Spectral transformations of the Laurent biorthogonal polynomials. I. q-Appel polynomials

Luc Vinet ${ }^{\text {a }}$, Alexei Zhedanov ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Centre de recherches mathématiques, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal QC H3C 3J7, Canada
${ }^{\mathrm{b}}$ Donetsk Institute for Physics and Technology, Donetsk 340114, Ukraine
Received 23 June 1999; received in revised form 30 November 1999

Abstract

We study the simplest closure conditions of chains of spectral transformations of the Laurent biorthogonal polynomials (LBP). It is shown that the 1-periodic q-closure condition leads to the q-Appel LBP which are a special case of the LBP introduced by Pastro. (c) 2001 Elsevier Science B.V. All rights reserved.

Keywords: Laurent orthogonal polynomials; q-Appel polynomials; Spectral transformations

1. Introduction

The Laurent biorthogonal polynomials (LBP) $P_{n}(z)$ appeared in problems connected with the two-points Padé approximations (see, e.g., [6]).

We shall recall their definition and general properties (see, e.g. [6,4,5], where equivalent Laurent orthogonal functions are considered).

Let \mathscr{L} be some linear functional defined on all possible monomials z^{n} by the moments

$$
\begin{equation*}
c_{n}=\mathscr{L}\left\{z^{n}\right\}, \quad n=0, \pm 1, \pm 2 \ldots \tag{1.1}
\end{equation*}
$$

In general the moments c_{n} are arbitrary complex numbers. The functional \mathscr{L} is thus defined on the space of Laurent polynomials $\mathscr{P}(z)=\sum_{n=-N_{1}}^{N_{2}} a_{n} z^{n}$ where a_{n} are arbitrary complex numbers and $N_{1,2}$ arbitrary integers:

$$
\mathscr{L}\{\mathscr{P}(z)\}=\sum_{n=-N_{1}}^{N_{2}} a_{n} c_{n} .
$$

[^0]The monic LBP $P_{n}(z)$ are defined by the determinant [4]

$$
P_{n}(z)=\left(\Delta_{n}\right)^{-1}\left|\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{n} \\
c_{-1} & c_{0} & \cdots & c_{n-1} \\
\cdots & \cdots & \cdots & \cdots \\
c_{1-n} & c_{2-n} & \cdots & c_{1} \\
1 & z & \cdots & z^{n}
\end{array}\right| \text {, }
$$

where Δ_{n} is defined as

$$
\Delta_{n}=\left|\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{n-1} \\
c_{-1} & c_{0} & \cdots & c_{n-2} \\
\cdots & \cdots & \cdots & \cdots \\
c_{1-n} & c_{2-n} & \cdots & c_{0}
\end{array}\right| .
$$

It is obvious from definition (1.2) that the polynomials $P_{n}(z)$ satisfy the orthogonality property

$$
\begin{equation*}
\mathscr{L}\left\{P_{n}(z) z^{-k}\right\}=h_{n} \delta_{k n}, \quad 0 \leqslant k \leqslant n, \tag{1.2}
\end{equation*}
$$

where the normalization constants h_{n} are

$$
\begin{equation*}
h_{0}=c_{0}, \quad h_{n}=\Delta_{n+1} / \Delta_{n} . \tag{1.3}
\end{equation*}
$$

This orthogonality property can be rewritten as the biorthogonal relation [9,4],

$$
\begin{equation*}
\mathscr{L}\left\{P_{n}(z) Q_{m}(1 / z)\right\}=h_{n} \delta_{n m}, \tag{1.4}
\end{equation*}
$$

where the polynomials $Q_{n}(z)$ are defined by the formula

$$
Q_{n}(z)=\left(\Delta_{n}\right)^{-1}\left|\begin{array}{cccc}
c_{0} & c_{-1} & \cdots & c_{-n} \tag{1.5}\\
c_{1} & c_{0} & \cdots & c_{1-n} \\
\cdots & \cdots & \cdots & \cdots \\
c_{n-1} & c_{n-2} & \cdots & c_{-1} \\
1 & z & \cdots & z^{n}
\end{array}\right| .
$$

We note that the polynomials $Q_{n}(z)$ are again LBP with moments $c_{n}^{\{Q\}}=c_{-n}$.
In what follows we will assume that

$$
\begin{equation*}
\Delta_{n} \neq 0, \quad n=1,2, \ldots \tag{1.6}
\end{equation*}
$$

and that

$$
\begin{equation*}
\Delta_{n}^{(1)} \neq 0, \quad n=1,2, \ldots, \tag{1.7}
\end{equation*}
$$

where by $\Delta_{n}^{(j)}$ we denote the determinants

$$
\begin{align*}
& \Delta_{0}^{(j)}=1, \\
& \Delta_{n}^{(j)}=\left|\begin{array}{cccc}
c_{j} & c_{j+1} & \cdots & c_{n+j-1} \\
c_{j-1} & c_{j} & \cdots & c_{n+j-2} \\
\cdots & \cdots & \cdots & \cdots \\
c_{1+j-n} & c_{2+j-n} & \cdots & c_{j}
\end{array}\right| . \tag{1.8}
\end{align*}
$$

If conditions (1.6) and (1.7) are fulfilled, the polynomials $P_{n}(z)$ satisfy the recurrence relation (see, e.g., [3])

$$
\begin{equation*}
P_{n+1}(z)+\left(d_{n}-z\right) P_{n}(z)=z b_{n} P_{n-1}(z), \quad n \geqslant 1 \tag{1.9}
\end{equation*}
$$

where the recurrence coefficients are

$$
\begin{align*}
& d_{n}=-\frac{P_{n+1}(0)}{P_{n}(0)}=h_{n}^{-1} \frac{T_{n+1}}{T_{n}} \neq 0, \quad n=0,1, \ldots \tag{1.10}\\
& b_{n}=d_{n} \frac{h_{n}}{h_{n-1}} \neq 0, \quad n=1,2, \ldots \tag{1.11}
\end{align*}
$$

with $T_{n}=\Delta_{n}^{(1)}$.
There is a one-to-one correspondence between the moments c_{n} and the recurrence coefficients b_{n}, d_{n} (provided restrictions $b_{n} d_{n} \neq 0$ are fulfilled).

