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a b s t r a c t

We observe two sequences of curves which are connected via an integral operator. Our
model includes linear models as well as autoregressive models in Hilbert spaces. We
wish to test the null hypothesis that the operator did not change during the observation
period. Our method is based on projecting the observations onto a suitably chosen finite
dimensional space. The testing procedure is based on functionals of the weighted residuals
of the projections. Since the quadratic form is based on estimating the long-termcovariance
matrix of the residuals, we also provide some results on Bartlett-type estimators.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Suppose {Xn(t), n = 1, 2, . . . ,N} and {Yn(t), n = 1, 2, . . . ,N} are sequences of random functions on [0, 1] that satisfy
the linear relationship

Yn(t) =

 1

0
Ψn(s, t)Xn(s)ds + ϵn(t). (1.1)

For example, Xn(t) and Yn(t) may be the exchange rates of two currencies on day n at time t , where the trading day is
normalized so that t ranges between 0 and 1. In other applications, Xn can be the temperature and Yn the pollution level at
a given location. If Ψ1 = Ψ2 = · · · = ΨN , we say that the model is stable. However, as the underlying conditions change,
the Ψ ’s may also change. Our estimates for the assumed common Ψ as well as our predictions and inferences based on the
model would be flawed if we falsely assume that the Ψ ’s have not changed. To test the applicability of this model with an
unchanging Ψ , we will test the null hypothesis,

H0 : Ψ1 = Ψ2 = · · · = ΨN , (1.2)

against the alternative

HA : Ψ1 = Ψ2 = · · · = Ψk∗1
≠ Ψk∗1+1 = · · · = Ψk∗r ≠ Ψk∗r +1 = · · · = ΨN

with some unknown integers k∗

1, . . . , k
∗
r . The k∗

i ’s are called change-points, and the alternative, HA, is that there are exactly
r change-points. We assume that (1.1) and H0 hold and that both {Xn} and {ϵn} are stationary sequences. The model with
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non-changing (stable) Ψ has received considerable attention in the literature. If Xn and ϵn are independent sequences of
independent processes, then (1.1) is a functional version of the classical linear model (cf. [7–10]). If Xn = Yn−1, then we have
the functional AR(1) model in (1.1) (cf. [5,15,18]). Aue et al. [3] investigated the stability of high-frequency portfolio betas
in the capital asset pricing model (CAPM). CAPM is a version of the model in (1.1) where, in our notation, a vector valued Yn
is a linear combination of vector valued Xn’s and an additional error term.

Let C(s, t) = var (Xn(t), Xn(s)) and D(s, t) = var (Yn(t), Yn(s)). Let {(vj(s), λj), 1 ≤ j ≤ ∞} and {(wi(t), τi), 1 ≤

i ≤ ∞} be eigenfunction–eigenvalue pairs associated with C(s, t) and D(s, t) respectively. This means that τiwi(t) = 1
0 D(t, s)wi(s)ds and λjvj(s) =

 1
0 C(s, t)vj(t)dt . Assume that λj is the jth largest eigenvalue of C(s, t) and that τi is the

ith largest eigenvalue of D(s, t). It can be assumed that the eigenfunctions of C(s, t) are orthonormal and also that the
eigenfunctions of D(s, t) are orthonormal. We assume that Ψ ∈ L2[0, 1]2 and can therefore be expressed as

Ψ (s, t) =

∞
i=1

∞
j=1

ψi,jvj(s)wi(t). (1.3)

Using (1.3) we can write the model (1.1) as

Yn(t) =

 1

0
Ψn(s, t)Xn(s)ds + ϵn(t)

=

 1

0

∞
i=1

∞
j=1

ψi,jwi(t)vj(s)Xn(s)ds + ϵn(t)

=

q
i=1

p
j=1

ψi,jwi(t)
 1

0
vj(s)Xn(s)ds + ϵ∗

n (t), (1.4)

where

ϵ∗

n (t) = ϵn(t)+

q
i=1

∞
j=p+1

ψi,jwi(t)
 1

0
vj(s)Xn(s)ds +

∞
i=q+1

∞
j=1

ψi,jwi(t)
 1

0
vj(s)Xn(s)ds.

Eq. (1.4) means that we keep the parts of Yn and Xn which are explained by the first q and p principle components.
To reduce the dimensionality of the model we will project both sides of (1.4) onto the space spanned by the functions

{wi(t), 1 ≤ i ≤ q}. Doing this we obtain the linear model
⟨Yn, w1⟩

⟨Yn, w2⟩

...
⟨Yn, wq⟩

 =


ψ1,1 ψ1,2 · · · ψ1,p
ψ2,1 ψ2,2 · · · ψ2,p
...

... · · ·
...

ψq,1 ψq,2 · · · ψq,p




⟨Xn, v1⟩
⟨Xn, v2⟩
...

⟨Xn, vp⟩

+


⟨ϵ∗

n , w1⟩

⟨ϵ∗

n , w2⟩

...
⟨ϵ∗

n , wq⟩

 . (1.5)

Instead of testing the null hypothesis, (1.2), exactly as it is stated, we would like to test if the coefficients {ψi,j, 1 ≤ i ≤

q, 1 ≤ j ≤ p} remained constant during the observation period. Essentially, we are testing the stability of Ψ (s, t) over
the space spanned by the most important principle components of the Xn’s and the Yn’s. Eq. (1.5) has the form of a linear
model, but it is not a classical linear model because the regressors are random variables and are correlated with the errors.
Unfortunately, we cannot use (1.5) directly, since the covariance functions,D(s, t) and C(s, t), and hence the eigenfunctions,
{wi(t), i = 1, 2, . . . , q} and {vj(t), j = 1, 2, . . . , p}, are unknown. Instead, we will use the estimates D̂N(s, t) and ĈN(s, t)
and their corresponding eigenfunctions, {ŵi,N(t), i = 1, 2, . . . , q} and {v̂j,N(s), j = 1, 2, . . . , p}, where

D̂N(s, t) =
1
N

N
k=1

(Yk(t)− ȲN(t))(Yk(s)− ȲN(s)) with ȲN(t) =
1
N

N
i=1

Yi(t),

ĈN(s, t) =
1
N

N
k=1

(Xk(t)− X̄N(t))(Xk(s)− X̄N(s)) with X̄N(t) =
1
N

N
i=1

Xi(t).

Eigenfunctions corresponding to unique eigenvalues are uniquely determined up to signs. For this reason, we cannot expect
more than to have ŵi,N be close to d̂i,Nwi and v̂j,N be close to ĉj,Nvj, where d̂i,N , ĉi,N are random signs (cf. Theorem 5.2). In
order to obtain a linearmodel similar to Eq. (1.5) that is usable, wemust use our estimates for the eigenfunctions.We replace
Eq. (1.4) with

Yn(t) =

q
i=1

p
j=1

d̂i,Nψi,jĉj,Nŵi,N(t)
 1

0
v̂j,N(s)Xn(s)ds + ϵ∗∗

n (t), (1.6)
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where

ϵ∗∗

n (t) = ϵn(t)+

q
i=1

∞
j=p+1

ψi,jwi(t)
 1

0
vj(s)Xn(s)ds +

∞
i=q+1

∞
j=1

ψi,jwi(t)
 1

0
vj(s)Xn(s)ds

−

q
i=1

p
j=1

d̂i,Nψi,jĉj,Nŵi,N(t)
 1

0
v̂j,N(s)Xn(s)ds +

q
i=1

p
j=1

ψi,jwi(t)
 1

0
vj(s)Xn(s)ds.

By projecting both sides of (1.6) onto the space spanned by the functions {ŵj,N(t), 1 ≤ j ≤ q}, we can replace the linear
model (1.5) with the empirical linear model

⟨Yn, ŵ1,N⟩

⟨Yn, ŵ2,N⟩

...
⟨Yn, ŵq,N⟩

 =


d̂1,Nψ1,1ĉ1,N d̂1,Nψ1,2ĉ2,N · · · d̂1,Nψ1,pĉp,N
d̂2,Nψ2,1ĉ1,N d̂2,Nψ2,2ĉ2,N · · · d̂2,Nψ2,pĉp,N

...
... · · ·

...

d̂q,Nψq,1ĉ1,N d̂q,Nψq,2ĉ2,N · · · d̂q,Nψq,pĉp,N




⟨Xn, v̂1,N⟩

⟨Xn, v̂2,N⟩

...
⟨Xn, v̂p,N⟩

+


⟨ϵ∗∗

n , ŵ1,N⟩

⟨ϵ∗∗

n , ŵ2,N⟩

...
⟨ϵ∗∗

n , ŵq,N⟩

 . (1.7)

The signs {d̂i,N , 1 ≤ i ≤ q} and {ĉj,N , 1 ≤ j ≤ p} are computed from X1, X2, . . . , XN and Y1, Y2, . . . , YN and they will not
change during the testing procedure. Therefore, testing the stability of {d̂i,Nψi,jĉj,N , 1 ≤ i ≤ q, 1 ≤ j ≤ p} is equivalent to
testing the stability of {ψi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ p}.

Letting ⊗ be the Kronecker product, we can express Eq. (1.7) in a more condensed form:

Ŷ(n) = Ẑ(n)β + ∆̂(n), 1 ≤ n ≤ N, (1.8)

where

Ŷ(n) =


⟨Yn, ŵ1,N⟩

⟨Yn, ŵ2,N⟩

...
⟨Yn, ŵq,N⟩

 , ∆̂(n) =


⟨ϵ∗∗

n , ŵ1,N⟩

⟨ϵ∗∗

n , ŵ2,N⟩

...
⟨ϵ∗∗

n , ŵq,N⟩

 ,

β =



d̂1,Nψ1,1ĉ1,N
...

d̂1,Nψ1,pĉp,N
d̂2,Nψ2,1ĉ1,N

...

d̂q,Nψq,pĉp,N


= vec({d̂i,Nψi,jĉj,N , 1 ≤ i ≤ q, 1 ≤ j ≤ p}T ),

and

Ẑ(n) = Iq ⊗ M̂(n) with M̂(n) =

⟨Xn, v̂1,N⟩, . . . , ⟨Xn, v̂p,N⟩


.

