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In the present study, nsSNPs in EPHX1, GSTT1, GSTM1 and GSTP1 genes were screened for their functional
impact on concerned proteins and their plausible role in breast cancer susceptibility. Initially, SNPs were re-
trieved from dbSNP, followed by identification of potentially deleterious nsSNPs using PolyPhen and SIFT.
Functional analysis was done with SNPs3D, SNPs&GO and MutPred methods. Prediction and evaluation of
the functional impact on the 3D structure of proteins were performed with Swiss PDB viewer and
NOMAD-Ref servers. On analysis, 13 nsSNPs were found to be highly deleterious and damaging to the
protein structure, of which 6 nsSNPs, rs45549733, rs45506591 and rs4986949 of GSTP1, rs72549341 and
rs148240980 of EPHX1 and rs17856199 of GSTT1 were predicted to be potentially polymorphic. It is there-
fore hypothesized that the 6 identified nsSNPs may alter the detoxification process and elevate carcinogenic
metabolite accumulation thus modifies the risk of breast cancer susceptibility in a group of women.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Breast cancer is the leading malignancy responsible for the in-
creased number of worldwide deaths among pre and postmenopaus-
al women. Most breast cancer cases occur in a small percentage of the
population that is at increased risk due to genetic susceptibility fac-
tors [1]. High-penetrance genes account for only 5% of the cases,
whereas polymorphic low-penetrance genes acting in concert with
lifestyle/environmental risk factors are likely to account for a much
higher proportion [1]. Among the various genetic factors, poly-
morphic epoxide hydrolase gene (EPHX1) and the glutathione S-
transferase genes (GSTT1, GSTM1, and GSTP1) are known for their
involvement in breast cancer predisposition [2]. EPHX1 gene encodes
the epoxide hydrolase protein mEH, which catalyzes the hydrolysis of
arene and aliphatic epoxides to trans-dihydrodiols and typically
results in detoxification and preparation for phase II conjugation re-
actions. GSTT1, GSTM1, and GSTP1 genes encode enzymes that are
among the superfamily of GST enzymes involved in the detoxification
of reactive metabolites of carcinogens such as polycyclic aromatic
hydrocarbons. Polymorphisms in EPHX1, GSTT1, GSTM1, and GSTP1
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genes have been examined as risk factors for breast cancer in a num-
ber of studies [3]. Two meta-analysis studies observed a significant
association of breast cancer with the GSTM1 and GSTT1 polymor-
phisms. In another study, an increase in the risk of breast cancer
with a growing number of G alleles of the GSTP1 has been found
[4,5]. Cases carrying reduced EPHX1 activity were found to be at a
higher risk of breast cancer in comparison with carriers of high
EPHX1 activity [6].

Single nucleotide polymorphisms (SNPs) are the most commonly
known genetic variations used in mapping the complex human ge-
netic traits. Approximately 544,000 SNPs are believed to be localized
in the coding region of the human genome, among them the nsSNPs
are the most interesting ones owing to their direct effect on protein
structure and function. These are also considered to be important fac-
tors contributing to functional diversity of the encoded proteins in
human populations [7]. A number of SNP databases are available. Im-
portant among them are the human genome variation database,
HGVBase [8] and the National Center for Biotechnology Information
database, dbSNP [9]. Since the effect of non-coding SNPs on gene reg-
ulation is difficult to understand, attention is being focused toward
non-synonymous coding SNPs. These types of mutations are believed
to cause a change more likely in the structure and as such alter the
function of a protein molecule. These nsSNPs affect gene expression
by modifying DNA and transcription factor binding [6], inactivate ac-
tive sites of enzymes or change splice sites, thereby producing defec-
tive gene products [10].

http://dx.doi.org/10.1016/j.ygeno.2012.04.006
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Fig. 1. Distribution of SNPs in predisposition genes. Note: nsSNPs—nonsynonymous
SNPs, sSNPs—synonymous SNPs.