Recurrence relation (1.9) will be our starting point.
In addition to the polynomials $P_{n}(z)$ it is useful to introduce the j-associated polynomials $P_{n}^{(j)}(z)$ that satisfy the recurrence relation

$$
\begin{equation*}
P_{n+1}^{(j)}(z)+d_{n+j} P_{n}^{(j)}(z)=z\left(P_{n}^{(j)}(z)+b_{n+j} P_{n-1}^{(j)}(z)\right) \tag{1.12}
\end{equation*}
$$

with $P_{0}^{(j)}=1, P_{1}^{(j)}(z)=z-d_{j}$. Note that $P_{n}(z)$ and $P_{n-j}^{(j)}(z)$ are two independent solutions of the difference equation

$$
\begin{equation*}
\phi_{n+1}+d_{n} \phi_{n}=z\left(\phi_{n}+b_{n} \phi_{n-1}\right) . \tag{1.13}
\end{equation*}
$$

There is an obvious scaling property of the LBP.
Assume that the polynomials $P_{n}(z)$ are LBP with c_{n} as moments and d_{n}, b_{n} as recurrence coefficients. The polynomials $\tilde{P}_{n}(z)=\kappa^{-n} \quad P_{n}(\kappa z)$ are also LBP with the scaled recurrence parameters $\tilde{b}_{n}=b_{n} / \kappa, \quad \tilde{d}_{n}=d_{n} / \kappa$, and moments $\tilde{c}_{n}=\kappa^{-n} c_{n}$. The proof of this statement is obvious. This property means that simultaneously multiplying the recurrence coefficients by the same constant merely leads to a rescaling of the argument z of the polynomials $P_{n}(z)$.

We say that the LBP are regular if $b_{n} d_{n} \neq 0$. It can be shown that for regular LBP the following Lemma holds (see, e.g., [15]).

Lemma 1. Let $P_{n}(z)$ be a set of regular LBP. Assume that these $P_{n}(z)$ satisfy the relation

$$
\begin{equation*}
S_{1}(z ; n) P_{n}(z)+S_{2}(z ; n) P_{n-1}(z)=0, \quad n=1,2, \ldots, \tag{1.14}
\end{equation*}
$$

where $S_{1,2}(z ; n)$ are polynomials in z whose coefficients depend on n but whose degrees are fixed and independent of n. Then the polynomials $S_{1,2}$ should identically vanish:

$$
\begin{equation*}
S_{1}(z ; n)=S_{2}(z ; n) \equiv 0 \tag{1.15}
\end{equation*}
$$

In what follows we will use the so-called rescaled LBP

$$
\begin{equation*}
\tilde{P}_{n}(z)=q^{n} P_{n}(z / q), \quad n=0,1, \ldots \tag{1.16}
\end{equation*}
$$

with some nonzero parameter q. It is easily verified that the rescaled polynomials $\tilde{P}_{n}(z)$ are monic LBP satisfying the recurrence relation

$$
\tilde{P}_{n+1}(z)+\left(\tilde{d}_{n}-z\right) \tilde{P}_{n}(z)=z \tilde{b}_{n} \tilde{P}_{n-1}(z)
$$

with

$$
\begin{equation*}
\tilde{d}_{n}=q b_{n}, \quad \tilde{b}_{n}=q b_{n} . \tag{1.17}
\end{equation*}
$$

Thus rescaled LBP $\tilde{P}_{n}(z)$ differ from initial LBP $P_{n}(z)$ only by a trivial rescaling of recurrence parameters.

It is interesting to note that the LBP were identified recently in the physical context of the relativistic Toda chain [7].

The main purpose of this paper is to study chains of spectral transformations of LBP and their closure properties. For the ordinary orthogonal polynomials this was developed in [11,14]. We show that the simplest quasi-periodic closure leads to q-Appel LBP.

2. Spectral transformations of LBP

In this section we describe the two simplest spectral transformations of LBP, namely the Christoffel (CT) and the Geronimus (GT) transformations which are the exact analogs of the spectral transformations of ordinary orthogonal polynomials bearing the same name (see, e.g., [11,14]). In what follows we will assume the standard normalization condition $c_{0}=1$.

By CT we mean the following transformation:

$$
\begin{equation*}
P_{n}^{(C)}(z)=\frac{P_{n+1}(z)-U_{n} P_{n}(z)}{z-\mu} \tag{2.1}
\end{equation*}
$$

where μ is an arbitrary parameter and

$$
U_{n}=\frac{P_{n+1}(\mu)}{P_{n}(\mu)}
$$

It is easily verified that the polynomials $P_{n}^{(C)}(z)$ constructed according to (2.1) are again monic LBP with moments

$$
\begin{equation*}
c_{n}^{(C)}=\left(c_{1}-\mu\right)^{-1}\left(c_{n+1}-\mu c_{n}\right), \quad n=0, \pm 1, \pm 2, \ldots \tag{2.2}
\end{equation*}
$$

In terms of the moment functional \mathscr{L}, relation (2.2) can be rewritten in the form

$$
\begin{equation*}
\mathscr{L}^{(C)}=\left(c_{1}-\mu\right)^{-1}(z-\mu) \mathscr{L} \tag{2.3}
\end{equation*}
$$

Formulas (2.1) and (2.3) coincide with those defining the Christoffel transformation of the ordinary orthogonal polynomials [1,12].