The least squares estimator for β is defined by

β̂N =


ẐT
N ẐN

−1
ẐT
N ŶN ,

where the vectors Ŷ⌊Nt⌋ and the matrices Ẑ⌊Nt⌋ for each t ∈ [0, 1] are defined by

Ŷ⌊Nt⌋ =


Ŷ(1)
Ŷ(2)
...

Ŷ(⌊Nt⌋)

 and Ẑ⌊Nt⌋ =


Ẑ(1)
Ẑ(2)
...

Ẑ(⌊Nt⌋)

 .
Our testing procedure is based on the cumulative sums process of the weighted residuals,

ṼN(t) = N−1/2


⌊Nt⌋
n=1

ẐT (n)Ỹ(n)− t
N

n=1

ẐT (n)Ỹ(n)


, t ∈ [0, 1], (1.9)

where Ỹ(n) = Ŷ(n)− Ẑ(n)β̂N , 1 ≤ n ≤ N stands for the residuals.
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2. Main results

In this section we formally state all of the assumptions that we need and then we state our main theorem. Throughout
this paper we use |·| to mean the absolute value of a scalar or the largest of the absolute values of the elements of a vector
or matrix. It will always be clear from the context which is meant.

Our first condition means that the processes Xn and ϵn are Bernoulli shifts:

Assumption 2.1. Xn(t) and ϵn(t) can be expressed as

Xn(t) = a(ηn(t), ηn−1(t), . . .) and ϵn(t) = b(ηn(t), ηn−1(t), . . .),

for some functionals a and bwhere {ηk,−∞ < k < ∞} are iid vector-valued random functions.

Assumption 2.1 implies immediately that the vector-valued process (Xn, ϵn), 1 ≤ n < ∞ is stationary and ergodic. If H0
holds, then (Xn, ϵn, Yn), 1 ≤ n < ∞ is also stationary and ergodic. We also require that the processes have at least 4
moments:

Assumption 2.2.

EXn(t) = 0 and Eϵn(t) = 0, (2.1) 1

0
EX4

n (t)dt < ∞ and
 1

0
Eϵ4n(t)dt < ∞. (2.2)

Assumption 2.3. Xn(t) and ϵn(s) are uncorrelated, i.e. EXn(t)ϵn(s) = 0 for all 0 ≤ t, s ≤ 1.

Under Assumption 2.1 one can even have long-range dependence among the observations. However, in this paper we are
only interested in weakly dependent sequences which is stated in the next assumption:

Assumption 2.4. We assume that


1≤k<∞


E
 1

0


Xn(t)− X (k)n (t)

4
dt
1/4

< ∞ (2.3)

and 
1≤k<∞


E
 1

0


ϵn(t)− ϵ(k)n (t)

4
dt
1/4

< ∞ (2.4)

with

X (k)n (t) = a(ηn(t), ηn−1(t), . . . , ηn−k+1(t), η
(k)
n,n−k(t), η

(k)
n,n−k−1(t), . . .)

and

ϵ(k)n (t) = b(ηn(t), ηn−1(t), . . . , ηn−k+1(t), η
(k)
n,n−k(t), η

(k)
n,n−k−1(t), . . .),

where {η
(k)
n,ℓ,−∞ < k, ℓ, n < ∞} are iid copies of η0.

We note that, due to stationarity required by Assumption 2.1, it is enough to assume that (2.3) and (2.4) hold for at least
one n. Hörmann and Kokoszka [13] call the processes satisfying Assumption 2.4 L4-k-decomposable processes. This property
appeared first in [16] and is used several times in [4] in case of random variables on the line. Aue et al. [3] use an analogue of
Assumption 2.4 for randomvectorswhen they derive tests to detect a change in the covariance structure of the observations.
Wied et al. [28] investigate the change in the correlation under the same assumptions as in [3]. Aue et al. [2] provide several
examples when Assumptions 2.1 and 2.4 hold. For example, autoregressive, moving-average, linear processes in Hilbert
spaces satisfy this condition. Also, the non-linear functional ARCH(1) model (cf. [14]) and bilinear models (cf. [13]) also
satisfy Assumption 2.4.

Our next assumption ensures that the p and q largest eigenvalues of C and D, respectively, are unique.

Assumption 2.5.

λ1 > λ2 > · · · > λp+1

and

τ1 > τ2 > · · · > τq+1.



314 L. Horváth, R. Reeder / Journal of Multivariate Analysis 111 (2012) 310–334

Assumption 2.6. 1

0

 1

0
Ψ 4(s, t)dtds < ∞.

We note that under Assumptions 2.2 and 2.6 we also have that EYn(t) = 0 and
 1
0 EY 4

n (t)dt < ∞. Let

γℓ = vec

{γℓ(i, j), 1 ≤ i ≤ q, 1 ≤ j ≤ p}T


,

where

γℓ(i, j) = ⟨Xℓ, vj⟩⟨ϵℓ, wi⟩ + ⟨Xℓ, vj⟩⟨Xℓ, ui⟩,

and

ui(s) =

∞
r=p+1

ψi,rvr(s), 1 ≤ i ≤ q.

Define Σ as

Σ = Eγ0γ
T
0 +

∞
l=1

Eγ0γ
T
ℓ +

∞
l=1

Eγℓγ
T
0 .

We now define our detector as

VN(t) = ṼT
N(t)Σ̆

−1
N ṼN(t),

where ṼN(t) is defined in (1.9) and Σ̆N is an estimator (up to random signs) for Σ. The Bartlett-type estimator that we
propose for Σ̆N is a function of the estimators v̂j,N(t) and ŵi,N(t), which are estimators for v(t) and w(t) up to random
signs. For this reason, we cannot expect that Σ̆N will be close to Σ. The best we can expect is that ζNΣ̆NζN will be close to
Σ, where ζN is a matrix corresponding to the random signs, ĉj,N and d̂i,N . This is described in Assumption 2.7.

Next we introduce the diagonal matrices ĈN and D̂N which consists of the random signs, i.e. ĈN = diag(ĉ1,N , . . . , ĉp,N),
D̂N = diag(d̂1,N , . . . , d̂q,N) and ζN = D̂N ⊗ ĈN .

Assumption 2.7. Σ̂N = ζNΣ̆NζN is an estimator for Σ such thatΣ̂N − Σ

 = oP (1) .

Note in particular that

ζNγℓ = vec

{ĉj,N d̂i,Nγℓ(i, j), 1 ≤ i ≤ q, 1 ≤ j ≤ p}T


.

Note also that Assumption 2.7 and the continuous mapping theorem combined imply that Σ̂
−1
N = ζNΣ̆

−1
N ζN

P
−→ Σ−1.

Although any estimator satisfying Assumption 2.7 can be used, we recommend using a Bartlett-type estimator as Σ̆N ,
which we will describe in Section 3.

Theorem 2.1. If Assumptions 2.1–2.7 hold, then we have

VN(t)
D

−→

pq
ℓ=1

B2
ℓ (t),

where {Bℓ(t), ℓ = 1, . . . , pq} are iid standard Brownian bridges.

The testing procedure can be based on Theorem 2.1, using functionals of VN(t). The distribution of functionals of the limit
was considered by Kiefer [19] who provided formulae for the distribution functions of the supremum and L2 functionals of
the limit. For tables, approximations and further discussion on the distribution of functionals of the limit we refer to [3].
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3. Bartlett-type estimators

In this section we discuss the estimation of the long-run covariance matrix of the sums of weakly dependent vectors. We
start with estimators based on the sequence γℓ, 1 ≤ ℓ ≤ N . Since Σ is the spectral density at 0, the kernel-type estimators
discussed in [1,6,12,24–26,29] can be used. The estimator is defined by

Σ̃N =

N−1
k=−(N−1)

K(k/BN)φk,N ,

where

φk,N =
1
N

min(N,N−k)
ℓ=max(1,1−k)

γℓγ
T
ℓ+k.

The kernel K satisfies the following condition:

Assumption 3.1.

(i) K(0) = 1
(ii) K is a symmetric, Lipschitz function
(iii) K has a bounded support

(iv) K̂ , the Fourier transform of K , is also Lipschitz and integrable.

These conditions are mild, and they are satisfied by the most commonly used kernels, like the triangle of Bartlett and
the polynomial kernel of [22,23]. Assumption 3.1(iii) makes the present proofs relatively technically simple and it could
be replaced with the assumption that K(x) decays sufficiently fast as |x| → ∞. The next assumption is standard in the
estimation of spectral densities and long term variances and covariances.

Assumption 3.2.

BN → ∞ and BN/N → 0, as N → ∞.

Jansson [17] proved the consistency of covariance estimation for linear processes under the assumption BN = o(N1/2).
Similarly, [13] obtained consistency results for the estimation of the long run covariance matrices of the projections of
functional observations assuming BN = o(N1/2). Liu and Wu [20] established consistency results for estimation of spectral
densities under Assumption 3.2.

Theorem 3.1. If Assumptions 2.1–2.4, 2.6, 3.1 and 3.2 hold, then

Σ̃N
P

−→ Σ.

Wewould like to point out that the proof of Theorem 3.1 only requires that γℓ is a Bernoulli shift with zero mean and finite
second moment for which (5.13) holds.

