=q+1 j=1 i=q+1 j=1

q 00 1 q 00
M2 =Y Y ijwi() / UOXa(s)ds = Y Yiwi(6)(vy, Xa),
0

i=1 j=p+1 i=1 j=p+1
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q )4
Ms® = 303 it wn(t) / (EABE — () Xa(5)ds
i=1 j=1
q p R R
= Z Zdl,wl//i,jej,zvdi,Nwi(f) {(Env; = Din) s Xa) s
i=1 j=1
q )4 R R 1
Mna®) = Y2 D it (dwwi(©) — din(©) / N (S)Xa(5)ds
i=1 j=1 0
P
= ZZdINI//UCJN le(t)_wlN(t) C]NU]»
i=1 j=1
q p
s = D) d

Il
-
.
Il
-

(@ ).
i Nwljcj N ( in() — ai,N wi(t)) / C} NVj () — U] N(S)) Xq(s)ds
(i )

le//uCJN

|
-M“’ .
M@

N () — diwi(t)

C]NUJ—U]N X)
1

Il

-
.
Il

In particular, we can write

(€7, Win) = {€o, Win) + (Me,1, Win) + (Ne2, Win) + (M3, Win) + (Mea, Win) + (Ne,5, Win).

321

(6.8)

We show that 2{Nt | A|n) can be written as the sum of weakly dependent variables and an additional term which is just ¢
times a random variable matrix. The additional term reflects the replacement of ¥ with a finite sum and the estimation of

the eigenfunctions {w;, 1 <i < q} and {v;, 1 < i < p}. The drift term is given by
Ry = vec ({Ry(i.j). 1<i<gq 1<j=<p}),
where

Ru(i,j) = R G, ) + R (0, §) + RY G, ) + RS G, j),

e 1
RO =Gy Y Vi fo wr () (i) = divwi)) dx,

r=q+1

1 00
R (.J) = din f (Bin@ = Gavi(@) Y Vinknva(2)dz,
0

n=p+1

p 1
RY G J) = Gndink Y Vinbnn f (Ennvn(s) = Dun () vj(s)ds,
0

n=1

q 1
RO = ity Y- et [0 (e 0 = o) .
r=1

Lemma 6.3. If Assumptions 2.1-2.5 hold, then we have

[Nt]
sup | " (Xe, D) (€ec, Din) — GudinTiy, (0. )| = Op (logN) ,
te[0,1] —1
where
LNt ]
1 ..
TENiJ i,)) = Z(XZ, vj)(€e, wi).
=1

Proof. We note that
[Nt] LNt ]

sup | " (Xe, D) (e, i) — D (Xe, Gnvp)(ee, dinwi)
tel0.11 1= =1
[ [Nt |
< sup | (X, D — o) ler hin)| + sup D (Xe Gy (€q, iy — dinwi)|.
tel0,1] |7 tel0,1] |7
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Using the Cauchy-Schwarz inequality we get that

[Nt | [Nt |

sup | (X, v — Gy lee, hin)| < sup | Xe@ee(s)| (19 — vyl llidinl)
tel0,1] |y tel0,1] || 7=
= Op (logN) ,

on account of (5.6), Theorem 5.3 and ||@; y|| = 1. Similar arguments give that

LNt)
sup | (Xe, Gnvj){ee, in — dinwi)| = Op (logN),
tel0,1] |y

completing the proof of the lemma. O

Lemma 6.4. If Assumptions 2.1-2.6 hold, then we have

LNt |
sup D " (Xe. D) (e i) — INEIRY (1) | = Op (IogN) .
tel0 1 =1

Proof. Using the orthogonality of the w;’s we get that

1 o 00 1
S Y ® { | vn(s)xz(sms} wi)dx
0

0 r=q+1n=1

00 00 1 1
DD Vra f Un(5)Xe (5)ds ( f wl-(x)wr(x)dx)
0 0

r=q+1 n=1
=0.

(ne,1, wi)

Therefore we have

Xe, Oin)(mer, Win) = KXo, Ojn — Gnvy) (M1, Win — dinwi) + (Xe, Gnvj)(ne,1, Win — divwi).

