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Abstract

We investigate some arithmetic properties of the g-Fibonacci numbers and the g-Pell numbers.
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1. Introduction

The Fibonacci numbers F,, are given by
Fo=0, Fi=1 and F,=F,_1+ F,_» forn>2.

For any odd prime p, it is well-known (cf. [11, pp. 44-50]) that

F, <§> (mod p), (1.1
p

1 5
Fpe1 =5 (1 + <;)> (mod p) (1.2)

F =1<1_(§)> (mod p) (13)
p7]—2 » pP), .

where (;) denotes the Legendre symbol. Indeed, we have

and

p_d +V5)P -1 =V57 _ 1+ 5" - (1= 5"
" 205 a 25

For more results on the congruences involving the Fibonacci numbers, the readers may refer to [14-16].

=5P=D/2 (mod p).
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On the other hand, a sequence of polynomials .7, (¢) was firstly introduced by Schur [13, pp. 117-136]

0 if n=0,
97;1(61)= 1 lfnzl,
T nt(@) +q" 2T u_a(q) if n=2.

Also Schur considered another sequence n(q) which is given by

0 if n=0,
Fa@)=11 ifn=1
Fut@)+ 4" Fyalg) if n>2.

Obviously, both % ,,(¢) and J a »(q) are the g-analogues of the Fibonacci numbers. The sequences % ,,(¢) and J F 2(q)
have been investigated in several papers (e.g., [2,5-8]). However, seemingly there are no simple expressions for 7, (¢)
and 7, (q).
As usual we set
l—¢q

nly =5, =l+q+-+4q""

1

for any non-negative integer n. In the proof of a theorem on the number of partitions [1, pp. 302-303], Andrews showed
that for any odd prime p with p = +2 (mod 5)

F pr1(@) =0 (mod [p],).

which is a partially g-analogue of (1.2). Here, Andrews’ congruence is considered over the ring of the polynomials in
g with integral coefficients, rather than the ring of quantum integers [10].

In this paper we shall give the g-analogues of (1.1)-(1.3) for #,,(¢) and 7 2(q). Suppose that n is an odd integer with
5tn. Let o, be the integer such that 1 <o, <4 and o,n = 1 mod 5. And let @,,(¢) denote the nth cyclotomic polynomial
ing,i.e.,

()= [] (@—e™m.

1<k<n

(k,n)=1

Clearly @,(q) is a polynomial with integral coefficients, and ®@,(q) = [p], when p is prime.

Theorem 1.1. Let n >3 be an odd integer with 5tn. Then

1 5
Fu1@) = 5 (1 + (;)) (mod @, (¢)) (1.4)
and
Fu(q) = (5) (Gt VS5 (mod @, (¢)), (1.5)

where ( ) denotes the Jacobi symbol (cf. [9, pp. 56-58]).

Theorem 1.2. Let n >3 be an odd integer with 5tn. Then

~ 1 5
Fn-1(q) = 5 <1 - (;)) (mod @, (¢)) (1.6)

[\e]
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and
Falg) = G) g~ V/5 (mod @, (¢)). (1.7)

The Pell numbers P, are given by
Py=0, Pi=1 and P,=2P,_1+ P,_o for n=>2.
It is easy to check that
_ 1+ 1= V2
22 '

Hence for odd prime p, we have
_UH+VDP ==V 26D i _ (3) (mod p).
232 232 p

In [12], Santos and Sills introduced two g-analogues of the Pell numbers. Define the sequences of polynomials 2, (q)
and Z,(q) by

Py

P, (1.8)

0 if n=0,
Pu(@)=11 ifn=1,
(14" NPu1(q) +q"2Pus(q) if n>2

and
0 if n=0,
Pu@) =11 ifn=1,

A +¢"NPy 1(@) + 4" Pua(q) if n>2.

Clearly 2,(1) = @n(l) = P,. Now, we have the g-analogues of (1.8) for 2, (¢) and @n ().