If the polynomials $P_{n}(z)$ satisfy recurrence relation (1.9), the polynomials $P_{n}^{(C)}(z)$ satisfy the recurrence relation

$$
\begin{equation*}
P_{n+1}^{(C)}(z)+d_{n}^{(C)} P_{n}^{(C)}(z)=z\left(P_{n}^{(C)}(z)+b_{n}^{(C)} P_{n-1}^{(C)}(z)\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& b_{n}^{(C)}=b_{n} \frac{b_{n+1}+U_{n}}{b_{n}+U_{n-1}} \tag{2.5}\\
& d_{n}^{(C)}=d_{n} \frac{d_{n+1}+U_{n+1}}{d_{n}+U_{n}} \tag{2.6}
\end{align*}
$$

The reciprocal of the CT of LBP is the Geronimus transformation (GT) of LBP defined as

$$
\begin{equation*}
P_{n}^{(G)}(z)=V_{n} P_{n}(z)+z\left(1-V_{n}\right) P_{n-1}(z) \tag{2.7}
\end{equation*}
$$

with some coefficients. Compatibility of relation (2.7) with three-term recurrence relations (1.9) of the polynomials $P_{n}(z)$ and $P_{n}^{(G)}(z)$ leads to the following restriction:

$$
\begin{equation*}
\frac{b_{n} V_{n} V_{n+1}}{1-V_{n}}+d_{n} V_{n+1}=\mu \tag{2.8}
\end{equation*}
$$

where μ is a constant. From the initial condition $P_{0}(z)=1$, we also have

$$
\begin{equation*}
V_{0}=1 \tag{2.9}
\end{equation*}
$$

Consider first the case $\mu \neq 0$. Then we can linearize relation (2.8) introducing a new sequence ϕ_{n} :

$$
\begin{equation*}
V_{n}=\frac{\mu}{\mu-\phi_{n} / \phi_{n-1}}, \quad n=1,2, \ldots \tag{2.10}
\end{equation*}
$$

From (2.8) it then follows that ϕ_{n} can be chosen as an arbitrary solution of the second-order difference equation

$$
\begin{equation*}
\phi_{n+1}+d_{n} \phi_{n}=\mu\left(\phi_{n}+b_{n} \phi_{n-1}\right) \tag{2.11}
\end{equation*}
$$

The polynomials $P_{n}^{(G)}(z)$ then satisfy recurrence relation (2.4) with recurrence coefficients

$$
\begin{align*}
& b_{n}^{(G)}=b_{n-1} \frac{1-V_{n}}{1-V_{n-1}}, \quad n=2,3, \ldots \tag{2.12}\\
& d_{n}^{(G)}=d_{n} V_{n+1} / V_{n}, \quad n=0,1, \ldots \tag{2.13}
\end{align*}
$$

One can easily show that the CT and the GT are reciprocal.
Indeed, we have the following:
Proposition 2. Assume that the $L B P R_{n}(z)$ have the recurrence coefficients d_{n}, b_{n} and are related to the $L B P P_{n}(z)$ by the formula

$$
\begin{equation*}
R_{n}(z)=V_{n} P_{n}(z)+z\left(1-V_{n}\right) P_{n-1}(z), \tag{2.14}
\end{equation*}
$$

where V_{n} are some coefficients. Then

$$
\begin{equation*}
P_{n}(z)=\frac{R_{n+1}(z)-U_{n} R_{n}(z)}{z-\mu} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \mu=V_{n+1}\left(d_{n}+\frac{V_{n} b_{n}}{1-V_{n}}\right)=\text { const. } \tag{2.16}\\
& U_{n}=\frac{b_{n} V_{n+1}}{1-V_{n}}=\frac{R_{n+1}(\mu)}{R_{n}(\mu)} \tag{2.17}
\end{align*}
$$

Proof. Consider relation (2.14) with $n \rightarrow n+1$:

$$
\begin{equation*}
R_{n+1}(z)=V_{n+1} P_{n+1}(z)+z\left(1-V_{n+1}\right) P_{n}(z) . \tag{2.18}
\end{equation*}
$$

Excluding $P_{n+1}(z)$ in (2.18) (using recurrence relation (1.9))

$$
\begin{equation*}
R_{n+1}(z)=\left(z\left(1-V_{n+1}\right)+V_{n+1}\left(z-d_{n}\right)\right) P_{n}(z)+z V_{n+1} b_{n} P_{n-1}(z) \tag{2.19}
\end{equation*}
$$

and solving system (2.14) and (2.19) we obtain

$$
\begin{equation*}
P_{n}(z)=\frac{R_{n+1}(z)-\left(b_{n} V_{n+1} /\left(1-V_{n}\right)\right) R_{n}(z)}{z-d_{n} V_{n+1}-b_{n} V_{n} V_{n+1} /\left(1-V_{n}\right)} . \tag{2.20}
\end{equation*}
$$

Relation (2.16) then follows from (2.8). The second relation in (2.17) follows from the fact that the l.h.s of (2.15) cannot have a pole at $z=\mu$.

We thus proved that the polynomials $P_{n}(z)$ are expressed in terms of $R_{n}(z)$ through the CT (2.15).
Note that the GT contains (with respect to the CT) an additional parameter because the function $\phi_{n}=P_{n}(\mu)+\chi P_{n-1}^{(1)}(\mu)$ is a linear combination of two independent solutions of the recurrence relation (2.11).

