L=
P
View metadata, citation and similar papers at core.ac.uk broughttoyouby .4 CORE

provided by Elsevier - Publisher Connector

JOURNAL OF ALGEBRA 10, 149-165 (1968)

The Singular Submodule Splits Off*

VasiLy C. CATEFOR1s aAND Francis L. SANDOMIERSKI

Mathematics Depariment, University of Wisconsin, Madison, Wisconsin 53706
Communicated by A. W. Goldie
Received November 20, 1967

INTRODUCTION

In the usual torsion theory over a commutative integral domain R, a
significant place is occupied by the question of when “the torsion submodule
t(M)of an R-module M is a direct summand of M (hereafter referred to as
““the condition’). Kaplansky [70] has shown that if the condition is satisfied
by every finitely generated R-module, then R is a Priifer domain; the converse
is well known [2], Chapt. VII. Prop. 11.1. If the condition is satisfied by
every R-module M, whose torsion submodule is of bounded order, Chase
[3], Theorem 4.3, has shown that R is, then, a Dedekind domain; the converse
has been shown by Kaplansky [17], Theorem 5. Finally, if the condition is
satisfied by every R-module, Rotman [/6] has shown that R is, then, a field.

A well-known extension of the notion of the torsion submodule for modules
over arbitrary rings is the notion of the singular submodule of a module
[5, 7, 9]. It is the purpose of this paper to investigate “‘the condition” of the
preceding paragraph, in the context of the singular theory over a nonsingular
commutative ring R. In short, if M is an R-module and Z(M) its singular
submodule, we study the condition: “Z(M) is a direct summand of M”. It
is worthwhile to note that the commutative nonsingular rings are precisely the
commutative semi-prime rings [12], Ex. 1, p. 108.

Throughout this paper, unless otherwise indicated, a ring R is a commuta-
tive ring with identity; all modules are unitary. For all homological notions,
used in this paper, the reader is referred to [2].

1. PRELIMINARIES

Let R be a ring and M an R-module.
DerintTION 1.1, We say M splits if Z(M) is a direct summand of M.

* This paper was written with partial support from NSF Grant GP-7073.
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The notion of large ideal (submodule) is well known, e.g. [17].

DerFinrrion 1.2, We say M is of bounded order if there exists a large
ideal I of R such that MI = (0).

DrerinrTioN 1.3. (a) R has FGSP if every finitely generated R-module
splits.
(b) R has BSP if every R-module, whose singular submodule is of
bounded order, splits.

(c) R has SP if every R-module splits.

The notion of closed ideal (submodule) is used here in the sense of Goldie
[6, 7, 18]; it is defined over a not necessarily commutative ring R,

DerINITION 1.4. A submodule By of a right R-module Ap is closed in
A if B has no proper essential extension in 4, i.e., if C is a submodule con-
taining B as a large submodule, then B = C; equivalently if Ty is a sub-
module of Ag such that T is maximal with respect to the property that
BN T = (0), then B is maximal with respect to the property that
BnNT={0).

Commutativity is not needed in the following; for any right R-module
My , L(Mpg) denotes the lattice of large submodules of Mg .

Lemma 1.5. Let Mg 5 Ng— 0 be an exact sequence of right R-modules,
such that ker f = Ky is closed in My . If Ay € L{(MQ), then f(Ag) € L(Ng).

Proof. Tt is clearly sufficient to show the lemma in case N = M/K; we
may further assume that K C 4. Let Ty be a submodule of My, maximal
with respect to the property that KN T = (0) and let W = W/K be a
submodule of M/K such that 4/K n W/K = (0); equivalently 4 n WC K
and thus AN W AN TCKNT = (0). Since Ag € L(Mp), we have
W N T = (0). It follows now by the maximality of K (Definition 1.4) that
W = K or W = (0) and hence A4/K is a large submodule of M/K. Q.E.D.

CoroLLARY. Let R be a (not necessarily commutative) ring and I a two-
sided ideal of R, closed as a right R-submodule of R. If ] is a large right ideal
of R, then W(]J) is a large right ideal of R/I. (v is the matural epi-
morphism R — R(I),

Proof. Let r €I such that r = 0 (mod I). By Lemma 1.5, »(]) is a large
right R-submodule of R/1, so there exists £ € R such that r2€ J and 7t == 0
(mod I). We thus have (r + I)(t + I) = 7 e »(J) with 7 7= 0, hence (]) is
a large right ideal of R/I. Q.E.D.
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ProposITION 1.6. If R is a ring with Z(R) == (0) and M any finitely
generated R-module, then Z(M) is of bounded order.