331T.A. Masoodi et al. / Genomics 99 (2012) 330–339
In the past decade, many of the epidemiologic studies have fo-
cused on identifying the nsSNPs in EPHX1, GSTT1, GSTM1, and
GSTP1 genes examining their association with breast cancer risk
[11]. Although the specific association of EPHX1 and GST gene poly-
morphisms with breast cancer risk is not clear, it is has been postulat-
ed that a decrease in EPHX1 and GST enzyme activities could result in
a higher frequency and a specific pattern of mutations leading to can-
cer predisposition. Many studies focused on studying SNPs in coding
regions, in the hope of finding a significant association between
SNPs and breast cancer susceptibility, but often they find little or no
association [12]. With the availability of high-throughput SNP detec-
tion techniques, the population of nsSNPs is increasing rapidly, pro-
viding a platform for studying the relationship between genotypes
and disease phenotype. Our ability to better select a nsSNP for an as-
sociation study can be enhanced by first examining the possible po-
tential impact of an amino acid variant on the encoded protein
functions using different genomics programs such as Sort Intolerant
from Tolerant (SIFT) Polymorphism Phenotype (PolyPhen), Single
Nucleotide Polymorphism Database (SNPs) & Gene Ontology (GO)
and MutPred etc. Discovering the deleterious nsSNPs out of a reported
huge pool of SNPs could prove to be very useful in epidemiological stud-
ies. Hence, the current study was undertaken to identify the potential
deleterious nsSNPs in EPHX1, GSTT1, GSTM1, and GSTP1genes, to pre-
dict their plausible role in breast cancer susceptibility.

2. Results

2.1. SNP distribution

The EPHX1 gene investigated in this work was reported to have a
total of 639 SNPs, of which 27 were nsSNPs2, 29 were synonymous
SNPs, and 20 were in the non-coding regions, which comprise
8 SNPs in the 5′ UTR and 12 SNPs in the 3′ UTR while the rest were
in the intronic regions. GSTT1 gene is reported to have a total of 103
Table 1
Prediction results of nsSNPs of breast cancer genes under study.

Prediction
result

SIFT algorithma PolyPhen algorithmb SNPs3D

No. of nsSNPs % No. of nsSNPs % No. of n

Deleterious 19 31.14 24 39.34 25
Tolerated 42 68.85 37 60.65 36
Total 61 100 61 100 61

a See web site: SIFT (http://blocks.fhcrc.org/sift/SIFT.html). Positions with normalized pro
erated.

b See web site: PolyPhen (http://genetics.bwh.harvard.edu/pph/). Positions with normali
damaging.

c See web site: SNPs3D (http://www.snps3d.org/). Positions with normalized probabiliti
d See web site: SNPs&GO (http://snps-and-go.biocomp.unibo.it/snps-and-go//). Result is
e See web site: MutPred (http://mutpred.mutdb.org//). Scores with g>0.5 and pb0.05 a
SNPs, of which 11 were nsSNPs, 7 were synonymous SNPs, 2 were
in noncoding regions both of which are present in the 3′ UTR and
the rest were in the intronic regions. GSTM1 was identified to have
154 SNPs, of which 10 were nsSNPs, 9 were synonymous SNPs, 1 in
a non-coding region which is present in the 5′ UTR region and the
rest were in the intronic regions. GSTP1 gene had a total of 155
SNPs, of which 13 were nsSNPs, 6 were synonymous SNPs, which
comprise 7 SNP in the 5′ UTR and 4 SNPs in the 3′ UTR and the rest
were in the intronic regions. Thus a very small percentage of the
SNPs were present either in coding or non-coding regions whereas
the majority was present in the intronic region (Fig. 1). We selected
only non-synonymous coding SNPs for our investigation, which to-
taled 61 nsSNPs in the four genes evaluated (Table 1).

2.2. Prediction of deleterious nsSNPs by SIFT

All nsSNPs retrieved from these genes, were submitted indepen-
dently to the SIFT server. The result showed a total of 19 nsSNPs to
be deleterious with the score of ≤0.05. Seven each in EPHX1 and
GSTP1 genes, 4 in GSTT1 and one in the GSTM1 gene were predicted
to be deleterious (Table 2).

2.3. Prediction of functional modification of coding nsSNPs

To identify the nsSNPs that affect protein structures, they were an-
alyzed for predicting the possible impact of altered amino acids on
the structure and function of the proteins using PolyPhen server.
The fasta protein sequence of each gene with nsSNP position and
their 2 amino acid variants were submitted as input for analyzing
the structural change of proteins. Our result showed a total of 24
nsSNPs that were damaging with the PSIC score of ≥1.5. Out of the
24 nsSNPs predicted, 9 were in EPHX1, 6 in GSTP1, 7 in GSTT1 and 2
in GSTM1 genes (Table 2). Fifteen nsSNPs which were observed to
be deleterious by SIFT server were also predicted to be damaging by
PolyPhen server.

2.4. SNPs3D analysis

We have identified a total of 25 deleterious nsSNPs by SNPs3D
analysis, detailed results of which are shown in Table 2. Out of the
said nsSNPs, 10 were predicted for EPHX1, 6 for GSTT1, 2 for
GSTM1and 7 for GSTP1 genes. Thirteen nsSNPs which were found to
be deleterious and damaging by SIFT and PolyPhen servers were
also predicted to be deleterious by SNPs3D analysis.

