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know themaximumprojective submodule of Lie(n), whichwe label Liemax(n). The purpose
of this paper is to give some sample calculations of Liemax(n) for low nwhen p = 2.
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1. Introduction

In the work of Cohen [3], Arone–Kankaanrinta [1], Arone–Mahowald [2], Dwyer, and other topologists, an important
module labelled Lie(n) over the symmetric group Sn has arisen as a homology group in spaces related to braid groups [4],
configuration spaces, and Goodwillie towers. It also appears as the kernels in the Cohen pro-group [3], which he is using
in his attack on Barratt’s conjecture through combinatorial group theory. The module is also part of the classical algebraic
literature, having appeared in the works of Witt [16], Weber [15], and others. In characteristic 0, several of its properties
are given in Reutenauer [11]. It has also been studied by algebraists like Donkin and Erdmann [6] who are interested in the
modular theory of the symmetric group.

In [13], the problem of finding the finest natural decomposition of the loop suspension of a p-torsion suspension (for a
prime p) was solved in two stages. The first step was to reduce the problem to algebra by showing that natural coalgebra
decompositions of the mod p homology of such a space (a tensor algebra) could be geometrically realized and the second
step was to construct the finest natural coalgebra decomposition of a tensor algebra. The solution appears in [13], labelled
the ‘‘Functorial Poincaré–Birkhoff–Witt Theorem’’ (Theorem 6.5). Of special interest is the factor in the decomposition of
the tensor algebra T (V ) which contains the space V itself. This factor was labelled Amin(V ). While the existence of Amin(V )
is established in [13], it appears however that computing the space Amin(V ) and the other factors in the decomposition is
not easy. It seems to depend heavily on properties of the module Lie(n), and is related to unsolved problems in the modular
representation theory of the symmetric group, including that of computing the mod p decomposition matrices. Even if the
modules cannot be computed precisely, it would be interesting to know how quickly their dimensions grow, and especially
whether or not the growth rate is exponential. In order to calculate the factors of this functorial Poincaré–Birkhoff–Witt
decomposition, one must know the maximum projective submodule of Lie(n), which we label Liemax(n). It is well known
that if n is prime to p, then Lie(n) is itself projective, so that Liemax(n) = Lie(n) in this case. The purpose of this paper is to give
some sample calculations of Liemax(n) for low n for p = 2. The calculations given depend on knowledge of the decomposition
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matrices which are known in these low cases. The evidence so far from these calculations shows that Liemax(n) is a relatively
large part of Lie(n) and this corresponds to Amin(V ) being relatively small.

Since {projective modules} = {injective modules} in the group ring of a finite group, Liemax(n) is also injective and thus
there is a direct sum decomposition Lie(n) = Liemax(n) ⊕ Lie(n)/Liemax(n). As noted above, one application of Lie(n) is to
the study of Goodwillie calculus. In [1], Arone and Kankaanrinta calculated H∗ (Sn; Lie(n)) and found that it was 0 unless
n = pk and that H∗

(
Spk; Lie(p

k)
)
has a basis corresponding to admissible sequences of Steenrod operations of length k (or

equivalently, to ‘‘completely unadmissible’’ sequences of Dyer–Lashof operations). Of course, this cohomology of Sn with
coefficients in Lie(n) comes entirely from the complementary factor Lie(n)/Liemax(n). In the group ring of a p-group over a
field of characteristic p, {projective modules} = {free modules} (cf. [12] Corollaries on pages 64 and 118). In particular when k
has characteristic p, for a finite group G the order of any projective k(G)-module must be divisible by the order of the Sylow
p-subgroup of G. Since the dimension of Lie(n) is (n−1)!, the complementary factor Lie(n)/Liemax(n) is nontrivial whenever
p divides n, in spite of H∗

(
Sn; Lie(n)/Liemax(n)

)
being trivial when n is not a power of p.

In this paper we compute Liemax(n) (for characteristic 2) when n < 10, the difficult cases being n = 6 and n = 8. As
noted above, Liemax(n) = 0 when n is odd, and the fact that the dimension of a projective module must be divisible by the
order of the Sylow 2-subgroup shows that Liemax(2) = Liemax(4) = 0. When n = 6, the order of the Sylow 2-subgroup of
Sn is 16 and we find that the dimension of Lie(6)max is 96 with a corresponding 24-dimensional complementary module C6
for which H∗(S6; C6) = 0. When n = 8, the order of the Sylow 2-subgroup of Sn is 128 and we find that the dimension
of Lie(8)max is 4224 with a corresponding 816-dimensional complementary module C8. Thus according to [2], H∗(S8; C8)
corresponds to sequences of admissible Steenrod operations of length 3. In each case the factors of Liemax are computed in
terms of the indecomposable projectives within the corresponding group ring.