Proof. 1f Z(M) = M, then M is clearly of bounded order. In any case
there exists closed submodule 7' of M such that Z(M)N T = (0) and
Z(M)® T e L(M). It follows from Lemma 1.5 that Z(M) ® T/r e L(M|T)
and since Z(M) ® T/r C Z(M|T) we further have that Z(M/T) = M|T, [7],
Prop. 2.3. Now Z(M) is isomorphic to a submodule of M/T, it 1s, hence, of
bounded order since M/T is. Q.E.D.

Remark. A consequence of the above proposition is that if R with
Z(R) = (0) has BSP, R, then, has FGSP.

We use the well-known, e.g. [/7], concept of right quotient ring of a not
necessarily commutative ring R as follows:

DerintTioN 1.7. A ring S containing a ring R is a right quotient ring of
R if Rp € L(Sg).

Let S be a right quotient ring of R. Observe that if AgeL(Ss), then
(R N A)g € L(Rg) and if Ig € L(Ryg), then IS € L(Sg). Now if My is any right
R-module, then M &5 S is a right R- and S-module. It follows from the
above observation that Z((M Qg S)g) = Z((M ®g S)s) and hereafter we
write Z(M ® S). Furthermore, for any left R-module zN we write M @ N
for M Qg N, if no ambiguity arises.

If a (commutative) ring R has any of the properties of Definition 1.3, then
certain quotient rings of R inherit them, and we deal with this problem in
Proposition 1.9. But first a more general result is needed:

ProPOSITION 1.8. Let R be a ring with Z(Rg) = (0) and S a right quotient
ring of R satisfying: (i) S is flat as a left R-module, and (ii) S Qg S =~ S (by
the canonical map ¥ ;s5; QO t;— Y s;it;). The following statements are, then,
true:

(a) For any right R-module My with Z(Mg) = (0), we have
Z(M ® S) = (0).

(b) For any right S-module 45 and R-submodule By of A, we have
B® S =~ BS.

Proof. (a) We consider M as an R-submodule of M ® S [17], Prop. 2.2,
and note that if v: M @ S— M @ S/zaszs) 18 the natural epimorphism
(of R-modules) and ¥ = v| M (ie., the restriction of v to M), then
0> M2Z M®Q S/ zmeps) is exact since M N Z(M ® S) = (0). Now the
sequence 0 > M @ S — (M & S/zmes) ®r S is exact by (i). By (ii) and
the associativity of the tensor product [2] Chapt. I7, Prop. 5.1, we have,
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clearly that (M &® S/zmes) ®r S =~ M & S/zmes) - Thus,
Z(M @ S) = (0) since Z(M ® S/zmes) = (0), [7], Prop. 2.3.

(b) From the inclusion map Bj %> Ag and properties (i) and (ii) of S,
we have : 0 - B ® S — A ®p S is exact and 4 ®p S =~ Ag by
Yia; ®s;—>Y a;s; . It follows now that B Q) S ~ BS, by the above map.

Q.E.D.

ProrosiTiON 1.9. Let R be a ring with Z(R) = (0) and S a quotient ring
of R, such that S is R-flat and S @p S =~ S (canonically). The following
statements are, then, true:

(a) If R has FGSP, then S has FGSP.
(b) If R has BSP, then S has BSP.
(c) If R has SP, then S has SP.

Proof. (a) Let A = a;S + --- + a,,S be any finitely generated .S-module
and set A* = ;R + -+ + a,R C A.If Rhas FGSP, then 4% = Z(4}) ® B
and this gives 4* 0 S ~ (Z(4%) ® S) & (B ® S). By Prop. 1.8 we have
A* QS >~ A*S = 4, Z(4A*) ® S =~ Z(4*) S and B ® S =~ BS, in parti-
cular Z(BS) = (0) and Z(Z(A*) S) = Z(A*) S, so the above direct sum
reduces to 4 = Z(A*) S @ BS. Thus S has FGSP if R does.

(b) Let 4 be an S-module such that Z(4y) is of bounded order. It is
clear that Z(Ag) = Z(Ay), hence if R has BSP, then Ap = Z(Ap) @ B. As
in (a), it follows by Prop. 1.8 that 4 = Z(A4) @ BS and S has BSP.

(c) The proof of (c) is the obvious modification of the proof of (b). Q.E.D.

An exact sequence 0 >4 —>B—>C-—>0 of R-modules is called an
extension of 4 by C. The following lemma is well known [2], Chapt. XIV:

Lemma 1.10. If A and C are R-modules, then Extg!(C, A} = (0) if and
only if every extension of A by C splits [2], p. 5.

ProposiTiON 1.11. For any (commutative) ring R, the following statements
are equivalent:

(a) R has FGSP.

(b) Z(R) = (0) and Extg(M, S) = (0) for every FGNS R-module M
and singular R-module S, where FGNS means “finitely generated non-
singular”.

