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Abstract

A combinatorial construction of a Gelfand model for the symmetric group and its Iwahori–Hecke algebra
is presented.
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1. Introduction

A complex representation of a group or an algebra A is called a Gelfand model for A, or
simply a model, if it is equivalent to the multiplicity free direct sum of all A-irreducible repre-
sentations.

Models (for compact Lie groups) were first constructed by Bernstein, Gelfand and Gelfand [7].
Constructions of models for the symmetric group, using induced representations from centraliz-
ers, were found by Klyachko [12,13] and by Inglis, Richardson and Saxl [10]; see also [2–5,19].
Our goal is to determine an explicit and simple combinatorial action which gives a model for the
symmetric group and its Iwahori–Hecke algebra.
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1.1. Signed conjugation

Let Sn be the symmetric group on n letters, S = {s1, . . . , sn−1} its set of simple reflections,
In = {π ∈ Sn | π2 = id} its set of involutions, and Vn := spanQ{Cw | w ∈ In} a vector space over
Q formally spanned by the involutions.

Recall the standard length function on the symmetric group

�(π) := min
{
�

∣∣ π = si1si2 · · · si� , sij ∈ S (∀j)
}
,

the descent set

Des(π) := {
s ∈ S

∣∣ �(πs) < �(π)
}
,

and the descent number des(π) := # Des(π).
Define a map ρ :S → GL(Vn) by

ρ(s)Cw := sign(s;w) · Csws (∀s ∈ S, w ∈ In) (1)

where

sign(s;w) :=
{−1, if sws = w and s ∈ Des(w);

1, otherwise.
(2)

Theorem 1.1. ρ determines an Sn-representation.

Theorem 1.2. ρ determines a Gelfand model for Sn.

1.2. Hecke algebra action

Consider Hn(q), the Hecke algebra of the symmetric group Sn (say over the field Q(q1/2)),
with set of generators {Ti | 1 � i < n} and defining relations

(Ti + q)(Ti − 1) = 0 (∀i),

TiTj = TjTi if |i − j | > 1,

TiTi+1Ti = Ti+1TiTi+1 (1 � i < n − 1).

Note that some authors use a slightly different notation, with Ti consistently replaced by −Ti .
In order to construct an extended signed conjugation providing a model for Hn(q), we extend

the standard notions of length and weak order. Recall that the (right) weak order on Sn is the
reflexive and transitive closure of the relation: w ≺R ws if s ∈ S and �(ws) = �(w) + 1.

Definition 1.3. Define the involutive length of an involution w ∈ In of cycle type 2k1n−2k as

�̂(w) := min
{
�(v)

∣∣ w = vs1s3 · · · s2k−1v
−1, v ∈ Sn

}
,

where �(v) is the standard length of v ∈ Sn.
Define the involutive weak order �I on In as the reflexive and transitive closure of the relation:

w ≺I sws if s ∈ S and �̂(sws) = �̂(w) + 1.
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Now define a map ρq :S → GL(Vn) by

ρq(Ts)Cw :=

⎧⎪⎨
⎪⎩

−qCw, if sws = w and s ∈ Des(w);
Cw, if sws = w and s /∈ Des(w);
(1 − q)Cw + qCsws, if w <I sws;
Csws, if sws <I w.

(3)

Theorem 1.4. ρq is a Gelfand model for Hn(q) (q indeterminate); namely,

(1) ρq is an Hn(q)-representation.
(2) ρq is equivalent to the multiplicity free sum of all irreducible Hn(q)-representations.

The proof involves Lusztig’s version of Tits’ deformation theorem [15]. For other versions of
this theorem see [8, §4], [9, §68.A] and [6].

Let μ = (μ1,μ2, . . . ,μt ) be a partition of n and let aj := ∑j

i=1 μi (0 � j � t). A permutation
π ∈ Sn is μ-unimodal if for every 0 � j < t there exists 1 � dj � μj+1 such that

πaj +1 < πaj +2 < · · · < πaj +dj
> πaj +dj +1 > · · · > πaj+1 .

The character of ρq may be expressed as a generating function for the descent number over
μ-unimodal involutions.

Proposition 1.5.

Tr
(
ρq(Tμ)

) =
∑

{w∈In|w is μ-unimodal}
(−q)des(w)

where

Tμ := T1T2 · · ·Tμ1−1Tμ1+1 · · ·Tμ1+···+μt−1

is the subproduct of T1T2 · · ·Tn−1 obtained by omitting Tμ1+···+μi
for all 1 � i < t .