2.5. SNPs&GO and MutPred analyses

A total of eight nsSNPs were found to be deleterious by SNPs&GO
(Table 2) which correspond to 1 nsSNP in EPHX1, 2 in GSTT1 and 5 in
GSTP1. From these eight, 7 nsSNPs were also predicted to be polymor-
phic by SIFT, PolyPhen and SNPs3D (Tables 3 and 4). MutPred
algorithmc SNPs&GO algorithmd MutPred algorithme

sSNPs % No. of nsSNPs % No. of nsSNPs %

40.98 8 13.12 28 45.90
59.02 53 86.88 33 54.10

100 61 100 61 100

babilities b0.05 are predicted to be damaging, and those ≥0.20 are predicted to be tol-

zed probabilities b1.5 are predicted to be tolerated, and those ≥1.5 are predicted to be

es b0 are predicted to be deleterious, and those >0 are predicted to be tolerated.
interpreted on the basis of the reliability index score.
re predicted to be deleterious and those gb0.5 and p>0.05 are tolerated.

http://mutpred.mutdb.org/
http://mutpred.mutdb.org/
http://mutpred.mutdb.org/
http://mutpred.mutdb.org/
http://mutpred.mutdb.org/


Table 2
Distribution of deleterious nsSNPs in predisposition genes predicted by SIFT, PolyPhen, SNPs3D, SNPs&GO and MutPred algorithms.

Gene No. of deleterious
nsSNPs predicted
by SIFT

No. of deleterious
nsSNPs predicted
by PolyPhen

No. of deleterious
nsSNPs predicted
by SNPs3D

No. of deleterious
nsSNPs predicted
by SNPs&GO

No. of deleterious
nsSNPs predicted
by MutPred

No. of deleterious
nsSNPs predicted
by either SIFT, PolyPhen,
SNPs3D, SNPs&GO
or MutPred

EPHX1 7 9 10 1 8 4
GSTT1 4 6 6 2 6 2
GSTM1 1 2 2 0 5 1
GSTP1 7 7 7 5 9 6
Total 19 24 25 08 28 13
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predicted 28 nsSNPs to be polymorphic (Table 2) corresponding to
8 in EPHX1, 6 in GSTT1, 5 in GSTM1 and 9 in GSTP1 (Table 2). Thirteen
nsSNPs were predicted to be polymorphic by all the programs except
SNPs&GO which predicted only seven polymorphic nsSNPs. These
correspond to 4 nsSNPs of EPHX1, 2 of GSTT1, 1 of GSTM1 and 6 of
GSTP1 (Tables 3 and 4). Since these thirteen nsSNPs were predicted
to be deleterious and damaging with higher scores by all the
methods, these nsSNPs were found to be more harmful to the normal
function of the proteins concerned.

2.6. Structural modeling of mutant protein

Single amino acid mutations can significantly change the stability
of a protein structure. So, the knowledge of a protein's 3D structure is
essential for a full understanding of its functionality. Information re-
garding how to map the deleterious nsSNPs into protein structure
was taken from the Protein Data Bank. The PDB IDs of the available
structures are given in Table 5. The mutations for the given structures
were performed by Swiss-PDB viewer to get modeled structures.
Then, energy minimizations were performed by NOMAD-Ref server
[13] for the native structures (including homology modeled struc-
ture) and their mutant models. It can be seen from Table 5 that the
total energy for the native structures and the mutant models shows
a great variation with high RMSD values. The native and mutant
models were superimposed by the Swiss PDB viewer to get their
RMSD values (Figs. 2–4). It can be seen that the total energy value
of the GSTP1 native structure (−10448.928 kcal/mol) and its mutant
modeled structures S150W, E31V and D147Y were found to be
−9713.515 kcal/mol, −10127.256 and −9892.780 kcal/mol respec-
tively while the remaining three models showed almost no difference
or less negative energies. The RMSD values between its native and the
S150W, E31V and D147Ymodels were 2.67 Å, 2.08 Å and 2.45 Å while
for the other three models the values were lower. The total energy
value of the GSTT1 native structure (−12983.094 kcal/mol) and its
mutant modeled structure F45C was found to be −11260.579 kcal/
mol while the other mutant model (E173K) has an energy of
−12819.685 which is almost similar to the native structure. The
RMSD values between its native and the F45C and E173K models
were 2.33 Å and 0.99 Å respectively. The total energy values of the
EPHX1 native structure (−7891.090 kcal/mol) and its mutant
Table 3
Deleterious nsSNPs predicted by SIFT, PolyPhen, SNPs3D, SNPs&GO and MutPred
algorithms.