Now,
[
Z(Xz, Ginvi) (N1, Wiy — dinwi) = A(L}v)u +A(ﬁ\,)”,
=1
where
. 1 p1 pl o 0 . LNt |
oy =t [ [ [ 0@ 33 b uns) (0 — i) | 3 Xe@Xe60) — INeICa.5) ) s
0 Jo Jo r=q+1 n=1 =1
and

1 1 1 o0 00
AZ = INEE / / / 0@ D2 D W (6)a(s) (i) — w0 ) €. s)dadsd
0 0 0

r=q+1 n=1

1 00
= [Nt] Ej,N/ MY Yrjwe(x) (ﬁh‘.N ) — di.Nwi(X)) dx
0 r=g+1
= INEJRY (),
where we used that the v;’s are orthonormal eigenfunctions of C.
Applying (5.5) and (5.10) again we conclude

sup ‘A([}v)u = 0p (logN) .
te[0,1]

Finally, using Theorems 5.2 and 5.3, we obtain that
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LNt
sup | " (Xe. D — Gvv) (11, iy — dinwi)
tel0,1] |y
00 o) Nt |
< |[oin@ = Gnui@|[ || D D Yrnwr®va(s) d; ywy Sup ZX@(Z)Xz )
r=q+1 n=1

=0p (N"2)0(1)0p (N"?) 0p (N). O

Lemma 6.5. If Assumptions 2.1-2.6 hold, then we have

[Nt]
sup D Xe, D) (me.20 i) — (é,»,Nd,-,NTfﬁi (@i, §) + [NEJRY (i,j))‘ = 0p (logN)
tel0,1 =1
where

[Nt ] 1 )
Tin ) = ; /0 /0 Xe($)Xe(@) = C(2.9) Y Yirvp(s)vj(z)dzds.

r=p+1
Proof. First we write
LNt )
. S a0 @ ®) ®)
Z(Xea Ui ) (e,2, Win) = A + A T AN T AN
=
where
[Nt]
3 oA
A(LN)” =Gndin Z(Xz, Vi) (M¢,2, i),
=
[Nt]
4 R ) R
A(LN)” =GN Z(Xz, v} {ne,2, Win — diNWwi),
=
[Nt]
A(Nu =din Z(Xz, Ojn — Vi) (1e,2, wi),
=
[Nt]
5 ) ) ) R
A(LN)” = Z(Xz, VN — GNYj) (Me2, Win — dinwi).
=

The orthonormality of {w;, 1 < i < oo} shows thatforall1 <i <gq

(0.2, wi) = / Z Z wrnwroo{ / vn(sm(s)ds}wi(x)dx

r=1 n=p+1

Z w'"/ vn($)Xe(s)ds.

n=p+1

Therefore, using again that the v;’s are orthonormal eigenfunctions of C we have

0 1 p1 [Nt |
ANy == &ndin Y Vi f f v(2)n (s) (sz(zm(s) - LNtJC(s,Z)) dsdz
n=p+1 0 0 =1
= GndinT{n,(0.J).

We decompose ALNtJ as

[NU
AY = / / Xe@ @) (w00 = (o)) Z Z Wy a0 () / Un(5)X, (5)dsdzdx

r=1 n=p+1

1 p1 pl LNt ]
& f f / %(2) (w,-,N<x>—d,;Nw,(x))Z ) wrnwr(x)vn(wer@)xz(z)dsdzdx
0 0 0

r=1 n=p+1

_ 2@ 4)
A [NtJ,1 +ALNtJ 2>
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where
AN =q~f f f v](z) Din () — le@‘))Z Z Yr nWr (X)0n(5)
r=1 n=p+1
LNt |
x (Z X ()X, (z) — |Nt|CGs, z)) dsdzdx
=1
and