Proof. (a) implies (b). Z(R) contains no idempotents £ 0 so (a)
implies that Z{R) = (0). If 0 - .8 - X — M — 0 is any extension of S by
M where Z(S) = S and M is FGNS, we see that Z(X) = S since S C Z(X)
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and Z(X/S) o~ Z(M) = (0). Furthermore since X/S is finitely generated,
there exists finitely generated R-module B C X such that X = B + S. It
follows from (a) that B = Z(B) (® C and we see that X = .§ + C. Since
C N Z(B) = (0) the (last) sum is direct and the extension splits. It follows
from Lemma 1.10 that Extg(M, S) = (0).

(b) implies (a). It follows from (b) that the sequence
0—Z(M)— M— M[Z(M)~0

splits for any finitely generated R-module M, hence R has FGSP.  Q.E.D.
The following corollary extends Kaplansky’s result on Priifer domains
(see Introduction).

CoroLLARY. If R has FGSP, then R is semi-hereditary.

Proof. It is sufficient to show that every torsionless R-module is flat [3],
Theorem 4.1. Since a torsionless R-module over a nonsingular ring R is
clearly nonsingular, it follows, by a standard direct limit argument, that we
shall have the corollary if we show that every “finitely generated non-
singular” (FGNS) R-module is flat.

Let Z be the ring of integers and C any divisible Abelian group. For any
large ideal I of R and R-module J, we have

Extg'(M, Hom(R/I, C)) ~ Hom,(Tor,E(R/I, M), C)

by [2], Chapt. VI, Prop. 5.1. Let M be a FGNS R-module. Since
Homg(R/I, C) is obviously a singular (of bounded order I, in fact) R-module,
it follows by Prop. 1.11 and the identity above that Tor,®(R/I, M) = (0)
for every large ideal I. The module M is hence R-flat [12], Ex. 1, p. 135, and
R is semi-hereditary. Q.E.D.

Remark. 'The converse of the above corollary is not in general true. There
exists a commutative regular ring R, which does not have FGSP [15], p. 97:
22.6.

We complete what we started in Prop. 1.11, with the following homo-
logical characterization of BSP and SP. The proof is an easy consequence of
Lemma 1.10 and it is omitted.

ProposiTION 1.12. For a ring R with Z(R) = (0) the following statements
hold:

(2) R has BSP if and only if Extz'(M, S) = (0) for every R-module M
such that Z(M) = (0) and R-module S of bounded order.

(b) R has SP if and only if Extp!(M, S) = (0) for every R-module M
such that Z(M) = (0) and R-module S such that Z(S) = S.
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CoroLLARY. Let R be a ring with Z(R) = (0), I a large ideal of R and N
an R-module such that Z(N) = (0). If R has BSP, then N @ R/I =~ NINI is
R/I-projective.

Proof. R is semi-hereditary by Prop. 1.6 (remark) and the Corollary to
Prop. 1.11. Now the torsion submodule of N, #(N) = {x € N/xd = 0 for
some nonzero divisor d of R}, is contained in Z(N), hence N is torsion free
and thus R-flat [¢], Theorem 5. If S is any R/I-module we have by [2],
Chapt. VI, Prop. 4.1.3, the isomorphism

Extk (N ® R/, S) o Exti(N, S). 1)

Since S is an R-module of bounded order I, the corollary follows from
Proposition 1.12(a) and [2], Chapt. VI, Corollary 2.2. Q.E.D.

Remark. 1t is clear from the above proof and Prop. 1.11 that if R has
FGSP, then M & R/I is R/I-projective for any FGNS R-module M and
large ideal I of R.

In this paper a ring R is regular in the sense of Von Neumann [20].

If R is a (not necessarily commutative) regular ring and 4 a right ideal of
R, then A4 is generated by its idempotents and in particular 42 = A. This
implies that if B is any right ideal containing 4, then AB = 4. We now,
easily, have:

ProrosiTiON 1.13. Let R be a regular (commutative) ving and I a large
tdeal of R. If R has BSP, then R/I is a hereditary ring.

Proof. Let /I be an ideal of R/I; by the preceding paragraph J/I = J/ ]I
and, hence, J/I is R/I-projective by the Corollary to Prop. 1.2. R/I is, by
definition [2], a hereditary ring. Q.E.D.

We close this section with a modification of Chase’s Theorem 3.1 [3],
p. 464. Commutativity is not needed in the following.

Derinrrion 1.14. Let R be a ring, A a left R-module and B a sub-
module of 4. B will be called a pure submodule of A if BN r4 = »B for
all7eR.

Derinrrion 1.15. Let R be a ring and 4 a left R-module. Let {Cg} be a
family of left R-modules (where B traces some index set) and let
Jfa € Homg(A, Cg). The family {f;} will be called a @-family of homomor-
phisms if the following conditions are satisfied for any x 7 0 in 4:

(a) fo(x) = O for almost all B.
(b) fs(x) 7~ O for some 8.