When $\mu \rightarrow 0$ then both the CT and the GT become extremely simple. In this case for the CT we have (note that $P_{n}(0) \neq 0$ due to the 1-regularity)

$$
\begin{equation*}
P_{n}^{(C)}(z)=z^{-1}\left(P_{n+1}+d_{n} P_{n}(z)\right)=P_{n}(z)+b_{n} P_{n-1}(z) \tag{2.21}
\end{equation*}
$$

The moments are then merely shifted,

$$
\begin{equation*}
c_{n}^{(C)}=\frac{c_{n+1}}{c_{1}}, \quad n=0, \pm 1, \pm 2, \ldots \tag{2.22}
\end{equation*}
$$

and the recurrence coefficients transformed according to

$$
\begin{array}{ll}
b_{n}^{(C)}=b_{n} \frac{b_{n+1}-d_{n}}{b_{n}-d_{n-1}}, & n=1,2, \ldots \\
d_{0}^{(C)}=d_{0}-b_{1}, \quad & d_{n}^{(C)}=d_{n-1} \frac{b_{n+1}-d_{n}}{b_{n}-d_{n-1}}, \quad n=1,2, \ldots \tag{2.24}
\end{array}
$$

For the GT, when $\mu=0$ we have from (2.8) and (2.9) that

$$
d_{n}+\frac{b_{n} V_{n}}{1-V_{n}}=0
$$

and thus

$$
\begin{align*}
& P_{n}^{(G)}(z)=\frac{P_{n+1}(z)-z P_{n}(z)}{b_{n}-d_{n}}=\frac{z b_{n} P_{n-1}(z)-d_{n} P_{n}(z)}{b_{n}-d_{n}}, \tag{2.25}\\
& c_{n}^{(G)}=\frac{c_{n-1}}{c_{-1}}, \tag{2.26}\\
& b_{1}^{(G)}=-\frac{b_{1} d_{0}}{b_{1}-d_{1}}, \quad b_{n}^{(G)}=b_{n} \frac{b_{n-1}-d_{n-1}}{b_{n}-d_{n}}, \quad n=2,3, \ldots, \tag{2.27}\\
& d_{0}^{(G)}=-\frac{d_{0} d_{1}}{b_{1}-d_{1}}, \quad d_{n}^{(G)}=d_{n+1} \frac{b_{n}-d_{n}}{b_{n+1}-d_{n+1}}, \quad n=1,2, \ldots \tag{2.28}
\end{align*}
$$

In what follows we will denote (for brevity) by $\mathscr{C}(\mu)\left\{P_{n}(z)\right\}$ and $\mathscr{G}(\mu, \chi)\left\{P_{n}(z)\right\}$ the result of the Christoffel and Geronimus transformations of the LBP $P_{n}(z)$ (i.e., (2.1) and (2.7)). For $\mu=0$ we will write $\mathscr{C}(0)\left\{P_{n}(z)\right\}$ and $\mathscr{G}(0)\left\{P_{n}(z)\right\}$ with formulas (2.21) and (2.25) in mind. Note that for $\mu=0$ the Geronimus transformation does not depend on an auxiliary parameter.

3. Involutions of the LBP

Apart from the spectral transformations (i.e., Christoffel and Geronimus transformations) there are two fundamental transformations of the LBP. These transformations are involutions, i.e., they yield the identity transformation when applied twice.

The first of these involutions is the transformation of the LBP $P_{n}(z)$ into their biorthogonal partners $Q_{n}(z)$ introduced in (1.5). In terms of $P_{n}(z)$ the polynomials $Q_{n}(z)$ are written as

$$
\begin{equation*}
Q_{n}(z)=\frac{z^{n} P_{n+1}(1 / z)-z^{n-1} P_{n}(1 / z)}{P_{n+1}(0)} \tag{3.1}
\end{equation*}
$$

where $P_{n+1}(0)=(-1)^{n+1} \quad d_{0} d_{1} \cdots d_{n}$. It is verified that $Q_{n}(z)$ are monic LBT satisfying recurrence relation (1.9) with recurrence parameters

$$
\begin{align*}
& \tilde{b}_{n}=\frac{b_{n}\left(d_{n+1}-b_{n+1}\right)}{d_{n} d_{n+1}\left(d_{n}-b_{n}\right)} \tag{3.2}\\
& \tilde{d}_{n}=\frac{d_{n+1}-b_{n+1}}{d_{n+1}\left(d_{n}-b_{n}\right)} \tag{3.3}
\end{align*}
$$

The moments \tilde{c}_{n} corresponding to the polynomials $Q_{n}(z)$ are

$$
\begin{equation*}
\tilde{c}_{n}=c_{-n} \tag{3.4}
\end{equation*}
$$

Introduce the operator \mathscr{Q} (acting on the space of polynomials) such that $\mathscr{Q}\left\{P_{n}(z)\right\}=Q_{n}(z)$. It is then obvious from (3.4) that $\mathscr{Q}^{2}=I$, where I is identity operator: $I\left\{P_{n}(z)\right\}=P_{n}(z)$. Thus the transformation 2: $P_{n}(z) \rightarrow Q_{n}(z)$ is indeed an involution.

The second involution is the transformation of the polynomials $P_{n}(z)$ into the polynomials $T_{n}(z)$ with the argument inverted:

$$
\begin{equation*}
T_{n}(z)=\frac{z^{n} P_{n}(1 / z)}{P_{n}(0)} \tag{3.5}
\end{equation*}
$$

It is verified that $T_{n}(z)$ are monic LBP having the recurrence coefficients

$$
\begin{align*}
& \tilde{b}_{n}=\frac{b_{n}}{d_{n} d_{n+1}} \tag{3.6}\\
& \tilde{d}_{n}=\frac{1}{d_{n}} \tag{3.7}
\end{align*}
$$

The moments \tilde{c}_{n} corresponding to the polynomials $T_{n}(z)$ are

$$
\begin{equation*}
\tilde{c}_{n}=\frac{c_{1-n}}{c_{1}} \tag{3.8}
\end{equation*}
$$

Introduce the operator \mathscr{T} such that $\mathscr{T}\left\{P_{n}(z)\right\}=T_{n}(z)$. Again it is clear from (3.8) (or from (3.6) and (3.7)) that $\mathscr{T}^{2}=I$ and hence the transformation \mathscr{T} is an involution.

Consider composition $\mathscr{T} \mathscr{Q}$ of these involutions. (This means that we first perform the transformation \mathscr{Q} and then the transformation \mathscr{T}.) For the corresponding moments we have

$$
\begin{equation*}
\mathscr{T} \mathscr{Q}\left\{c_{n}\right\}=\frac{c_{n+1}}{c_{1}} . \tag{3.9}
\end{equation*}
$$

This means that $\mathscr{T} \mathscr{Q}=\mathscr{C}(0)$. The special Christoffel transformation $\mathscr{C}(0)$ has been defined at the end of Section 2.

