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Objectives: To longitudinally investigate the connectome in different stages of Huntington3s disease (HD) by ap-
plying graph theoretical analysis to diffusion MRI data.
Experimental design: We constructed weighted structural networks and calculated their topological properties.
Twenty-two premanifest (preHD), 10 early manifest HD and 24 healthy controls completed baseline and
2 year follow-up scans. We stratified the preHD group based on their predicted years to disease onset into a
far (preHD-A) and near (preHD-B) to disease onset group. We collected clinical and behavioural measures per
assessment time point.
Principle observations: We found a significant reduction over time in nodal betweenness centrality both in the
early manifest HD and preHD-B groups as compared to the preHD-A and control groups, suggesting a decrease
of importance of specific nodes to overall network organization in these groups (FDR adjusted ps b 0.05). Addi-
tionally, we found a significant longitudinal decrease of the clustering coefficient in preHD when compared to
healthy controls (FDR adjusted p b 0.05), which can be interpreted as a reduced capacity for internodal informa-

tion processing at the local level. Furthermore, we demonstrated dynamic changes to hub-status loss and gain
both in preHD and early manifest HD. Finally, we found significant cross-sectional as well as longitudinal rela-
tionships between graph metrics and clinical and neurocognitive measures.
Conclusions: This study demonstrates divergent longitudinal changes to the connectome in (pre)HDcompared to
healthy controls. This provides novel insights into structural correlates associated with clinical and cognitive
functions in HD and possible compensatory mechanisms at play in preHD.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent years have seen an increase in work pertained to finding
and developing biomarkers for Huntington3s disease (HD) and its
premanifest stage (preHD). HD is an autosomal dominant neurode-
generative disorder caused by an elongated cytosine–adenine–guanine
(CAG) repeat on the short arm of chromosome 4, which leads to the
production of mutated huntingtin protein (The Huntington’s Disease
Collaborative Research Group, 1993). Prominent white and grey matter
atrophy appear in the course of the disease (Aylward et al., 2012;
Hadzi et al., 2012; Sanchez-Castaneda et al., 2015; Tabrizi et al., 2009).
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This results in cognitive deterioration, including slower processing
speed, attentional problems, executive control deficits and ultimately de-
mentia, but also motor signs such as chorea, bradykinesia, rigidity and
dystonia and psychiatric symptoms such as depression, anxiety and
apathy.

Finding biomarkers that assess progression towards disease mani-
festation and follow disease advancement at the clinical stage, is of im-
portance in the light of understanding the impact of intervention trials.
One of the most promising methods currently being deployed to probe
for biomarker potential is diffusion MRI, which can characterize tissue
microstructure via the diffusion of water molecules (Basser et al.,
1994; Jones and Leemans, 2011; Pierpaoli et al., 1996; Tournier et al.,
2011). Based on this technique, several cross-sectional studies in HD
have provided evidence for abnormal structural organization of the
brain, typically using region of interest and tract-based spatial statistics
analyses (Bohanna et al., 2011; Della et al., 2010; Dumas et al., 2012;
Hobbs et al., 2012; Phillips et al., 2014). However, findings from
the CC BY-NC-ND license
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longitudinal reports using diffusion MRI in HD remain inconsistent
(Sritharan et al., 2010; Vandenberghe et al., 2009; Weaver et al., 2009).

In the study byWeaver et al. (2009), the tract-based spatial statistics
approach was used to compare scans from seven controls, four preHD
and three manifest HD subjects obtained 1 year apart. Significant longi-
tudinal decreases in white matter fractional anisotropy and axial diffu-
sivity in the seven (pre)manifest subjects were found compared to the
healthy controls. In another study by Sritharan et al. (2010) with 17
controls and 18 manifest HD subjects, a region of interest approach
did not reveal longitudinal changes in the mean diffusivity of the cau-
date, putamen, thalamus and corpus callosum over a 1 year period,
while baseline mean diffusivity was found to be significantly higher in
the caudate and putamen of subjects with manifest HD compared to
controls. A similar finding for mean diffusivity was reported by
Vandenberghe et al. (2009) in eight manifest HD subjects over a
2 year period, also using a region of interest approach. These inconsis-
tencies in the literature might very well be attributed to inconsistencies
in defining the regions of interest or to other methodological limita-
tions, such as those recently described for tract-based spatial statistics
(Bach et al., 2014). As longitudinal sensitivity to detecting disease
progression is an essential quality of a biomarker, and given the
abovementioned apparent lack of uniformity in previous longitudinal re-
ports, we used a graph theoretical approach to analyse our data from a
new perspective.

A graph theoretical analysis (GTA) is a powerful mathematical
framework for quantifying topological properties of networks. This
type of analysis moves away from the traditional neuroimaging ap-
proach of examining individual components of the brain, such as re-
gions of interest, towards characterizing regional or global structure of
networks. In recent years, this paradigm shift from segregation to inte-
gration has emerged as a useful strategy for characterizing functional
and structural brain networks in healthy and clinical groups, including
other neurodegenerative diseases such as Alzheimer3s disease (He et
al., 2008; Heringa et al., 2014; Lo et al., 2010; Reijmer et al., 2013;
Supekar et al., 2008), neuroimmunological disorders such as multiple
sclerosis (He et al., 2009; Shu et al., 2011), but also in traumatic brain in-
jury (Caeyenberghs et al., 2012, 2014) and schizophrenia (Bassett et al.,
2008; Liu et al., 2008). Using network based statistics, one recent cross-
sectional study by Poudel et al. (2014) provided evidence for aberrant
white matter cortico-striatal connectivity in HD compared to controls
based on diffusion MRI data. However, little research has been done
on the dynamics of structural brain networks using a longitudinal
design.