Gene
symbol

SNP ID Amino acid
change

Gene
symbol

SNP ID Amino acid
change

EPHX1 rs72549341 Y374S EPHX rs58623835 R71H
rs2234697 R49C EPHX rs148240980 R71C

GSTT1 rs17856199 F45C GSTT1 rs2234953 E173K
GSTM1 rs142484086 R145W
GSTP1 rs45549733 S150W GSTP1 rs45543438 D58N

rs45506591 E31V GSTP1 rs4986949 D147Y
rs1804666 G78E GSTP1 rs71534294 D158H
modeled structures Y374S, R71H, R49C and R71C were found to be
−6289.072 kcal/mol, −7832.321 kcal/mol, −7240.202 kcal/mol and
−6542.200 kcal/mol respectively with RMSD values of 2.74 Å, 0.39 Å,
1.35 Å and 2.60 Å respectively. “The Ramachandran plot of the EPHX1
modeled structure revealed amino acid residues to be 87.9%, 9.1%,
1.5% and 1.5% in the most favored, additional allowed, generously
allowed and disallowed regions respectively (Fig. 6)”. The high quality
of the model is also confirmed from the VERIFY 3D server as 72.88% of
the residues of the modeled protein showed a score higher than 0.2
(Fig. 7). The total energy value of GSTM1 and its mutant model does
not show anymajor difference. Since the RMSD values and the total en-
ergy after energy minimization are very high for the 13 mutant models
as compared to the native structures wemay presume that thesemuta-
tions cause a significant change in the mutant structure of the protein
with respect to the native structure. These mutations were also
predicted to be functionally significant based on SIFT, PolyPhen,
SNPs3D and MutPred results. Among these 13 mutations, 6 mutations
showed high energy differences with higher RMSD values (Table 5).
The detailed account of all the nsSNPs for the genes under study
predicted by the algorithms used is shown in supplementary informa-
tion S1–S4.

3. Discussion

SNPs are the common form of genetic variations among individ-
uals that are accountable for the majority of inherited traits, including
a significant portion of breast cancer cases. Nonetheless, the exact
mechanisms by which a SNP may result in a phenotypic change are
for the most part unknown. About 2% of all the known single nucleo-
tide variants associated with polygenic disease are non-synonymous
SNPs in protein-coding regions (i.e., SNPs that alter a single amino
acid in a protein molecule). As a result, it is anticipated that this
class of SNPs is related to complex inherited disease traits. Therefore,
to identify nsSNPs that affect protein functions and are related to
breast cancer is an important task. The effect of many nsSNPs will
probably be neutral as natural selection removes mutations on essen-
tial positions. Assessment of non-neutral SNPs is mainly based on
phylogenetic information (i.e. correlation with residue conservation)
extended to a certain degree with structural approaches. Much atten-
tion has been focused on modeling by different methods to determine
the possible phenotypic effect of nsSNPs, and only recently interest is
focused on functional SNPs which affect the regulatory regions or the
splicing process. Moreover, because of their widespread distribution
in the genome of a species, SNPs have become important target ge-
netic makers in breast cancer diagnosis and treatment. Besides the
numerous ongoing efforts to identify millions of these SNPs by high-
throughput methods now, there is also a focus on studying associa-
tions between these genetic variations and breast cancer risk by
using a molecular epidemiological approach. This plethora of SNPs
poses a challenge to scientists in planning expensive population-
based genotyping [14,15].

Currently, most molecular studies are focusing on SNPs located in
coding and regulatory regions, yet many of these studies have been



Table 4
Score of nsSNPs and their impact predicted by all the algorithms.

Gene SNP ID SIFT
score

Predicted
impact

PolyPhen
score

Predicted
impact

SNPs3D
score

Predicted
impact

SNPs&GO
score

Predicted
impact

MutPred
score

Predicted
impact

EPHX1 rs72549341 0.00 Damaging 3.429 PRD −3.81 Deleterious 4 Pathogenic 0.798 Supp. data
rs58623835 0.00 Damaging 2.676 PRD −2.37 Deleterious 6 Neutral 0.797 Supp. data
rs2234697 0.00 Damaging 2.596 PRD −0.45 Deleterious 8 Neutral 0.406 Supp. data
rs148240980 0.02 Damaging 3.217 PRD −3.40 Deleterious 5 Neutral 0.844 Supp. data

GSTT1 rs17856199 0.00 Damaging 2.993 PRD −3.43 Deleterious 1 Pathogenic 0.657 Supp. data
rs2234953 0.03 Damaging 2.240 PRD −2.72 Deleterious 3 Neutral 0.242 Supp. data