The layout of this paper is as follows. Section 2 contains definitions, including that of Lie(n) itself, along with the
introduction of notation and review of relevant material from [13]. Section 3 contains the correspondence between
representations of the symmetric group and symmetric polynomials. This is applied in Section 4 to the case of Lie modules.
Section 5 contains the calculation of Liemax(6). The most difficult part of the calculation of Liemax(8) is the determination
of the multiplicity of P431, a particular indecomposable projective. As preparation for this, detailed calculations of Steenrod
operations within P431(V ) (the application of the functor corresponding to P431) are given in Section 6. The calculation of
Liemax(8) appears in Section 7.

2. Notation and review of previous results

As in [13], we use the following notation. Let k be a field. Given a vector space V , we write |V | for the dimension of V .
In the tensor algebra T (V ), let [x, y] denote the commutator xy − yx. We often write [[v1, v2, v3, . . . , vn] for the iterated
commutator [. . . [[v1, v2], v3], . . . vn]. Define βn : V⊗n

→ V⊗n by βn(v1v2v3 · · · vn) = [[v1, v2, v3, . . . , vn]. When there is
no possibility of confusionwewill sometimeswrite simply β for βn. The image βn(V ) is denoted Ln(V ). For later use, observe
that

βn ◦ (V⊗n−k
⊗ βk)(v1, . . . , vn) = −[βn−k(v1, . . . , vn−k), βk(vn−k+1, . . . vn)]

where we use the Milnor–Moore convention under which the name of a space also denotes the identity map of that space.
In particular, Im[βj, βk] is contained in Lj+k(V ).

Let V̄ = 〈x1, x2, . . . , xn〉 be an n-dimensional vector space over k. The (left) action of the symmetric group Sn on V̄
given by permuting the basis of V̄ extends to what we call the ‘‘internal action’’ on any functorial image of V̄ . We write γn
for the (vector) subspace 〈xσ(1) ⊗ xσ(2) ⊗ · · · ⊗ xσ(n)〉σ∈Sn of V̄⊗n, made into a (left) k(Sn)-module by the internal action.
As a k(Sn)-module, γ is isomorphic to the group ring k(Sn), with Sn acting by multiplication on the left (using left-to-right
multiplication of cycleswithin Sn). The k(Sn)-module Lie(n) is defined as Ln(V̄ )∩γ . Explicitly, Lie(n) is the linear spanwithin
V̄⊗n of the elements [[xσ(1), xσ(2), . . . , xσ(n)]σ∈Sn . That is, Lie(n) consists of n-fold brackets in which each basis element xi
appears exactly once. The (left) action of the symmetric group is induced from permutation of the basis elements.

By iterated use of the Jacobi identity, one can show that the elements of the form [[x1, xσ(2), . . . , xσ(n)] as σ runs through
the permutations of {2, . . . , n}, form a basis for Lie(n). In particular, it follows that |Lie(n)| = (n−1)! and that the restriction
of Lie(n) to a k(Sn−1)-module is isomorphic to the group ring k(Sn−1).

We also use the notation LiLj to denote
(
Li(V̄ )⊗ Lj(V̄ )

)
∩ γ and similarly we write [Li, Lj] for [Li(V̄ ), Lj(V̄ )] ∩ γ . Observe

that Lk−1L1 is the module induced from Lk−1 under the inclusion k(Sk−1) ↪→ k(Sk).
Next we introduce some notation from representation theory. For a vector space V , there is a (right) ‘‘position’’ action of

Sn on V⊗n. This gives a correspondence between elements of k(Sn) and natural transformations from the functor V 7→ V⊗n

to itself. On γ ∼= k(Sn) we have both actions, and since they commute each element of k(Sn) gives, by its position
action, an endomorphism of γ with respect to the internal action. If we let σk be the k-cycle (1 2 · · · k) ∈ k(Sn) then
βn = (1 − σn)(1 − σn−1) · · · (1 − σ2). Since βn makes sense over the integers, Lie(n) is defined with any coefficients.