2. Proof of Theorem 1.1

2.1. First proof

This proof relies on a variant of the inversion number, which is introduced in this section.
Recall the definition of the inversion set of a permutation π ∈ Sn,

Inv(π) := {{i, j} ∣∣ (j − i) · (π(j) − π(i)
)
< 0

}
.

Definition 2.1. For an involution w ∈ In let Pair(w) be the set of 2-cycles of w (considered as
unordered 2-sets). For a permutation π ∈ Sn and an involution w ∈ In let

Invw(π) := Inv(π) ∩ Pair(w)
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and

invw(π) := # Invw(π).

Now redefine ρ :Sn → GL(Vn) by

ρ(π)Cw := (−1)invw(π) · Cπwπ−1 (∀π ∈ Sn, w ∈ In). (4)

Note that for every Coxeter generator s = (i, i + 1) ∈ S and every involution w ∈ In,

invw(s) =
{

1, if w(i) = i + 1;
0, otherwise

=
{

1, if sws = w and s ∈ Des(w);
0, otherwise.

Thus, definition (4) of ρ coincides on the Coxeter generators with the original definition (1). In
order to prove that ρ is an Sn-representation it suffices to prove that ρ is a group homomorphism.

Indeed, for every pair of permutations σ,π ∈ Sn, every involution w ∈ In, and every 1 � i <

j � n,

χ
[{i, j} ∈ Invw(σπ)

] = χ
[{i, j} ∈ Invw(π)

] · χ[{
π(i),π(j)

} ∈ Invπwπ−1(σ )
]
,

where χ[event] := −1 if the event holds and 1 otherwise. Hence, for every pair of permutations
σ,π ∈ Sn and every involution w ∈ In,

(−1)invw(σπ) = (−1)invw(π) · (−1)inv
πwπ−1 (σ ),

and thus

ρ(σπ)Cw = (−1)invw(σπ) · C(σπ)w(σπ)−1

= (−1)invw(π) · (−1)inv
πwπ−1 (σ )Cσ(πwπ−1)σ−1

= (−1)invw(π) · ρ(σ )(Cπwπ−1) = ρ(σ )
(
ρ(π)Cw

)
.

This proves that ρ is an Sn-representation, completing the proof of Theorem 1.1.

2.2. Second proof

In order to prove that ρ (defined on S) extends to an Sn-representation it suffices to verify the
relations:

ρ(s)2 = 1 (∀s ∈ S),

ρ(s)ρ(t) = ρ(t)ρ(s) if st = ts,

ρ(s)ρ(t)ρ(s) = ρ(t)ρ(s)ρ(t) if sts = tst.



R.M. Adin et al. / Journal of Algebra 320 (2008) 1311–1325 1315
We will prove the third relation. Verifying the other two relations is easier and will be left to
the reader.

Let s = (i, i + 1) and t = (i + 1, i + 2). For every permutation π ∈ Sn let

Supp(π) := {
i ∈ [n] ∣∣ π(i) �= i

}
.

Denote by O(w) the orbit of an involution w under the conjugation action of 〈s, t〉, the subgroup
of Sn generated by s and t . Since w is an involution #O(w) �= 2; hence there are three options
#O(w) = 1,3,6.

Case (a). #O(w) = 1. Then sws = w and twt = w. Furthermore, in this case Supp(w) ∩ {i, i +
1, i + 2} = ∅, so that sign(s;w) = sign(t;w) = 1; thus ρ(s)ρ(t)ρ(s)Cw = ρ(t)ρ(s)ρ(t)Cw =
Cw .

Case (b). #O(w) = 3. (This happens, for example, when w = s.) With no loss of generality there
exists an element v in the orbit such that

v, tvt, stvts are distinct elements in the orbit,

while

svs = v and t (stvts)t = stvts. (5)

Thus

ρ(s) =
(

x 0 0
0 0 1
0 1 0

)

and

ρ(t) =
(0 1 0

1 0 0
0 0 z

)
,

where x = sign(s;v) and z = sign(t; stvts). ρ(s)ρ(t)ρ(s) = ρ(t)ρ(s)ρ(t) holds if and only if
x = z, which holds if and only if

s ∈ Des(v) ⇐⇒ t ∈ Des(stvts). (6)

To prove this, observe that for every w ∈ Sn and s ∈ S the following holds:

(A) sws = w and s /∈ Des(w) if and only if Supp(w) ∩ Supp(s) = ∅.
(B) sws = w and s ∈ Des(w) if and only if w = us, where Supp(u) ∩ Supp(s) = ∅.