GTAmay provide more insights into structural changes that can de-
velop over the course of the condition, which may be too subtle to be
detected at the local level. We therefore investigated network dynamics
of the connectome in individuals from a well-defined cohort (TRACK-
HD study Tabrizi et al., 2011) assessed systematically and prospectively
across multiple time points. This could provide new insights into the
development of topological organization of whole-brain structural con-
nectivity in HD, possibly providing usable markers quantifying disease
progression. Such biomarkers can potentially be used, in turn, as targets
formodification in therapeutic trial settings, especially in the premanifest
phase where the priority lies in preventing or delayingmanifestation
of this devastating disorder. It is also important to examine potential
associations between currently used cognitive and clinical measures
in HD and (disrupted) network properties, thereby providing a more
tangible ‘real-world’ sense to the complexity of brain structure and
function.

2. Materials and methods

2.1. Participants

As part of the TRACK-HD study, 90 participants were included at
baseline at the Leiden University Medical Center (LUMC) study site.
Recruitment procedures and inclusion criteria have been published pre-
viously (for details see Tabrizi et al., 2009). Diffusion MRI was added to
the standard MRI protocol. At baseline, diffusion MRI was not per-
formed in ten participants because of claustrophobia, and another
nine were excluded from analysis due to excessive motion artefacts,
which caused significant data corruptions, such as large signal drop-
outs and intra-volume inter-slice distortions. Such corrupted data
sets were deemed unusable for inclusion in the study and were
therefore not considered for further processing and analysis. Of the
remaining 71 subjects, 62 subjects completed diffusion MRI scans
at both visits with an average between-scan interval of 23 months.
Of these 62, a further six subjects were excluded from analysis due
to excessive motion artefacts at the second visit. The longitudinal co-
hort included in this work was thus comprised of 56 subjects: 24
healthy controls, 22 preHD and 10 early manifest HD subjects
(Table 1).

Inclusion criteria for the preHD group were a CAG repeat ≥40 with a
total motor score on the Unified Huntington3s Disease Rating Scale
(UHDRS-TMS) ≤ five (Tabrizi et al., 2009). Moreover, to assess the effect
of expected proximity to disease onset on diffusion parameters, the
preHD group was divided at baseline according to the median
(10.9 years) for the predicted years to disease onset into preHD-A
(≥10.9 years) and preHD-B (b10.9). The predicted years to disease
onset was based on a formula by Langbehn et al. (2004) using CAG re-
peat length and age-based survival analysis. This resulted in two groups
(preHD-A and preHD-B) each consisting of 11 subjects (Table 1). Inclu-
sion criteria for the early manifest HD group were a CAG repeat ≥40,
with a UHDRS-TMS ≥five and a Total Functional Capacity score (TFC)
≥seven. For both the preHD and early manifest HD groups, a burden of
pathology score greater than 250 ((CAG repeat length − 35.5) × age)
was applied as a further inclusion criterion (Penney et al., 1997;
Tabrizi et al., 2009). Healthy gene negative family members or partners
were recruited as control subjects. None of the participants suffered
froma concomitant neurological disorder, amajor psychiatric diagnosis,
or had a history of severe head injury.

Demographics, clinical information, and neurocognitive measures of
interest are provided in Table 1. From the neurocognitive battery ad-
ministered, the Stroop Word Reading (SWR) task and the Trail Making
Task (TMT) were chosen as measures of interest, as these tasks have
shown promising results as cognitive disease-state markers in HD re-
search (Delmaire et al., 2013; O'Rourke et al., 2011; Tabrizi et al.,
2011). In short, the SWR task consisted of the instruction of reading a
set of words of colours (red, green and blue) as fast as possible within
45 s. The number of correct responses was computed using the number
of items completed, with higher scores reflecting faster processing
speed. The SWR has been used as a sensitive outcomemeasure in stud-
ies identifying predictors of longitudinal decline in HD, independent of
disease related motor effects (Tabrizi et al., 2011). Furthermore, the
TMT was administered which requires inhibition, updating, and
switching, and consists of two parts, Trails A and Trails B. In Trails A, let-
ters from A to Y are distributed across the page and participants are
asked to draw lines connecting the letters from the alphabet in the
right order, without lifting the pencil from the page. In Trails B, the
page contains the numbers from 1 to 12 and letters from A to L and par-
ticipantsmust connect the symbols by alternating the sequence between
numbers and letters, that is, A-1-B-2-C-3… L-12. The dependent variable
was the switch cost calculated by subtracting time to complete part A
from part B. The validated Dutch version of the National Adult Reading
Test (DART) was used to assess the intelligence quotient (Schmand et
al., 1991). Finally, the BeckDepression Inventory-II (BDI-II)was adminis-
tered, which is a 21-question multiple-choice self-report inventory, one
of the most widely used instruments for measuring severity of depres-
sion. All participants completed both baseline as well as follow-up MRI,
cognitive and clinical evaluation. The studywas approved by theMedical
Ethics Committee of the LUMC and written informed consent was ob-
tained from all participants.



Table 1
Group demographics with clinical and behavioural scores.

Healthy controls Premanifest HD (A and B) preHD-A preHD-B Early manifest HD

N 24 22e 11 11 10
Gender male/female 11/13 9/13 4/7 5/6 4/6
Age in years (at V1), mean (SD) 49.0 (8.2) 43.6 (8.7) 44.2 (5.7) 43.0 (11.2) 50.2 (9.3)
Handedness R/L 20/4 18/4 9/2 9/2 9/1
Level of education (ISCED), median (range) 4 (3) 4 (3) 4 (3) 4 (3) 4 (3)
DART-IQ, mean (SD) 105.0 (9.4) 100.5 (11.2) 101.3 (9.7) 99.6 (13.0) 101.8 (13.5)
CAG repeat length, mean (SD) n/a 42.6 (2.7) 41.3 (1.4) 43.9 (3.1)d 42.5 (1.2)
Estimated years to onset, mean (SD) n/a 11.8 (4.7) 14.9 (4.7) 8.6 (1.8)d n/a
Total functional capacity, mean (SD) V1 13.0 (0.2) 12.8 (0.5) 12.7 (0.7) 12.8 (0.4) 11.0 (1.5)b