THE SINGULAR SUBMODULE SPLITS OFF 155

THrOREM 1.16. Let R be a ring and | an infinite set of cardinality { where
{ > card R, Set A = [],eyR'™ where R = R as a left R-module. Let I be a
two-sided ideal of R such that A[IA is a pure submodule of a left R{I-module of
the formy. @y Cy , where each Cy is generated by a set of cardinality less than or
equal to {. Then any descending chain of principal right ideals of R all containing
I, must terminate.

Proof. Chase’s proof can be used with slight modifications and we indicate
these here. The notation used is that of Chase.

Let f; e Homg(A4/14, C;) be the restriction to A/I4 of the projection of
C onto Cy; { f;} is easily seen to be a @-family.

Now suppose that the theorem is false and hence let

R = aoRgaleazR;)

be a nonterminating strictly descending chain of principal right ideals of R,
all containing I. Let v: A — A/IA be the natural epimorphism (of left
R-modules) and set g; = fv; {gs} 1s not necessarily a @-family but it satisfies
property (a) of a @-family and this is the property that is contradicted in
Chase’s proof. Each g; induces a Z-homomorphism gg;, : Ay — Cgy; it is
easily shown that, for a fixed &, {g;} is a @-family of Z-homomorphisms.
With no difficulty Chase’s argument now gives his crucial condition:

(*) For any n, £ > 0 and any B, ,..., B, there exists &€ A,, and

B £ By ..., B, such that gg, (%) # 0.

Since for each %, {gg;} is a @-family, Chase’s inductive argument goes through
to give a sequence X , Xy , X3 ,... of elements of A and a sequence g, , g, » s, »---
selected from {g,} such that :

(i) x, e a,4, .
(ii) £,(*n) = 0 (mod a,,,C ).
(iii) gg (%:) = O for &k < m.
Chase’s construction now gives an element x of 4 with the property that
24(%) 7~ 0 for infinitely many 8 and we have the desired contradiction. Q.E.D.

An immediate application of Theorem 1.16 is the following much needed
result (we resume commutativity of R):

ProPOSITION 1.17. Let R be a ring with Z(R) = (0) and I a large ideal of
R.If R has BSP, then any descending chain of principal ideals of R all containing
I must terminate.

Proof. Let ] be an index set with card | = R. Let 4 = [[,o,R® where
R® = R and let 0 — K —F - 4 — 0 be an exact sequence of R-modules
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with F' R-free. It follows from the Corollary to Prop. 1.12 that the sequence
0>K@RI—>FQR/I—->AQR/I—0 is split exact since Z(A) = (0).
The hypotheses of Theorem 1.16 are now fulfilled with C = F ) R/I and
the proposition follows. Q.E.D.

2. Rines wrra SP

The main result of this section is the following characterization of rings
with SP. Semi-simple means semi-simple with d.c.c.

THEOREM 2.1. For a ring R the following are equivalent:

(a) R has SP.

(b) R is regular and has BSP.

(c) Z(R) = (0) and for every large ideal I of R, the ring R/I is semi-simple.
(d) Every R-module M with Z(M) = M is R-injective.

In particular if R has SP, then R is hereditary.
We give a circular proof in the order: (a) = (b) = (¢} = (d) = (a).
Several of the results needed are of interest in themselves.
(2) implies (b). It suffices to show that R is regular and this constitutes

ProposrTioN 2.2. If R has SP, then R is regular.

Proof. R has FGSP and is, hence, semi-hereditary by the Corollary to
Prop. 1.11. It follows that the total quotient ring K of R is regular [4],
Theorem 2. Thus it suffices to show that every nonzero divisor of R is
invertible in R. To show this we use a variation of the argument used by
Rotman in [16].

Let p be a nonzero divisor of R and assume that p~* ¢ R. We, then, obtain
a strictly descending chain of principal ideals of R: R 2 PR % P*R 2 e

Set M =T[]2, R/p"R and 1, = 1 + p"Re R/p"R. If x is in M, we write
x = [x,1,] where x,, € R for each n.

An element x of M is said to have infinite p-height, if for every n 2= 1 there
exists an element y of M such that p”y = x.

M has no (nonzero) elements of infinite height. Indeed suppose x and y are
in M such that p»y = «x. It follows that p"y, — %, € p*R for each %, hence
2, € PR |- p"R. If n > k, then p*R D p"R so that x; € p*R. Thus if x has
infinite p-height, then x = 0.

We show next that M/Z(M) does have elements of infinite p-height and
this will complete the proof. Observe that 3> > ; B R/p"R C Z(M). Let

x = (11, la, pls, Ply seees D" lonsa » P lonis 1oee)
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We claim that x =£ 0 (mod Z(M)). If x € Z(M), then there exists JeI(R)
such that Jx = (0). In particular Jp™ C p?*+1R for each n. This implies
J C p*1R for each n, a contradiction to BSP by the Corollary to Theorem
1.16.