Theorem 1.3. Let n >3 be an odd integer. Then

gV 7,(g) = (%) (mod @, (q)) (1.9)
and

D) = (%) g~V (mod @, (¢)). (1.10)
Furthermore, we have

Pui1(@) = Pu(@) = Pui1(q) — Pu(q) = 1 (mod @,(q)). (1.11)

Since (%) = (—=1)"*=D/8_(1.9) and (1.10) can be, respectively, rewritten as

(=)™ VB2, (q) = 1 (mod B, (q))
and
Pn(@) = (=)™ V8 (mod @, (9)).

The proofs of Theorems 1.1-1.3 will be given in Sections 2 and 3.
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2. Proofs of Theorems 1.1 and 1.2

For any n, m € Z, the g-binomial coefficient [:"1 ]q is given by

|:ni| _ A—gMA—g" hH...(1 —g"mth
m |, (1—qm)(1_qm71).”(1_q)

whenm >0, andlet [} ]q =0if m <0. Obviously [ ]q is a polynomial in ¢ with integral coefficients since g-binomial
coefficients satisfy the recurrence relation

[nll]q:qm[ﬂﬁ [mn—l]q: [ﬂq+"nm+l[mn— 1L'

Let | x| denotes the greatest integer not exceeding x. Then for any non-negative integer n, we have

Foni@= Y qf'Z[” R ’]
J dq

0<2j<n

o 1V i G2 n
2. =V [L(n—Sj)/ZJL -

j=—00

and

T nt1(q)

) q./‘2+j[” - J}
7 dq

0<2j<n

o (1] iGI=)2 n+1 }
2 Vg [L(n—i—l—Sj)/ZJ—i—l , (22)

j==o00

Egs. (2.1) and (2.2) can be considered as the finite forms of the first and the second of the Rogers—Ramanujan identities,
respectively (the full proofs of (2.1) and (2.2) can be found in [1]).

Lemma 2.1. Suppose that n is an arbitrary integer. Let

and let
_ '5. 3 1 5‘ 2 2

Then if n is odd, we have
LQ2j)—LQ2j—1)=LQ2j)—L2j—1)=n.

And when n is even,
LQj+1)—LQ2j)=L2j+1)—L2j)=n.

Lemma 2.2. Suppose that n is an integer prime to 5. Let

Sp={jeZ:0<ln—1-5j)/2]<n—1}
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and

Sp={jeZ: 0<|(n—1-5j)/2] +1<n —1}.
We have

Sp={j€eZ: —In/SI<j<In/5]}
and

(jeZ:—\n/5]+1<j<|n/5]} ifn=1mod5,
Sp={1iez:—In/5)<j<In/51} if n=2,3mod5,
{(jeZ:—|n/5]<j<|n/5]+1} ifn=4mod5.

These two lemmas above can be verified directly, so we omit the details here.
Proof of Theorem 1.1. By the quadratic reciprocity law, we know that
5 (n) 1 if n=1,4mod>5,
n) \5/ |-1 if n=2,3mod5.

Since @, (q) divides [n], and (P, (q), [j];) =1 foreach 1< j<n — 1, we have

|:ni| :[n]q[n—l]q...[n—m—i—l]q
q

{ 1 (mod &, (¢g)) if m=0orn,
[mlylm — 1], ...[1],

m 0 (mod @,(g)) if 1<m<n—1.

Then from (2.1), it follows that

7z, _ 5 1y j<5;+1>/2[ " }
@)= > (=g =521,

j=—00

Yo =g/ (mod b, (g)).
[(n—57)/2]=0 Or n

It is easy to check that

{(n—1)/5} if n = 1mod 35,
{j:lmn=55)/2]=0o0rn}=3{—(n+1)/5} if n=4modS5,
] if n =2,3mod5.

Thus

Furil)= Y (=DIg/DR
L(n—5/)/2]=0 Or n

(=)D gn=D/5 =1 (mod ®,(¢)) if n=1mod5,
= { (=)~ DS gnn+D/5 = 1 (mod &, (g)) if n =4modS5,
0 (mod @,(q)) if n =2,3mod>5.