V2 12.9 (0.5) 12.6 (0.9) 12.7 (0.6) 12.5 (1.0) 10.3 (2.2)b

UHDRS-TMS, mean (SD) V1 2.6 (2.5) 2.6 (1.5) 2.0 (1.5) 3.1 (1.2) 14.6 (7.7)b

V2 2.1 (1.6) 5.7 (5.1)c 3.5 (2.2) 8.3 (6.1)a,d 23.0 (12.1)b

SWR, mean (SD) V1 100.1 (13.2) 91.9 (14.2)a 95.6 (9.6) 88.3 (17.3)a 87.7 (14.7)a

V2 102.0 (15.6) 87.9 (15.7)a 91.4 (9.4) 84.4 (20.0)a 86.4 (18.6)a

Switch cost of TMT in seconds, mean (SD) V1 37.0 (17.4) 41.8 (24.6) 36.4 (15.9) 47.2 (30.9) 63.5 (41.6)b

V2 38.9 (27.0) 38.0 (28.6) 30.8 (19.2) 45.8 (35.7) 75.0 (63.4)b

BDI-II, mean (SD) V1 4.1 (4.4) 6.4 (6.4) 4.9 (6.0) 7.9 (6.8) 10.2 (8.2)a

V2 3.9 (4.1) 5.1 (5.6) 3.2 (4.9) 6.9 (5.9) 8.2 (8.4)
Between-scan interval in months, mean (SD) 23.0 (0.8) 23.0 (0.7) 23.2 (0.6) 22.7 (0.7) 23.5 (0.7)

HD= Huntington3s disease, N = number of participants, SD = standard deviation, n/a = not applicable, ISCED = International Standard Classification of Education, DART-IQ = Dutch
Adult Reading Test Intelligence Quotient, CAG= cytosine–adenine–guanine, UHDRS-TMS= Unified Huntington3s Disease Rating Scale-Total Motor Score, SWR= StroopWord Reading
task, TMT = Trail Making Task, BDI-II = Beck Depression Inventory-II, V1 = visit 1, V2 = visit 2.
Significance at p ≤ 0.05 level:

a Significantly different from controls.
b Significantly different from controls and premanifest HD.
c Significantly different from controls and early manifest HD.
d Significantly different from preHD-A.
e Including five subjects progressing to the early manifest stage during the 2 year follow-up period.
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2.2. MRI acquisition

MRI acquisition was performed with a 3-Tesla whole-body scanner
(Philips Achieva, Healthcare, Best, The Netherlands) using an eight
channel SENSE head coil. T1-weighted image volumes were acquired
using a 3D MPRAGE acquisition sequence with the following imaging
parameters: TR = 7.7 ms, TE = 3.5 ms, FOV = 24 × 24 cm2, matrix
size 224 × 224, number of slices = 164, slice thickness = 1.00 mm,
and no slice gap. A single-shot echo-planar diffusion tensor imaging se-
quence was applied with 32measurement directions and the following
scan parameters (Jones and Leemans, 2011): TR = 10,004 ms, TE =
56 ms, FOV = 220 × 220 mm2 with an acquisition matrix of
112 × 110, 2.00 mm slice thickness, transversal slice orientation, no
slice gap, flip angle = 90°, reconstruction voxel dimensions of
1.96 × 1.96 × 2.00 mm3, number of slices = 64, b-value = 1000 s/
mm2, half-scan factor = 0.61. Parallel imaging (SENSE) was used with
a reduction factor of two, NSA = one, and fat suppression was applied.
Diffusion MRI acquisition time was 6.55 min.

2.3. Diffusion MRI processing

Diffusion MRI data were analysed using the diffusion MR toolbox
‘ExploreDTI’ (Leemans et al., 2009). Data were corrected for subjectmo-
tion, eddy current distortions, and susceptibility artefacts due to the
magnetic field inhomogeneity prior to diffusion tensor estimation
with the REKINDLE method (Irfanoglu et al., 2012; Leemans et al.,
2009; Tax et al., 2014b; Veraart et al., 2013). Whole-brain fibre
tractographywas performed using constrained spherical deconvolution
(Jeurissen et al., 2011; Tax et al., 2014a; Tournier et al., 2007)with a uni-
form seed point resolution of 2 mm3, an angle threshold of 30°, a fibre
orientation distribution threshold of 0.1, and maximum harmonic
order of 4.

2.4. Connectivity matrices

One structural network was generated for each subject using
the subject3s diffusion MRI data. A network was defined as a set of
nodes (denoting anatomical regions of the parcellation scheme) and
interconnecting edges (denoting fibre trajectories between the cortical
and subcortical regional nodes that have been reconstructed). More-
over, we assigned a continuous weight (i.e., number of streamlines) to
each edge of the graph, which resulted in weighted graphs. Because
tractography does not differentiate between efferent and afferentfibres,
the reconstructed graphswere all undirected.We describe here some of
themajor steps that we went through from diffusion MRI processing to
computing the topologicalmetrics of the graph. Fig. 1 shows a flowchart
for the process of obtaining connectivity matrices. The Automated Ana-
tomical Labelling (AAL) atlas (and labels/masks Tzourio-Mazoyer et al.,
2002) was registered to the diffusionMRI data using a non-linear trans-
formation (Klein et al., 2010) with fractional anisotropy as target image
contrast (De Groot et al., 2013). The AAL atlas regions, which are com-
monly used to derive the nodes in GTA of neuroimaging data, are pre-
sented in Fig. 2. The AAL template is not a pure cortical grey matter
mask but includes tissues from both cortical greymatter and subcortical
white matter (Li et al., 2009; Tzourio-Mazoyer et al., 2002). Defining
seed voxels throughout the brain parenchyma ensures that the comput-
ed trajectories originated from the white matter tissue underlying the
cortical region or adjacent to subcortical structures. The average percent-
age of network tracts connecting a pair of regions was 2.39 × 10−4.
The numbers of streamlines connecting each pair of AAL regions
were aggregated into a 90 × 90 connectivity matrix (the cerebellar
regions were not included). We refer the interested reader to the
Supplementary video for a three-dimensional example of a resulting
connectome.