Analogously, $\mathscr{2} \mathscr{T}=\mathscr{G}(0)$, where $\mathscr{G}(0)$ is the special Geronimus transformation also defined in Section 2.

The composition of these two involutions leads therefore to special spectral transformations.
It is interesting to note that these two involutions and their compositions are connected with the discrete-time dynamics of the relativistic Toda chain (for details see [7]).

4. Algebraic interpretation of the spectral transformations

In this section we consider the algebraic interpretation of the Christoffel transformation of the LBP. (The Geronimus transformation can also be interpreted in the same manner but we do not do this here.)

Let $|n\rangle, n=0,1,2, \ldots$ be some basis. Consider four 2-diagonal operators:

$$
\begin{align*}
& A|n\rangle=|n-1\rangle+d_{n}|n\rangle, \quad n=1,2, \ldots, \quad A|0\rangle=d_{0}|0\rangle, \tag{4.1}\\
& B|n\rangle=|n\rangle+b_{n+1}|n+1\rangle, \quad n=0,1, \ldots, \tag{4.2}\\
& J|n\rangle=|n-1\rangle+\xi_{n}|n\rangle, \quad n=1,2, \ldots, J|0\rangle=\xi_{0}|0\rangle, \tag{4.3}\\
& K|n\rangle=|n-1\rangle+\eta_{n}|n\rangle, \quad n=1,2, \ldots, K|0\rangle=\eta_{0}|0\rangle, \tag{4.4}
\end{align*}
$$

where ξ_{n}, η_{n} are some coefficients to be determined.
Consider the generalized eigenvalue problem (GEVP)

$$
\begin{equation*}
A|\psi\rangle=z B|\psi\rangle \tag{4.5}
\end{equation*}
$$

where z is the (generalized) eigenvalue and $|\psi\rangle$ is the (generalized) eigenstate. Expand the eigenstate $|\psi\rangle$ over the basis $|n\rangle$:

$$
\begin{equation*}
|\psi\rangle=\sum_{n=0}^{\infty} C_{n}(z)|n\rangle \tag{4.6}
\end{equation*}
$$

where $C_{n}(z)$ are some coefficients depending on z. We can normalize these coefficients by choosing $C_{0}=1$. It is then easily seen that $C_{n}(z)=P_{n}(z)$ with $P_{n}(z)$ the LBP satisfying recurrence relation (1.9). Thus, the LBP $P_{n}(z)$ can be interpreted as objects arising from the generalized eigenvalue problem (4.5).

Assume moreover that the following operator relations

$$
\begin{align*}
& \tilde{A} J=K A \tag{4.7}\\
& \tilde{B} J=K B \tag{4.8}
\end{align*}
$$

take place where the operators \tilde{A} and \tilde{B} have the same form as (4.1) and (4.2) with d_{n}, b_{n} replaced by $\tilde{d}_{n}, \tilde{b}_{n}$. We then have the following:

Proposition 3. If $|\psi\rangle$ is an eigenstate of the GEVP (4.5) with eigenvalue z then the state

$$
\begin{equation*}
|\tilde{\psi}\rangle=F(z) J|\psi\rangle \tag{4.9}
\end{equation*}
$$

(where $F(z)$ is an arbitrary function of z) is the eigenstate of another GEVP

$$
\begin{equation*}
\tilde{A}|\tilde{\psi}\rangle=z \tilde{B}|\tilde{\psi}\rangle \tag{4.10}
\end{equation*}
$$

with the same eigenvalue z.
The proof of this proposition is obvious.
We have correspondingly for the coefficients, the transformation law

$$
\begin{equation*}
\tilde{C}_{n}(z)=F(z)\left(C_{n+1}(z)-\xi_{n} C_{n}(z)\right) \tag{4.11}
\end{equation*}
$$

If we demand that both $C_{n}(z)=P_{n}(z)$ and $\tilde{C}_{n}(z)=\tilde{P}_{n}(z)$ are monic LBP, the conditions

$$
\begin{align*}
& \xi_{n}=-\frac{P_{n+1}(\mu)}{P_{n}(\mu)} \tag{4.12}\\
& \eta_{n}=\xi_{n-1} \frac{\xi_{n}-b_{n+1}}{\xi_{n-1}-b_{n}} \tag{4.13}\\
& F(z)=1 /(z-\mu) \tag{4.14}
\end{align*}
$$

where μ is an arbitrary parameter are seen to hold. Transformation law (4.11) then becomes simply the Christoffel transformation (2.1) with $U_{n}=\xi_{n}$. We thus obtain an algebraic (operator) interpretation of the CT in terms of relations (4.7) and (4.8).

If Q is the operator such that $Q|n\rangle=q^{n}|n\rangle$, it is verified that

$$
\begin{align*}
& q Q A Q^{-1}|n\rangle=|n-1\rangle+q d_{n}|n\rangle \tag{4.15}\\
& Q B Q^{-1}|n\rangle=|n\rangle+q b_{n+1}|n+1\rangle . \tag{4.16}
\end{align*}
$$

We thus see that the action of the operators

$$
\begin{equation*}
A(q)=q Q A Q^{-1}, \quad B(q)=Q B Q^{-1} \tag{4.17}
\end{equation*}
$$

has the same structure as that of the operators A, B but with the coefficients b_{n}, d_{n} replaced with $q b_{n}, q d_{n}$.