The estimator, Σ̃N , cannot be computed since the variables γℓ are not observed directly and we need to estimate them
from the sample. We have estimators for vj as well as forwi, but we will also need an estimator for ϵℓ. We use the residuals
to get inference on ϵℓ:

ϵ̂ℓ(t) = Yℓ(t)−

q
i=1

p
j=1

ψ̂i,jŵi,N(t)⟨Xℓ, v̂j,N⟩,

where ψ̂i,j is the (i, j)th element of β̂N when it is written in the matrix form, i.e. {ψ̂i,j, 1 ≤ i ≤ q, 1 ≤ j ≤ p} = vec−1(β̂N).
Now γℓ will be replaced with

γ̂ℓ = vec

{γ̂ℓ(i, j), 1 ≤ i ≤ q, 1 ≤ j ≤ p}T


,

where

γ̂ℓ(i, j) = ⟨Xℓ, v̂j,N⟩⟨ϵ̂ℓ, ŵi,N⟩.

Now the Bartlett-type estimator is defined as

Σ̆N =

N−1
k=−(N−1)

K(k/BN)φ̂k,N , (3.1)
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where

φ̂k,N =
1
N

min(N,N−k)
ℓ=max(1,1−k)

γ̂ℓγ̂
T
ℓ+k.

The next result states that the proposed estimator satisfies Assumption 2.7.

Theorem 3.2. If Assumptions 2.1–2.6 and 3.1 hold and

BN → ∞ and BN/N1/2
→ 0, (3.2)

then Assumption 2.7 is satisfied.

The estimator Σ̆N is based on the empirical projections, γ̂ℓ(i, j); in the proofs, this will be replaced with d̂i,N ĉj,Nγℓ(i, j). We
point out that the rates in (5.5) and (5.6) of Theorem 5.2, which are optimal, allow us to use the relaxed assumption that
BN/N1/2

→ 0 instead of the typical assumption that BN/N → 0.

4. A simulation study

In this section, we investigate the empirical size and power of a testing procedure using the integral of the detector,
|VN(t)|dt , as our test statistic. Seeking to obtain a test of size α = .01, .05, or .10, a rejection region was chosen according

to the limiting distribution of the test statistic. Simulated data was then used to compute the outcome of the test statistic.
Iterating this procedure 10,000 times, we kept track of the proportion of times that the outcome fell in the predetermined
rejection region. When simulations are done under H0, this gives us the empirical size of the test, which we expect to be
close to the nominal size, α, for large sample sizes. When simulations are done under the alternative, HA, the proportion
gives us the empirical power of the test.

The Xn(t)’s and εn(t)’s were generated according to the distribution of independent standard Brownian bridges. Then,
using ψ(s, t) = e−(s−t)2 , we obtained the first half of our sample according to (1.1). The second half of the sample was also
obtained from (1.1) but used ψ(s, t) = ce−(s−t)2 . Thus the power of the test is a function of the parameter c. In particular,
when c = 1, the null hypothesis is true. The Bartlett estimator forΣ uses the flat-top kernel

K(t) =

1 0 ≤ |t| < .1
1.1 − |t| .1 ≤ |t| < 1.1
0 |t| ≥ 1.1.

The resulting empirical size and power are given in Tables 1–4 for various values of p and q.

5. Random processes in Hilbert spaces

In this section we summarize some basic results on random variables in Hilbert spaces which are used in the proofs. Let
∥ · ∥ denote the L2-norm of functions defined on the unit interval, the unit square or the unit cube.

Theorem 5.1. If Assumptions 2.1–2.4 hold, then we have 1
N1/2

N
n=1

Xn(t)ϵn(s)

 = OP(1), (5.1)

 1
N1/2

N
n=1

(Xn(t)Xn(s)− C(t, s))

 = OP(1), (5.2)

 1
N1/2

N
n=1

(ϵn(t)ϵn(s)− F(t, s))

 = OP(1), (5.3)

with F(t, s) = E(ϵn(t)ϵn(s)). If in addition Assumption 2.6 is also satisfied, then 1
N1/2

N
n=1

(Yn(t)Yn(s)− D(t, s))

 = OP(1). (5.4)

Proof. It was pointed out in [13] that the k-approximable property in Assumption 2.4 implies (5.2) and (5.3). Using (1.1), we
get that the sums of Xn(t)ϵn(s) and Yn(t)Yn(s) are also k-approximable so the rest of the result again follows from Theorem
3.1 of [13]. �
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Table 1
Empirical power of test (in %) using p = 1, q = 1, BN = N1/3/4, and a flat-top kernel for K(t).

c N = 100 N = 500 N = 1000
α = .01 α = .05 α = .10 α = .01 α = .05 α = .10 α = .01 α = .05 α = .10

1.0 0.8 5 10.2 0.9 5.1 10 1.1 5.1 10.2
1.2 2.5 10.1 18 15.1 34.9 46.9 35.8 60.1 71.7
1.4 8.9 26.5 38.9 70.5 88.5 93.3 96.9 99.4 99.8
1.6 24.1 52.2 65.5 98 99.7 99.9 100 100 100
1.8 46.5 75.1 85.1 100 100 100 100 100 100
2.0 69.7 90.7 95.3 100 100 100 100 100 100

Table 2
Empirical power of test (in %) using p = 1, q = 2, BN = N1/3/4, and a flat-top kernel for K(t).

c N = 100 N = 500 N = 1000
α = .01 α = .05 α = .10 α = .01 α = .05 α = .10 α = .01 α = .05 α = .10

1.0 0.6 4.5 9.4 1 5.1 10.4 1.1 5.3 10.3
1.2 1.5 7.9 15.8 10.1 26.7 38.7 25.9 50.2 63
1.4 5.7 19.5 30.9 58 80.9 88.6 93.6 98.5 99.4
1.6 15.3 40.5 55.2 95.8 99.2 99.6 100 100 100
1.8 35. 65.4 78.2 100 100 100 100 100 100
2.0 56.6 83.6 91.6 100 100 100 100 100 100

Table 3
Empirical power of test (in %) using p = 1, q = 3, BN = N1/3/4, and a flat-top kernel for K(t).

c N = 100 N = 500 N = 1000
α = .01 α = .05 α = .10 α = .01 α = .05 α = .10 α = .01 α = .05 α = .10

1.0 0.7 4.4 9.6 0.7 5.3 10.2 0.8 5.1 10.2
1.2 1.4 9.5 17.5 18.8 41.8 54.8 50 74.2 83.5
1.4 7.9 27.9 42.3 87.8 96.9 98.5 99.8 100 100
1.6 24.9 57.2 72.1 99.9 100 100 100 100 100
1.8 53.2 82.7 90.8 100 100 100 100 100 100
2.0 76 94.6 97.8 100 100 100 100 100 100

Table 4
Empirical power of test (in %) using p = 2, q = 2, BN = N1/3/4, and a flat-top kernel for K(t).

c N = 100 N = 500 N = 1000
α = .01 α = .05 α = .10 α = .01 α = .05 α = .10 α = .01 α = .05 α = .10

1.0 1.4 5.9 10.7 0.9 4.8 9.6 1 4.9 10
1.2 2.1 8 14.1 7.6 20.8 31.2 19 39.8 52.7
1.4 4.9 15.5 25.4 45.8 70.2 80.5 88 96.5 98.4
1.6 11.1 29.9 43.4 90.4 97.6 98.9 100 100 100
1.8 23.3 48.8 62.6 99.7 100 100 100 100 100
2.0 38.6 68 80.6 100 100 100 100 100 100

Theorem 5.2. If Assumptions 2.1–2.6 hold, then we have

max
1≤i≤q

∥ŵi,N(t)− d̂i,Nwi(t)∥ = OP

N−1/2 , (5.5)

max
1≤j≤p

∥v̂j,N(t)− ĉj,Nvj(t)∥ = OP

N−1/2 (5.6)

and

max
1≤i≤q

|τ̂i,N − τi| = OP

N−1/2 , (5.7)

max
1≤j≤q

|λ̂j,N − λj| = OP

N−1/2 . (5.8)

Proof. Using Corollary 1.6 of [11, p. 99] we get that (5.5) follows from (5.4). According to Lemma 4.3 of [5], (5.4) implies
(5.7). Similarly, (5.2) yields (5.6) and (5.8). �

The next result is a uniform version of Theorem 5.1.
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Theorem 5.3. If Assumptions 2.1–2.4 and 2.6 hold, then we have

max
1≤k≤N

 1
N1/2

k
n=1

Xn(t)ϵn(s)

 = OP(logN), (5.9)

max
1≤k≤N

 1
N1/2

k
n=1

(Xn(t)Xn(s)− C(t, s))

 = OP(logN), (5.10)

max
1≤k≤N

 1
N1/2

k
n=1

(ϵn(t)ϵn(s)− F(t, s))

 = OP(logN) (5.11)

with F(t, s) = E(ϵn(t)ϵn(s)). If in addition Assumption 2.6 is also satisfied, then

max
1≤k≤N

 1
N1/2

k
n=1

(Yn(t)Yn(s)− D(t, s))

 = OP(logN). (5.12)

Proof. Following the proof in Section A.1 in [13] one can easily verify that there is an integrable function g(t, s) such that

E


k

n=1

Xn(t)ϵn(s)

2

≤ kg(t, s).

Hence by Menshov’s inequality (cf. [21]) we have that

E max
1≤k≤N


k

n=1

Xn(t)ϵn(s)

2

≤ (logN)2Ng(t, s),

implying (5.9). Similar arguments yield (5.10)–(5.12). �

The next results establish the weak convergence of the sum of the γℓ’s.

Theorem 5.4. If Assumptions 2.1–2.4 and 2.6 hold, then

1
N1/2

⌊Nt⌋
ℓ=1

γℓ
Dpq

[0,1]
−→ WΣ(t),

whereWΣ is a pq dimensional Brownian motion with zero mean and E(WΣ(t)WΣ(s)T ) = min(t, s)Σ.