Now for any n, let ¥,y = (0, 0,.., Yonsa s Lansa s Planys s Plania o). Asin
the case of x above, we have y(,, s 0 (mod Z(M)). Now for each n > 1

& =x+ Z(M) = (1, Ly, " Nsu-1)11 > P" @142, 0, 05...)
+ PV + Z(M) =PV + Z(M) ="V

and thus & is of infinite p-height. Q.E.D.

Remark.  Since a regular integral domain is a field, Rotman’s result [16] is
now a consequence of the above proposition.

(b) implies (c). Clearly Z(R) = (0) as R is regular.
In the following sequence of results we show that R/] is semi-simple by
showing that R/ has no infinite set of orthogonal idempotents. (Corollary to

Prop. 2. 5).
We start with a result of Tarski [/9]:

Tueorem T. (Tarski). If I'is a countably infinite set, there exists a class K
of subsets of I such that:
(a) card K = 2%
(b) card 4 = R, for every A c K
(c) card AN B < o for all A, Be K, (4 % B).

In the following application of Theorem T, R need not be commutative.

ProrosiTioN 2, 3. Let R be a ring (with 1) and {A'™ : neI') a countably
infinite family of nonzero right R-modules. Then Mgz = T[], A™/Y, @ 4™
contains a submodule which is the direct sum of 2% submodules of M.

Proof. Let K = {X, : a € A} be a class of subsets of I" with card A = 2%,
card X, = 8 and card X, " X; < o0 (« 5£ B), by Theorem T. If x is an
element of [T, A we write x = [x({n)] with x(n) € A™. For each a € /1, let
m, = [m,(n)], where O£ m(n)ec A™ if neX,, mfn) =0 if n¢ X, .
Clearly m, 5= 0 (mod 3, @© A™).

Set N =% ,m,R, #i, =m, +3, @D A™; obviously N C M. We claim
the sum 3 %R is direct. Suppose % € MR N Y, MR, we have
% = My = Wy ry + " + g1, where 7,€R, a3/ B;. This implies that
[m(n) 1] — {Ime(m) ) -+ = + [ms (7] € ¥, @ A™. Now
card(X,, — Uk, X;) — 0 since X, — Uy X, = X, — U, (X, 1 X,)

481/10/2-3
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and card()%_; (X, N X3 )) << oo by property (c), Theorem T. From this it
follows that m,(n) » = O for all but a finite number of the indices 7, hence
x = 0(mod Y, @ A™). Q.E.D.

The following is a generalization of a result by Sandomierski [/8],
Theorem 2.1; we supply the proof for completeness. Commutativity of R is
not needed.

THEOREM 2.4. Let R be a ring with Z(Rg) = (0) and Px a projective
module. If Py contains a large submodule By , which has a set of generators
G = {k; : i I} with card G = oo, then Py has a set of generators G’ with
card G’ < card G.

Proof. By [2], Chapt. VII, Prop. 3.1, there exists a family {x,} of elements
of Pp and a family {f,} C Homg(Pg , Rg) such that for all xe P we have
x =3 x, f,(x), where f,(x) = O for all but a finite number of the .

It suffices to show that £, is the zero map for all but a set 4 of indices «,
with card 4 < card G.

Let 4 = {«ff(k;) 7 O for some 7€ I}; clearly card 4 < card G and for
all « ¢ 4 we have f(Bg) = (0). Let x be any element of P; the
ideal I == {r € R/xr € B} is, then, large by [17], Prop. 1.2. Furthermore let
a¢ A; for any rel we have 0 = f(xr) = f(¥)r, hence f(x)I = (0).
Thus f,(x) = 0, as Z(Rg) = (0), hence f, = 0.

Let G' = {x,: a€ 4}. Q.E.D.

Lemma 2.5. If R is a (commutative) regular ring, then idempotents can be
lifted modulo any ideal I of R.

Proof. Let p = p -4 I be an idempotent in R/I; we have p = eu for
some idempotent ¢ and unit # in R [4], Theorem 1. Furthermore eu? — exc I
so that (en® — eu) u™ — eu — ec I and, thus,p = ¢,¢2 = ec R. Q.E.D.

ProposITION 2.6. Let R be a ring and I a large ideal. If R is regular and
has BSP, then R/I does not contain a countably infinite set {¢, : n € I'} of ortho-
gonal idempotents with the property that Y, @© é,R|I is a large ideal of R/I.

Proof. Suppose the proposition is false. There exists, then, a countably
infinite set {e, : n € I'} of idempotents in R such that {¢, : ne I'} is a coun-
tably infinite set of orthogonal idempotents in R/I, with the property that
A =3, @R/ is R/I-large in R/I. By a well-known argument we may
further assume that the idempotents {¢,} C R are orthogonal.