GSTM1 rs142484086 0.01 Damaging 2.390 PRD −0.44 Deleterious 3 Neutral 0.468 Supp. data
GSTP1 rs45549733 0.00 Damaging 2.509 PRD −3.26 Deleterious 7 Pathogenic 0.740 Supp. data

rs45543438 0.03 Damaging 1.178 PD −2.22 Deleterious 2 Neutral 0.724 Supp. data
rs45506591 0.02 Damaging 2.639 PRD −2.18 Deleterious 3 Pathogenic 0.745 Supp. data
rs4986949 0.00 Damaging 2.439 PRD −1.94 Deleterious 5 Pathogenic 0.827 Supp. data
rs1804666 0.01 Damaging 1.794 PD −1.13 Deleterious 2 Pathogenic 0.622 Supp. data
rs71534294 0.02 Damaging 2.234 PRD −0.62 Deleterious 0 Pathogenic 0.710 Supp. data

Note: PRD—probably damaging; PD—possibly damaging, Supp. data—predicted impact is shown in supplementary data.
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unable to detect their significant associations with disease suscepti-
bility. To develop a coherent approach for prioritizing SNP selection
for genotyping in molecular studies, an evolutionary perspective to
SNP screening is applied. It was suggested that nsSNPs corresponding
to conserved amino acids are more likely to be functionally significant
to disease susceptibility [14,15]. It is becoming clear that the applica-
tion of the molecular evolutionary approach may be a powerful tool
for prioritizing SNPs to be genotyped in future molecular epidemio-
logical studies. A computational approach was exploited to study
the systematic analysis of SNPs by means of PolyPhen, SIFT, SNP3D,
SNPs&GO and MutPred programs. Therefore, an effort was made to
identify SNPs that can modify the function and expression of the
genes which predispose to breast cancer.

SIFT is a program designed on the levels of conservation among
the species. Information regarding the common position of the
amino acid substitution relative to critical, structural and functional
characteristics provides further understanding of evolutionary con-
servation. A low score indicates that the position is either severely
gapped or unalignable and we also expect poor prediction at this po-
sition which is based on an already established classification [16].
Among the total 61 nsSNPs, 19 nsSNPs were predicted to be deleteri-
ous by SIFT with the score of≤0.05. Several groups have tried to eval-
uate the ability of SIFT to distinguish between neutral and deleterious
substitutions [17,18]. The performance of SIFT was also analyzed in
healthy individuals by Cargill et al. [19]. In another study, Palmer et
al. tried to validate the SIFT in MSHR gene, and found that predicted,
Table 5
RMSD and total energy of native-structures and their mutant models.

Total energy
(native-structure)
(kJ/mol)

Total energy
(mutant models)
(kJ/mol)

RMSD
(Å)

GSTM1 (PDB ID 2f3m)
rs142484086 −10405.183 −10060.114 1.87

GSTP1 (PDB ID 3pgt)
rs45549733 −10448.928 −9713.515 2.67
rs45543438 −10448.928 −10629.228 1.86
rs45506591 −10448.928 −10127.256 2.08
rs4986949 −10448.928 −9892.780 2.45
rs1804666 −10448.928 −10484.553 1.81
rs71534294 −10448.928 −10555.339 1.97

GSTT1 (PDB ID 2c3n)
rs17856199 −12983.094 −11260.579 2.33
rs2234953 −12983.094 −12819.685 0.99

EPHX1 (homology model)
rs72549341 −7891.090 −6289.072 2.74
rs58623835 −7891.090 −7832.321 0.39
rs2234697 −7891.090 −7240.202 1.35
rs148240980 −7891.090 −6542.200 2.60

Note: Highly polymorphic nsSNPs are highlighted as bold.
tolerated substitutions L60V and R163Q by SIFT were in concordance
with the experimental results [20]. So far, data on the validity of these
algorithms have come from benchmarking studies based on the anal-
ysis of “known” deleterious substitutions annotated in databases,
such as SwissProt [16,18]. Experimental studies of individual proteins
have also confirmed the accuracy of SIFT [21,22].

The PolyPhen web server developed by Sunyaev and coworkers
[23] uses both sequence and structural information to predict wheth-
er mutations are deleterious. BLAST is used to make a multiple se-
quence alignment from homologous proteins (30–94% sequence
identity with the query), and PSIC [24] is used to construct a
position-specific scoring matrix (PSSM) from this alignment. Poly-
Phen uses BLAST to identify proteins of known structure homologous
to the query, but restricts its results to sequences in the PDB that are
50% identical to the query, and cases for which the amino acid in the
structure is the same as the wild-type amino acid under study. Poly-
Phen uses the sequence alignment and the known structure to deter-
mine residue accessibility and proximity to ligands and interfaces
with other subunits in the structure. A total of 24 nsSNPs of EPHX1,
GSTP1, GSTT1 and GSTM1 genes were predicted to be damaging by
PolyPhen.