ANz = G INE] / / / v,(z) Wiy (x) — ,Nw<x))Z Z Ve nWr (0) 0 (5)C (s, 2)dsdzdx

r=1 n=p+1
1 1 q o0
=GN LNfJ/ / Ajvj(s) (ﬁJi,N(X) - di,Nwi(X)) Z Z Vr Wy (X) vy (5)dsdx
0 0 r=1 n=p+1
=0,

using again that the v;'s are eigenfunctions of C. Therefore we obtain

(4) (4)
sup ‘A[th = sup ‘A[th ]’
tel0,1] tel0,1]
LNt |
< w0 — divwco| 5@ Ve ) su Zx@(s)xm) NEIC(s, 2)
r=1 n=p+1
= 0p (N"2)0p (1) 0p (N'*logN)..
Similar arguments give
LNt
Ay = 3 / / %@ (@ — G @) 10 3 3 Yo / 0a(9)X, (5)dsdzdx
r=1 n=p+1
(5) (5)
- A INt],1 +A|_th 20
where

(Nt ]
NtJ 1= d1 N / / UJ N@) — C] Nv](z) Z Yinvn(s) (ZXIZ(S)XZ(Z) [Nt |C(s, Z)) dsdz

n=p+1

and

Al = dinINt] f f f (B8 (@) — Gn(2) w,(x)Z Z Yr nwr (X)vn()C (s, 2)dsdzdx

r=1 n=p+1
2) . .
= [NtJRY (i, ).
Repeating our previous arguments we get that

LNt
er (5)Xe(2) — LNEJC(s, 2)

Z Vinn(s)

n=p+1

sup

sup ‘ALNIJ 1‘ < [oin@ = Gny@) |
te[0,1]

= 0p (N"/2) 0(1)0p (N'*10gN) .

Similarly, using the Cauchy-Schwarz inequality with (5.2) and Theorem 5.2, we conclude that

6
sup |A,|0p(D,
tel0,1]

completing the proof of the lemma. O

Lemma 6.6. If Assumptions 2.1-2.6 hold, then we have

LIVt

sup |5 (X 300 01 i) — INCIRS ()| = Op log).
tel0,1 =1
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Proof. We write

LNt
. e ® ©
Z(Xla Uj,N)(ﬂl,?n wi,N) - A[NU +A[NtJ +ALN£J’
=1
where
LNt |
7 . A .
ARy = (X, B — Gy (nes, Din),
=
LNt
g . . .
Ay = G Y (Xe v (s, iy — divws),
=1
LNt |
9 A
Ay = Gindin Y (Xew v (76,3, wi).
=1

Theorems 5.1 and 5.2 imply that

1 p1 Nt q p
| / DK@ ({10(2) ~ G2) 900 3 Y Vratavio)
0

r=1 n=1

7
sup ’A(LN)”
tel0,1]

sup
tef0,1]

1
X / (Canvn(s) — Dun(8)) Xe (s)dsdzdx
0

>3 s

r=1 n= 1te[0

Op (N) Op (N *”2) 0(1)0p (N712)

LNt)

er (5)Xe(2)

IA

” vin(2) — C] NV;(2) H ” Wi N () Yr.nConwr (X) ” ”Cn NV () — Dn,n(S) “

and similarly

8)
sup A(LNt ]

te[0,1]

=0p(1).

Next we observe that

o | _ (9) )
sup ’ALNtJ Alnea T AN 20
te[0,1]

where

1 1 q )4
ANy = Gindin Nt / / MU ©OWIR) Y Y Y nlanwr (%) (Ennvals) — By (s)) dsdx
0 0

r=1 n=1
INEIRY (i, j)

and

1 p1 p1 [INt]
A2 = Endin f f (er(z)xm)— LNtJC(z,S)) U@ wi(x)
0 0 0

q
X Y > W nlanwr(x) (Ennva(s) — Dan(s)) dsdzdx.
Using Theorems 5.2 and 5.3 again, we obtain that

sup ’ALMJ 2‘ = Op (logN) .
tel0,1

This completes the proof. O

Lemma 6.7. If Assumptions 2.1-2.6 hold, then we have

[Nt)

sup 13X ) 1. i) — INCIRSY G J)| = Op log)
te[0,1 =1

325
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Proof. Following the proofs of the previous lemmas we write

[Nt)