Assuming t /∈ Des(stvts) implies, by (5) and (A), that Supp(stvts) ∩ Supp(t) = ∅. Hence

stvts(i + 1) = i + 1.
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On the other hand, assuming s ∈ Des(v) implies, by (5) and (B), that there exists u = vs with
i + 1 /∈ Supp(u). Hence

stvts(i + 1) = stusts(i + 1) = i + 2,

a contradiction. Similarly, assuming s /∈ Des(v) and t ∈ Des(stvts) yields a contradiction (to
verify this, replace v by stvts and s by t). This completes the proof of Case (b).

Case (c). #O(w) = 6 (this occurs, for example, when s = (i, i + 1), t = (i + 1, i + 2) and w =
(i, j)(i + 1, k) where j, k �= i + 2). Then, for every element v in the orbit, svs �= v and tvt �= v.
It follows that

ρ(s)ρ(t)ρ(s)Cw = Cstswsts = Ctstwtst = ρ(t)ρ(s)ρ(t)Cw.

This completes the proof of the third relation.

3. Characters

3.1. Character formula

The following classical result follows from the work of Frobenius and Schur, see [11, §4] and
[21, §7, Example 69].

Theorem 3.1. Let G be a finite group, for which every complex representation is equivalent to a
real representation. Then for every w ∈ G

∑
χ∈G∗

χ(w) = #
{
u ∈ G

∣∣ u2 = w
}
,

where G∗ denotes the set of the irreducible characters of G.

It is well known [20] that all complex representations of a Weyl group are equivalent to ratio-
nal representations. In particular, Theorem 3.1 holds for G = Sn. One concludes

Corollary 3.2. Let π ∈ Sn have cycle structure 1d12d2 · · ·ndn . Then

∑
χ∈Sn

∗
χ(π) =

n∏
r=1

f (r, dr ),

where

f (r, dr ) :=

⎧⎪⎪⎨
⎪⎪⎩

0, if r is even and dr is odd;(
dr

2,...,2

) · rdr /2, if rand dr are even;∑�dr/2�
k=0

(
dr

dr−2k,2,2,...,2

) · rk, if r is odd.

In particular, f (r,0) = 1 for all r .
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Proof. For every A ⊆ [n] let

SA := {
π ∈ Sn

∣∣ Supp(π) ⊆ A
}

be the subgroup of Sn consisting of all the permutations whose support is contained in A. For
every π ∈ Sn and 1 � r � n let A(π, r) ⊆ [n] be the set of all letters which appear in cycles of
length r in π . In other words,

A(π, r) := {
i ∈ [n] ∣∣ πr(i) = i and (∀j < r) πj (i) �= i

}
.

For example, A(π,1) is the set of fixed points of π .
Denote by π|r the restriction of π to A(π, r). Then π|r may be considered as a permutation in

SA(π,r).

Observation 3.3. For every π ∈ Sn

{
u ∈ Sn

∣∣ u2 = π
} =

∏
r�1

{
ur ∈ SA(π,r)

∣∣ u2
r = π|r

}
.

Observation 3.4. Let π ∈ Sn have cycle type rn/r . Then

#
{
u ∈ Sn

∣∣ u2 = π
} =

⎧⎪⎨
⎪⎩

0, if r is even and n/r is odd;(
n/r

2,...,2

) · rn/2r , if r and n/r are even;∑�n/2r�
k=0

(
n/r

n/r−2k,2,2,...,2

) · rk, if r is odd.

Combining these observations with Theorem 3.1 implies Corollary 3.2. �
3.2. Proof of Theorem 1.2

We shall compute the character of the representation ρ and compare it with Corollary 3.2.
By (4),

Tr
(
ρ(π)

) =
∑

w∈In∩Stn(π)

(−1)invw(π),

where Stn(π) is the stabilizer of π under the conjugation action of Sn (i.e., the centralizer of π

in Sn).

