

a, citation and similar papers at core.ac.uk

Available online at www.sciencedirect.com

brought to

provided by Elsevier -

www.elsevier.com/locate/jmaa

Existence of fractional differential equations

Cheng Yu*, Guozhu Gao

Department of Applied Mathematics, Donghua University, Shanghai 200051, PR China

Received 6 November 2004 Available online 17 March 2005 Submitted by B. Bongiorno

Abstract

Consider the fractional differential equation

 $D^{\alpha}x = f(t, x),$

where $\alpha \in (0, 1)$ and f(t, x) is a given function. We obtained a sufficient condition for the existence for the solutions of this equation, improving previously known results. © 2005 Elsevier Inc. All rights reserved.

Keywords: Existence; Fractional differential equations

1. Introduction

The qualitative properties of the solution of the fractional differential equation

$$D^{\alpha}x = f(t, x),$$

(1)

where $\alpha \in (0, 1)$ and f(t, x) is a given function, have been the subject of many investigations. This equation has been extensively studied by many authors [1–4,6]; El-Sayed [1] gave a systematic study. Since 1988 when El-Sayed [1] obtained a theorem of existence and uniqueness for Eq. (1), the existence and uniqueness of Eq. (1) has also been discussed

* Corresponding author. E-mail addresses: yucheng@mail.dhu.edu.cn (C. Yu), gzgao@dhu.edu.cn (G. Gao).

0022-247X/\$ – see front matter $\,$ © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2004.12.015

extensively in the literature. Now it is well known (see [2–4]) that Eq. (1) has a unique solution, provided that Lipschitz condition holds.

Therefore, our first aim in this paper is to establish a theorem which improves the existing results in the literature [1–4].

The paper is organized as follows. In Section 2 we recall the definitions of fractional integral and derivative and related basic properties used in the text. Section 3 contains results for solutions which are continuous at the origin.

2. Definitions and lemmas

In this section we first give some definitions used in the text.

First, Let I = [0, T] and $D = I \times C(I)$, where C(I) is the class of all continuous functions defined on I, with the norm

$$||x|| = \max |x(t)|, \quad t \in I, \ x(t) \in C(I).$$

Definition 2.1 [3]. The fractional primitive of order $\alpha > 0$ of a function $f: \mathbb{R}^+ \to \mathbb{R}$ is given by

$$I^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\theta)^{\alpha-1} f(\theta) \, d\theta,$$

provided the right side is pointwise defined on R^+ .

Definition 2.2 [3]. The fractional derivate of order $0 < \alpha < 1$ of a function $f : R^+ \to R$ is given by

$$D^{\alpha}f(t) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_{0}^{t} (t-\theta)^{-\alpha} f(\theta) d\theta,$$

provided the right side is pointwise defined on R^+ .

Now we need the following lemmas:

Lemma 2.1 [2]. Let $x(t) \in C(I)$ and $f(t, x(t)) \in C(D)$, if a solution of Eq. (1) exists, then *it is given by*

$$x(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\theta)^{\alpha-1} f(\theta, x(\theta)) d\theta,$$

where Γ is the gamma function.

Lemma 2.2 [5] (Schauder fixed-point theorem). If U is a close bounded convex subset of a Banach space X and $T: U \rightarrow U$ is completely continuous, then T has a fixed point in U.

3. Theorem of existence

Theorem 3.1. If f is a continuous function on $I \times R$ and suppose the following holds:

$$\left|f(t,x) - f(t,y)\right| \leq \lambda(t)h(r),\tag{2}$$

where h(r) is continuous on $[0, \infty)$ and h(0) = 0, r = |x - y|, $|I^{\alpha}\lambda(t)| < M$ for $t \in I$, then there exists a continuous solution x(t) of Eq. (1), which is defined on $[0, \overline{\mu}]$ for a suitable $\overline{\mu} < T$.

Proof. Let $I_{\mu} = [0, \mu]$, fix $\nu > 0$ and denote norm of $||f|| = \max |f(t, x)|$, $t \in I$ and $|x| \leq \nu$.

Choose $\bar{\mu}, \bar{\nu}$ so that $0 \leq \bar{\mu} \leq T, 0 \leq \bar{\nu} \leq \nu, \frac{\|f\|\bar{\mu}^{\alpha}}{\Gamma(\alpha+1)} \leq \bar{\nu}$, and define the set $A = A(\bar{\mu}, \bar{\nu})$ of function ϕ in $C(I_{\mu}, R)$ which satisfies $\phi(0) = 0$ and $|\phi(t)| \leq \bar{\nu}$ for all $t \in I_{\bar{\mu}}$.

The set A is a closed, bounded and convex.