Now consider the exact sequence

0—>Y ®e,R>[]eaR>[] &Ry, ®eR—0 (1)
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where ¢ is the canonical embedding of 3 @ e,R in [ ¢,R and » is the natural
epimorphism. Every R-module is flat [4], Prp. 10 and in particular R/I, so
that the following sequence is exact:

0— (% @ e.R) @ RiI— ([T euR) @ RII—> (T] exRlz0,2) @ RIT—0. .
)

We now show the following:

Claim. Every R/I-submodule of [ Je,R & R/I containing (3@ ¢,R) ® R/
is countably generated.

By the Corollary to Prop. 1.12, [T e,R ® R/I is R/I-projective; since R/I
1s hereditary, by Prop. 1.13, every R/I-submodule of [T¢,R ® R/I is R/I-
projective [2], Chapt. I, Theorem 5.4. The claim will now follow from
Theorem 2.4 if we show that (3" @ e, R) Q R/Iis R/I-large in [] ¢,R ® R/L
Thus, let y = 3%  x, ® T£ 0, where x,e[Je,R. Now [Te,R® R/I is
R{I-nonsingular since it is R/I-projective and R/I is a nonsingular ring
[5], p.- 426. It follows that yA4 =4 (0) so there exists ¢, such that
0#ye, =4, Q1) & =Y xe, ®T. Clearly x,6,€Y De,R, i = 1,..., k
s0 0 =£ yé, € (3. @ e,R) @ R/I and the proof of the claim is complete.

From this claim and sequence (2) we have:

(*) every R/I-submodule of ([]e.R/sg, ) @ R/I is countably
generated.

We now use Prop. 2.3 to construct an R/I-submodule N of

(ITeR/Z D eR) ® R,

such that N cannot be generated by fewer than 2% generators; this
contradicts (*) and the proof shall be complete.

Using the notation of Prop. 2.3, we let r, = [r,(n)], a € A where r,(n) = e,
ifneX,,r(m)=0ifn¢ X,. Weset N =3, DFRCIIe,R> DeR
where card A = 2%, The sequence 0~ N @ R/I— ([T e.R/Y De,R) ® R/I
is exact and N @ R/l ~ Y .4 ® (7,R @ R/I). We shall have the contra-
diction to (*) if we show that 7,R ® R/I ## (0) for each o € 4.
If Z.R ® R/I = (0), then 7, = 7.t for some ¢t € I; from this we have
[rin)] — [r{n) t] € D e,R, an impossibility by the definition of 7, and the
properties of {X, : « € A}. Hence N ® R/I cannot be generated by fewer
than 2% generators, a contradiction of (*); the proposition is true. Q.E.D.

CoroLLARY (Hypotheses as in Prop. 2.6). R/I contains no infinite sets
of orthogonal idempotents.

Proof. Suppose the corollary is false and let {€, : < I'} be a countably
infinite set of orthogonal idempotents in R/I. Let v : R — R/I be the canonical
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epimorphism and set [ =3, @ ¢,R/I where | =v}(]). Let K, where
K —= v(K), be an ideal of R/I, maximal with respect to the property that
J N K = (0). In particular | @ K is a large ideal of R/I. Let# : R/ — R/K
be the epimorphism x + 7 — x + K. It is easy to see that wé,) # 0 R/IK
and {i(é,) : ne I'} is a set of orthogonal idempotents in R/K. Furthermore
K = K|I is a closed ideal of R/I so that (] @ K) is a large ideal
of R/K =~ RJ/I|K/I by the Corollary to Lemma 1.5. But

(] @ K) =3, D#e,) RIK

and since K is a large jdeal of R, the last statement contradicts Proposition 2.6.
Hence, R/I contains no infinite set of orthogonal idempotents. Q.E.D.

We now complete the proof (b) implies (c): R/I is a regular ring, since R is,
and contains no infinite sets of orthogonal idempotents by the above corollary.
This is well known to imply that R/I is a semi-simple ring.

(c) implies (d). Let M be an R-module such that Z(M) = M. To
show “M is R-injective” it is sufficient to show that for every large ideal
Jof Rand f e Homg( f, M) there exists f * € Homg(R, M)such thatf*| | = f.
Observe that I = ker fis large in [ , hence  is a large ideal of R. Consider
the following diagram:

0 ——J >R

p i
O+J/I—J» /1

I4

—)

where y, v are natural epimorphisms, 7, j are inclusion maps and £ is induced
by f; we have fu = f and vi = ju. From (c) it follows that J/I is a direct
summand of R/I, hence there exists g € Homg(R/I, M) such that gj = f.
Let f* = gv; we have f* = (gv) i = gju = fu = f- Q.E.D.