Observation 3.5. Let π ∈ Sn, w ∈ In ∩ Stn(π) and a1 ∈ [n] any letter. Then one of the following
holds:

(1) (a1, a2, . . . , ar ) is a cycle in π (r � 1); a1, a2, . . . , ar are fixed points of w.
(2) (a1, a2, . . . , ar ) and (ar+1, . . . , a2r ) are cycles in π (r � 1); (a1, ar+1), (a2, ar+2), . . . ,

(ar , a2r ) are cycles in w.
(3) (a1, a2, . . . , a2m) is a cycle in π (m � 1); (a1, am+1), (a2, am+2), . . . , (am, a2m) are cycles

in w.
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It follows that

Corollary 3.6. Fix π ∈ Sn. Each w ∈ In ∩ Stn(π) has a unique decomposition

w =
∏
r�1

wr,

where

wr ∈ ISA(π,r)
∩ StSA(π,r)

(π|r ) (∀r)

and A(π, r), π|r and SA(π,r) are defined as in the proof of Corollary 3.2; and

Invw(π) =
⋃
r�1

Invwr (π|r ),

a disjoint union.

Hence, it suffices to prove that Tr(ρ(π)) is equal to the right hand side of the formula in
Corollary 3.2, for π of cycle type rn/r . Since ρ is a class function, we may assume that

π = (1,2, . . . , r)(r + 1, . . . ,2r) · · · (n − r + 1, n − r + 2, . . . , n). (7)

Observation 3.7. Let r be a positive integer.

(1) If i and j are distinct nonnegative integers, π as in (7) above, and w = (ir + 1, jr +
σ(1))(ir + 2, jr + σ(2)) · · · (ir + r, jr + σ(r)) (where σ is some power of the cyclic per-
mutation (1,2, . . . , r)), then

(−1)invw(π) = 1.

(2) If r = 2m is even, π as in (7) above, and w = (1,m + 1)(2,m + 2) · · · (m,2m), then

(−1)invw(π) = −1.

Lemma 3.8. For every odd r and a permutation π as in (7) above,

∑
w∈In∩Stn(π)

(−1)invw(π) = #
(
In ∩ Stn(π)

) =
�n/2r�∑
k=0

(
n/r

n/r − 2k,2,2, . . . ,2

)
· rk.

Proof. If r is odd then only cases (1) and (2) in Observation 3.5 are possible. The first equality
in the statement of the lemma then follows from Observation 3.7(1). The second equality fol-
lows from Observation 3.5(1), (2), counting the involutions w ∈ In ∩ Stn(π) with # Supp(w) =
2rk. �
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Lemma 3.9. For every even r and a permutation π as in (7) above,

∑
w∈In∩Stn(π)

(−1)invw(π) =
{0, if n/r is odd;(

n/r
2,...,2

) · rn/2r , if n/r is even.

Proof. Let ci = (ir + 1, ir + 2, . . . , ir + r) be one of the cycles of π , as in (7). By Observa-
tion 3.5, an involution w ∈ In ∩ Stn(π) has one of the following three types with respect to ci :

Type (1): Each element of ci is a fixed point of w.
Type (2): w maps ci onto a different cycle of π .
Type (3): r = 2m is even, and ci is a union of 2-cycles of w:

{ir + t, ir + t + m} ∈ Pair(w) (1 � t � m).

Denote

P2 := {
w ∈ In ∩ Stn(π)

∣∣ w is of type (2) w.r.t. all cycles of π
}
.

For any w ∈ (In ∩ Stn(π)) \ P2, let

i(w) := min
{
i
∣∣ w is of type (1) or (3) w.r.t. the cycle ci

}
.

Denote

P1 := {
w ∈ (

In ∩ Stn(π)
) \ P2

∣∣ w is of type (1) w.r.t. the cycle ci(w)

}
and

P3 := {
w ∈ (

In ∩ Stn(π)
) \ P2

∣∣ w is of type (3) w.r.t. the cycle ci(w)

}
.

The map ϕ :P1 → P3 which changes the action of w on ci(w) from type (1) to type (3) is clearly
a well-defined bijection; and, by Observation 3.7(2), it reverses the sign of (−1)invw(π). The
contributions of P1 and P3 to the sum therefore cancel each other. Each element of the remaining
set P2 contributes 1, by Observation 3.7(1). Lemma 3.9 follows. �

Lemmas 3.8 and 3.9 complete the proof of Theorem 1.2.

4. The Hecke algebra

4.1. A combinatorial lemma

Recall Definition 1.3. In order to prove Theorem 1.4 we need the following combinatorial
interpretation of the involutive length �̂.