This concludes the proof of (1.4).
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Also, applying (2.1) and Lemma 2.2, we deduce that

i i) n—1
Fulq) = > (—1)Jq/(5/+1>/2[ R ]
0< L(n—1-5j)/2) <n—1 L(n N/211,
Ln/5] L(1—1-57)/2]
i i5i [n — k]q
= Z (_1).1qj(5/+1)/2 l—[
Jj=—1n/5] k=1 [k]q
ln/5] L(n—1-5)/2]
= ) (=Dig/S T [”]qk—k[k]q
j=—In/5] k=1 q" [kl
[n/5] ' ' '
= Z (— 1)/ FLO=1=5D/2 4 L) (mod &, (q)).
Jj=—1n/5]

Assume that n = 1 mod 5. Noting that (n — 1)/5 is even and
Cji—-D+1n—=1=-52j-1)/2]=2j+1(n—-1-5-2j)/2]+1=mn—-1)/2-3j+1,

we have

(n—=1)/5
Fn(q) = (_1)4(’1*1)/5qL(*(ﬂ*1)/5) + Z (_1)J+L(n*1*5j)/2JqL(J)
j=—n—6)/5

(n—1)/10
(n—1)(n=2)/10—n(n—1)/2 + Z (_])(n—l)/2—3j(qL(2j) _ qL(2j—l))

j=—(n—11)/10

=q

= ¢t/ (mod @, (¢)),

where Lemma 2.1 is applied in the last step. Similarly, we obtain that

(=D)P=DBGL=2/3) = _qCn+D/S (mod &, (q)) if n =2mod5,
yn(q) = (_])l+4(n—3)/5qL(7(n*3)/5) = _q(3n+1)/5 (mod (pn(q)) if n =3mod5, 0
(=D)HO=DSGL=D/5) = +D/5 (mod @, (q)) if n=4mod5.

Proof of Theorem 1.2. In view of (2.2),

Fulq) = S (1) j(5j3>/2[ n }
0= v = 5j)/2) +1],

j=—00

And we have

{—(m—1)/5} if n =1mod5,
{—(n—=2)/5} if n=2mod5,
{(n+2)/5} if n =3 mod35,
{(n+1)/5} if » =4mod>5.

{j:ln=5/)/2] +1=0o0rn}=

Therefore
(— 1)~ =D/540+D@=D/10 — @=D/5 (1m0d &, (q)) if n = 1mod5s,
(— 1)~ (=D/54+D@=2/10 — _,Gn=D/5 (1mod d,(¢)) if n = 2mod3,
n(q) = (=) D[54 (=D/10 = _ o n=D/5 (mod d,(g))  if n =3mod5,
(— DB D0=D/10 = gGn=D/S (mod @, (q))  if n =4mod5.

W
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Now, let us turn to the proof of (1.7). From (2.2), it follows that

~ > e -1
Fo1(q) = 1y /<5./—3>/2[ " }
Fn-1(9) ,-:Zoo( Vg L= 1—57)/2] +1

o0

_ > (_1)jqj<5j—3>/2[ n—l } _
q

0< [(n—1-5/)/2]+1<n—1 Ln—=1=55)/2]+1

If n = 1 mod 5, then by Lemmas 2.1 and 2.2, we have

(n—=1)/5 n—1
For(g) = (_1)qu<5/'—3>/2[ . }
' j_—(r;)/5+l Ln—1=5/)/21+114
(n=1)/5 R
= Z (_1)‘/+L(11—1—5./)/2J+1qL(j)
j=—(n—6)/5

(n—1)/10

_ Z (_1)(n—1)/2—3j+1(qi(2j) _ qZ(zj—l))
j=—(n—11)/10

=0 (mod ?,(q)).

Similarly when n = 4 mod 5,

(n+1)/5 ‘ ' -
Foalgy= Y (=)/HOTIDRIFGED = 0 (mod @, (q)).
j=—(n—4)/5

Finally, suppose that n = 2 or 3mod 5. Then

;—n—l(Q)
n/5) R
= Z (_1)j+L(n*1*5j)/2J+qu(j)
j=—n/s]
(=)= DSHGLO=2/3) = gn=D/10 = 1 (mod &, (q)) if n =2mod5,
- { (= 1)~ =3/5+0=D  L~0=3)/5) — n(1=20/5 = | (mod @,(q)) if n =3 modS5.