A . 10 1 12 13
> Xe By near Bin) = Alg) + Alne + Alye) + Al
=1

where
LNt)
10 N A . ~
Al = D (X, B — ) (e, Din — dinwi),
=1
LNt)
M _ A
Al = Gndin Y (Xe, vj) (1.4, wi),
=1
LNt
12) _ 4 . A
Al = iy Z(XL UiN — GNj) (1e4, W),
=1
LNt)
13) _ A . ~
Al = & (X, v (neas iy — divws).
=1

Repeating the arguments used in the proofs of Lemmas 6.4 and 6.5, one can show that

10
sup A0 | =0 (1),
te[0,1]

12
sup [Al)| = 0r (1),
tel0,1]

13
sup ‘A(W] =0p(1).
tel0,1]

Elementary arguments give

an _ ,an 11
ALNtJ _A[th,l +A

INt],2°
where
" . 1 p1 p1 [INt]
Alneya = Gndin / / / > Xe@)Xi(s) — [NEJC(z. 5) ) vj(@wi(x)
o Jo Jo \'—
q p R R
X 30D drtnéun (dnwe() = D)) Envn()dsdzd,
r=1 n=1
and

N

1 q
Al a = NG ndind / wi(x) Z dr NV 6N (dr,Nwr(X) —Wr N (X)) G ndx
0 r=1
= INtJRY G, ).
Using Theorems 5.2 and 5.3 again, we conclude that

sup ‘A([;\I]th’ = 0p (logN),
tel0,1]

completing the proof. O

Lemma 6.8. If Assumptions 2.1-2.5 hold, then we have

LNt
sup | (Xe. Djn) (mes. hind| = Op (1).
tel0,1] | =

Proof. It follows from Theorems 5.1 and 5.2 that
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LNt ]
sup Z(Xz, 0N ) (Me,5, WiN)
tel0,1] |y
LNtJ a. P
f f X @U@ i) Y D drvtaban (D) = drvir(9)
fe[o ” =1 r=1 n=1

X / (Cn.NUn(s) - Un,N(S)) Xy (s)dsdzdx

0
a_ p LNt
=22 Weal stp 1D X@X® = &y 0 [Ewvn(®) = B

= 0p (N) Op (N 1/Z)OP(N ). o

Lemma 6.9. If Assumptions 2.1-2.6 hold, then we have

[Nt] [Nt ]
sup D (X, D, bin) — (LNrJRN (i) + &ndin Y n(z}j))‘ = 0p (logN).
tel0. 11 o= =1

Proof. Combining Lemmas 6.3-6.8, we immediately see that

LNt]
sup |30 810 " i) = (INRNG. ) + G (i,j))‘ = 0, (logN),
te[0.1] |y

where
Tiney () = T, (.J) + Tl G )
Thus we need only to show that

LNt

Tl () = D (Xe, ) (Xe, w).

=1

However, using that the v;’s are orthogonal eigenfunctions of C, we get that

/ / C(z, 9)vj(2) Z Vi v (s)dsdz = A / vi(s) Z Virvp(s)dsdz = 0,

r=p+1 r=p+1

completing the proof. O
Lemma 6.10. If Assumptions 2.1-2.6 hold, then we have

VNGB - B[ =00 (1).

Proof. It is easy to see that
g = (B2) za
It follows from (6.5) that

22\
( ”;V”) =0p(1).

Lemma 6.9 and (6.7) yield that

N
PR

=1

Zhan| = _max [N|RN(i,j)|+
1<i=q,1<j<p

] + Op (logN) .
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It follows from Theorem 5.2 thatforall1 <i<q,1<j<p
N|Ry(i, j)| = Op (Nl/z)

while Theorem 5.4 implies that

N
> nli)
=1

=0p (N'?). O

Lemma 6.11. If Assumptions 2.1-2.6 hold, then we have

[Nt ] N
~ 1
sup |Vn(t) — &y —75 Ye—t) ve]|=0p(1).
tel0.1] N2 ; ;
Proof. Lemmas 6.2 and 6.10 and (6.1) imply that
1
sup V(0) =~ (ZLN”AWJ — 7! AN) —op (1).
te[0,1]

It also follows from Lemma 6.9 and (6.7)

LNt !
sup Zl\ A — vec { INEIR G J) + &ndin Y w(z',j)} = 0p (logN),
t 1 (=1

and therefore the proof is complete. O

Now we have all the necessary tools to prove the main result.