Proof. First we note that Assumptions 2.1–2.4 imply that

∞
m=1


E(γℓ(i)− γ

(m)
ℓ (i))2

1/2
< ∞, (5.13)

where γℓ(i) and γ
(m)
ℓ (i) are the ith coordinates of the vectors γℓ and γ

(m)
ℓ with

γ
(m)
ℓ = vec({γ (m)ℓ (i, j), 1 ≤ i ≤ q, 1 ≤ j ≤ p}T ),

and

γ
(m)
ℓ (i, j) = ⟨X (m)ℓ , vj⟩⟨ϵ

(m)
ℓ , wi⟩ + ⟨X (m)ℓ , vj⟩⟨X

(m)
ℓ , ui⟩.

The result now follows immediately from Theorem A.1 of [3]. �

6. Proof of Theorem 2.1

First we outline the proof of Theorem 2.1. Using the definition of the residual vectors we can write that

ṼN(t) = N−1/2


ẐT
⌊Nt⌋Ŷ⌊Nt⌋ − ẐT

⌊Nt⌋Ẑ⌊Nt⌋β̂N


− t


ẐT
N ŶN − ẐT

N ẐN β̂N


= N−1/2


ẐT

⌊Nt⌋∆̂⌊Nt⌋ − tẐT
N∆̂N


+


ẐT

⌊Nt⌋Ẑ⌊Nt⌋ − tẐT
N ẐN

 
β − β̂N


= N−1/2


ẐT

⌊Nt⌋∆̂⌊Nt⌋ − tẐT
N∆̂N


+


ẐT

⌊Nt⌋Ẑ⌊Nt⌋ − tẐT
N ẐN

N


β − β̂N

√
N, (6.1)
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with

∆̂⌊Nt⌋ =


∆̂(1)
∆̂(2)
...

∆̂(⌊Nt⌋)

 .
We show that

β − β̂N

√
N = OP (1) , (6.2)

(cf. Lemma 6.10) and we prove in Lemma 6.2 that

sup
t∈[0,1]

 ẐT
⌊Nt⌋Ẑ⌊Nt⌋ − tẐT

N ẐN

N

 = oP (1) . (6.3)

Combining (6.2) and (6.3) we conclude that

sup
t∈[0,1]



ẐT

⌊Nt⌋Ẑ⌊Nt⌋ − tẐT
N ẐN

N


β − β̂N

√
N

 = oP (1) .

Thuswe see thatN−1/2

ẐT

⌊Nt⌋∆̂⌊Nt⌋ − tẐT
N∆̂N


is the leading termwhile the remainder can be disregardedwhen considering

the limiting distribution of our cumulative sum process (1.9).
We now start with the proof of (6.3).

Lemma 6.1. If Assumptions 2.1–2.5 hold, then we have

1
k

k
n=1

⟨Xn, vi⟩⟨Xn, vj⟩
a.s.

−→ λi 1{i = j} as k → ∞.

Proof. We recall that Xn(t) is stationary and ergodic. Thus the ergodic theorem shows us that as k → ∞

1
k

k
n=1

⟨Xn, vi⟩⟨Xn, vj⟩
a.s.

−→ E
 1

0
Xn(s)vi(s)ds

 1

0
Xn(t)vj(t)dt

= E
 1

0
vj(t)

 1

0
vi(s)Xn(t)Xn(s)dsdt

=

 1

0
vj(t)

 1

0
vi(s)E (Xn(t)Xn(s)) dsdt

=

 1

0
vj(t)

 1

0
vi(s)C(s, t)dsdt

=

 1

0
vj(t)λivi(t)dt

= λi 1{i = j},

completing the proof. �

Lemma 6.2. If Assumptions 2.1–2.5 hold, then we have

1
N

sup
t∈[0,1]

ẐT
⌊Nt⌋Ẑ⌊Nt⌋ − tẐT

N ẐN

 = oP (1) (6.4)

and

1
N
ẐT
N ẐN

P
−→ C = Iq ⊗ Λ, (6.5)

where Λ = diag(λ1, λ2, . . . , λp).
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Proof. First we show that for δ > 0 and γ > 0 there are K0 and N0 such that

P


sup

K0≤k≤N

1k
k

n=1

⟨Xn, v̂i,N⟩⟨Xn, v̂j,N⟩ − λi1{i = j}

 > δ


≤ γ , (6.6)

if N ≥ N0. Note that by the Cauchy–Schwarz inequality we have1k
k

n=1


⟨Xn, v̂i,N⟩⟨Xn, v̂j,N⟩ − ⟨Xn, ĉi,Nvi⟩⟨Xn, ĉj,Nvj⟩

 ≤
1
k

k
n=1

∥Xn∥
2(∥v̂i,N − ĉi,Nvi∥ + ∥v̂j,N − ĉj,Nvj∥).

Using the ergodic theorem we get that

sup
1≤k<∞

1
k

k
n=1

∥Xn∥
2 < ∞ a.s.,

so (6.6) follows from Theorem 5.2 and Lemma 6.1.
Assume N > N0. It now follows that

P


sup
t∈[0,1]

ẐT
⌊Nt⌋Ẑ⌊Nt⌋ − tẐT

N ẐN

 > 4Nδ


≤ P


sup
0≤t≤K0/N

ẐT
⌊Nt⌋Ẑ⌊Nt⌋ − tẐT

N ẐN

+ sup
K0/N≤t≤1

ẐT
⌊Nt⌋Ẑ⌊Nt⌋ − tẐT

N ẐN

 > 4Nδ


≤ P


sup

0≤t≤K0/N

 ẐT
⌊Nt⌋Ẑ⌊Nt⌋ − tẐT

N ẐN

N

+ sup
K0/N≤t≤1

 ẐT
⌊Nt⌋Ẑ⌊Nt⌋

Nt
−

ẐT
N ẐN

N

 > 4δ



≤ P


sup

0≤t≤K0/N

 ẐT
⌊Nt⌋Ẑ⌊Nt⌋ − tẐT

N ẐN

N

+ sup
K0/N≤t≤1

 ẐT
⌊Nt⌋Ẑ⌊Nt⌋

Nt
− C

+
 ẐT

N ẐN

N
− C

 > 4δ



≤ P


max

1≤k≤K0

 ẐT
k Ẑk

N

+
K0ẐT

N ẐN

N2

+ max
K0≤k≤N

 ẐT
k Ẑk

k
− C

+
 ẐT

N ẐN

N
− C

 > 4δ


.

For every K0 we have that P(max1≤k≤K0 |ẐT
k Ẑk|/N > δ) → 0 and by (6.6) P(|K0ẐT

N ẐN |/N2 > δ) → 0 as N → ∞. Using (6.6)
again we conclude P(maxK0≤k≤N |ẐT

k Ẑk/k − C| > δ) ≤ γ . Since γ and δ can be chosen as small as we wish, Lemma 6.2 is
established. �

We continue with the properties of ẐT
⌊Nt⌋∆̂⌊Nt⌋. First we observe that

ẐT
⌊Nt⌋∆̂⌊Nt⌋ =

⌊Nt⌋
ℓ=1

ẐT (ℓ)∆̂(ℓ)

=

⌊Nt⌋
ℓ=1

vec

{⟨Xℓ, v̂j,N⟩⟨ϵ∗∗

ℓ , ŵi,N⟩, 1 ≤ i ≤ q, 1 ≤ j ≤ p}T

. (6.7)

We note that

ϵ∗∗

ℓ (t) = ϵℓ(t)+ ηℓ,1(t)+ ηℓ,2(t)+ ηℓ,3(t)+ ηℓ,4(t)+ ηℓ,5(t),

with

ηn,1(t) =

∞
i=q+1

∞
j=1

ψi,jwi(t)
 1

0
vj(s)Xn(s)ds =

∞
i=q+1

∞
j=1

ψi,jwi(t)⟨vj, Xn⟩,

ηn,2(t) =

q
i=1

∞
j=p+1

ψi,jwi(t)
 1

0
vj(s)Xn(s)ds =

q
i=1

∞
j=p+1

ψi,jwi(t)⟨vj, Xn⟩,
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ηn,3(t) =

q
i=1

p
j=1

d̂i,Nψi,jĉj,N d̂i,Nwi(t)
 1

0


ĉj,Nvj(s)− v̂j,N(s)


Xn(s)ds

=

q
i=1

p
j=1

d̂i,Nψi,jĉj,N d̂i,Nwi(t)

ĉj,Nvj − v̂j,N


, Xn


,

ηn,4(t) =

q
i=1

p
j=1

d̂i,Nψi,jĉj,N

d̂i,Nwi(t)− ŵi,N(t)

  1

0
ĉj,Nvj(s)Xn(s)ds

=

q
i=1

p
j=1

d̂i,Nψi,jĉj,N

d̂i,Nwi(t)− ŵi,N(t)


⟨ĉj,Nvj, Xn⟩,

ηn,5(t) =

q
i=1

p
j=1

d̂i,Nψi,jĉj,N

ŵi,N(t)− d̂i,Nwi(t)

  1

0


ĉj,Nvj(s)− v̂j,N(s)


Xn(s)ds

=

q
i=1

p
j=1

d̂i,Nψi,jĉj,N

ŵi,N(t)− d̂i,Nwi(t)

 
ĉj,Nvj − v̂j,N


, Xn


.