More generally, for any element f ∈ k(Sn), the natural transformation ηf corresponding to the position action of f gives a
subspace ηf

(
V⊗n

)
= V⊗n

· f ⊂ V⊗n which becomes a k
(
S|V |

)
-module under the internal action. In particular we get a k(Sn)-

module ηf
(
V̄⊗n

)
∩ γ ∼= k(Sn)f . If f is an idempotent, then k(Sn)f is projective. Conversely, for each projective submodule

P of k(Sn) there is an idempotent f ∈ k(Sn), and thus we get a k
(
S|V |

)
-submodule V⊗n

· f ⊂ V⊗n which we write as P(V ).
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Since k(Sn) is Artinian, any f yields, by iteration, an idempotent f N for some N , which we call a stable idempotent obtained
from f . The resulting projective k(Sn)f N is isomorphic to the colimit of k(Sn) under iterated multiplication by f .

Unless stated otherwise, a partition of n shall refer to an ordered partition into positive integers, where λ = (λ1, . . . , λr)
is an ordered partition if λ1 ≥ λ2 ≥ · · · ≥ λr . In this case we set Len(λ) = r . We write λ −−| n to mean ‘‘λ is a partition
of n’’. If λ is a partition, we sometimes write |λ| for λ1 + · · · + λr . We will also sometimes use the other standard notation
for partitions in which one writes λ = kq11 · · · kqmm , meaning that kj appears qj times, so that n = q1k1 + · · · + qmkm. Given a
partition λ = (λ1, . . . , λr) = kq11 · · · kqmm , in a polynomial algebra with ordered variables x1, . . . , xs, . . ., we write xλ for the
monomial xλ11 · · · xλ

r
r and xλ for the monomial xq1k1 · · · xqmkm .

As is well known, a property of the group Sn is that isomorphism classes of projective k(Sn)-modules depend only upon
the characteristic of the field k. (See [7].) If char k = 0 they are in 1–1 correspondence with partitions of n and if char k = p
they are in 1–1 correspondence with p-regular partitions of n, where a partition of n into positive integers is called p-regular
if no integer occurs more than p − 1 times.

Let Qp denote the p-adic field and Zp the p-adic integers. For any finite group G, each projective Fp(G)-module P lifts
uniquely to a projective Zp-module P̂ . (c.f. [8,5], or [12].) For a p-regular partition λ we write Pλ for the projective Fp(Sn)-
module corresponding to λ, and P̂λ for its lift to Zp(Sn). In characteristic 0, indecomposable k(G)-modules are irreducible
and we write αλ for the irreducible representation of k(Sn) corresponding to partition λ. The decomposition of P̂λ ⊗ Qp into
irreducible factors is given bywhat is called the ‘‘decompositionmatrix’’, although thesematrices have been calculated only
for low values of n. For p = 2 and 3, decomposition matrices up to n = 13 can be found in [7, pp 213–216].

In [13] the authors constructed a natural coalgebra decomposition
T (V ) ∼= Amin(V )⊗ Bmax(V )

where Amin(V ) is the minimum natural coalgebra retract of T (V ) which contains V . This led to two natural coalgebra
decompositions of T (V ). The first decomposition, whichwe have labelled the ‘‘Functorial Poincaré–Birkhoff–Witt Theorem’’,
[13, Thm. 6.5], is the finest natural decomposition. We will also refer to this as the ‘‘minimal’’ decomposition. It leads to
the construction of a k(Sn)-submodule Liemax(n) of Lie(n), which was shown to be the maximum projective submodule
of Lie(n). The second decomposition, which we will call the ‘‘tensor decomposition’’, [13, Thm. 10.7 applied with n = 1]
writes the coalgebra Bmax(V ) as a tensor product of tensor algebras rather than as a product of minimal factors. It leads to
the construction of another projective k(Sn)-submodule of Lie(n), labelled Lie′(n).

Thus for each nwe have the inclusions
0 ⊂ Lie′(n) ⊂ Liemax(n) ⊂ Lie(n)

of k(Sn)-modules, where all but the last are projective. Although it arises naturally, the module Liemax(n) does not appear to
be easy to calculate. In this paper we calculate this module for n ≤ 9 when char k = 2. In some cases the submodule Lie′(n)
is easier to calculate and assists in calculating Liemax(n).