Lemma 4.1. Let w ∈ Sn be an involution of cycle type 2k1n−2k . Then

�̂(w) :=
[ ∑

t∈Supp(w)

t −
(

2k + 1

2

)]
+ 1

2

[
inv(w|Supp(w)) − k

]
. (8)
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Proof. Denote the right hand side of (8) by f (w). It is easy to verify that f (w) = 0 when
�̂(w) = 0, i.e., when w = s1s3 · · · s2k−1. Let u and v = siusi be involutions in Sn with �̂(v) =
�̂(u) + 1. Then |{i, i + 1} ∩ Supp(u)| > 0. If |{i, i + 1} ∩ Supp(u)| = 1 then

∑
t∈Supp(v)

t −
∑

t∈Supp(u)

t = ±1

and inv(v|Supp(v)) = inv(u|Supp(u)). If |{i, i + 1} ∩ Supp(u)| = 2 then

∑
t∈Supp(v)

t =
∑

t∈Supp(u)

t

and inv(v|Supp(v)) − inv(u|Supp(u)) ∈ {2,0,−2}. Thus in both cases |f (v) − f (u)| � 1. This
proves, by induction on �̂, that f (w) � �̂(w) for every involution w.

On the other hand, if w is an involution with f (w) > 0 then either
∑

t∈Supp(w) t >
(2k+1

2

)
, or∑

t∈Supp(w) t = (2k+1
2

)
and inv(w|Supp(w)) > k. In the first case there exists i + 1 ∈ Supp(w) such

that i /∈ Supp(w). Then f (siwsi) = f (w) − 1. In the second case Supp(w) = {1, . . . ,2k}. Since
inv(w|Supp(w)) > k, w �= s1s3 · · · s2k−1. Thus there must be a minimal i such that w(i) > i + 1.
Let j := w(i) − 1; then w(j) > w(j + 1) = i, so f (sjwsj ) = f (w) − 1. We conclude that
�̂(w) � f (w) for every involution w. �
4.2. Proof of Theorem 1.4

The proof consists of two parts. In the first part we prove that ρq is an Hn(q)-representation by
verifying the defining relations along the lines of the second proof of Theorem 1.1. In the second
part we apply Lusztig’s version of Tits’ deformation theorem to prove that ρq is a Gelfand model.

Part 1: Proof of Theorem 1.4(1). First, consider the braid relation TiTi+1Ti = Ti+1TiTi+1. To
verify this relation observe that there are six possible types of orbits of an involution w under
conjugation by 〈si , si+1〉, the subgroup of Sn generated by si and si+1. These orbits differ by the
action of w on the letters i, i + 1, i + 2:

1. i, i + 1, i + 2 /∈ Supp(w).
2. Exactly one of the letters i, i + 1, i + 2 is in Supp(w).
3. Exactly two of the letters i, i + 1, i + 2 are in Supp(w), and these two letters form a 2-cycle

in w.
4. Exactly two of the letters i, i + 1, i + 2 are in Supp(w), and these two letters do not form a

2-cycle in w.
5. i, i + 1, i + 2 ∈ Supp(w), and two of these letters form a 2-cycle in w.
6. i, i + 1, i + 2 ∈ Supp(w), and no two of these letters form a 2-cycle in w.

Note that an orbit of the first type is of order one; orbits of the second, third and fifth type are of
order three; and orbits of the fourth and sixth type are of order six. Moreover, by Lemma 4.1, or-
bits of the same order form isomorphic intervals in the weak involutive order (see Definition 1.3).
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In particular, all orbits of order six have a representative w of minimal involutive length, such
that the orbit has the form:

sisi+1siwsisi+1si
↙ ↘

sisi+1wsi+1si si+1siwsisi+1
↓ ↓

si+1wsi+1 siwsi
↘ ↙

w

. (9)

All orbits of order three are linear posets:

w <I siwsi <I si+1siwsisi+1 (10)

or

w <I si+1wsi+1 <I sisi+1wsi+1si . (11)

Thus the analysis is reduced into three cases.