In particular, we can write

⟨ϵ∗∗

ℓ , ŵi,N⟩ = ⟨ϵℓ, ŵi,N⟩ + ⟨ηℓ,1, ŵi,N⟩ + ⟨ηℓ,2, ŵi,N⟩ + ⟨ηℓ,3, ŵi,N⟩ + ⟨ηℓ,4, ŵi,N⟩ + ⟨ηℓ,5, ŵi,N⟩. (6.8)

We show that ẐT
⌊Nt⌋∆̂⌊Nt⌋ can be written as the sum of weakly dependent variables and an additional term which is just t

times a random variable matrix. The additional term reflects the replacement of Ψ with a finite sum and the estimation of
the eigenfunctions {wi, 1 ≤ i ≤ q} and {vj, 1 ≤ i ≤ p}. The drift term is given by

RN = vec

{RN(i, j), 1 ≤ i ≤ q, 1 ≤ j ≤ p}T


,

where

RN(i, j) = R(1)N (i, j)+ R(2)N (i, j)+ R(3)N (i, j)+ R(4)N (i, j),

R(1)N (i, j) = ĉj,Nλj
∞

r=q+1

ψr,j

 1

0
wr(x)


ŵi,N(x)− d̂i,Nwi(x)


dx,

R(2)N (i, j) = d̂i,N

 1

0


v̂j,N(z)− ĉj,Nvj(z)

 ∞
n=p+1

ψi,nλnvn(z)dz,

R(3)N (i, j) = ĉj,N d̂i,Nλj
p

n=1

ψi,nĉn,N

 1

0


ĉn,Nvn(s)− v̂n,N(s)


vj(s)ds,

R(4)N (i, j) = ĉj,N d̂i,Nλj
q

r=1

d̂r,Nψr,j

 1

0
wi(x)


d̂r,Nwr(x)− ŵr,N(x)


dx.

Lemma 6.3. If Assumptions 2.1–2.5 hold, then we have

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ϵℓ, ŵi,N⟩ − ĉj,N d̂i,NT
(1)
⌊Nt⌋(i, j)

 = OP (logN) ,

where

T (1)
⌊Nt⌋(i, j) =

⌊Nt⌋
ℓ=1

⟨Xℓ, vj⟩⟨ϵℓ, wi⟩.

Proof. We note that

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ϵℓ, ŵi,N⟩ −

⌊Nt⌋
ℓ=1

⟨Xℓ, ĉj,Nvj⟩⟨ϵℓ, d̂i,Nwi⟩


≤ sup

t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ϵℓ, ŵi,N⟩

+ sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, ĉj,Nvj⟩⟨ϵℓ, ŵi,N − d̂i,Nwi⟩

 .
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Using the Cauchy–Schwarz inequality we get that

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ϵℓ, ŵi,N⟩

 ≤ sup
t∈[0,1]

⌊Nt⌋
ℓ=1

Xℓ(x)ϵℓ(s)

 ∥v̂j,N − ĉj,Nvj∥ ∥ŵi,N∥


= OP (logN) ,

on account of (5.6), Theorem 5.3 and ∥ŵi,N∥ = 1. Similar arguments give that

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, ĉj,Nvj⟩⟨ϵℓ, ŵi,N − d̂i,Nwi⟩

 = OP (logN) ,

completing the proof of the lemma. �

Lemma 6.4. If Assumptions 2.1–2.6 hold, then we have

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,1, ŵi,N⟩ − ⌊Nt⌋R(1)N (i, j)

 = OP (logN) .

Proof. Using the orthogonality of thewi’s we get that

⟨ηℓ,1, wi⟩ =

 1

0

∞
r=q+1

∞
n=1

ψr,nwr(x)
 1

0
vn(s)Xℓ(s)ds


wi(x)dx

=

∞
r=q+1

∞
n=1

ψr,n

 1

0
vn(s)Xℓ(s)ds

 1

0
wi(x)wr(x)dx


= 0.

Therefore we have

⟨Xℓ, v̂j,N⟩⟨ηℓ,1, ŵi,N⟩ = ⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ηℓ,1, ŵi,N − d̂i,Nwi⟩ + ⟨Xℓ, ĉj,Nvj⟩⟨ηℓ,1, ŵi,N − d̂i,Nwi⟩.

Now,

⌊Nt⌋
ℓ=1

⟨Xℓ, ĉj,Nvj⟩⟨ηℓ,1, ŵi,N − d̂i,Nwi⟩ = A(1)
⌊Nt⌋ + A(2)

⌊Nt⌋,

where

A(1)
⌊Nt⌋ = ĉj,N

 1

0

 1

0

 1

0
vj(z)

∞
r=q+1

∞
n=1

ψr,nwr(x)vn(s)

ŵi,N(x)− d̂i,Nwi(x)

⌊Nt⌋
ℓ=1

Xℓ(z)Xℓ(s)− ⌊Nt⌋C(z, s)


dzdsdx

and

A(2)
⌊Nt⌋ = ⌊Nt⌋ĉj,N

 1

0

 1

0

 1

0
vj(z)

∞
r=q+1

∞
n=1

ψr,nwr(x)vn(s)

ŵi,N(x)− d̂i,Nwi(x)


C(z, s)dzdsdx

= ⌊Nt⌋ĉj,N

 1

0
λj

∞
r=q+1

ψr,jwr(x)

ŵi,N(x)− d̂i,Nwi(x)


dx

= ⌊Nt⌋R(1)N (i, j),

where we used that the vj’s are orthonormal eigenfunctions of C .
Applying (5.5) and (5.10) again we conclude

sup
t∈[0,1]

A(1)⌊Nt⌋

 = OP (logN) .

Finally, using Theorems 5.2 and 5.3, we obtain that
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sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ηℓ,1, ŵi,N − d̂i,Nwi⟩


≤
v̂j,N(z)− ĉj,Nvj(z)

 
 ∞
r=q+1

∞
n=1

ψr,nwr(x)vn(s)


 ŵi,N(x)− d̂i,Nwi(x)

 sup
t∈[0,1]


⌊Nt⌋
ℓ=1

Xℓ(z)Xℓ(s)




= OP

N−1/2O(1)OP


N−1/2OP (N) . �

Lemma 6.5. If Assumptions 2.1–2.6 hold, then we have

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,2, ŵi,N⟩ −


ĉj,N d̂i,NT

(2)
⌊Nt⌋(i, j)+ ⌊Nt⌋R(2)N (i, j)

 = OP (logN) ,

where

T (2)
⌊Nt⌋(i, j) =

⌊Nt⌋
ℓ=1

 1

0

 1

0
(Xℓ(s)Xℓ(z)− C(z, s))

∞
r=p+1

ψirvr(s)vj(z)dzds.

Proof. First we write
⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,2, ŵi,N⟩ = A(3)
⌊Nt⌋ + A(4)

⌊Nt⌋ + A(5)
⌊Nt⌋ + A(6)

⌊Nt⌋,

where

A(3)
⌊Nt⌋ = ĉj,N d̂i,N

⌊Nt⌋
ℓ=1

⟨Xℓ, vj⟩⟨ηℓ,2, wi⟩,

A(4)
⌊Nt⌋ = ĉj,N

⌊Nt⌋
ℓ=1

⟨Xℓ, vj⟩⟨ηℓ,2, ŵi,N − d̂i,Nwi⟩,

A(5)
⌊Nt⌋ = d̂i,N

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ηℓ,2, wi⟩,

A(6)
⌊Nt⌋ =

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ηℓ,2, ŵi,N − d̂i,Nwi⟩.

The orthonormality of {wi, 1 ≤ i < ∞} shows that for all 1 ≤ i ≤ q

⟨ηℓ,2, wi⟩ =

 1

0

q
r=1

∞
n=p+1

ψr,nwr(x)
 1

0
vn(s)Xℓ(s)ds


wi(x)dx

=

∞
n=p+1

ψi,n

 1

0
vn(s)Xℓ(s)ds.

Therefore, using again that the vj’s are orthonormal eigenfunctions of C we have

A(3)
⌊Nt⌋ == ĉj,N d̂i,N

∞
n=p+1

ψi,n

 1

0

 1

0
vj(z)vn(s)


⌊Nt⌋
ℓ=1

Xℓ(z)Xℓ(s)− ⌊Nt⌋C(s, z)


dsdz

= ĉj,N d̂i,NT
(2)
⌊Nt⌋(i, j).

We decompose A(4)
⌊Nt⌋ as

A(4)
⌊Nt⌋ = ĉj,N

⌊Nt⌋
ℓ=1

 1

0

 1

0
Xℓ(z)vj(z)


ŵi,N(x)− d̂i,Nwi(x)

 q
r=1

∞
n=p+1

ψr,nwr(x)
 1

0
vn(s)Xℓ(s)dsdzdx

= ĉj,N

 1

0

 1

0

 1

0
vj(z)


ŵi,N(x)− d̂i,Nwi(x)

 q
r=1

∞
n=p+1

ψr,nwr(x)vn(s)
⌊Nt⌋
ℓ=1

Xℓ(s)Xℓ(z)dsdzdx

= A(4)
⌊Nt⌋,1 + A(4)

⌊Nt⌋,2,
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where

A(4)
⌊Nt⌋,1 = ĉj,N

 1

0

 1

0

 1

0
vj(z)


ŵi,N(x)− d̂i,Nwi(x)

 q
r=1

∞
n=p+1

ψr,nwr(x)vn(s)

×


⌊Nt⌋
ℓ=1

Xℓ(s)Xℓ(z)− ⌊Nt⌋C(s, z)


dsdzdx

and

A(4)
⌊Nt⌋,2 = ĉj,N⌊Nt⌋

 1

0

 1

0

 1

0
vj(z)


ŵi,N(x)− d̂i,Nwi(x)

 q
r=1

∞
n=p+1

ψr,nwr(x)vn(s)C(s, z)dsdzdx

= ĉj,N⌊Nt⌋
 1

0

 1

0
λjvj(s)


ŵi,N(x)− d̂i,Nwi(x)

 q
r=1

∞
n=p+1

ψr,nwr(x)vn(s)dsdx

= 0,

using again that the vj’s are eigenfunctions of C . Therefore we obtain

sup
t∈[0,1]

A(4)⌊Nt⌋

 = sup
t∈[0,1]

A(4)⌊Nt⌋,1


≤

ŵi,N(x)− d̂i,Nwi(x)
 vj(z) q

r=1

∞
n=p+1

ψr,nwr(x)vn(s)

 sup
t∈[0,1]

⌊Nt⌋
ℓ=1

Xℓ(s)Xℓ(z)− ⌊Nt⌋C(s, z)


= OP


N−1/2OP (1)OP


N1/2 logN


.