In [13, Section 11.4], we noted the following facts which are useful in calculating Liemax(n).
(1) βnβn = nβn, and so βn/n is an idempotent when n is prime to p. Thus Lie(n) is projective when n is prime to p.
(2) For a finite group G, the order of any projective k(G)-module must be divisible by the order of the Sylow p-subgroup

of G.
(3) All nonzero primitives in Amin(V ) lie in degrees which are powers of p.

From now on suppose that p = 2. Although we shall sometimes need to consider other coefficients, unless stated
otherwise Ln shall denote the mod 2 reduction Ln ⊗ F2.

From (1) and (2) and the definitions in [13] of Lie′(n) and Liemax(n)we see that
0 ( Lie′(1) = Liemax(1) = Lie(1),
0 = Lie′(2) = Liemax(2) ( Lie(2),
0 ( Lie′(3) = Liemax(3) = Lie(3),
0 = Lie′(4) = Liemax(4) ( Lie(4),
0 ( Lie′(5) = Liemax(5) = Lie(5),
0 ( Lie′(7) = Liemax(7) = Lie(7),
0 ( Lie′(9) ⊂ Liemax(9) = Lie(9).

We shall calculate Liemax(6) and Liemax(8). The results can be summarized as follows.

Theorem. Lie(6)max has dimension 96 and is given explicitly by

Lie(6)max ∼= P51
⊕ 3P321

where P51 and P321 are indecomposable projective modules with |P51
| = 48, and |P321

| = 16. The complementary module
Lie(6)/Liemax(6) is a 24-dimensional module with no projective submodules and has the property that

H∗

(
Sn; Lie(6)/Liemax(6)

)
= H∗ (Sn; Lie(6)) = 0.
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Theorem. Lie(8)max has dimension 4224 and is given explicitly by

Liemax(8) ∼= 2P62
⊕ P53

⊕ 8P521
⊕ 4P431

where P62, P53, P521, and P431 are indecomposable projective modules with |P62
| = 640, |P53

| = 384, |P521
| = 128, and

|P431
| = 384. The complementary module Lie(8)/Liemax(8) is an 816-dimensional module with no projective submodules and

has the property that H∗

(
Sn; Lie(6)/Liemax(8)

)
= H∗ (Sn; Lie(8)) has a basis consisting of admissible sequences of Steenrod

operations of length 3.

3. Characteristic polynomials and representations of Sn

Let V = 〈x1, . . . , xr〉 be an r-dimensional vector space. For an unordered partition λ = (λ1, . . . , λr) of n into
r nonnegative integers letV λ denote thek(Sn)-submodule ofV⊗n (under the position action) generated by x⊗λ1

1 ⊗· · ·⊗x⊗λr
r ∈

V⊗n. Given a homogeneous vector subspace A of V⊗n define the characteristic polynomial of A by ch(A) =
∑

λ−−|ndλx
λ, where

dλ is the dimension of A ∩ V λ. It is clear from the definition that ch(A ⊕ B) = ch(A)+ ch(B) and ch(A ⊗ B) = ch(A)ch(B).
If A is a k(Sr)-submodule of V⊗n (under the internal action) then ch(A) is a symmetric polynomial in x1, . . . , xr . A

symmetric polynomial can be written in terms of the power functions ψj = xj1 + · · · + xjr . For a natural submodule
M(V ) ⊂ V⊗n, when written in power functions the polynomial ch (M(V )) is independent of the dimension r of V provided
that r is sufficiently large. (r ≥ n always suffices.) We write simply ch(M) for this polynomial.

In characteristic 0, the characteristic polynomial of a natural submodule of V⊗n can be computed via characters, hence
the name.

Theorem. Let f belong to k(Sn) where char k = 0 and let M = k(Sn)f be the left k(Sn)-module obtained from right
multiplication by f . Then for the natural submodule M(V ) = V⊗n

· f obtained from f we have

ch(M) =
1
n!

∑
σ∈Sn

χM(σ )ψλ(σ),

where λ(σ) denotes the partition of n corresponding to the cycle decomposition of σ , and χM(σ ) is the character of σ in the
representation M.

See [10, Chapter I, A7]. �
More generally, if char k = 0, the characteristic polynomial of any k(Sn)-moduleM is defined by

ch(M) =
1
n!