For any ϕ in A, define the function $G\phi$ by the relation

$$G\phi(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\theta)^{\alpha-1} f(\theta,\phi(\theta)) d\theta, \quad t \in I_{\bar{\mu}}.$$
(3)

The fixed points of G in A coincide with the solutions of equation in A. We can apply the Schauder theorem to prove the existence of a fixed point of G in A.

For any ϕ in *A*, the operator *G* is well defined since $f(\theta, \phi(\theta))$ is bounded for ϕ in *A*. Also, $G\phi(0) = \phi(0) = 0$, and $G\phi(t)$ is continuous for $t \in I$, $\overline{\mu} \in I$. Moreover, using the condition of (4), we have

$$\begin{split} \left| G\phi(t) \right| &\leqslant \left| \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\theta)^{\alpha-1} f\left(\theta, \phi(\theta)\right) d\theta \right| \\ &\leqslant \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \left| (t-\theta)^{\alpha-1} f\left(\theta, \phi(\theta)\right) \right| d\theta \leqslant \frac{\|f\| \, \bar{\mu}^{\alpha}}{\Gamma(\alpha+1)} \leqslant \bar{\nu} \end{split}$$

for all $t \in I_{\bar{\mu}}$.

Therefore, $G: A \to A$.

The operator *G* is continuous on *A*. In fact, if ϕ_n , n = 0, 1, 2, 3..., and $\phi \in A$ with $|\phi_n - \phi| \to 0$ as $n \to \infty$.

Then for $t \in I$, $\bar{\mu} \in I$, we have

$$\begin{aligned} |G\phi_n - G\phi| \\ &= \left| \frac{1}{\Gamma(\alpha)} \int_0^t (t-\theta)^{\alpha-1} f(\theta, \phi_n(\theta)) d\theta - \frac{1}{\Gamma(\alpha)} \int_0^t (t-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d\theta \right| \\ &\leq \left| \frac{1}{\Gamma(\alpha)} \int_0^t (t-\theta)^{\alpha-1} |f(\theta, \phi_n(\theta)) - f(\theta, \phi(\theta))| d\theta \right| \end{aligned}$$

$$\leq \left| \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\theta)^{\alpha-1} \lambda(\theta) h(|\phi_{n}(\theta) - \phi(\theta)|) d\theta \right|$$

$$\leq \left| I^{\alpha} \lambda(t) \right| h(r).$$

Since h(r) is continuous on $[0, \infty)$ and h(0) = 0, we have $h(r) \to 0$ as $r \to 0$. On the other hand, $r = |\phi_n - \phi| \to 0$ as $n \to \infty$ and $|I^{\alpha}\lambda(t)| < M$, therefore $G: A \to A$ is continuous.

For any ϕ in A, let t, τ in I and $t \leq \tau, \overline{\mu} \in I$,

$$\begin{split} \left| G\phi(t) - G\phi(\tau) \right| \\ &= \left| \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\theta)^{\alpha-1} f\left(\theta, \phi(\theta)\right) d\theta - \frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} (\tau-\theta)^{\alpha-1} f\left(\theta, \phi(\theta)\right) d\theta \right| \\ &\leqslant \left| \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\theta)^{\alpha-1} f\left(\theta, \phi(\theta)\right) d\theta - \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (\tau-\theta)^{\alpha-1} f\left(\theta, \phi(\theta)\right) d\theta \right| \\ &+ \left| \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (\tau-\theta)^{\alpha-1} f\left(\theta, \phi(\theta)\right) d\theta - \frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} (\tau-\theta)^{\alpha-1} f\left(\theta, \phi(\theta)\right) d\theta \right| \\ &\leqslant \frac{\|f\|}{\Gamma(\alpha+1)} \Big[\left| \tau^{\alpha} - t^{\alpha} - (\tau-t)^{\alpha} \right| + (\tau-t)^{\alpha} \Big]. \end{split}$$

So we obtain that the set GA is an equicontinuous set of $C(I_{\bar{\mu}}, R)$. It is also uniformly bounded. This proves GA is relatively compact and, thus, G is completely continuous. The Schauder fixed point theorem implies the existence point in A and the theorem is proved.

Remark 3.2. If $\lambda(t) = L > 0$ is a constant, then condition (3) reduces to the Osgood condition.

If $\lambda(t) = L > 0$ and h(|x - y|) = |x - y|, then condition (3) reduces to the Lipschitz condition.

References

- [1] A.M.A. El-Sayed, Fractional differential equations, Kyungpook Math. J. 28 (1988).
- [2] A.M.A. El-Sayed, On the fractional differential equations, Appl. Math. Comput. 49 (1992) 205–213.
- [3] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996) 609–625.
- [4] K. Diethlm, N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002) 229-248.
- [5] J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
- [6] H.M. Srivastava, R.K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput. 118 (2001) 1–52.