Similar arguments give

A(5)
⌊Nt⌋ = d̂i,N

⌊Nt⌋
ℓ=1

 1

0

 1

0
Xℓ(z)


v̂j,N(z)− ĉj,Nvj(z)


wi(x)

q
r=1

∞
n=p+1

ψr,nwr(x)
 1

0
vn(s)Xℓ(s)dsdzdx

= A(5)
⌊Nt⌋,1 + A(5)

⌊Nt⌋,2,

where

A(5)
⌊Nt⌋,1 = d̂i,N

 1

0

 1

0


v̂j,N(z)− ĉj,Nvj(z)

 ∞
n=p+1

ψi,nvn(s)


⌊Nt⌋
ℓ=1

Xℓ(s)Xℓ(z)− ⌊Nt⌋C(s, z)


dsdz

and

A(5)
⌊Nt⌋,2 = d̂i,N⌊Nt⌋

 1

0

 1

0

 1

0


v̂j,N(z)− ĉj,Nvj(z)


wi(x)

q
r=1

∞
n=p+1

ψr,nwr(x)vn(s)C(s, z)dsdzdx

= ⌊Nt⌋R(2)N (i, j).

Repeating our previous arguments we get that

sup
t∈[0,1]

A(5)⌊Nt⌋,1

 ≤
v̂j,N(z)− ĉj,Nvj(z)

  ∞
n=p+1

ψi,nvn(s)

 sup
t∈[0,1]

⌊Nt⌋
ℓ=1

Xℓ(s)Xℓ(z)− ⌊Nt⌋C(s, z)


= OP


N−1/2O(1)OP


N1/2 logN


.

Similarly, using the Cauchy–Schwarz inequality with (5.2) and Theorem 5.2, we conclude that

sup
t∈[0,1]

A(6)⌊Nt⌋

OP(1),

completing the proof of the lemma. �

Lemma 6.6. If Assumptions 2.1–2.6 hold, then we have

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,3, ŵi,N⟩ − ⌊Nt⌋R(3)N (i, j)

 = OP (logN) .
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Proof. We write
⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,3, ŵi,N⟩ = A(7)
⌊Nt⌋ + A(8)

⌊Nt⌋ + A(9)
⌊Nt⌋,

where

A(7)
⌊Nt⌋ =

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ηℓ,3, ŵi,N⟩,

A(8)
⌊Nt⌋ = ĉj,N

⌊Nt⌋
ℓ=1

⟨Xℓ, vj⟩⟨ηℓ,3, ŵi,N − d̂i,Nwi⟩,

A(9)
⌊Nt⌋ = ĉj,N d̂i,N

⌊Nt⌋
ℓ=1

⟨Xℓ, vj⟩⟨ηℓ,3, wi⟩.

Theorems 5.1 and 5.2 imply that

sup
t∈[0,1]

A(7)⌊Nt⌋

 = sup
t∈[0,1]


 1

0

 1

0

⌊Nt⌋
ℓ=1

Xℓ(z)

v̂j,N(z)− ĉj,Nvj(z)


ŵi,N(x)

q
r=1

p
n=1

ψr,nĉn,Nwr(x)

×

 1

0


ĉn,Nvn(s)− v̂n,N(s)


Xℓ(s)dsdzdx


≤

q
r=1

p
n=1

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

Xℓ(s)Xℓ(z)

 v̂j,N(z)− ĉj,Nvj(z)
 ŵi,N(x)ψr,nĉn,Nwr(x)

 ĉn,Nvn(s)− v̂n,N(s)


= OP (N)OP

N−1/2O(1)OP


N−1/2 ,

and similarly

sup
t∈[0,1]

A(8)⌊Nt⌋

 = OP (1) .

Next we observe that

sup
t∈[0,1]

A(9)⌊Nt⌋

 = A(9)
⌊Nt⌋,1 + A(9)

⌊Nt⌋,2,

where

A(9)
⌊Nt⌋,1 = ĉj,N d̂i,N⌊Nt⌋

 1

0

 1

0
λjvj(s)wi(x)

q
r=1

p
n=1

ψr,nĉn,Nwr(x)

ĉn,Nvn(s)− v̂n,N(s)


dsdx

= ⌊Nt⌋R(3)N (i, j)

and

A(9)
⌊Nt⌋,2 = ĉj,N d̂i,N

 1

0

 1

0

 1

0


⌊Nt⌋
ℓ=1

Xℓ(z)Xℓ(s)− ⌊Nt⌋C(z, s)


vj(z)wi(x)

×

q
r=1

p
n=1

ψr,nĉn,Nwr(x)

ĉn,Nvn(s)− v̂n,N(s)


dsdzdx.

Using Theorems 5.2 and 5.3 again, we obtain that

sup
t∈[0,1]

A(9)⌊Nt⌋,2

 = OP (logN) .

This completes the proof. �

Lemma 6.7. If Assumptions 2.1–2.6 hold, then we have

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,4, ŵi,N⟩ − ⌊Nt⌋R(4)N (i, j)

 = OP (logN) .
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Proof. Following the proofs of the previous lemmas we write

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,4, ŵi,N⟩ = A(10)
⌊Nt⌋ + A(11)

⌊Nt⌋ + A(12)
⌊Nt⌋ + A(13)

⌊Nt⌋,

where

A(10)
⌊Nt⌋ =

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ηℓ,4, ŵi,N − d̂i,Nwi⟩,

A(11)
⌊Nt⌋ = ĉj,N d̂i,N

⌊Nt⌋
ℓ=1

⟨Xℓ, vj⟩⟨ηℓ,4, wi⟩,

A(12)
⌊Nt⌋ = d̂i,N

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N − ĉj,Nvj⟩⟨ηℓ,4, wi⟩,

A(13)
⌊Nt⌋ = ĉj,N

⌊Nt⌋
ℓ=1

⟨Xℓ, vj⟩⟨ηℓ,4, ŵi,N − d̂i,Nwi⟩.

Repeating the arguments used in the proofs of Lemmas 6.4 and 6.5, one can show that

sup
t∈[0,1]

A(10)⌊Nt⌋

 = OP (1) ,

sup
t∈[0,1]

A(12)⌊Nt⌋

 = OP (1) ,

sup
t∈[0,1]

A(13)⌊Nt⌋

 = OP (1) .

Elementary arguments give

A(11)
⌊Nt⌋ = A(11)

⌊Nt⌋,1 + A(11)
⌊Nt⌋,2,

where

A(11)
⌊Nt⌋,2 = ĉj,N d̂i,N

 1

0

 1

0

 1

0


⌊Nt⌋
ℓ=1

Xℓ(z)Xℓ(s)− ⌊Nt⌋C(z, s)


vj(z)wi(x)

×

q
r=1

p
n=1

d̂r,Nψr,nĉn,N

d̂r,Nwr(x)− ŵr,N(x)


ĉn,Nvn(s)dsdzdx,

and

A(11)
⌊Nt⌋,1 = ⌊Nt⌋ĉj,N d̂i,Nλj

 1

0
wi(x)

q
r=1

d̂r,Nψr,jĉj,N

d̂r,Nwr(x)− ŵr,N(x)


ĉj,Ndx

= ⌊Nt⌋R(4)N (i, j).

Using Theorems 5.2 and 5.3 again, we conclude that

sup
t∈[0,1]

A(11)⌊Nt⌋,2

 = OP (logN) ,

completing the proof. �

Lemma 6.8. If Assumptions 2.1–2.5 hold, then we have

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,5, ŵi,N⟩

 = OP (1) .

Proof. It follows from Theorems 5.1 and 5.2 that
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sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ηℓ,5, ŵi,N⟩


= sup

t∈[0,1]

⌊Nt⌋
ℓ=1

 1

0

 1

0
Xℓ(z)v̂j,N(z)ŵi,N(x)

q
r=1

p
n=1

d̂r,Nψr,nĉn,N

ŵr,N(x)− d̂r,Nwr(x)


×

 1

0


ĉn,Nvn(s)− v̂n,N(s)


Xℓ(s)dsdzdx


≤

q
r=1

p
n=1

|ψr,n| sup
t∈[0,1]

⌊Nt⌋
ℓ=1

Xℓ(z)Xℓ(s)

 ŵi,N(x)
 v̂j,N(z) ŵr,N(x)− d̂r,Nwr(x)

 ĉn,Nvn(s)− v̂n,N(s)


= OP (N)OP

N−1/2OP


N−1/2 . �

Lemma 6.9. If Assumptions 2.1–2.6 hold, then we have

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ϵ∗∗

ℓ , ŵi,N⟩ −


⌊Nt⌋RN(i, j)+ ĉj,N d̂i,N

⌊Nt⌋
ℓ=1

γℓ(i, j)

 = OP (logN) .

Proof. Combining Lemmas 6.3–6.8, we immediately see that

sup
t∈[0,1]

⌊Nt⌋
ℓ=1

⟨Xℓ, v̂j,N⟩⟨ϵ∗∗

ℓ , ŵi,N⟩ −


⌊Nt⌋RN(i, j)+ ĉj,N d̂i,NT⌊Nt⌋(i, j)

 = OP (logN) ,

where

T⌊Nt⌋(i, j) = T (1)
⌊Nt⌋(i, j)+ T (2)

⌊Nt⌋(i, j).

Thus we need only to show that

T (2)
⌊Nt⌋(i, j) =

⌊Nt⌋
ℓ=1

⟨Xℓ, vj⟩⟨Xℓ, ui⟩.

However, using that the vj’s are orthogonal eigenfunctions of C , we get that 1

0

 1

0
C(z, s)vj(z)

∞
r=p+1

ψi,rvr(s)dsdz = λj

 1

0
vj(s)

∞
r=p+1

ψi,rvr(s)dsdz = 0,

completing the proof. �

Lemma 6.10. If Assumptions 2.1–2.6 hold, then we have√N(β − β̂N)

 = OP (1) .