2.5. Graph theory metrics

We used the Brain Connectivity Toolbox (BCT) (Rubinov and
Sporns, 2010: https://sites.google.com/site/bctnet/) and the longitu-
dinal plugin of the Graph Analysis Toolbox (Hosseini et al., 2012a;
Hosseini et al., 2012b; Hosseini et al., 2013), to investigate network
metrics of segregation, integration, and centrality. Network mea-
sures were computed over a range of density thresholds.
Thresholding at an absolute value would have resulted in networks
with different degrees across groups, introducing a confound when
comparing measures between groups (Van Wijk et al., 2010).

https://sites.google.com/site/bctnet/


Fig. 1. Flow chart for constructing a diffusion MRI based network. (A) An automated anatomical labeling (AAL) atlas template consisting of 90 cortical and subcortical brain regions, ex-
cluding the cerebellum, was used for brain segmentation. (B) Whole brain tractography was performed using ExploreDTI (see the Materials and methods section). (C) The numbers of
streamlines connecting each pair of AAL regions were aggregated into a 90 × 90 weighted connectivity matrix. (D) The connectivity matrix was then visualized as a graph, composed
of nodes representing brain regions and edges representing white matter connections. From the individual weighted brain networks, several network metrics were computed at both
the global and regional levels.
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Network measures were examined over a range of network densities
for which the networks were not fragmented (each node had at least
one connection with another node in the graph) and displayed
small-world properties (non-random graphs) (Hosseini et al.,
2013). The network densities ranging from 0.10 to 0.40 fulfilled
these criteria. We compared the networks in this density range in
steps of 0.05. The graph metrics were quantified at both the network
and regional levels from the weighted networks. The equations to
calculate each of these measures can be found in Rubinov and
Sporns (2010) (https://sites.google.com/site/bctnet/measures/list).
We only provide brief explanations for each of the network proper-
ties used in this study.

We quantified measures of network integration (characteristic path
length) and segregation (clustering) for each network (Rubinov and
Sporns, 2010). The characteristic path length L of a network is the aver-
age shortest path (distance) between all pairs of nodes in the net-
work. It is defined as:

L ¼ 1
n

X

i∈N

Σ j∈N j≠idi j
n−1

where dij is the shortest path length (distance) between nodes i
and j. The global efficiency (Latora and Marchiori, 2001) is the av-
erage inverse shortest path length in the network, and is inversely
related to the characteristic path length. In other words, networks
with a small average characteristic path length are generally
more efficient than those with large average characteristic path
length. We also calculated local efficiency as a nodal graph metric.
The regional efficiency is the global efficiency computed on node
neighbourhoods (Sporns and Zwi, 2004), and is related to the clus-
tering coefficient.

The clustering coefficient of a node is a measure of the number of
edges that exist between its nearest neighbours and is quantified by
counting the numbers of triangles formed around a node (Onnela et
al., 2005; Opsahl and Panzarasa, 2009). The clustering coefficient C of
het network is the average clustering across all nodes and is quantified
as:

C ¼ 1
n

X

i∈N

2ti
ki ki−1ð Þ

where ki is the number of connections (degree) for node i and ti is the
number of triangles around a node i. The modularity is a graph metric
that quantifies the degree to which the network may be subdivided
into clearly delineated nonoverlapping groups of nodes in a way that
maximizes the number of within-group edges, andminimizes the num-
ber of between-group edges. To evaluate the topology of the construct-
ed networks, the obtained characteristic path length and clustering
coefficient of each network were normalized to the corresponding
mean values of null networks with the same degree-, weight- and
strength-distributions as the network of interest (Hosseini and Kesler,
2013; Maslov and Sneppen, 2002), using the null model algorithm im-
plemented in BCT (Rubinov and Sporns, 2010).

We also computed the small-world index as the ratio of normalized
clustering and normalized path length (Humphries and Gurney, 2008;
Watts and Strogatz, 1998). Thus, the small-worldness index of each net-
work was obtained as [C/Crand]/[L/Lrand], where Crand and Lrand are the
mean clustering coefficient and the characteristic path length of random
networks (Bassett & Bullmore, 2006). In a small-world network, the

https://sites.google.com/site/bctnet/measures/list


Fig. 2. Cortical and subcortical regions (45 in each hemisphere; 90 in total) as anatomically defined by the automated anatomical labeling atlas template image in standard stereotaxic
space.
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clustering coefficient is significantly higher than that of random net-
works (C/Crand ratio greater than 1), while the characteristic path length
is comparable to random networks (L/Lrand ratio close to 1).

Finally, we have calculated node betweenness centrality (Freeman,
1978),which is the fraction of all shortest paths in thenetwork that con-
tain a given node. The betweenness centrality bi of a node i is defined as:

bi ¼
1

N−1ð Þ N−2ð Þ
X

h; j∈G
h≠ j;h≠i; j≠i

ρh j ið Þ
ρh j

in which ρhj is the number of shortest paths between nodes h and j and
ρhj(i) is the number of shortest paths between nodes h and j that pass
through node i. The nodes with the largest betweenness centrality can
be considered to be pivotal nodes (i.e., hubs) in the network.