∑
σ∈Sn

χM(σ )ψλ(σ),

and according to the preceding theorem, the two definitions of ch(M) agree when both make sense.
For a subgroup G of Sn, corresponding to any representation M of G there is an induced representation MSn

G defined by
MSn

G = k(Sn)⊗k(G)M . As in [7] we let IG denote the trivial 1-dimensional representation of G. We write simply ch(G) for
ch
(
(IG)S

n

G

)
. From the definition we get

ch(G) =
1
|G|

∑
λ−−|n

(# of elements of G having cycle type λ)ψλ.

In particular, ch(Sn) =
1
n!

∑
λ−−|ncλψλ, where for a partition λ = kr11 · · · krmm (meaning n = r1k1 + · · · + rmkm),

cλ = n!/(r1! . . . rm!k1 . . . km) is number of elements in Sn having cycle type λ.
Let f belong to k(Sm), where char k = 0. Let M = k(Sm)f be the representation of Sm corresponding to f and let

M(V ) = V⊗m
· f be the corresponding functor. Let Sk[M(V )] denote the invariants of M(V )⊗k under the (position) action

of Sk. Thus Sk[M(V )], the space of symmetric tensors of length k, is isomorphic to the subspace of degree k polynomials
in the symmetric algebra S[M(V )]. Also Sk[M(V )] = M(V )⊗k

· N , where N =
1
k!

∑
σ∈Sk

σ ∈ k(Sk). The corresponding
representation ImN ◦ f ⊗k of Skm has been called a plethysm, written as Sk[M] or ISk �M . (See [9].) It is the representation of
Skm induced from the representation of the wreath product Smwr Sk which comes from the representation M of Sm and the
trivial representation of Sk.

If g(ψ) =
∑

aλψλ and q is a positive integer, let g(qψ) denote the polynomial
∑

aλψqλ, where qλ is the partition
(qλ1, qλ2, . . . , qλn) of q|λ| The formula for computing the characteristic polynomials of plethysms together with that
for ch(Sn) gives

ch (Sk[M]) =
1
n!

∑
λ−−|n

cλ (chM (k(λ)1ψ))
r(λ)1 · · · (chM (k(λ)mψ))

r(λ)m ,

where λ = k(λ)r(λ)11 · · · k(λ)r(λ)mm (see [10]). For example, ch(S3) =
1
6 (ψ

3
1 + 3ψ1ψ2 + 2ψ3), so if ch(M)(ψ) =

∑
aλψλ, then



2574 P. Selick, J. Wu / Journal of Pure and Applied Algebra 212 (2008) 2570–2580

ch (S3[M]) =
1
6

((∑
aλψλ

)3
+ 3

(∑
aλψλ

) (∑
aλψ2λ

)
+ 2

(∑
aλψ3λ

))
.

It is well known that if P is a projective k(Sn)-module then the isomorphism class of P is uniquely determined by its
characteristic polynomial. More precisely, if P and Q are projectives such that ch(P) = ch(Q ) then P ∼= Q . (See [10,12].) In
particular, in characteristic 0, the isomorphism class of a module is uniquely determined by its characteristic polynomial.
However in characteristic p, it is possible that ch(M) = ch(N) without M ∼= N , and it could even happen that one of M ,
N is projective and the other is not. For a projective Fp(Sn)-module P , ch(P) = ch

(
P̂ ⊗ Qp

)
and so calculating ch(P) is

equivalent to calculating the row of the decomposition matrix corresponding to P .
For an irreducible representation αλ of k(Sn) in characteristic 0, the characteristic polynomial ch

(
αλ(V )

)
is the Schur

polynomial Fλ, given as the quotient of determinants∣∣∣∣∣∣∣∣∣
xi1+r−1
1 xi2+r−2

1 · · · xir1
xi1+r−1
2 xi2+r−2

2 · · · xir2
...

...
. . .

...

xi1+r−1
r xi2+r−2

2 · · · xirr

∣∣∣∣∣∣∣∣∣
/∣∣∣∣∣∣∣∣∣

xr−1
1 xr−2

1 · · · x1 1
xr−1
2 xr−2

2 · · · x2 1
...

...
. . .

