Existence of fractional differential equations

Cheng Yu*, Guozhu Gao
Department of Applied Mathematics, Donghua University, Shanghai 200051, PR China
Received 6 November 2004
Available online 17 March 2005
Submitted by B. Bongiorno

Abstract

Consider the fractional differential equation $$
D^{\alpha} x=f(t, x),
$$ where $\alpha \in(0,1)$ and $f(t, x)$ is a given function. We obtained a sufficient condition for the existence for the solutions of this equation, improving previously known results. © 2005 Elsevier Inc. All rights reserved.

Keywords: Existence; Fractional differential equations

1. Introduction

The qualitative properties of the solution of the fractional differential equation

$$
\begin{equation*}
D^{\alpha} x=f(t, x), \tag{1}
\end{equation*}
$$

where $\alpha \in(0,1)$ and $f(t, x)$ is a given function, have been the subject of many investigations. This equation has been extensively studied by many authors [1-4,6]; El-Sayed [1] gave a systematic study. Since 1988 when El-Sayed [1] obtained a theorem of existence and uniqueness for Eq. (1), the existence and uniqueness of Eq. (1) has also been discussed

[^0]extensively in the literature. Now it is well known (see [2-4]) that Eq. (1) has a unique solution, provided that Lipschitz condition holds.

Therefore, our first aim in this paper is to establish a theorem which improves the existing results in the literature [1-4].

The paper is organized as follows. In Section 2 we recall the definitions of fractional integral and derivative and related basic properties used in the text. Section 3 contains results for solutions which are continuous at the origin.

2. Definitions and lemmas

In this section we first give some definitions used in the text.
First, Let $I=[0, T]$ and $D=I \times C(I)$, where $C(I)$ is the class of all continuous functions defined on I, with the norm

$$
\|x\|=\max |x(t)|, \quad t \in I, x(t) \in C(I)
$$

Definition 2.1 [3]. The fractional primitive of order $\alpha>0$ of a function $f: R^{+} \rightarrow R$ is given by

$$
I^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f(\theta) d \theta
$$

provided the right side is pointwise defined on R^{+}.
Definition 2.2 [3]. The fractional derivate of order $0<\alpha<1$ of a function $f: R^{+} \rightarrow R$ is given by

$$
D^{\alpha} f(t)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d t} \int_{0}^{t}(t-\theta)^{-\alpha} f(\theta) d \theta
$$

provided the right side is pointwise defined on R^{+}.
Now we need the following lemmas:
Lemma 2.1 [2]. Let $x(t) \in C(I)$ and $f(t, x(t)) \in C(D)$, if a solution of Eq. (1) exists, then it is given by

$$
x(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f(\theta, x(\theta)) d \theta
$$

where Γ is the gamma function.
Lemma 2.2 [5] (Schauder fixed-point theorem). If U is a close bounded convex subset of a Banach space X and $T: U \rightarrow U$ is completely continuous, then T has a fixed point in U.

3. Theorem of existence

Theorem 3.1. If f is a continuous function on $I \times R$ and suppose the following holds:

$$
\begin{equation*}
|f(t, x)-f(t, y)| \leqslant \lambda(t) h(r) \tag{2}
\end{equation*}
$$

where $h(r)$ is continuous on $[0, \infty)$ and $h(0)=0, r=|x-y|,\left|I^{\alpha} \lambda(t)\right|<M$ for $t \in I$, then there exists a continuous solution $x(t)$ of $E q$. (1), which is defined on $[0, \bar{\mu}]$ for a suitable $\bar{\mu}<T$.

Proof. Let $I_{\mu}=[0, \mu]$, fix $v>0$ and denote norm of $\|f\|=\max |f(t, x)|, t \in I$ and $|x| \leqslant \nu$.

Choose $\bar{\mu}, \bar{v}$ so that $0 \leqslant \bar{\mu} \leqslant T, 0 \leqslant \bar{v} \leqslant \nu, \frac{\|f\| \bar{\mu}^{\alpha}}{\Gamma(\alpha+1)} \leqslant \bar{v}$, and define the set $A=A(\bar{\mu}, \bar{\nu})$ of function ϕ in $C\left(I_{\mu}, R\right)$ which satisfies $\phi(0)=0$ and $|\phi(t)| \leqslant \bar{\nu}$ for all $t \in I_{\bar{\mu}}$.