Using SNPs3D, a total of 25 nsSNPs were found to be deleterious in
all the four genes under study. For the accuracy of this program, Yue
and Moult [25] developed a stability base model in SNPs3D to identify
which non-synonymous single mutations have a deleterious effect on
protein function in vivo using support vector machines (SVM). This
model uses experimental or predicted protein structures to estimate
the deleterious effects of mutations on the stability of folded proteins
[26]. Using the stability model, 10,263 disease-causing mutations in
731 proteins were retrieved from HGMD [27] and the same 731
monogenic disease proteins were used to obtain 16,682 mutations
not significant to the disease in the control set. Appropriate structural
information was revealed for only 37% of mutations in the disease set
and 14% of mutations in the control set, which were used in training
and testing the data set. A set of factors was used to approximate the
stability effect of a mutation on protein structure, including electro-
static interactions, over-packing and cavities, hydrophobic burial, sur-
face accessibility, structural rigidity from crystallographic B-factors,
backbone strain, buried charged or polar residues, and breakage of di-
sulfide bonds. Ten-fold cross validation was used to train the SVM.
The final true positive rate (TPR) and true negative rate (TNR) for
the stability model were equal to 74% and 85%, respectively.

SNPs&GO, a new SVM based method uses different pieces of infor-
mation derived from the Gene Ontology (GO) annotation to predict
disease-related mutations. SNPs&GO was trained on a set of more
than 33,000 mutations and tested with cross validation procedure
over sets in which similar proteins were kept in the same dataset
also for the calculation of the LGO score, derived from the GO data

pdb:2f3m
pdb:3pgt
pdb:2c3n


Fig. 2. {A} Superimposed 3D structure of GSTT1 (pink) with mutant E173K (green), {B} superimposed 3D structure of GSTT1 (pink) with mutant F45C (green), and {C} sup-
erimposed 3D structure of GSTMl (pink) with mutant R145 (green).
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base. At an increasing input level of complexity, the performance is
also increased, suggesting that on top of the sequence profile, LGO,
derived from the protein GO annotation, is also a crucial added
value to discriminate disease related polymorphisms from neutral
ones. Finding the increased level of performance upon the addition
of information to the input data corroborates the notion that support
vector machines can capture all the correlations existing in comple-
mentary knowledge. Calabrese R et al., [28] in their analysis proved
that presently SNPs&GO is one of the best scoring classifiers available
for predicting whether a mutation at the protein level is disease-
related or not.

MutPred employs the SIFT method for unfolding the evolutionary
elements, together with PSI-BLAST, transition frequencies and Pfam
results [29]. The structural descriptors in MutPred include the estima-
tion of solvent accessibility and secondary structure by the PHD
method [30], transmembrane helix estimation by TMHMM [31],
coiled-coil structure estimation by MARCOIL [32], stability explora-
tion by I-Mutant 2.0 and disorder exploration by DisProt [33]. Func-
tional characteristics comprise exploration of DNA-binding residues,
catalytic residues and posttranslational modification sites. The Mut-
Pred method estimates effects of an amino acid substitution on the
set of defined properties of a protein and based on those estimates,
predicts whether an amino acid substitution is likely to have pheno-
typic effects. In a recent study Thusberg J et al. [34], suggested that
SNPs&GO and MutPred are the best methods to identify deleterious
SNPs with accuracies of 0.82 and 0.81, respectively.

Protein structural analysis was carried out based on the screened
results obtained from SIFT, PolyPhen, SNP3D, SNPs&GO and MutPred.
Protein 3D structural information is an important feature for
predicting the effects of deleterious nsSNPs. Moreover, protein struc-
ture analysis provides key information about the environment of a
mutation. However, not all protein variants have 3D structures that
are analyzed and deposited in PDB. Therefore, it is necessary to con-
struct 3D models using molecular modeling protocols. This will help
in understanding the adverse effects, a mutation can implicate on
the concerned protein. To predict the structural deviations caused
by single amino acid substitutions between mutant and native
forms, their RMSD values were computed and examined using
Swiss-PDB viewer. Computing the energy gives the information
about the protein structure stability. Hence, total energy values
(kcal/mol) of native and mutated modeled structures were also com-
pared. Mutant structures of GSTP1 with PDB ID 3pgt at positions
S150W, E31V and D147Y, mutant structures of GSTT1 with PDB ID
2c3n at position F45C and mutant structures of homology modeled
EPHX1 at positions Y374S and R71C showed an increase in total ener-
gy level (less favorable change) and increase in RMSD value deviation
in comparison with the native structure. To improve the strength of
our analysis, the data was evaluated by the combination of all the
tools used. Significant concordance was observed between the func-
tional consequences of nsSNPs. By comparing the scores of the differ-
ent methods used in this analysis, 6 nsSNPs with IDs rs45549733,
rs45506591 and rs4986949 of GSTP1, rs72549341 and rs148240980
of EPHX1 and rs17856199 of GSTM1 were predicted to be functional-
ly significant. Evidence suggests that polymorphisms in activating
and detoxifying enzymes may interact to affect the level of DNA dam-
age sustained by a specific tissue and ultimately influence disease risk
[35]. Although some population-based studies have examined the as-
sociation of polymorphic EPHX1, GSTT1, GSTM1 and GSTP1 genes
with breast cancer [36,37], none of the 6 nsSNPs identified in this
study, has so far been screened. The 6 identified nsSNPs could elevate
the accumulation of carcinogenic metabolites by altering the activa-
tion and detoxification processes, thus leading to a modified risk of
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Fig. 3. Superimposed 3D structure of GSTP1 (pink) with its mutant models (green) {A} D147Y, {B} D58, {C} D158H, {D}, E31V, {E} G78E and {F} S150W.
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breast cancer susceptibility in a group of women. Hence, they consti-
tute a unique resource of SNPs that may considerably increase the
power of breast cancer epidemiological studies.