(d) implies (a). Tivial.

We complete the proof of the theorem by showing that if R has SP, then R
is hereditary. Let M be any R-module and £ its R-injective hull. In the
exact sequence 0— M — E— E/M -0, E/M is R-injective by (d). It
follows that inj. dimg M <C 1 for every R-module M. R is hereditary, follows
now from [2], Chapt. VI, Prop. 2.8.
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Remark. It is now clear (e.g., from (b)) that if R has SP, then every
homomorphic image of R has SP.

Osofsky has shown [14] that a right hereditary ring which is right
self-injective 1s a semi-simple ring. From this and Theorem 2.1 we obtain
immediately the following:

THEOREM 2.7. For any commutative ring R the following are equivalent:
(a) R is semi-simple.
(b) R is self-injective and has SP.

Remark. A ring which has SP need not be semi-simple. Let K be a field
and 4 an infinite index set. Let Q = [[,cq K@, where K'® = K, and
R=% 4 PK®4+1-KCO, 1€0. R is easily seen to have only one
large ideal, namely I =37 .4 ® K and [ is, of course, maximal, Since R is
clearly regular, R has SP by Theorem 2.1 {c). R is not semi-simple.

The fact that the ring in the above example has only one large ideal is not
totally unrelated to SP. We show below (Theorem 2.9) that a semi-here-
ditary ring with finitely many large ideals, has SP.

Left perfect rings have been studied by Bass [/]; the following theorem,
contained in Bass’ Theorem P, records all the information we need here:

'THEOREM B (Bass). For any ring R, the following statements are equivalent:
(2) R is left perfect.
(b) R satisfies the descending chain condition on principal right ideals.
(c) Every flat left R-module is projective.

Lremma 2.8. Let R be a ring and I any (two-sided) 1deal of R. If A is a flat
right R-module then A @ R|I =« A|AI is a flat right R{I-module.

Proof. For any left R/I-module C we have
Torg(4, C) == Torf (A QRI,C) n>0
by 2], Chapt. VI, Prop. 4.1.1. Q.E.D.

THeoREM 2.9. If R is a {commutative) semi-hereditary ring with finitely
many large ideals A, ,..., A, , then R has SP.

Proof. Let M and N be R-modules such that Z(M) = M and Z(N) = 0.
Set I = (7., 4;; it follows by [17], Prop. 1.2, that I is large and it is clear
that MI = (0). Furthermore N is R-flat [4], Theorem 5, and since R/I
clearly has d.c.c. (in fact finitely many ideals) it follows from Lemma 2.8
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and Theorem B (c) that N/NI is R/I-projective. R, now, has SP by (1),
Corollary to Prop. 1.12 and Prop. 1.12(b). QE.D.

Remark. We do not know whether the converse of Theorem 2.9 also holds.

3. Rincs wita BSP

In this section we establish the following characterization :

THEOREM 3.1. For a ring R with Z(R) = (0), the following statements are
equivalent:

(a) R has BSP.

(b) R is semi-hereditary and for every large ideal I of R, the ring R/I has
d.c.c.

The proof of (b) implies (a) is essentially contained in the proof of
Theorem 2.9; observe that it suffices to show that Extg!(N, M) = (0) for
every pair of modules M and N such that Z(N) = (0) and M is of bounded
order, say I (Prop. 1.12(a)}.

We postpone the proof of (a) implies (b) until some of the ideas involved
have been sufficiently developed below.

Let T denote the set of nonzero divisors in R and K the total quotient ring
of R [4].

DermviTionN 3.2, For any ideal  of R, let
I’ = {reRjrdcl, for some de T}.

If M is an R-module we let {(M) = {m € M|md = 0, for some de T}, the
usual torsion submodule of M. It follows easily from Definition 3.2 that
HR[I) = I'/I for any ideal I.

LemMa 3.3. Let R be a ring and I an ideal of R. The following statements
are, then, true:
() If R is semi-hereditary and 1 =1I', then 1] = I\ ] for any other
ideal | of R.
(b) If I =1, then the sequence 0 — R/l — K[IK (canonical map) is
exact and K[IK is an R|I-essential extension of R/I.
{¢) IK =IK.
Proof. (a) R/I is torsion-free as an R-module, hence it is R-flat [4],

Theorem 5. The sequence 0 — R/I ® J— R/I, induced by the inclusion
map J C R, is thus exact and since RIJ & J~ JiIJwehave I] =1nN ].
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(b) It is well known (e.g. [13], Prop. 1.5) that if M is any torsion-free
R-module, then MK = {md-\jme M,de T}. Thus, let xeIKNR; we
have x = ad-', acl, de T and from this xd = ael, hence xel’ = I. We
have the first assertion of (b). To show the second part, observe that if
ad'e K — IK, then a ¢ and d ¢1I; we thus have (ed~! + IKY(d + 1) =
(a + IK)e Im(R/I — K[IK) =~ R/I and a 5= 0 (mod I).