2.6. Statistical analysis

Interaction effects between group and time for the graph metrics
were analysed using the Longitudinal plugin of the Graph Analysis Tool-
box (Hosseini et al., 2013; Kesler et al., 2013). Specifically, networks
were first normalized by the mean network strength and graph mea-
sures were quantified for the normalized networks. A non-parametric
permutation test with 1000 repetitions was then used to test the statis-
tical significance of the effects of time course for graph measures
(Bassett et al., 2008; Hosseini et al., 2012a). In each permutation, the cal-
culated regional streamlines of each participant were randomly
assigned to one of the two groups so that each randomized group had
the same number of subjects as in the original groups. Finally, the actual
difference in the slope between the original groups was compared to
the obtained permutation distribution of difference in slope between
randomized groups to obtain the p-value.

The same permutation procedure was used to test the signifi-
cance of the differences in regional network measures. In this step,
we compared regional network measures for the networks
thresholded at minimum density. We obtained false discovery rate
(FDR) corrected p-values as measures of significance for the regional
measures comparisons. In the present study, the p-values reported
for regional differences between groups are FDR corrected for multi-
ple comparisons (90 comparisons).

Baseline (i.e., visit 1) data of behaviouralmetrics (i.e., neurocognitive
functioning scores) as well as graph metrics were used for cross-
sectional analyses. A multivariate analysis of covariance (MANCOVA)
was used, whereby statistical differences were assessed on multiple
continuous dependent variables (graph metrics, cognitive and clinical
variables) by an independent grouping variable (controls, preHD,
early manifest HD), while controlling for a third variable (covariate).
In the present study, age was added as covariate so that it could reduce
error terms and so that the analysis eliminated the covariates3 effect on
the relationship between the independent grouping variable and the
continuous dependent variables. We further subdivided the preHD
group into two subgroups: preHD far from expected disease onset
(preHD-A) and preHD close to expected disease onset (preHD-B).

To investigate the neuronal correlates of the behavioural tests, base-
line data were analysed. Each participant3s score on tests of clinical scales
and neurocognitive functioning was correlated with that participant3s
graph metric (clustering coefficient, global efficiency, betweenness cen-
trality) using partial correlations (age as confounding variable).
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Our final aimwas to investigate the relationship between changes in
graph metrics with changes in behavioural performance. Difference
scores for both behavioural performance and graphmetrics were calcu-
lated as a measure of change by subtracting the visit 1 from the visit 2
scores.

3. Results

3.1. Baseline group comparison of demographic variables and performance
in behavioural tests

Participants of the three groups (controls, preHD, earlymanifest HD)
did not differ in terms of gender distribution (p = 0.93), handedness
(p = 0.95), body mass index (p= 0.64) or intelligence quotient scores
(p = 0.38). One-way ANOVAs revealed only a trend towards a differ-
ence in age between the groups (p = 0.06). Therefore, we included
age as covariate in subsequent analyses. See Table 1 for group demo-
graphics and clinical and behavioural scores. The groups differed at
baseline in their executive function performance (SWR and the switch
cost of the TMT, all ps b 0.05). Post hoc Tukey testing showed significant
differences between controls and (pre) HD groups.

3.2. Regional graph analyses

Graph metrics were evaluated at the nodal level to identify the
nodes in the network that show a significant group by time interaction
effect. Multiple testing correctionwas performed via False Discovery Rate
(FDR) (Genovese et al., 2002), where an FDR adjusted p-value b 0.05 was
considered significant. The permutation test of the nodal between-
ness centrality showed a significant group by time interaction for
the left orbitofrontal cortex and left paracentral lobule (adjusted
Fig. 3.Group differences in betweenness centrality. Upper panel: visit 1, lower panel: visit 2. Siz
tions) represents streamline count. Magenta as color of the nodes refers to hub regions.
ps b 0.05). The post-hoc two-sided Tukey t-test demonstrated a de-
crease of the betweenness centrality of the left orbitofrontal cortex
in the early manifest HD group as compared to the control group
(p b 0.001), from the first to the second visit. Moreover, preHD-B pa-
tients versus controls demonstrated a reduction of betweenness cen-
trality of the left paracentral lobule from visit 1 to visit 2 (p b 0.001).
Finally, the permutation test of the clustering coefficient revealed a
significant group by time interaction for the left medial prefrontal
cortex (adjusted p b 0.05). The post-hoc two-sided Tukey t-test
showed that preHD showed a decrease of the clustering coefficient
of the left medial prefrontal cortex compared to the healthy controls
from visit 1 to visit 2 (p = 0.02).
3.3. Important network regions as defined by hub-status in visits 1 and 2

Betweenness centralitywas also used to identify hub regions. In visit
1, the left precuneus was shared by all groups. Generally, a lower num-
ber of areas functioned as network hubs in visit 2 and a remarkable
change in hub-status was apparent for regions in visit 2 in each group
(as shown in Fig. 3). Specifically in the early manifest HD group, the
left thalamus and right medial part of the superior frontal gyrus
achieved hub-status in visit 2. Also, many regions lost their hub-status
in visit 2 within the early manifest HD group. Such areas included the
left superior temporal pole, right lingual gyrus, right calcarine gyrus,
and left middle occipital gyrus. The preHD group also showed hub-
changes from visit 1 to visit 2, whereby the right medial part of the su-
perior frontal gyrus lost hub-status. One brain region, the right superior
parietal gyrus, achieved hub-status in visit 2. Network nodes in the
precuneus, superior temporal pole, and putamen were consistently im-
portant as hubs throughout visits 1 and 2 in the preHD group.
e of the nodes (spheres) represents the betweenness centrality. Size of the edges (connec-



Table 2
Graph metrics. Data is shown as mean and standard error of the groups for each visit.