Proof of Theorem 2.1. It follows from Lemma 6.11 and Theorem 5.4 that

e Un (0 2% W () — W (1),

Next we observe that
[Z72(Wy(t) — tW5(1),0<t <1} 2 (B(t),0<t <1},

where B(t) = (81(t), ..., £pq(t))T and By, ..., By are independent, identically distributed Brownian bridges. Hence

1]
En U () Z 7 (g Un(0) 22 Z BL(0).
Now, using Assumption 2.7 with Slutsky’s lemma, the proof is complete. O

7. Proof of Theorems 3.1 and 3.2

We can assume without loss of generality that K (u) = 0if |u| > 1. Let m be a positive integer and define

P =vecly "G, j),1<i<gq1<j<p}),

where
v (0 = X o ed™  wi) + X o) (™, ).
The long term covariance matrix associated with the stationary sequence { yfim), 1 < ¢ < oo} is given by
[o¢] [o¢]
™ = Ey" M+ Y ErT 0T+ ) Er o™
=1 =

The corresponding Bartlett estimator is defined as

N—-1

= (m)
V=) Kk/By)eyy.

k=—(N-1)
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where
1 min(N,N—k)
(m) __ (m) - (m)\T
kN TNy Z Yo (Verr)
¢=max(1,1—k)

are the sample covariances of lag k. Since K is symmetric, K(0) = 1 and K(u) = 0 outside [—1, 1] we have that

(m)

EN = oo+ Z K (k/Br) @ + Z K(k/Bu) @)

k=
for all sufficiently large N.
We start with the consistency of E,(\,m)

Lemma 7.1. If Assumptions 3.1 and 3.2 are satisfied, then we have for every m

5 2 5™,

as N — oo.
Proof. Since the sequence y@m) is m-dependent we have that
m m
Z™ = Eyp1 + ZEY1J’£+1 + ZEWH)’?-
=1 =1
It follows from the ergodic theorem that for any fixed k and m

(m) (m) . (m) \T
kN—’E}’l Vi) -

So using Assumption 3.1(i), (ii) and 3.2 we get that

m m m
dun + ZK(k/BN)qsi”}J + D KK/B(GDT > Eyi¥i + Y EviVie + ) EVeat-
k=1 =1 =1

Lemma 7.1 is proven if we show that

By
> Kk/Bodn > (7.1)
k=m+1
and
B
. (m~\T _ P
> K(k/By) (@) — 0. (7.2)
k=m+1
Clearly, it is enough to prove (7.1).
Let
By
Gy’ = > K(k/Bygn-
k=m+1
Elementary arguments show that
BN
Gy = Y K(k/Bu)dyy
k=m+1
o m (,m )"
m m
> K(k/BN)—Zy (»)
k=m+1
N—(m+1)

(m) gq(m)
Z ye Hyy,
=1
where

(N
k=m+1 N

min(N—¢,By) K(U/By) [ am\T
S KB (T
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Let
N—(m+1)
GG =Y. v"OHNG. 1<ij<pa.
=1

where y,™ (i) and H,' (™ (j) are the ith and the jth coordinates of the vectors p{"\ and H{", respectively. Next we write

5 N—(m+1) 2
E(GV"G.) =E< D y}”(z)mm)o))

= Y E(HROR" o™ OHRG)

1<r<N—(m+1)
1<¢<N—(m+1)

GUn (i, ) + Gy (i, J),

where

chin= Y3 E(HRNOY™ Oy OHR ),

1<r<N—(m+1)
1<¢<N—(m+1)
Ir—£|<m

and

G = Y3 E(HNOY" Oy OHNG)-
1<r<N—(m+1)
1<¢<N—(m+1)
|[r—¢|>m

Notice that y™ is independent of H{'y, H"y and y{™,if r > m + €. Hence

Ey"OE (HNGY ™ORN D) 1> m+e,

E(HNOr" Oy OHNGD) = {ER™OE (HN Gy OHNG) €= m+r,

0 [ —r1|>m,
E(HN GOy ™ Oy OHNG) 1e—rl <m,

Thus we have

EGy'y (i, j) = 0.

