Aim: To assess the feasibility and effectiveness of a laparoscopic virtual reality home simulation training programme (LHSTP) for core surgical trainees.

Methods: 20 Core Surgical trainees were recruited to the LHSTP trial. Baseline laparoscopic skills were assessed using Simbionix (TM) LAP Mentor. 10 trainees received additional training on a portable virtual reality laparoscopic trainer using MySimendo (TM) Laparoscopy online Curricula (MySim group). 6 trainees received no additional training (control group). All recruited trainees then repeated the baseline assessment. In addition, MySim trainees completed pre and post programme questionnaires. Throughout the trial period, both groups had access to a LAP Simendo VR simulator between the hours of 9-17:00 at the regional simulation training centre (RSTC).

Results: All MySim trainees, post-LHSTP, reported improved confidence in "use of instruments" (p = 0.001), "tissue handling" (p = 0.009), "manual dexterity" (p = 0.01), "3-D visuo-spatial awareness" (p = 0.003) and "depth perception" (p = 0.022). All recruited baseline laparoscopic skills. No trainees accessed the available LAP Simendos at the RSTC during the trial period.

Conclusion: The LHSTP is a feasible and effective approach to core laparoscopic skills training. It proved highly popular with trainees and allows them to access training outwith their time restricted training schedule.

ASIT ORAL POSTER: 0313: MINIMALLY INVASIVE SURGERY TRAINING USING MULTIPLE PORT-SITES TO IMPROVE PERFORMANCE

Alan White 1,2, Oscar Giles 1,2, Rebekah Sutherland 1,2, Oliver Ziff 1,2, Mark Mon-Williams 1,2, Richard Wilkie 1,2, J.P.A. Lodge 1,2. 1 Institute of Psychological Sciences, University of Leeds, Leeds, UK; 2 Department of Hepatobiliary and Transplant Surgery, St James’s University Hospital, Leeds, UK.

Background: Structural learning theory suggests that experiencing motor task variation enables the CNS to extract general rules regarding tasks with a similar structure which can be applied to novel situations. MIS requires different port sites but switching ports alters the limb movements required to produce the same control of the instrument. The purpose of this study was to determine if structural learning theory can be applied to MIS.

Methods: A tablet laptop running bespoke software was placed within a laparoscopic box trainer and connected to a monitor. Participants used a laparoscopic grasper to track a moving dot on the screen. There were 2 training groups: the M-group (n = 10) who trained using multiple port-sites, and the S-group (n = 10) who trained using a single port-site. A novel port-site was used at. Performance metrics included: SACF (measure of speed and accuracy) and NJ (normalised jerk - measure of movement smoothness).

Results: The M-group showed a statistically significant performance advantage over the S-group at test as indexed by improved SACF (p = 0.05) and NJ (p = 0.05)

Conclusions: There are potential benefits of incorporating a structural learning approach within MIS training. This may have applications when training surgeons and developing surgical simulation devices.

ASIT ORAL POSTER: 0358: STRATEGIES FOR INHIBITION OF CHEMOKINE (CCL2) MEDIATED MONOCYTE MIGRATION

Mahsa Saleki, John Dark, Simi Ali. University of Newcastle, Newcastle, UK.

CCL2 mediated monocyte migration has been shown to play an integral role in the pathogenesis of lethal reperfusion injury (LRI) following cardiopulmonary bypass operations, and is associated with 10% post-operative mortality and 25% morbidity.

Study Aim: In vitro analysis of synthetic CCL2 inhibitors (C1-C5) and GAG binding peptides (P1-5) in inhibiting CCL2 mediated monocyte migration, as potential therapeutics for the treatment of LRI.

Methods and Results: Chemotaxis assays were used to screen the potency of all compounds and peptides on CCL2 mediated monocyte migration. The most potent were further analysed using activated trans-endothelial chemotaxis (in vitro model of inflamed capillary wall). P1-5, C1 and C5 showed the most inhibition. The inhibitory effects of 50µM of C5 on monocyte adhesion to VCAM-1 under flow and shear stress conditions was analysed using the Cellix system, showing statistically significant reductions (p = 0.05) in adhesion. Western blotting showed no inhibitory effects of C1 or C5 on CCL2 mediated intracellular expression of p-ERK1/2.

Conclusion: In vitro analysis of synthetic CCL2 inhibitors and GAG binding peptides has shown these strategies to be effective in blocking CCL2 mediated monocyte migration. Further studies to define the mechanism of action of these compounds will aid their development as anti-LRI therapeutics.