Healthy controls Premanifest HD
(A and B)

preHD-A preHD-B Early manifest HD

Mean SE Mean SE Mean SE Mean SE Mean SE

Global network metrics Global efficiency V1 0.034 0.0004 0.034 0.0004 0.034 0.0007 0.034 0.0005 0.033 0.0009
V2 0.035 0.0004 0.034 0.0005 0.034 0.0008 0.034 0.0005 0.033 0.0009

Characteristic path length V1 0.110 0.0025 0.111 0.0029 0.112 0.0047 0.109 0.0035 0.107 0.0056
V2 0.115 0.0027 0.112 0.0033 0.111 0.0056 0.112 0.0036 0.108 0.0057

Small world metrics Gamma V1 1.620 0.0309 1.616 0.0307 1.652 0.0413 1.581 0.0448 1.535 0.0578
V2 1.648 0.0300 1.594 0.0361 1.605 0.0591 1.583 0.0442 1.524 0.0530

Lambda V1 1.058 0.0022 1.059 0.0025 1.063 0.0034 1.056 0.0036 1.055 0.0056
V2 1.057 0.0021 1.056 0.0024 1.055 0.0034 1.057 0.0036 1.053 0.0055

Sigma V1 1.530 0.0280 1.525 0.0261 1.553 0.0349 1.496 0.0383 1.453 0.0491
V2 1.558 0.0266 1.508 0.0316 1.520 0.0517 1.496 0.0387 1.446 0.0433

Local network metrics Local efficiency V1 0.051 0.0008 0.051 0.0007 0.051 0.0011 0.050 0.0008 0.049 0.0014
V2 0.052 0.0007 0.051 0.0008 0.051 0.0014 0.051 0.0010 0.049 0.0015

Clustering coefficient V1 0.027 0.0004 0.027 0.0004 0.028 0.0006 0.027 0.0003 0.026 0.0005
V2 0.027 0.0003 0.027 0.0003 0.027 0.0005 0.027 0.0005 0.026 0.0006

Modularity V1 0.319 0.0072 0.315 0.0077 0.326 0.0122 0.304 0.0086 0.291 0.0147
V2 0.327 0.0063 0.310 0.0091 0.315 0.0141 0.304 0.0120 0.294 0.0129

Betweenness centrality V1 90.836 1.0122 91.799 1.1947 92.321 1.8961 91.277 1.5313 89.942 2.5538
V2 91.835 1.0970 91.100 1.2774 90.806 2.2531 91.394 1.3265 89.436 2.5774

HD = Huntington3s disease, V1 = visit 1, V2 = visit 2.
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3.4. Overall dynamics of the structural brain network

Both (pre-) HD and healthy controls showed a small-world organi-
zation of the structural brain networks (as shown in Table 2) expressed
by a normalized clustering coefficient gamma N1 (mean|SD; preHD:
1.62 | 0.14, early manifest HD: 1.54 | 0.18, healthy participants:
1.62 | 0.15) and lambda ~1 (mean|SD; preHD: 1.06 | 0.01, earlymanifest
HD: 1.06 | 0.02, healthy participants: 1.06 | 0.01). The small-worldness
(sigma) calculated from these indices was also larger than 1 (mean|SD;
preHD: 1.52 | 0.12, early manifest HD: 1.45 | 0.16, healthy participants:
1.53 | 0.14). Furthermore, looking at the overall organization character-
istics of the brain networks of patients, the normalized clustering coef-
ficient gamma did not differ between preHD, early manifest HD, and
healthy controls (p=0.31), nor did the overall normalized path length
lambda (p= 0.69). In summary, preHD and early manifest HD patients
displayed gammaand lambda values close to the values of the brain net-
works of the healthy controls, suggesting an intact overall organization
of the structural brain network in these disease stages.

3.5. Between-group differences in baseline graph metrics

Premanifest and early manifest HD patients did not show strong al-
terations (all ps N 0.05) in whole-brain graphmetrics (Table 2). The ab-
sence of these group effects suggests that global connectivity is
relatively intact in early HD.

3.6. Baseline relationships between graph metrics and performance in be-
havioural benchmark tests

There was a significant negative correlationwithin the preHD group
between baseline individual differences in the switch cost of the TMTon
the one hand, and clustering coefficient (r=−0.44, p=0.05) and local
efficiency (r=−0.45, p=0.04), on the other hand (see Fig. 4A and B).
Hence, better performance on the TMT (i.e., lower switch cost) was as-
sociated with an increase in efficiency and clustering coefficient within
thepreHDgroup. Using the subdivision,we found that the switch cost of
the TMTwas significantly negatively correlated with the local efficiency
(r=−0.69, p=0.03) and clustering coefficient (r=−0.78, p=0.008,
survived Bonferroni correction) within the preHD-B group. Moreover,
within the preHD-B group, we also observed a positive correlation be-
tween the performance on the SWR and global efficiency (r = 0.62,
p = 0.05, Fig. 4C), with higher global efficiency being related to better
performance on SWR.

3.7. Baseline relationships between graph metrics and burden

No significant correlations were found between burden and
the graph organizational characteristics in the preHD or early manifest
HD groups using a Bonferroni correction or even an exploratory
uncorrected threshold of p ≤ 0.05. From this, we cautiously conclude
that burden did not explain our findings.

3.8. Longitudinal changes in benchmark behavioural tasks and graph
metrics

For the investigation of longitudinal changes on the dependent var-
iables of the behavioural tasks and graphmetrics, we subjected each be-
havioural parameter and graph measure separately to a 2 × 3
permutation test with the between-subject factor group (controls,
preHD, early manifest HD) and the within-subject factor time (visit 1,
visit 2), while statistically controlling for the effects of age.

We observed a significant group by time interaction effect for the
motor score (F(2, 52)= 17.62, p b 0.001). Post-hoc Tukey t-tests revealed
that the early manifest HD group had an increased motor score
(i.e., more motor abnormalities) compared to the preHD and healthy
control groups. These group differences were even larger on the second
visit (ps b 0.05). Also, main effects of the factor groupwere observed for
TFC, SWR, and TMT. The subsequent post-hoc Tukey t-tests indicated
generally higher performance for the controls compared to the early
manifest HD group across both assessment times (ps b 0.001). Further-
more, post-hoc Tukey t-tests showed significantly superior perfor-
mance on these behavioural tasks for the preHD group compared to
the early manifest group (ps b 0.05).