5. Self-similar chains of spectral transformations

From given polynomials $P_{n}(z)$ we can construct a chain of new polynomials

$$
\begin{equation*}
P_{n}\left(z ; \mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)=\mathscr{C}\left(\mu_{N}\right) \mathscr{C}\left(\mu_{N-1}\right) \ldots \mathscr{C}\left(\mu_{1}\right)\left\{P_{n}(z)\right\} \tag{5.1}
\end{equation*}
$$

by applying successively $N \mathrm{CT}$ at the points $\mu_{1}, \mu_{2}, \ldots, \mu_{N}$.
In general, LBP $P_{n}\left(z ; \mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)$ essentially differ from initial LBP $P_{n}(z)$. It is therefore natural to ask when the polynomials $P_{n}\left(z ; \mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)$ are "almost the same" as $P_{n}(z)$. By the term "almost
the same" we mean that LBP $P_{n}\left(z ; \mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)$ are rescaled $P_{n}(z)$ as defined by (1.16). We will call this situation "closure condition" for a chain of spectral transformations:

$$
\begin{equation*}
P_{n}\left(z ; \mu_{1}, \mu_{2}, \ldots, \mu_{N}\right)=q^{n} P_{n}(z / q) \tag{5.2}
\end{equation*}
$$

with q some nonzero parameter.
Note that the analogous closure conditions for the ordinary orthogonal polynomials were introduced and analyzed in [11]. In this case, the closure condition (5.2) leads to a special class of semi-classical polynomials (on special exponential grids) introduced by Magnus [8].

From (1.17) it follows that closure condition (5.2) is equivalent to the conditions for recurrence coefficients:

$$
\begin{equation*}
b_{n}^{(N)}=q b_{n}, \quad d_{n}^{(N)}=q d_{n} \tag{5.3}
\end{equation*}
$$

where $b_{n}^{(N)}$ stands for the coefficients obtained from b_{n} by the application of $N \mathrm{CT}$ at the points $\mu_{1}, \mu_{2}, \ldots, \mu_{N}$. For arbitrary N relations (5.3) become very complicated nonlinear difference equations. However in particular cases, these equations can be solved in terms of elementary functions.

In operator form, closure condition (5.2) can be written as

$$
\begin{equation*}
A(q) J(N)=K(N) A, \quad B(q) J(N)=K(N) B, \tag{5.4}
\end{equation*}
$$

where the operators $A(q), B(q)$ are as defined in (4.17) and the operators $K(N), J(N)$ specified by the following procedure. Assume that we start from the polynomials $P_{n}(z)$. In the first step we get the polynomials $P_{n}\left(z ; \mu_{1}\right)$ by applying a CT at the point μ_{1}. We then have the operator relations $A_{1} J_{1}=K_{1} A, B_{1} J_{1}=K_{1} B$ where the operators A_{1}, B_{1} correspond to the eigenproblem for the LBP $P_{n}\left(z ; \mu_{1}\right)$. In the second step, we choose the point μ_{2} and get the relation $A_{2} J_{2}=K_{2} A_{1}, B_{2} J_{2}=K_{2} B_{1}$ where A_{2}, B_{2} correspond to the polynomials $P_{n}\left(z ; \mu_{1}, \mu_{2}\right)$. Clearly we have $A_{2} J_{2} J_{1}=K_{2} K_{1} A, B_{2} J_{2}, J_{1}=$ $K_{2} K_{2} B$. Repeating this procedure we get relation (5.4) where

$$
\begin{equation*}
J(N)=J_{N} J_{N-1}, \ldots, J_{1}, \quad K(N)=K_{N} K_{N-1}, \ldots, K_{1} . \tag{5.5}
\end{equation*}
$$

6. The simplest $N=1$ closure

In this section we consider the simplest q-closure with $N=1$, i.e., it means that

$$
\begin{equation*}
\frac{P_{n+1}(z)-U_{n} P_{n}(z)}{z-\mu}=q^{n} P_{n}(z / q), \tag{6.1}
\end{equation*}
$$

where μ is an arbitrary parameter.
From formulas (2.5) and (2.6) we get the relations

$$
\begin{align*}
& \frac{b_{n+1}+U_{n}}{b_{n}+U_{n-1}}=q \tag{6.2}\\
& \frac{d_{n+1}+U_{n+1}}{d_{n}+U_{n}}=q \tag{6.3}
\end{align*}
$$

where the coefficients $U_{n}=P_{n+1}(\mu) / P_{n}(\mu)$ obey the relation

$$
\begin{equation*}
U_{n}+d_{n}=\mu\left(1+b_{n} / U_{n-1}\right), \quad n=1,2, \ldots \tag{6.4}
\end{equation*}
$$

as follows from the recurrence relation (1.9). Moreover, the initial condition yields

$$
\begin{equation*}
U_{0}=\mu-d_{0} \tag{6.5}
\end{equation*}
$$

It is easily found that the most general solution of relations (6.2) and (6.3) (compatible with initial condition (6.5)) is

$$
\begin{align*}
& U_{n} \equiv-\beta, \tag{6.6}\\
& b_{n}=\beta\left(1-q^{n}\right), \tag{6.7}\\
& d_{n}=\mu q^{n}+\beta, \tag{6.8}
\end{align*}
$$

where β is an arbitrary nonzero constant.
The polynomials $P_{n}(z)$ thus obtained have their recurrence coefficients b_{n}, d_{n} expressed in terms of elementary functions (6.7), (6.8) and depending on two parameters β and μ. In fact, only one of these parameters (say, μ) is essential because the parameter β can be set equal to 1 with the help of a scaling transformation.

In order to find the moments corresponding to these polynomials we exploit the formula (2.2) for the transformation of the moments c_{n} with respect to the CT. Taking into account that the scaling transformation $P_{n}(z) \rightarrow q^{n} P_{n}(z / q)$ leads to the transformation $c_{n} \rightarrow q^{n} c_{n}$, we see that closure condition (6.1) is equivalent to the equation

$$
\begin{equation*}
c_{n+1}=\left(\beta q^{n}+\mu\right) c_{n}, \quad n=0, \pm 1, \pm 2, \ldots, \tag{6.9}
\end{equation*}
$$

whence

$$
\begin{equation*}
c_{n}=\mu^{n}(-\beta / \mu ; q)_{n}, \tag{6.10}
\end{equation*}
$$

where $(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)$ is the q-shifted factorial (for negative n the q-shifted factorials are defined [2] as $\left.(a ; q)_{-n}=1 /\left(a q^{-n} ; q\right)_{n}\right)$.