The current study shows that utilization of SIFT, PolyPhen,
SNPs3D, SNPs&GO and MutPred servers has facilitated to filter the
number of reported SNPs in target genes. Additionally, this study
has identified that rs45549733, rs45506591 and rs4986949 of
GSTP1, rs17856199 of GSTM1 and rs72549341 and rs148240980 of
EPHX1 are potentially polymorphic nsSNPs, which can be further hy-
pothesized to have a plausible role in BC susceptibility. Animal
models or breast cancer cell line based testing of these nsSNPs can
help to determine if the functions of these proteins are indeed altered.
Prioritization of nsSNPs before attempting to conduct large-scale
population-based epidemiologic studies may not only potentiate the
disease risk assessment but also curtail study costs.
4. Methodology

The methods followed in this study were the same as described
previously [7,38]. Briefly, well-known and widely accessible compu-
tational techniques such as SIFT, PolyPhen, SNPs3D, SNPs&GO and
MutPred are used to determine whether an nsSNP is neutral or dele-
terious. Thesemethods have been trained on existing sets of mutation
association data and use the sequence and structural information as
an input to machine learning methods for phenotype extrapolation.

4.1. Screening of SNPs

The data on human EPHX1, GSTT1, GSTM1 and GSTP1genes was
collected from the Online Mendelian Inheritance in Man (OMIM)
and Entrez Gene on National Center for Biological Information
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Fig. 4. Superimposed homology modeled structure of EPHXl (pink) with its mutant models (green) {A} R49C, {B} R71C, {C} R71H and {D} Y374S.
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(NCBI) web sites. The information about SNPs such as the protein ac-
cession number (NP), mRNA accession number (NM) and SNP ID of
all the genes was retrieved from the NCBI dbSNP (http://www.ncbi.
nlm.nih.gov/snp/) and SwissProt databases (http://expasy.org/).

4.2. Prediction of tolerant and deleterious SNPs using SIFT

Sorting the intolerant from the tolerant available from http://sift.
jcvi.org/ is a suite that can distinguish between functionally neutral
Fig. 5. {A} 3D structure of template (PDB ID 1QO7), {B} homology mod
and deleterious amino acid changes; hence it is widely used to detect
if an amino acid substitution affects the function and phenotypic ex-
pression of a protein [39]. SIFT algorithm uses a modified version of
PSIBLAST [40] and Dirichlet mixture regularization [41] and the un-
derlying principle of this program is that it generates alignments
with a large number of homologous sequences and assigns scores to
each residue, ranging from zero to one. SIFT scores were classified
as damaging (0.00–0.05), potentially damaging (0.051–0.10), border-
line (0.101–0.20), or tolerant (0.201–1.00). The SIFT result is in the
eled structure of EPHXl protein predicted using MODELLER v9.10.

http://www.ncbi.nlm.nih.gov/snp/
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http://expasy.org/
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Fig. 6. Ramachandran plot of the EPHXl model. The most favored regions are colored
red, additional allowed, generously allowed and disallowed regions are indicated as
yellow, light yellow and white fields, respectively.
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form of fraction of sequences with the representation of amino acids
in color code: black (nonpolar); green (uncharged polar); red (basic);
blue (acidic). A low fraction indicates that the position is a severely
gapped position that has very little information.