All are done. [
Remark. With the similar discussion, it can be showed that for any positive even integer n with 5{n,
Ful@) = (5) a0 mod @,(q)). Ful) = (5) g7 (mod 0,(q)

and

Fra@ =5 (14 (%)) mod@u@). Fr(q) =

(1- (%)) (mod @, (q)).

N =

Also, when 5 | n, we have

Fn(q) = Fn(q) =0 (mod @,(q)).
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3. g-Pell number

2125

To prove Theorem 1.3, we need similar identities as (2.1) and (2.2) for 2, (¢) and @n (g), respectively. Fortunately,

such identities have been established. Let

Tl(n,m,q>=2<—q)fm [ S } .
J g2 q

= n—m-—j

Lemma 3.1. Let n be a non-negative integer. Then

n j .
p 242 J n—k
Pupi(q) =Yy gl Htk k)/z[k} [ . }
q q

=0 k=0 J

o0
= 3 DT+ 1,4+ 1, )

j=—00
and

n

J .
o~ 2 2 ] n—k
Pui(g) =Y Y quHitk *’MH [ . }
q q

j=0 k=0 J

o
= 3 CH T+ L4+ 1.

j=—00

3.1)

(3.2)

Egs. (3.1) and (3.2) are the special cases of an identity due to Berkovich et al. [4, (2.34)]. And another proof of

Lemma 3.1 is given in [12].

Proof of Theorem 1.3. Combining identities (2.33) and (2.34) in [3], it is not difficult to deduce that we have another

representation of T (n, m, q):

) O]
Tinm. J= Y. ¢ Kl Lon—m—n2],

—oo< k<00

k=n—m mod 2

Now by (3.1) and (3.3), we have

Pu@)= Y (g T 4) + 1. /)

Jj=—00
> . K\[n n—=k
= (—1)/ g% q(z)[ } [ : }
j;oo —oogkX:g—oo k q n—4j—k—1)/2 q
k=n—1mod 2
ST 21‘2[ " }
j:Z_:OO( YU -2 .

L [(=D)@DAGEEDE gy = T mod 4,
T ()" eHDAGEEDS iy = 3mod 4

_ (g) g~ =V/8 (mod @, (q)).

n

(3.3)
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The proof of (1.10) is very similar. From (3.2), it follows that

~ _ . NG, 20 (A)[n}[ " }
D DI AD DI Y A vy )

Jj=—00 —co<k< o0
k=n—1mod 2
ad 2 n
= > =1/g¥ +f[ }
j;oo n—1/2-2j g

(_1)(n—1)/4q(n—1)2/8+(n—1)/4 if n = 1mod4,

= { (_1)7(n+1)/4q(n+1)2/8—(n+1)/4 if 1= 3mod4

- (g) g™ V% (mod ,(q)).

n

Thus, the proofs of (1.9) and (1.10) are completed.
By (3.3), for any integer m we have

Tin+1,4m+1,/q) — Ti(n,4m + 1, /q)
=Tin+ 1,4m+1,/q) —q"Ti(n, 4m + 1, \/q)

- (g)[n+1:|[ nl—k }
= 2 4 ko, Lo—am—n2],

—oco<k< o0

k=n mod 2

I |

S R L2 R P S

—oo<k<o0

k=n—1mod 2

- Y PRV
= 2 k1], L=k =172 -2m],

—oo<k< o0

k=n—1mod 2

Eq(;)[ : ] — 6, (mod B, (q)).
—2m |,

where 0,, = 1 if m = 0, and 0 otherwise. Thus

Puit@ — Zu@ = Y g T+ 1.4j + 1, @) — Ti(n, 4j + 1, V@)

j=—o00
> i o2
= > DI¢*s;
j=—00

=1 (mod ?,(q)).
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Similarly, we have

o0
~ ~ . D
Po1@) = Pu@ = Y (=D/g (T + 1,4 +1, /9 — Ti(n, 4j + 1, V)

j=—00

0 . D
Z (—1)/ g%+,
j=—00

1 (mod @, (q)). O

Remark. When n > 2 is even, using the same method, we can prove that
P0(@) = Za(q) = 0 (mod @, (9))

and
Pu11@) = 20(@) = Pu(@) = Pus1(@) = (=1 (mod @, (9)).
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