7. q-Appel LBP

The LBP satisfying the property

$$
\begin{equation*}
\mathscr{D}_{q}\left\{P_{n+1}(z)\right\}=[n+1] P_{n}(z) \tag{7.1}
\end{equation*}
$$

will be called q-Appel LBP. The symbol \mathscr{D}_{q} used above denotes the q-derivative operator defined by

$$
\begin{equation*}
\mathscr{D}_{q} \psi(z)=\frac{\psi(q z)-\psi(z)}{z(q-1)} \tag{7.2}
\end{equation*}
$$

while $[n]=\left(q^{n}-1\right) /(q-1)$ is the so-called q-number. Let us show that condition (7.1) is equivalent to closure condition (6.1).

Denote $R_{n}(z)=q^{-n} P_{n}(q z)$, the q-Appel condition (7.1) is then rewritten as

$$
\begin{equation*}
R_{n}(z)=V_{n} P_{n}(z)+z\left(1-V_{n}\right) P_{n-1}(z) \tag{7.3}
\end{equation*}
$$

with $V_{n}=q^{-n}$. In view of Proposition 2, (7.3) leads to the reciprocal relation

$$
\begin{equation*}
P_{n}(z)=\frac{R_{n+1}(z)-U_{n} R_{n}(z)}{z-v} \tag{7.4}
\end{equation*}
$$

with some constant v. This last relation (7.4) coincides with closure condition (6.1) (with $v=q \mu$), the q-Appel LBP are thus given by (7.10).

This observation allows one to get explicit expression of q-Appel LBP. Indeed, one can express

$$
\begin{equation*}
P_{n}(z)=\sum_{k=0}^{n} A_{k}^{(n)} z^{k} \tag{7.5}
\end{equation*}
$$

with some expansion coefficients $A_{k}^{(n)}$. From (7.1), (6.1) and (6.6) we then get two relations for the coefficients $A_{k}^{(n)}$:

$$
\begin{align*}
& q^{k} A_{k}^{(n+1)}-A_{k}^{(n+1)}=\left(q^{n+1}-1\right) A_{k-1}^{(n)} \\
& A_{k}^{(n+1)}+\beta A_{k}^{(n)}=q^{n+1-k} A_{k-1}^{(n)}-\mu q^{n-k} A_{k}^{(n)} \tag{7.6}
\end{align*}
$$

with the condition

$$
\begin{equation*}
A_{n}^{(n)}=1 \tag{7.7}
\end{equation*}
$$

(because LBP $P_{n}(z)$ are monic). From (7.6) we can exclude $A_{k}^{(n+1)}$ thus leading to the two-term recurrence relation

$$
\begin{equation*}
\frac{A_{k}^{(n)}}{A_{k-1}^{(n)}}=\frac{1-q^{k-n-1}}{\left(1-q^{k}\right)\left(\mu+\beta q^{k-n}\right)} \tag{7.8}
\end{equation*}
$$

Taking into account condition (7.7) we obtain from (7.8) explicit expression

$$
\begin{equation*}
A_{k}^{(n)}=(-\beta)^{n}(q / \mu)^{k}(-\mu / \beta ; q)_{n} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}\left(-\beta / \mu q^{1-n}\right)_{k}} \tag{7.9}
\end{equation*}
$$

whence we get the expression of $P_{n}(z)$ in terms of basic hypergeometric function

$$
\begin{equation*}
P_{n}(z)=(-\beta)^{n}(-\mu / \beta ; q)_{n 2} \phi_{1}\binom{q^{-n}, 0}{\frac{-\beta q^{1-n}}{\mu} ; \frac{z q}{\mu}} . \tag{7.10}
\end{equation*}
$$

(The notation for the basic hypergeometric functions is the standardized one of Ref. [2].)
In the limiting case $\mu=0$, we have for the coefficients $b_{n}=\beta\left(1-q^{n}\right), d_{n}=\beta$, and the explicit expression for the polynomials reads

$$
\begin{equation*}
P_{n}(z)=(-\beta)^{n} \sum_{k=0}^{n} \frac{\left(q^{-n}\right)_{k}}{(q)_{k}} q^{-k(k-1) / 2}\left(z q^{n} / \beta\right)^{k} . \tag{7.11}
\end{equation*}
$$

The corresponding moments are

$$
\begin{equation*}
c_{n}=\beta^{n} q^{n(n-1) / 2} \tag{7.12}
\end{equation*}
$$

It is interesting to note that for $\beta=q^{1 / 2}$ we get a symmetric moment problem: $c_{n}=c_{-n}=q^{n^{2}}$. When $0<q<1$, the corresponding polynomials coincide with those found by Szegő [13]. The Szegő polynomials are orthogonal on the unit circle.

Let us consider the limit $q \rightarrow 1$ of the q-Appel polynomials.
Using recurrence relation (1.9) we see that for $\mu \rightarrow \infty$ the Christoffel transformation becomes (to within terms $\mathrm{O}(1 / \mu)$)

$$
\begin{equation*}
\mathscr{C}(\mu)\left\{P_{n}(z)\right\}=P_{n}(z)+\frac{b_{n}\left(z P_{n-1}(z)-P_{n}(z)\right)}{\mu}+\mathrm{O}\left(1 / \mu^{2}\right) . \tag{7.13}
\end{equation*}
$$

Thus for $\mu \rightarrow \infty$ the Christoffel transformation differs from the identity transformation (i.e. $P_{n}(z) \rightarrow$ $\left.P_{n}(z)\right)$ only by terms of the order of $\mathrm{O}(1 / \mu)$.