E(HNOr" Oy OHNG)  e—rl <m,

Let M be an upper bound on |K(t)|. Using the fact that y(m) is an m-dependent sequence, we now obtain the following:

min(N—¢,By) min(N—£,By)
K(k/By) K(v/B
EH{ () = OB KB g (3 )
k=m+1 v=m+1
M2 min(N—£,By) min(N—¢,By) ™ )
m m
=< Nz Z Z (V@+k(l))’z (l))
k=m+1 v=m+1
Mi ™ E |
< =By Y Ev " Oy ™0
r=—m

oft)

(7.3)
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In the next step we will first use the Cauchy-Schwarz inequality, then the independence of Hé";,) (j) and yl(m) (i) and the
independence of Hr(",l,) (j) and yr(m) (i) to get

Gnan| = 2N E[HNOY™ Or" OHN )|
1<r<N—(m+1)
1=t=<N—(m+1)
Ir—€]<m

2\ 1/2 2
>3 <E (HN Y™ ) ) (E (rmOHNO) )
1<r<N—(m+1)
1<C<N—(m+1)

Ir—£|<m

x (Z+ ) <E (Hin @)2)”2 (E (y;'"ko)Z)

1<¢<N—(m+1)
[r—€]=m

< 2mNO By 0(1)0(1)0 By
= N N
N

=o(1),

1/2

IA

1/2

IA

(E ()/r(m)(i))z)l/z (E (Hr(jT,(,)(j))z)]/z

where we also used (7.3) and Assumption 3.2. This completes the proof of Lemma 7.1. O

Leti? = —1.

Lemma 7.2. If Assumptions 2.1-2.4, 3.1 and 3.2 are satisfied, then for all 1 < j < pq we have

N 2
limsuplimsup _sup E (1\,}/2 ;(yko‘) - (i))ei“> =0, (74)
. . 1w ’
lll{ln_)sotép llnrqn_)solip —OSE[EOQE (1\]1/2 kzz;yk(])e ) < 00 (7.5)
and
. . 1S m o ik ’
lan%soL;p hnr{lj;p 7oosiltp<ooE (1\]1/2 ;yk (e ) < 00. (7.6)

Proof. First we note that
N 2
E (Z(Vk(i) - )/k(m)(i))e'k[> = Z E((y(G) — ]/,((m)(j))el’<t)2
k=1 1<k=<N

+2 Y E[0nt) = n" )0 — 7" G | 48,

1<k<t<N

It follows from (5.13) that there is a sequence c;(m) — 0 such that

Y Ea() — M ())e

1<k<N

< Ncy(m).

Next we write

> B[00 = n" @] = 3 E[0) - @) 0eG) - v Gy ] 0,

1<k<{<N 1<k<{<N
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(£—k)

since (py., y,ﬁm)) and y, are independent. Using the Cauchy-Schwarz inequality first, then (5.13) again we get that

> B[00 =m0 - v Gy ] e

1<I<<e<N

= Y [t - nm0r] " [Fne) - v o]

1<k<t<N

=N [Eno 0] 3 [rno - r o]

= Ncy(m)

with some sequence c,(m) — 0. Similar arguments show that

3 (e[ - nm iy ] e

1<k<{¢<N

= Nc3(m)

with some sequence c3(m) — 0, completing the proof of (7.4).
Similar to the proof of (7.4), we write

N 2 N
E (Z yk(ne““) = Z > En@)ye (et
k=1

k=1 (=1

[
M=

Evi()e™ +2 ) En@)re@e ™t
1 1<k<t<N

=
Il

N
=Evf() Y ™ +2 Y En(Dir() — v T Gnerr,
k=1

1<k<f<N

since by the independence of y4(j) and yﬂ_k) (j) we have that E yk(i)yl(z_k) (j) = 0. Using the Cauchy-Schwarz inequality
with (5.13) we get that

3 En el — v PG| < oN

1<k<l<N

with some constant ¢, completing the proof of (7.5). The same arguments can be used to prove (7.6). O