4.3. Simulation for functional change in coding nsSNPs by PolyPhen

PolyPhen which is available from Harvard School of Medicine
(http://genetics.bwh.harvard.edu/pph/) is a software tool which
predicts the possible impact of amino acid substitutions on the struc-
ture and function of human proteins based on a combination of
phylogenetic, structural and sequence annotation information char-
acterizing a substitution and its position in the protein. The input of
PolyPhen is an amino acid sequence or corresponding ID, the position
of the amino acid variants [42]. PolyPhen searches for the three-
dimensional protein structures, multiple alignments of homologous
sequences and amino acid contact information in several protein
structure databases. Then, it calculates position-specific independent
count (PSIC) scores for each variant, and computes the difference of
Fig. 7. The energy profile obtained from Verify 3D. The compatibility scor
the PSIC scores between the two variants. The higher a PSIC score dif-
ference, the higher functional impact a particular amino acid substitu-
tion is likely to have. The PolyPhen scores can be classified as
probably damaging (>2.00), possibly damaging (1.50–1.99), poten-
tially damaging (1.25–1.49), or benign (0.00–0.99).
4.4. Protein stability prediction by SNPs3D

In SNPs3D (http://www.SNPs3D.org), the likely functional impact
of non-synonymous SNPs is assessed by two methods. One method
makes use of protein structure to identify which amino acid substitu-
tion significantly destabilizes the folded state and the second method
identifies deleterious substitutions through analysis of the extent and
nature of amino acid conservation at the affected sequence position
[43]. The protein functional change was predicted from the accession
numbers (NP_000111, NP_000552, NP_000843 and NP_000844
corresponding to EPHX1, GSTM1, GSTP1 and GSTT1 respectively).
The algorithm makes use of a machine learning technique, the sup-
port vector machine (SVM), to assign each SNP as deleterious or
non-deleterious to protein function. A negative value indicates that
the mutated protein is deleterious and vice versa.
4.5. Prediction by SNPs&GO and MutPred

SNPs&GO, developed in the Laboratory of Biocomputing at the
University of Bologna available from http://snps.uib.es/snps-and-go/
is an accurate method based on the support vector machine for
predicting disease related mutations from the protein sequences
which uses scoring with an accuracy of 82% and a Matthews correla-
tion coefficient of 0.63. SNPs&GO collects unique framework informa-
tion derived from protein sequence, protein sequence profile, and
protein function. The output binary prediction (pathogenic/neutral)
is taken into consideration [28]. MutPred is a Random Forest-based
classification method that utilizes numerous attributes related to pro-
tein structure, function, and evolution. MutPred, developed by the
Buck Institute for Age Research and Indiana University available at
http://mutpred.mutdb.org/ is based upon SIFT and a gain/loss of 14
different structural and functional properties. It has been trained
using the deleterious mutations from the Human Gene Mutation Da-
tabase and neutral polymorphisms from Swiss-Prot [44]. The training
data set contains 39,218 disease-related mutations from HGMD and
26,439 putatively neutral substitutions from Swiss-Prot. The output
of MutPred contains a general score (g), i.e., the probability that the
amino acid substitution is deleterious/disease-associated, and top 5
property scores (p), where p is the p-value that certain structural
and functional properties are impacted [45].
e above zero corresponds to the acceptable side chain environment.

http://genetics.bwh.harvard.edu/pph/
http://www.SNPs3D.org
http://snps.uib.es/snps-and-go/
http://mutpred.mutdb.org/
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4.6. Total energy and RMSD calculations

Structure analysis was performed to evaluate the structural stabil-
ity of native andmutant protein models. The web resource BLAST [40]
was used to identify the 3D structure of proteins coded by concerned
genes. The 3D structure of the EPHX1 protein was not available, so the
homology modeling approach was used for its 3D structure predic-
tion. The modeling was performed by using the homology modeling
program, MODELLER v9.10 [46]. The following steps were followed:
template structure search using BLAST [http://www.ncbi.nlm.nih.
gov]. The FASTA sequence of EPHX1 was submitted to NCBI BLAST.
Following BLAST query, the structure of epoxide hydrolase (PDB ID:
1QO7) was selected as the template sequence (Fig. 5). The template
was used to build the 3D structure of EPHX1 using MODELLER. The
validation of the structured model was performed by using
PROCHECK [47] and energy minimization was performed by Verify3D
[48] and NOMAD-Ref server [10]. The overall stereo chemical quality
of the protein was assessed by Ramachandran plot analysis [49]. The
structures were visualized using Swiss PDB viewer and energy mini-
mization for 3D structures was performed by NOMAD-Ref server,
which uses Gromacs as the default force field for energy minimization
based on the methods of steepest descent, conjugate gradient and L-
BFGS [50]. Conjugate gradient method was used for optimizing the 3D
structures. RMSD values were computed for both mutant and native
structures, to check the structural divergences between them [51,52].

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.ygeno.2012.04.006.
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