Proof. It is easy to see that

√
N(β − β̂N) = −N−1/2


ẐT
N ẐN

N

−1

ẐT
N∆̂N .

It follows from (6.5) that

ẐT
N ẐN

N

−1
 = OP (1) .

Lemma 6.9 and (6.7) yield thatẐT
N∆̂N

 ≤ max
1≤i≤q,1≤j≤p


N|RN(i, j)| +

 N
ℓ=1

γℓ(i, j)




+ OP (logN) .
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It follows from Theorem 5.2 that for all 1 ≤ i ≤ q, 1 ≤ j ≤ p

N|RN(i, j)| = OP

N1/2

while Theorem 5.4 implies that N
ℓ=1

γℓ(i, j)

 = OP

N1/2 . �

Lemma 6.11. If Assumptions 2.1–2.6 hold, then we have

sup
t∈[0,1]

ṼN(t)− ζN
1

N1/2


⌊Nt⌋
ℓ=1

γℓ − t
N
ℓ=1

γℓ

 = oP (1) .

Proof. Lemmas 6.2 and 6.10 and (6.1) imply that

sup
t∈[0,1]

ṼN(t)−
1

N1/2


ẐT

⌊Nt⌋∆̂⌊Nt⌋ − tẐT
N∆̂N

 = oP (1) .

It also follows from Lemma 6.9 and (6.7)

sup
t∈[0,1]

ẐT
⌊Nt⌋∆̂⌊Nt⌋ − vec

⌊Nt⌋RN(i, j)+ ĉj,N d̂i,N
⌊Nt⌋
ℓ=1

γℓ(i, j)

T
 = OP (logN) ,

and therefore the proof is complete. �

Now we have all the necessary tools to prove the main result.

Proof of Theorem 2.1. It follows from Lemma 6.11 and Theorem 5.4 that

ζN ṼN(t)
Dpq

[0,1]
−→ WΣ(t)− tWΣ(1).

Next we observe that
Σ−1/2(WΣ(t)− tWΣ(1)), 0 ≤ t ≤ 1

 D
= {B(t), 0 ≤ t ≤ 1},

where B(t) = (B1(t), . . . ,Bpq(t))T and B1, . . . ,Bpq are independent, identically distributed Brownian bridges. Hence

(ζN ṼN(t))TΣ−1(ζN ṼN(t))
D[0,1]
−→

pq
ℓ=1

B2
ℓ (t).

Now, using Assumption 2.7 with Slutsky’s lemma, the proof is complete. �

7. Proof of Theorems 3.1 and 3.2

We can assume without loss of generality that K(u) = 0 if |u| > 1. Letm be a positive integer and define

γ
(m)
ℓ = vec({γ (m)ℓ (i, j), 1 ≤ i ≤ q, 1 ≤ j ≤ p}T ),

where

γ
(m)
ℓ (i, j) = ⟨X (m)ℓ , vj⟩⟨ϵ

(m)
ℓ , wi⟩ + ⟨X (m)ℓ , vj⟩⟨X

(m)
ℓ , ui⟩.

The long term covariance matrix associated with the stationary sequence {γ
(m)
ℓ , 1 ≤ ℓ < ∞} is given by

Σ(m)
= Eγ

(m)
1 (γ

(m)
1 )T +

∞
ℓ=1

Eγ
(m)
1 (γ

(m)
ℓ+1)

T
+

∞
ℓ=1

Eγ
(m)
ℓ+1(γ

(m)
1 )T .

The corresponding Bartlett estimator is defined as

Σ̃
(m)
N =

N−1
k=−(N−1)

K(k/BN)φ
(m)
k,N ,
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where

φ
(m)
k,N =

1
N

min(N,N−k)
ℓ=max(1,1−k)

γ
(m)
ℓ (γ

(m)
ℓ+k)

T

are the sample covariances of lag k. Since K is symmetric, K(0) = 1 and K(u) = 0 outside [−1, 1] we have that

Σ̃
(m)
N = φ

(m)
0,N +

BN
k=1

K(k/BN)φ
(m)
k,N +

BN
k=1

K(k/BN)(φ
(m)
k,N )

T

for all sufficiently large N .
We start with the consistency of Σ̃

(m)
N .

Lemma 7.1. If Assumptions 3.1 and 3.2 are satisfied, then we have for every m

Σ̃
(m)
N

P
−→ Σ(m),

as N → ∞.

Proof. Since the sequence γ
(m)
ℓ is m-dependent we have that

Σ(m)
= Eγ1γ

T
1 +

m
ℓ=1

Eγ1γ
T
ℓ+1 +

m
ℓ=1

Eγℓ+1γ
T
1 .

It follows from the ergodic theorem that for any fixed k and m

φ
(m)
k,N

P
−→ Eγ

(m)
1 (γ

(m)
1+k)

T .

So using Assumption 3.1(i), (ii) and 3.2 we get that

φ
(m)
0,N +

m
k=1

K(k/BN)φ
(m)
k,N +

m
k=1

K(k/BN)(φ
(m)
k,N )

T P
−→ Eγ1γ

T
1 +

m
ℓ=1

Eγ1γ
T
ℓ+1 +

m
ℓ=1

Eγℓ+1γ
T
1 .

Lemma 7.1 is proven if we show that

BN
k=m+1

K(k/BN)φ
(m)
k,N

P
−→ 0 (7.1)

and

BN
k=m+1

K(k/BN)(φ
(m)
k,N )

T P
−→ 0. (7.2)

Clearly, it is enough to prove (7.1).
Let

G(m)N =

BN
k=m+1

K(k/BN)φ
(m)
k,N .

Elementary arguments show that

G(m)N =

BN
k=m+1

K(k/BN)φ
(m)
k,N

=

BN
k=m+1

K(k/BN)
1
N

N−k
ℓ=1

γ
(m)
ℓ


γ
(m)
ℓ+k

T
=

N−(m+1)
ℓ=1

γ
(m)
ℓ H(m)ℓ,N ,

where

H(m)ℓ,N =

min(N−ℓ,BN )
k=m+1

K(k/BN)

N


γ
(m)
ℓ+k

T
.
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Let

G(m)N (i, j) =

N−(m+1)
ℓ=1

γ
(m)
ℓ (i)H(m)ℓ,N (j), 1 ≤ i, j ≤ pq,

where γ (m)ℓ (i) and H(m)ℓ,N (j) are the ith and the jth coordinates of the vectors γ
(m)
ℓ,N and H(m)ℓ,N , respectively. Next we write

E

G(m)N (i, j)

2
= E


N−(m+1)
ℓ=1

γ
(m)
ℓ (i)H(m)ℓ,N (j)

2

=


1≤r≤N−(m+1)
1≤ℓ≤N−(m+1)

E

H(m)ℓ,N (j)γ

(m)
ℓ (i)γ (m)r (i)H(m)r,N (j)



= G(m)1,N(i, j)+ G(m)2,N(i, j),

where

G(m)1,N(i, j) =


1≤r≤N−(m+1)
1≤ℓ≤N−(m+1)

|r−ℓ|≤m

E

H(m)ℓ,N (j)γ

(m)
ℓ (i)γ (m)r (i)H(m)r,N (j)


,

and

G(m)2,N(i, j) =


1≤r≤N−(m+1)
1≤ℓ≤N−(m+1)

|r−ℓ|>m

E

H(m)ℓ,N (j)γ

(m)
ℓ (i)γ (m)r (i)H(m)r,N (j)


.

Notice that γ
(m)
ℓ is independent of H(m)ℓ,N , H

(m)
r,N and γ

(m)
r , if r > m + ℓ. Hence

E

H(m)ℓ,N (j)γ

(m)
ℓ (i)γ (m)r (i)H(m)r,N (j)


=


Eγ (m)ℓ (i)E


H(m)ℓ,N (j)γ

(m)
r (i)H(m)r,N (j)


r > m + ℓ,

Eγ (m)r (i)E

H(m)ℓ,N (j)γ

(m)
ℓ (i)H(m)r,N (j)


ℓ > m + r,

E

H(m)ℓ,N (j)γ

(m)
ℓ (i)γ (m)r (i)H(m)r,N (j)


|ℓ− r| ≤ m,

=


0 |ℓ− r| > m,
E

H(m)ℓ,N (j)γ

(m)
ℓ (i)γ (m)r (i)H(m)r,N (j)


|ℓ− r| ≤ m.

Thus we have

EG(m)2,N(i, j) = 0.

LetM be an upper bound on |K(t)|. Using the fact that γ
(m)
ℓ is anm-dependent sequence, we now obtain the following:

E(H(m)ℓ,N (j))
2

=

min(N−ℓ,BN )
k=m+1

min(N−ℓ,BN )
v=m+1

K(k/BN)

N
K(v/BN)

N
E

γ
(m)
ℓ+k(j)γ

(m)
ℓ+v(j)


≤

M2

N2

min(N−ℓ,BN )
k=m+1

min(N−ℓ,BN )
v=m+1

E

γ
(m)
ℓ+k(j)γ

(m)
ℓ+v(j)


≤

M2

N2
BN

m
r=−m

E
γ (m)0 (j)γ (m)r (j)


= O


BN

N2


. (7.3)
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In the next step we will first use the Cauchy–Schwarz inequality, then the independence of H(m)ℓ,N (j) and γ
(m)
ℓ (i) and the

independence of H(m)r,N (j) and γ
(m)
r (i) to getG(m)2,N(i, j)

 ≤


1≤r≤N−(m+1)
1≤ℓ≤N−(m+1)

|r−ℓ|≤m

E
H(m)ℓ,N (j)γ

(m)
ℓ (i)γ (m)r (i)H(m)r,N (j)



≤


1≤r≤N−(m+1)
1≤ℓ≤N−(m+1)

|r−ℓ|≤m


E

H(m)ℓ,N (j)γ

(m)
ℓ (i)

21/2 
E

γ (m)r (i)H(m)r,N (j)

21/2

≤


1≤r≤N−(m+1)
1≤ℓ≤N−(m+1)

|r−ℓ|≤m


E

H(m)ℓ,N (j)

21/2 
E

γ
(m)
ℓ (i)

21/2 
E

γ (m)r (i)

21/2 
E

H(m)r,N (j)

21/2

≤ 2mNO


B1/2
N

N


O(1)O(1)O


B1/2
N

N



= O

BN

N


= o(1),

where we also used (7.3) and Assumption 3.2. This completes the proof of Lemma 7.1. �

Let i2 = −1.