The permutation test on modularity showed a significant effect of
group, (F(2, 52) = 3.58, p = 0.04, see Fig. 5A). Across both assessment
times, the control group had a larger modularity than the preHD-B
and the early manifest HD group (ps b 0.05). Furthermore, a trend
was observed for the effects of group by time on the normalized cluster-
ing coefficient (p=0.08) and small-worldness (p=0.06, Fig. 5B), indi-
cating a trend of increased ‘wiring-efficiency’ for the control group
compared to the (pre) HD groups. Similar results were obtained with
the statistical analyses with four groups.



Fig. 4. Baseline correlations between network measures and cognitive performance.

Fig. 5. Longitudinal changes of graph metrics. Visit 1, black bars; visit 2, white bars.
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3.9. Correlations between changes in graph metrics and changes in perfor-
mance on tasks of executive functioning and clinical scales

Partial correlations (with age as confounding variable) between
changes in graph metrics from visit 1 to visit 2 in the different groups
and the concomitant alterations in the behavioural parameters showed
moderate associations between changes in structural network connec-
tivity and the changes in performance on tasks of executive functioning
and clinical scales. For the early manifest HD group, there were correla-
tions between the changes in motor score and changes in small-
worldness (r = −0.67, p = 0.05, exploratory threshold, see Fig. 6A).
In other words, a decrease in ‘wiring-efficiency’ was associated with a
higher motor score (i.e., more motor symptoms) in the early manifest
HD group.

For the combined preHD group, there was a significant negative
correlation between normalized path length and scores on BDI-II,
pairing more depression symptoms reported with decreased global
integration (r = −0.58, p = 0.006, survived Bonferroni correction,
Fig. 6B). For the preHD-B group, correlations were present between
changes in scores on the BDI-II and changes in betweenness
centrality (r = −0.80, p = 0.006, survived Bonferroni correction),
normalized path length (r = −0.84, p = 0.002, survived Bonferroni
correction), global (r = −0.64, p = 0.05, exploratory threshold)
and local efficiency (r = −0.66, p = 0.04, exploratory threshold),
pairing more symptoms reported on BDI-II with reduced structural
connectivity. Furthermore, the difference score of the switch cost of
the TMT was significantly negatively correlated with changes in the
clustering coefficient (r = −0.69, p = 0.03, exploratory threshold)
within the preHD-B group (Fig. 6C). In other words, an increase in
clustering coefficient was associated with better switching perfor-
mance (i.e., lower switch costs) in the preHD-B group. No correla-
tions were present within the preHD-A group.

4. Discussion

We investigated cross-sectional and longitudinal differences in re-
gional and global topological properties between subjects with
premanifest and early manifest HD and healthy controls. In this first-
of-its-kind analysis in HD, we revealed both baseline and longitudinal
changes in the connectome of premanifest gene carriers and subjects
with early manifest disease. We also demonstrated correlations be-
tween graph metrics on one hand, and clinical and behavioural mea-
sures, on the other hand. These results provide novel insights into the



Fig. 6. Correlations between changes in network parameters, and changes in clinical and
neurocognitive functioning.
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dynamics of brain neuropathology occurring in HD and the relation-
ships with commonly used neurocognitive measures.

4.1. Longitudinal decreases in network measures

The principal finding from this study was a significant reduction
over time of nodal betweenness centrality both in the early manifest
HD and preHD-B groups within the 2 year study period as compared
to the preHD-A and control groups. The locations of these nodes includ-
ed the left orbitofrontal cortex and left paracentral lobule. The reduction
of betweenness centrality in these regions indicates that the shortest
paths passing through these areas were reduced. This in turn implies a
decrease of importance of these nodes to overall network integrity.

The orbitofrontal cortex is involved in decisionmaking and cognitive
and emotional processing (Kringelbach and Rolls, 2004). Atrophy in this
structure has been associated with impaired recognition of negative
emotions in HD (Henley et al., 2008; Ille et al., 2011). The paracentral
lobule, a component of the sensorimotor system (White et al., 1997),
has previously been implicated in HD where atrophy was also demon-
strated (Kassubek et al., 2004). The current results corroborate previous
findings by demonstrating a longitudinal reduction in nodal between-
ness centrality, suggesting a decreased capability of these nodes in facil-
itating communication between different brain regions in HD.

In the combined preHD group, a significant reduction over time of
the clustering coefficient was also shown in the left medial prefrontal
cortex when compared to healthy controls. This finding implies a de-
crease of functional segregation in this node. In otherwords, the leftme-
dial prefrontal cortex seems to become less densely interconnected
with surrounding nodes over time, suggesting a local reduction of inter-
nodal processing of information. Themedial prefrontal cortex is a region
involved in planning and problem solving (Alvarez and Emory, 2006),
where in a previous study in preHD a lower functional connectivity
has been demonstrated (Wolf et al., 2012). Moreover, a functional MRI
study in preHD and manifest HD revealed reduced connectivity of the
medial prefrontal cortex, representing a functional correlate of impaired
executive function (Unschuld et al., 2013). Therefore, in our opinion,
this is an important finding potentially providing a structural explana-
tion for the dynamics of observed reductions in higher cognitive abilities
occurring in gene carriers prior to manifestation of motor signs.