The set A is a closed, bounded and convex.
For any ϕ in A, define the function $G \phi$ by the relation

$$
\begin{equation*}
G \phi(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta, \quad t \in I_{\bar{\mu}} \tag{3}
\end{equation*}
$$

The fixed points of G in A coincide with the solutions of equation in A. We can apply the Schauder theorem to prove the existence of a fixed point of G in A.

For any ϕ in A, the operator G is well defined since $f(\theta, \phi(\theta))$ is bounded for ϕ in A.
Also, $G \phi(0)=\phi(0)=0$, and $G \phi(t)$ is continuous for $t \in I, \bar{\mu} \in I$.
Moreover, using the condition of (4), we have

$$
\begin{aligned}
|G \phi(t)| & \leqslant\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta\right| \\
& \leqslant \frac{1}{\Gamma(\alpha)} \int_{0}^{t}\left|(t-\theta)^{\alpha-1} f(\theta, \phi(\theta))\right| d \theta \leqslant \frac{\|f\| \bar{\mu}^{\alpha}}{\Gamma(\alpha+1)} \leqslant \bar{v}
\end{aligned}
$$

for all $t \in I_{\bar{\mu}}$.
Therefore, $G: A \rightarrow A$.
The operator G is continuous on A. In fact, if $\phi_{n}, n=0,1,2,3 \ldots$, and $\phi \in A$ with $\left|\phi_{n}-\phi\right| \rightarrow 0$ as $n \rightarrow \infty$.

Then for $t \in I, \bar{\mu} \in I$, we have

$$
\begin{aligned}
&\left|G \phi_{n}-G \phi\right| \\
&=\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f\left(\theta, \phi_{n}(\theta)\right) d \theta-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta\right| \\
& \leqslant\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1}\right| f\left(\theta, \phi_{n}(\theta)\right)-f(\theta, \phi(\theta))|d \theta|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} \lambda(\theta) h\left(\left|\phi_{n}(\theta)-\phi(\theta)\right|\right) d \theta\right| \\
& \leqslant\left|I^{\alpha} \lambda(t)\right| h(r)
\end{aligned}
$$

Since $h(r)$ is continuous on $[0, \infty)$ and $h(0)=0$, we have $h(r) \rightarrow 0$ as $r \rightarrow 0$. On the other hand, $r=\left|\phi_{n}-\phi\right| \rightarrow 0$ as $n \rightarrow \infty$ and $\left|I^{\alpha} \lambda(t)\right|<M$, therefore $G: A \rightarrow A$ is continuous.

For any ϕ in A, let t, τ in I and $t \leqslant \tau, \bar{\mu} \in I$,

$$
\begin{aligned}
&|G \phi(t)-G \phi(\tau)| \\
&=\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta-\frac{1}{\Gamma(\alpha)} \int_{0}^{\tau}(\tau-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta\right| \\
& \leqslant\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(\tau-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta\right| \\
&+\left|\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(\tau-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta-\frac{1}{\Gamma(\alpha)} \int_{0}^{\tau}(\tau-\theta)^{\alpha-1} f(\theta, \phi(\theta)) d \theta\right| \\
& \leqslant \frac{\|f\|}{\Gamma(\alpha+1)}\left[\left|\tau^{\alpha}-t^{\alpha}-(\tau-t)^{\alpha}\right|+(\tau-t)^{\alpha}\right] .
\end{aligned}
$$

So we obtain that the set $G A$ is an equicontinuous set of $C\left(I_{\bar{\mu}}, R\right)$. It is also uniformly bounded. This proves $G A$ is relatively compact and, thus, G is completely continuous. The Schauder fixed point theorem implies the existence point in A and the theorem is proved.

Remark 3.2. If $\lambda(t)=L>0$ is a constant, then condition (3) reduces to the Osgood condition.

If $\lambda(t)=L>0$ and $h(|x-y|)=|x-y|$, then condition (3) reduces to the Lipschitz condition.

References

[1] A.M.A. El-Sayed, Fractional differential equations, Kyungpook Math. J. 28 (1988).
[2] A.M.A. El-Sayed, On the fractional differential equations, Appl. Math. Comput. 49 (1992) 205-213.
[3] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996) 609-625.
[4] K. Diethlm, N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002) 229-248.
[5] J.K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
[6] H.M. Srivastava, R.K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput. 118 (2001) 1-52.

[^0]: * Corresponding author.

 E-mail addresses: yucheng@mail.dhu.edu.cn (C. Yu), gzgao@dhu.edu.cn (G. Gao).