Case (a). An orbit of order six. By (3) and (9), the representation matrices of the generators with
respect to the ordered basis Cw , Csiwsi , Csi+1siwsi si+1 , Csisi+1siwsi si+1si , Csi+1wsi+1 , Csisi+1wsi+1si

are:

ρq(Ti) =

⎛
⎜⎜⎜⎜⎜⎝

1 − q 1 0 0 0 0
q 0 0 0 0 0
0 0 1 − q 1 0 0
0 0 q 0 0 0
0 0 0 0 1 − q 1
0 0 0 0 q 0

⎞
⎟⎟⎟⎟⎟⎠

and

ρq(Ti+1) =

⎛
⎜⎜⎜⎜⎜⎝

1 − q 0 0 0 1 0
0 1 − q 1 0 0 0
0 q 0 0 0 0
0 0 0 0 0 q

q 0 0 0 0 0
0 0 0 1 0 1 − q

⎞
⎟⎟⎟⎟⎟⎠ .

It is easy to verify that indeed

ρq(Ti)ρq(Ti+1)ρq(Ti) = ρq(Ti+1)ρq(Ti)ρq(Ti+1).

Case (b). An orbit of order three. Without loss of generality, the orbit is of type (10); the analysis
of type (11) is analogous. Then si+1wsi+1 = w and si(si+1siwsisi+1)si = si+1siwsisi+1. By (6),
si+1 ∈ Des(w) if and only if si ∈ Des(si+1siwsisi+1), see second proof of Theorem 1.1.
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Given the above, by (3), the representation matrices of the generators with respect to the
ordered basis w <I siwsi <I si+1siwsisi+1 are

ρq(Ti) =
(1 − q 1 0

q 0 0
0 0 x

)

and

ρq(Ti+1) =
(

x 0 0
0 1 − q 1
0 q 0

)
,

where x ∈ {1,−q}. These matrices satisfy the required braid relation.

Case (c). An orbit of order one. Then siwsi = w, si+1wsi+1 = w and si, si+1 /∈ Des(w). By (3),
ρq(Ti)ρq(Ti+1)ρq(Ti)Cw = ρq(Ti+1)ρq(Ti)ρq(Ti+1)Cw = Cw , completing the proof of the third
relation.

The proof of the other two relations is easier and will be left to the reader.

Part 2: Proof of Theorem 1.4(2). Consider the Hecke algebra Hn(q) as the algebra over Q(q1/2)

spanned by {Tv| v ∈ Sn} with the multiplication rules

TvTu = Tvu if �(vu) = �(v) + �(u)

and

(Ts + q)(Ts − 1) = 0 (∀s ∈ S).

By Lusztig’s version of Tits’ deformation theorem [15, Theorem 3.1], the group algebra of Sn

over Q(q1/2) may be embedded in Hn(q). In particular, every element w ∈ Sn may be expressed
as a linear combination

w =
∑
v∈Sn

mv,w

(
q1/2)Tv,

where mv,w is a rational function of q1/2.
It follows that ρq may be considered as an Sn-representation, via

ρq(w) :=
∑
v∈Sn

mv,w

(
q1/2)ρq(Tv) (∀w ∈ Sn).

The resulting character values ρq(w) are rational functions of q1/2. By discreteness of the Sn

character values, each such function is locally constant wherever it is defined, and is thus constant
globally.

By Theorem 1.2, ρq |q=1 = ρ is a model for the group algebra of Sn. This completes the proof.
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4.3. Proof of Proposition 1.5

Let SYTn be the set of all standard Young tableaux of order n, and let SYT(λ) ⊆ SYTn be
the subset of standard Young tableaux of shape λ. For each partition λ of n, fix a standard Young
tableau Pλ ∈ SYT(λ). By [18, Theorem 4], the value of the irreducible Hn(q)-character χλ

q at Tμ

is

χλ
q (Tμ) =

∑
{w �→(Pλ,Q)|w is μ-unimodal and Q∈SYT(λ)}

(−q)des(w),

where the sum runs over all permutations w ∈ Sn which are mapped under the Robinson–
Schensted (RS) correspondence to (Pλ,Q) for some Q ∈ SYT(λ). By [21, Lemma 7.23.1], the
descent set of w ∈ Sn, which is mapped under RS to (Pλ,Q), is determined by Q. Hence

Trρq(Tμ) =
∑
λ

χλ
q (Tμ) =

∑
λ

∑
{w �→(Pλ,Q)|w is μ-unimodal and Q∈SYT(λ)}

(−q)des(w)

=
∑
λ

∑
{w �→(Q,Q)|w is μ-unimodal and Q∈SYT(λ)}

(−q)des(w)

=
∑

{w �→(Q,Q)|Q∈SYTn and w is μ-unimodal}
(−q)des(w) =

∑
{w∈In|w is μ-unimodal}

(−q)des(w).