4.2. Preserved small-world organization in early HD

Another important finding is the preserved small-world organiza-
tion within preHD and early manifest HD compared to healthy controls.
With this finding in mind, we suggest that also in the early manifest
stage of the disease, intervention could be aimed at preserving this
brain organization associatedwith health, especially because of the pre-
sumed degradation of this network quality in advanced stages of the
disease. Such a disruption in later stages of HD is yet to be established,
though studies into different disorders affecting the brain have revealed
disruptions in the small-world topological organization (He et al., 2008;
Liu et al., 2008). The results presented here imply that, at least at the
preHD and early manifest stages of HD, there is no evidence for a ‘dis-
connection syndrome’ from a network perspective. Studies in other
neurological disorders, such as multiple sclerosis (He et al., 2009; Shu
et al., 2011), Alzheimer3s disease (reviewed Xie and He, 2011), schizo-
phrenia (Liu et al., 2008) and traumatic brain injury (Caeyenberghs et
al., 2014) have found support for such a pathological model. The lack
of this finding in this study is encouraging, as preservation of normal
brain network architecture through interventionmight be used as a sec-
ondary outcome for maintaining efficient brain function. It should be
clear, though, that such a secondary outcome should be coupled with
cognitive assessments given the intricate relationship between brain
structure and function.

4.3. Making ‘real-world’ sense of network measures

Providing a translation fromnetworkmeasures to cognitive function
and clinical state not only validates these measures, but also indicates
possible usability in biomarker research. Interesting baseline correla-
tions between graph metrics and neurocognitive measures were pres-
ent in the preHD group. Specifically an inverse relationship between
the switch cost of the TMT, regarded as ameasure of cognitiveflexibility,
and clustering coefficient and local efficiency was found. These findings
suggest that higher switching costs are associatedwith a loss in capabil-
ity of processing information from a local network perspective. In the
preHD-B group only, a positive correlation was observed between per-
formance on SWR and global efficiency. This suggests that, in line with
expectations, increases in the efficiency with which information can
be transmitted globally are linked to higher processing speed.

Longitudinally, an increase in the UHDRS-TMS was negatively asso-
ciated with small-worldness in the early manifest HD group, indicating
that a decrease in 'wiring-efficiency' was related to an increase inmotor
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score. The association found between increases on the reported symp-
toms on BDI-II and decreases in normalized path length in the preHD
group provides evidence for coupled decreases in global integration
with increases in depression scores. In the preHD-B group, we found
that longitudinal increases in the switch cost of the TMTwere correlated
with longitudinal decreases in the clustering coefficient, again pointing
to an association between this cognitive measure and local network
properties.
4.4. Changing landscapes of hubs

Hubs are considered essential regions for coordinating brain func-
tions, playing a central role in network resilience to brain injury (Cole
et al., 2010; Rubinov and Sporns, 2010). The dynamic nature of hub-
status found in this study could prove informative in understanding
the nature of disease progression and compensatory mechanisms at
play in (pre) HD as reflected by the temporal relation between hub-
status loss and gain. A highlight from our findings in this context was
the hub-status gain found in preHD in the right superior parietal gyrus
in the second visit. Using functional MRI, this region has been shown
to play a compensatory role in maintaining normal motor function in
preHD (Kloppel et al., 2009; Scheller et al., 2013). Although admittedly
speculative at this stage, this finding could be attributed to an increased
need for compensation with progression of neurodegeneration in time,
making a reorganization of coordinating brain regions necessary for
maintaining normal motor function. Another interesting finding was
the contrast of hub-status gain for the right medial part of the superior
frontal gyrus in early manifest HD compared to the loss of this status in
the preHD group in the second visit. This type of information could fur-
ther our understanding of compensatory mechanisms at playmaintain-
ing seemingly normal brain function in the premanifest stage of the
disease, despite clear evidence of neurodegeneration provided by inde-
pendent imaging studies evenmore than a decade prior to expected dis-
ease onset (Tabrizi et al., 2009; Paulsen et al., 2010).
4.5. Strengths and limitations

Strengths of this study include a standardized scan protocol with
high-quality diffusion MRI data on two time points with assessments
of multiple neurocognitive domains in a well described population
from the TRACK-HD study.Moreover, in this studywe have reconstruct-
ed the anatomical networks with constrained spherical deconvolution
tractography, which in contrast to diffusion tensor imaging based
tractography has the advantage of taking fibre crossings into account
(Tournier et al., 2007, 2011; Jeurissen et al., 2013).

There are several limitations in the methods being applied in the
present study, such as the used parcellation scheme for defining the
network nodes for the graph theoretical analysis. Multimodal integra-
tion of in- and ex-vivo data into a probabilistic atlas (Eickhoff et al.,
2005) may offer a better biologically principled approach as a
parcellation scheme than the AAL atlas used in this study. Furthermore,
while reproducibility studies have often demonstrated good or excel-
lent intraclass correlation coefficient (ICC) measurements variance
(for a recent review Welton et al., 2015), more studies measuring the
test–retest reliability of graph metrics of structural networks are
needed.

Moreover, the number of reconstructed fibres was used to weight
the edges in the calculation of the connection matrix and consequently
the network measures. Although other indices of white matter organi-
zation, such as fractional anisotropy, mean diffusivity, and level of
myelination, have previously been applied to define the connectivity
matrices (e.g., Gong et al., 2009; Van den Heuvel et al., 2010), there is
currently no consensus on the optimal weighting method in terms of
sensitivity and specificity to pathological effects.
5. Conclusions

This is the first study providing insights into longitudinal structural
correlates with clinical state and cognitive function from a network per-
spective in HD. Strengthened by significant correlations with clinical
and cognitive deficits, dynamics of the connectome, in the form of de-
creases of global and/or local efficiencies, were present in both the
premanifest and early manifest stages of the disease. Furthermore, a
changing hub landscape was demonstrated, contributing to our in-
creased understanding of potential compensatory mechanisms at play,
especially in preHD. The study further demonstrates preserved efficient
dynamics of brain networks the premanifest and early manifest stages
of the disease. We conclude that assessing the connectome provides
not only a novel approachwith a biomarker potential in HD, but also po-
tential new insights into compensatory strategies of the brain in neuro-
degenerative disorders.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2015.07.003.
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