Following [27] we define Sy (t) = Y_)_, ¥, ve' and sty =Y, yme"“. Let S}, (¢) be the conjugate transpose of Sy (t)
and introduce

1
In(t) = =Sn(D)Sy (1)

N
1 N N .
— ﬁ Z ykelkt Z yz'efl(t

k=1 =1
1 N N
- _ Z Zelt(k 0)
N (=1 k=1
N—1 1 min(N,N—k)
=D et nria
k=1—-N ¢=max(1,1—k)
N—1
= e_it’{¢I<,N .
k=1—-N

Similarly we define

() = 15 (t) (S,(\,m)(t))* -

N ik
Z e—lt<¢ N-
k=1—N k

Lemma 7.3. If Assumptions 2.1-2.4, 3.1 and 3.2 are satisfied, then we have

limsuplimsup sup E [Iy(t) — l(m) (t)‘

N—>oo m—o0 —oo<t<oo
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Proof. By the triangle inequality we have

1 1 *
v~ 1) = ‘NSN(f)SE(f) - SO () ‘

IA

1 1
S SO0 - 6O+ |svo - sy

Now the result follows from Lemma 7.2 via the Cauchy-Schwartz inequality. O

Proof of Theorem 3.1. Define the Fourier transform, k(u), of the kernel K as K (u) = % ffooo K (s)e~™uds. Since K and K are
in L' and both are Lipschitz functions, the inversion formula gives K (s) = ffooo I%(u)e“”du. From the relationship between K
and K and from the fact that K is supported on the interval [—1, 1], we obtain:

BN

> K(k/Bn)dyn

k=—Bn
N—-1

> K(K/BN)n

k=1-N

N—-1 0o .
2 ( / 1<<u>e'<’</3~>“du) bn

k=1-N

0 N—-1 .
= / K(uy Y~ e U/Pokgy \du
—00

k=1-N

XN

o0 A
:/ K (u)Iy(—u/By)du.
—0Q
Similarly,
50 = [ ke
N = (wly " (—u/By)du.
—0Q
Hence we have
~(m)’
N

E ’EN - X =E ‘/oo I?(u) (IN(U/BN) — I,(Vm)(u/BN)) du

IA

/_OO @) E |(vw/By) = 17" @/B) ) | du

IA

sup HIN(t) - I,(\,m)(t)H] /_Z ‘k(u)‘ du.

—00<t<00
Applying Lemma 7.3 we conclude that
|2 - 50| Do,
as min(N, m) — oo. On the other hand, by Lemma 7.1, for every fixed m

s L xm,

Since
zm s ¥,

as m — oo, the proof of the theorem is complete. O

Proof of Theorem 3.2. It follows from the definition of €, (1.4) and the orthonormality of {w;, 1 < j < oo} that
(€, wi) = (e¢, wi) + (Xe, wi) + (ve, wi),

where

q )4 q p
ve(f)=221ﬁ,]w;(t) Xl»vj ZZ ]wlN(t) XZv”jN)

i=1 j=1 i=1 j=1
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Following the proof of Theorem 3.1 one can show that the estimates in (5.5) and (5.6) yield

S o1, — dinGndy ney v D, 1, ) | = 0p(D), (7.7)
where
N-1 .
InGg i)=Y Kk/Bin(.j. i)
k=—(N—-1)
and
N—-1
SN0 =Y KKk/BGE b 1T
k=—(N-1)
with
. 1 min(N,N—k)
(i 1) = 5 P ) Pericd' ),

and

¢=max(1,1-k)
min(N,N—k)
P T A N ke ook o sl
Gini i =5 Y v,
¢=max(1,1-k)

Yo (1) = (Xe, vj) (€e, wy).

Since

(Xe, vj) (€, wi) = ye(i, J) + (Xe, vj)(ve, wy),

(5.5) and (5.6) and Lemma 6.10 imply that

|2y — Zy| = o0p(1). O (7.8)

We have seen in Theorem 3.1 that |§7N - E| = op (1).In (7.7) and (7.8) we have seen that |§N — ;NE§§N| = op (1) and

|§N — E;‘,| = op(1). Therefore,

Sy — E‘ = op (1), completing the proof.
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