On the other hand, for $q=1+\epsilon+O\left(\epsilon^{2}\right)$ we have

$$
\begin{equation*}
q^{n} P_{n}(z / q)=P_{n}(z)+\epsilon\left(n P_{n}(z)-z P_{n}^{\prime}(z)\right)+\mathrm{O}\left(\epsilon^{2}\right) \tag{7.14}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\epsilon=-1 / \mu \tag{7.15}
\end{equation*}
$$

we get from (6.1), in the limit $\epsilon \rightarrow 0$, the following condition:

$$
\begin{equation*}
n P_{n}(z)-z P_{n}^{\prime}(z)=b_{n}\left(z P_{n-1}(z)-P_{n}(z)\right) \tag{7.16}
\end{equation*}
$$

Equating, in (7.16), the coefficients in front of z^{n-1}, we find that $b_{n}=-n$ and hence (7.16) becomes

$$
\begin{equation*}
P_{n}^{\prime}(z)=n P_{n-1}(z) . \tag{7.17}
\end{equation*}
$$

Condition (7.17) defines the Appel polynomials. They have the recurrence coefficients (see, e.g., [15]) $b_{n}=\beta n, d_{n}=\beta(n+\gamma)$ where β, γ are arbitrary constants. In our case $\beta=-1$ according to the choice (7.15). (Obviously the constant β plays the role of the scaling parameter.) The explicit expression for these polynomials is

$$
P_{n}(z)=(\gamma)_{n 1} F_{1}\left(\begin{array}{c}
-n \tag{7.18}\\
1-n-\gamma
\end{array} ; z\right)
$$

where $(a)_{n}$ is the Pochhammer symbol and ${ }_{1} F_{1}$ the ordinary hypergeometric function. The Appel property (7.17) is an elemenatry consequence of the relation

$$
\frac{\mathrm{d}}{\mathrm{~d} z}{ }_{1} F_{1}\left(\begin{array}{l}
a \tag{7.19}\\
b
\end{array} ; z\right)=(a / b)_{1} F_{1}\left(\begin{array}{l}
a+1 \\
b+1
\end{array} ; z\right)
$$

where a, b are arbitrary parameters.

8. Operator algebra corresponding to the q-Appel LBP

In this section we consider the operator algebra corresponding to closure condition (5.2). Here the operators J, K have the simple form

$$
\begin{equation*}
J|n\rangle=|n-1\rangle+\beta|n\rangle, \quad K|n\rangle=|n-1\rangle+q \beta|n\rangle \tag{8.1}
\end{equation*}
$$

and the relation between these operators becomes

$$
\begin{equation*}
K=q Q J Q^{-1} \tag{8.2}
\end{equation*}
$$

We can thus eliminate the operator K using this relation. We then get from (5.4) the following closure conditions for $N=1$:

$$
\begin{align*}
& A Q^{-1} J=J Q^{-1} A \tag{8.3}\\
& B Q^{-1} J=q J Q^{-1} B \tag{8.4}
\end{align*}
$$

Moreover, definition (8.1) entails an additional condition for the operator Q and J :

$$
\begin{equation*}
Q^{-1} J-q J Q^{-1}=\beta(1-q) Q^{-1} \tag{8.5}
\end{equation*}
$$

We thus have operator algebra generated by three relations (8.3)-(8.5) for four operators A, B, J, Q. Note that this algebra seems to be more complicated than the simple q-oscillator algebra obtained in the case of the ordinary OP $[10,11]$ for $N=1$ closure.

Acknowledgements

The work of L.V. is supported in part through funds provided by NSERC (Canada) and FCAR (Quebec). The work of A.Zh. was supported in part through funds provided by INTAS-96-700 grant, project 96-01-00281 supported by RFBR (Russia) and SCST (Ukraine) Project. \#2.4/197.

References

[1] T. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[2] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[3] E. Hendriksen, O. Njåstad, Biorthogonal Laurent polynomials with biorthogonal derivatives, Rocky Mount. J. Math. 21 (1991) 391-417.
[4] E. Hendriksen, H. van Rossum, Orthogonal Laurent polynomials, Indag. Math. (Ser. A) 89, 17-36.
[5] M.E.H. Ismail, D. Masson, Generalized orthogonality and continued fractions, J. Approx. Theory 83 (1996) 1-40.
[6] W.B. Jones, W.J. Thron, Survey of continued fraction methods of solving moment problems, in: Analytic Theory of Continued Fractions, Lecture Notes in Mathematics, Vol. 932, Springer, Berlin, 1981.
[7] S. Kharchev, A. Mironov, A. Zhedanov, Faces of relativistic Toda chain, Internat. J. Modern Phys. A 12 (1997) 2675-2724.
[8] A. Magnus, Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials, in: M. Alfaro et al., (Ed.), Orthogonal Polynomials and their Applications, Lecture Notes in Mathematics, Vol. 1329, Springer, Berlin, 1988, pp. 261-278.
[9] P.I. Pastro, Orthogonal polynomials and some q-beta integrals of Ramanujan, J. Math. Anal. Appl. 112 (1985) 517-540.
[10] V. Spiridonov, L. Vinet, A. Zhedanov, Difference Schrödinger operators with linear and exponential spectra, Lett. Math. Phys. 29 (1993) 63-73.
[11] V. Spiridonov, L. Vinet, A. Zhedanov, Spectral transformations, self-similar reductions and orthogonal polynomials, J. Phys. A 30 (1997) 7621-7637.
[12] G. Szegő, Orthogonal Polynomials, 4th Edition, AMS, Providence, RI, 1975.
[13] G. Szegő, Collected Papers, Vol. I, Birkhauser, Boston, 1982, p. 304.
[14] A. Zhedanov, Rational transformations and orthogonal polynomials, J. Comput. Appl. Math. 85 (1997) 67-86.
[15] A. Zhedanov, The "classical" Laurent bi-orthogonal polynomials, J. Comput. Appl. Math. 98 (1998) 121-147.

[^0]: * Corresponding author.

 E-mail address: zhedanov@kinetic.ac.donetsk.ua (A. Zhedanov)