(c) Clearly IK CI'K. Let xd'el'K; there exists €T such that
xt = acl Thus x == at~! and xd=! = a(td) 1 cIK. Q.E.D.

Prorosrrion 3.4, Let R be a ring with Z(R) = (0) and BSP. Let I be a
large ideal of R. The following statements are, then, true:

(a) K has SP.
(b) If I = I', then R/I ~ K|IK; in particular R(I has d.c.c.
(c) If IN T £ B, then R(I has d.c.c.

Proof. (a) R is semi-hereditary by Prop. 1.6. (remark) and the Corollary
to Prop. 1.9; it follows from this that K is regular [4], 2. Now K satisfies the
conditions of Prop. 1.9, it, hence, has BSP and by Theorem 2.1 (b) it has SP.
In particular K/IK is a semi-simple ring.

(b) If J/I is any ideal of R/I, it follows from Lemma 3.3 (a) that
JlI == ] ® R/I; from this and the Corollary to Prop. 1.12 we see that J/I is
R/I-projective, hence R/I is hereditary.

Now by Lemma 3.3 (b) and (a) above, K/IK is the maximal quotient ring
of R/I; in particular R/I is a finite dimensional ring [17], Theorem 1.6. By a
result of Hattori 7], Lemma 3, p. 156, R/I is a finite direct sum of Dedekind
domains, say R =D @® - ® D, and thus K/IK~ 0, ® - ©0,, O;
the quotient field of D; . By the Corollary to Prop. 1.12, K/IK is R/I-pro-
jective and this clearly implies that Q; is D;-projective. The last condition is
well known to imply that D; =, for each ¢, hence R/I =~ K/IK. In partic-
ular R/I has d.c.c.

(c) Let d €I n T; it follows by an argument due to Chase [3], Theorem
4.3 that R/dR has d.c.c. and this clearly implies that R/ has d.c.c. Q.E.D.

We can now prove:

(a) implies (b). Let I be a large ideal of R and f: R/I - KJIK the
homomorphism defined by f:7 +~1—r 4+ IK. We claim that f is an
epimorphism; this follows from the fact that f is the composition
RIS R]I 5 K/I'K where 7 is an isomorphism by Prop. 3.4 (b), v is the
natural epimorphism and K/I'K = K/IK by Lemma 3.3 (c). Note that
ker f = I'/I and KJIK is R[I-projective; it follows that the exact sequence
0 —I'{I> R|I — K[IK — 0 splits. In particular I'/I is a cyclic R/I-module
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with the property that #(I'/I) = I’/l. This implies that I’/ ~ R/ for some
ideal | of R such that N T = @. Now R/I has d.c.c. since both R/ and
KJ/IK do, by Prop. 3.4. Q.E.D.

The proof of the theorem is now complete.

4, Direcr Probucts oF HErepITarY RINGS

An easy consequence of the Corollary to Lemma 1.5 and [/7], Prop. 1.2 (4),
is that if M is an R/I-module, where [ is a closed ideal of R, then
Z(Mg) = Z(Mp)). It follows easily from this that a finite direct sum of rings
has FGSP, BSP, SP if and only if each of the summands, correspondingly,
has these properties. An infinite direct product of rings, however, does not
preserve the last two. More generally we have the following:

THEOREM 4.1. Let {R,: o € I'} be an infinite collection of right hereditary
rings R, (with identity). Then, the direct product [ .r R, is not a right here-
ditary ring.

Proof. It is sufficient to show the theorem in case card I' = R, , since the
direct product of countably many of the rings R, is a direct summand of
Il.cr R, in an obvious manner. Set 4 =] R, and I =3, D R,; [ is
obviously a large (2-sided) ideal of 4 and it is countably generated over /.

Assume the theorem is false, hence A is hereditary. It follows from
Theorem 2.4, that every right ideal of 4/I is countably generated. By Tarski's
Theorem T A has 2% idempotents {¢;} whose image {¢,} in A/I is a set of
2% (distinct) orthogonal idempotents. The right ideal 3 €4 of A4/ is obviously
not countably generated.

The theorem is, hence, true. Q.E.D.

We see from the proof of Theorem 4.1 that 4/I does not have d.c.c., where
the ideal I is large in /. From this and Theorem 3.1 we have easily:

THeoREM 4.2. Let {R,: a € I'} be an infinite collection of (commutative)
rings R, satisfying Z(R,) = (0) and BSP for each « € I'. Then the direct product
T, R, does not have BSP.

In the case of FGSP an analogous theorem does not hold. Any infinite
direct product of self-injective nonsingular rings has FGSP [17], Theorem 2.7.
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