Lemma 7.2. If Assumptions 2.1–2.4, 3.1 and 3.2 are satisfied, then for all 1 ≤ j ≤ pq we have

lim sup
N→∞

lim sup
m→∞

sup
−∞<t<∞

E


1

N1/2

N
k=1

(γk(j)− γ
(m)
k (j))eikt

2

= 0, (7.4)

lim sup
N→∞

lim sup
m→∞

sup
−∞<t<∞

E


1

N1/2

N
k=1

γk(j)eikt
2

< ∞ (7.5)

and

lim sup
N→∞

lim sup
m→∞

sup
−∞<t<∞

E


1

N1/2

N
k=1

γ
(m)
k (j)eikt

2

< ∞. (7.6)

Proof. First we note that

E


N

k=1

(γk(j)− γ
(m)
k (j))eikt

2

=


1≤k≤N

E((γk(j)− γ
(m)
k (j))eikt)2

+ 2


1≤k<ℓ≤N

E

(γk(j)− γ

(m)
k (j))(γℓ(j)− γ

(m)
ℓ (j))


ei(k+ℓ)t .

It follows from (5.13) that there is a sequence c1(m) → 0 such that 
1≤k≤N

E(γk(j)− γ
(m)
k (j))2ei2kt

 ≤ Nc1(m).

Next we write
1≤k<ℓ≤N

E

(γk(j)− γ

(m)
k (j))γℓ(j)


ei(k+ℓ)t =


1≤k<ℓ≤N

E

(γk(j)− γ

(m)
k (j))(γℓ(j)− γ

(ℓ−k)
ℓ (j))


ei(k+ℓ)t ,
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since (γk, γ
(m)
k ) and γ

(ℓ−k)
ℓ are independent. Using the Cauchy–Schwarz inequality first, then (5.13) again we get that

1≤k<ℓ≤N

E (γk(j)− γ
(m)
k (j))(γℓ(j)− γ

(ℓ−k)
ℓ (j))


ei(k+ℓ)t


≤


1≤k<ℓ≤N


E(γk(j)− γ

(m)
k (j))2

1/2 
E(γℓ(j)− γ

(ℓ−k)
ℓ (j))2

1/2
≤ N


E(γ1(j)− γ

(m)
1 (j))2

1/2 
1≤k<∞


E(γ1(j)− γ

(k)
1 (j))2

1/2
= Nc2(m)

with some sequence c2(m) → 0. Similar arguments show that
1≤k<ℓ≤N

E (γk(j)− γ
(m)
k (j))γ (m)ℓ (j)


ei(k+ℓ)t

 = Nc3(m)

with some sequence c3(m) → 0, completing the proof of (7.4).
Similar to the proof of (7.4), we write

E


N

k=1

γk(j)eikt
2

=

N
k=1

N
ℓ=1

Eγk(j)γℓ(j)ei(k+ℓ)t

=

N
k=1

Eγ 2
k (j)e

2ikt
+ 2


1≤k<ℓ≤N

Eγk(j)γℓ(j)ei(k+ℓ)t

= Eγ 2
1 (j)

N
k=1

e2ikt + 2


1≤k<ℓ≤N

Eγk(j)(γℓ(j)− γ
(ℓ−k)
ℓ (j))ei(k+ℓ)t ,

since by the independence of γk(j) and γ
(ℓ−k)
ℓ (j) we have that Eγk(j)γ

(ℓ−k)
ℓ (j) = 0. Using the Cauchy–Schwarz inequality

with (5.13) we get that 
1≤k<ℓ≤N

Eγk(j)(γℓ(j)− γ
(ℓ−k)
ℓ (j))ei(k+ℓ)t

 ≤ cN

with some constant c , completing the proof of (7.5). The same arguments can be used to prove (7.6). �

Following [27] we define SN(t) =
N

k=1 γk,Ne
ikt and S(m)N (t) =

N
k=1 γ

(m)
k,N e

ikt . Let S∗

N(t) be the conjugate transpose of SN(t)
and introduce

IN(t) =
1
N
SN(t)S∗

N(t)

=
1
N

N
k=1

γke
ikt

N
ℓ=1

γT
ℓe

−iℓt

=
1
N

N
ℓ=1

N
k=1

eit(k−ℓ)γkγ
T
ℓ

=

N−1
k=1−N

e−itk 1
N

min(N,N−k)
ℓ=max(1,1−k)

γkγ
T
ℓ+k

=

N−1
k=1−N

e−itkφk,N .

Similarly we define

I(m)N (t) =
1
N S

(m)
N (t)


S(m)N (t)

∗

=

N−1
k=1−N

e−itkφ
(m)
k,N .

Lemma 7.3. If Assumptions 2.1–2.4, 3.1 and 3.2 are satisfied, then we have

lim sup
N→∞

lim sup
m→∞

sup
−∞<t<∞

E
IN(t)− I(m)N (t)

 = 0.
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Proof. By the triangle inequality we haveIN(t)− I(m)N (t)
 =

 1N SN(t)S∗

N(t)−
1
N
S(m)N (t)


S(m)N (t)

∗


≤
1
N

SN(t)(S∗

N(t)− (S(m)N (t))∗)
+ 1

N

(SN(t)− S(m)N (t))(S(m)N (t))∗
 .

Now the result follows from Lemma 7.2 via the Cauchy–Schwartz inequality. �

Proof of Theorem 3.1. Define the Fourier transform, K̂(u), of the kernel K as K̂(u) =
1
2π


∞

−∞
K(s)e−isuds. Since K and K̂ are

in L1 and both are Lipschitz functions, the inversion formula gives K(s) =


∞

−∞
K̂(u)eisudu. From the relationship between K

and K̂ and from the fact that K is supported on the interval [−1, 1], we obtain:

Σ̃N =

BN
k=−BN

K(k/BN)φk,N

=

N−1
k=1−N

K(k/BN)φk,N

=

N−1
k=1−N


∞

−∞

K̂(u)ei(k/BN )udu


φk,N

=


∞

−∞

K̂(u)
N−1

k=1−N

e−i(−u/BN )kφk,Ndu

=


∞

−∞

K̂(u)IN(−u/BN)du.

Similarly,

Σ̃
(m)
N =


∞

−∞

K̂(u)I(m)N (−u/BN)du.

Hence we have

E
Σ̃N − Σ̃

(m)
N

 = E
 ∞

−∞

K̂(u)

IN(u/BN)− I(m)N (u/BN)


du


≤


∞

−∞

K̂(u) E IN(u/BN)− I(m)N (u/BN)
 du

≤ sup
−∞<t<∞

IN(t)− I(m)N (t)


1


∞

−∞

K̂(u) du.
Applying Lemma 7.3 we conclude thatΣ̃N − Σ̃

(m)
N

 P
−→ 0,

as min(N,m) → ∞. On the other hand, by Lemma 7.1, for every fixedm

Σ̃
(m)
N

P
−→ Σ(m).

Since

Σ(m)
→ Σ,

as m → ∞, the proof of the theorem is complete. �

Proof of Theorem 3.2. It follows from the definition of ϵ̂ℓ, (1.4) and the orthonormality of {wj, 1 ≤ j < ∞} that

⟨ϵ̂ℓ, wi⟩ = ⟨ϵℓ, wi⟩ + ⟨Xℓ, ui⟩ + ⟨νℓ, wi⟩,

where

νℓ(t) =

q
i=1

p
j=1

ψi,jwi(t)⟨Xℓ, vj⟩ −

q
i=1

p
j=1

ψ̂i,jŵi,N(t)⟨Xℓ, v̂j,N⟩.
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Following the proof of Theorem 3.1 one can show that the estimates in (5.5) and (5.6) yieldΣ̆N(i, j, i′, j′)− d̂i,N ĉj,N d̂i′,N ĉj′,NΣ∗

N(i, j, i
′, j′)

 = oP(1), (7.7)

where

Σ̆N(i, j, i′, j′) =

N−1
k=−(N−1)

K(k/BN)φ̂k,N(i, j, i′, j′)

and

Σ∗

N(i, j, i
′, j′) =

N−1
k=−(N−1)

K(k/BN)φ
∗

k,N(i, j, i
′, j′)

with

φ̂k,N(i, j, i′, j′) =
1
N

min(N,N−k)
ℓ=max(1,1−k)

γ̂ℓ(i, j)γ̂ℓ+k(i′, j′),

φ∗

k,N(i, j, i
′, j′) =

1
N

min(N,N−k)
ℓ=max(1,1−k)

γ ∗

ℓ (i, j)γ
∗

ℓ+k(i
′, j′),

and

γ ∗

ℓ (i, j) = ⟨Xℓ, vj⟩⟨ϵ̂ℓ, wi⟩.

Since

⟨Xℓ, vj⟩⟨ϵ̂ℓ, wi⟩ = γℓ(i, j)+ ⟨Xℓ, vj⟩⟨νℓ, wi⟩,

(5.5) and (5.6) and Lemma 6.10 imply thatΣ̃N −Σ∗

N

 = oP(1). � (7.8)

We have seen in Theorem 3.1 that
Σ̃N − Σ

 = oP (1). In (7.7) and (7.8) we have seen that
Σ̆N − ζNΣ∗

NζN

 = oP (1) andΣ̃N −Σ∗

N

 = oP(1). Therefore,
Σ̂N − Σ

 = oP (1), completing the proof.
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