The last equality follows from the well-known property of the RS correspondence: w �→ (P,Q)

if and only if w−1 �→ (Q,P ) [21, Theorem 7.13.1]. Thus w is an involution if and only if w �→
(Q,Q) for some Q ∈ SYTn.

5. Remarks and questions

5.1. Classical Weyl groups

Let Bn be the Weyl group of type B , SB its set of simple reflections, IB
n its set of involutions,

and V B
n := spanQ{Cw | w ∈ IB

n } a vector space over Q formally spanned by the involutions.
Recall that Bn = Z2 � Sn, so that each element w ∈ Bn is identified with a pair (v, σ ), where
v ∈ Zn

2 and σ ∈ Sn. Denote |w| := σ .
Define a map ρB :SB → GL(Vn) by

ρB(s)Cw := sign(s;w) · Csws

(∀s ∈ SB, w ∈ IB
n

)
where, for s = s0 = ((1,0, . . . ,0), id), the exceptional Coxeter generator, the sign is

sign(s0;w) :=
{−1, if sws = w and s0 ∈ Des(w);

1, otherwise,

and for a generator s �= s0 the sign is

sign(s;w) :=
{−1, if sws = w and s ∈ Des(|w|);

1, otherwise.
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Theorem 5.1. ρB is a Gelfand model for Bn.

A proof is given in [1].
Models for classical Weyl groups of type Dn for odd n were constructed in [4,5]. These

constructions fail for even n. A natural question is whether there exists a signed conjugation (or
a representation of type ρsCw = as,wCw + bs,wCsws ) which gives a model for D2n. It is also
desired to find representation matrices for the models of the Hecke algebras of types B and D

which specialize at q = 1 to models of the corresponding group algebra.
We conclude with the following questions regarding an arbitrary Coxeter group W .

Question 5.2. Find a signed conjugation which gives a Gelfand model for W ; Find a representa-
tion of the form ρsCw = as,wCw +bs,wCsws , which gives a Gelfand model for the Hecke algebra
of W .

Question 5.3. Find a character formula for the Gelfand model of the Hecke algebra of W .

Appendix A

This appendix was added in proof.
First, it should be acknowledged that an equivalent reformulation of Theorem 1.2, with a

different proof, was given by Kodiyalam and Verma [14].
A third proof of Theorem 1.2, along the lines of [10], was suggested by an anonymous referee.

Here is a brief outline.
Let χ∅,(n) denote the one dimensional character of Bn given by the parity of the number of

negative signs, and consider the natural embedding of Bn = Z2 � Sn into S2n. Then

χ∅,(n) ↑S2n

Bn
=

∑
λ�n

χ(2·λ)′ ,

where the sum on the right hand side runs through all partitions of 2n with even columns only.
See, for example, [16, Chapter I, §8, Example 6, and Chapter VII (2.4)]. Combining this with the
Littlewood–Richardson rule implies that

((
χ∅,(k) ↑S2k

Bk

) ⊗ 1Sn−2k

) ↑Sn

S2k×Sn−2k

is a multiplicity free sum of all irreducible Specht modules indexed by partitions with exactly
n − 2k odd columns.

A natural basis for this representation is given by involutions with n−2k fixed points. Finally,
it is straightforward to show that the action of a Coxeter generator si on this basis is identical
with the signed conjugation defined in (2).

Corollary A.1. The signed conjugation ρ, when restricted to the conjugacy class of involutions
with n − 2k fixed points, is a multiplicity free sum of all irreducible Specht modules indexed by
partitions with exactly n − 2k odd columns.

This gives an algebraic proof to the following combinatorial result: The number of involutions
with n−2k fixed points is equal to the number of standard Young tableaux of shapes with exactly
n − 2k odd columns.
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Another proof for this enumerative fact may be obtained using the Robinson–Schensted (RS)
correspondence. One concludes that the restriction of the signed conjugation ρ to conjugacy
classes of involutions is compatible with the RS correspondence; namely, Sλ is a factor of the
restriction of ρ to the conjugacy class of cycle type 2k1n−2k if and only if λ is the shape of some
pair of (equal) standard Young tableaux corresponding to an involution of this cycle type.
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