...
...

xr−1
r xr−2

2 · · · xr 1

∣∣∣∣∣∣∣∣∣ .
In particular, if |V | < Len(λ) then αλ(V ) = 0. From the definition of the dominance order ≺ on partitions [7, p. 23],

it follows that if λ ≺ µ then Len(λ) ≥ Len(µ). For the projective indecomposable F2(Sn)-module Pλ, the preceding,
together with [7, 6.3.51] and [7, 2.1.10] therefore implies that Pλ(V ) = 0 whenever Len(λ) > |V |. Thus when comparing
characteristic polynomials of projectives in F2(Sn), it suffices to consider ch (P(V )) for |V | equal to the length of the longest
p-regular partition of n. As noted earlier, this does not suffice when considering arbitrary F2(Sn)-modules. For p = 2, the
length of the longest 2-regular partition of n is the maximum k such that (k2 + k)/2 ≤ n.

4. Characteristic polynomials of Lie modules

We now calculate ch(Ln).
Let µ(q) denote the Möbius function defined for positive integers by

µ(q) =

µ(1) = 1
µ(q) = 0 unless q is squarefree;
µ(q) = (−1)k if q is a product of k distinct primes.

Theorem (Witt). ch(Ln) =
1
n

∑
q|n µ(q)ψ

n/q
q .

Proof. Throughout this proof, partitions refer to unordered partitions into nonnegative integers. For a partition λ, let zλ
denote the multinomial coefficient |λ|!/(λ1! · · · λr !). Since the dimensions are independent of the field, we can use rational
coefficients in the calculation. Over Q, the Poincaré–Birkhoff–Witt Theorem (either standard version or our functorial
version) gives the (coalgebra) isomorphism

T (V ) ∼=

∞⊗
k=1

S [Lk(V )] , (∗)

where S[ ] denotes the symmetric (polynomial) algebra. Let ch (Lk(V )) =
∑

λ dλx
λ. Then ch (S[Lk(V )]) =

∏
λ 1/(1 − xλ)dλ .

We wish to find dλ. Applying ch to (∗) gives 1/(1 − ψ1) =
∏
λ 1/(1 − xλ)dλ and so log(1 − ψ1) =

∑
λ dλ log(1 − xλ).

Therefore∑
n

ψn
1 /n =

∑
λ

∑
n

dλxnλ/n =

∑
n

∑
τ

dτ/nxτ/n,

where by convention dτ/n = 0 unless all entries of τ are divisible by n. Equating coefficients of xλ gives

zλ/|λ| =

∑
τ=λ/k

dτ/k. (∗∗)

Given λ, write λ = nλ′, where n is the greatest common divisor of the entries of λ. Setting f (k) = kdkλ′ and g(k) = zkλ′/|λ′
|,

(∗∗) reads g(n) =
∑

q|n f (q), so the Möbius Inversion Formula [14, p. 514] gives dλ =
1
n

∑
q|n µ(q)z(n/q)λ′/|λ′

| =

1
λ

∑
q|n µ(q)zλ/q. Therefore

ch(Ln) =

∑
|λ|=n

dλxλ =

∑
|λ|=n

∑
q|n

1
n
µ(q)zλ/qxλ =

1
n

∑
q|n

µ(q)
∑
|λ|=n

zλxλ =
1
n

∑
q|n

µ(q)ψn/q
q . �

See [11, Chapter 8] for some other proofs of this theorem.
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5. n = 6

For p = 2, the tensor decomposition [13, Theorem 10.7] gives

V⊗6 ∼= Amin(V )6 ⊕
(
Amin(V )3 ⊗ L3(V )

)
⊕
(
Amin(V )1 ⊗ L5(V )

)
⊕ T (L3(V ))6 ⊕ L′

6(V )

and passing to primitives gives L6(V ) ∼= [L3(V ), L3(V )] ⊕ L′

6(V ). Therefore, as noted in [13, Section 11.4], Lie(6) ∼=

Lie′(6) ⊕ [L3, L3]. To calculate Liemax(6) we must calculate Lie′(6) and we must find the maximum projective submodule
of [L3, L3].

With any coefficients there is a short exact sequence

0 → S2[L3(V )] → L3(V )⊗ L3(V ) → [L3(V ), L3(V )] → 0.

Since the dimensions are independent of the field,we canuse rational coefficients to calculate the characteristic polynomials.
From Section 3 we get ch(L3) = (ψ3

1 − ψ3)/3 and

ch (S2[L3]) =
1
2

((
ψ3

1 − ψ3

3

)2

+
ψ3

2 − ψ6

3

)
.

Therefore

ch ([L3, L3]) =

(
ψ3

1 − ψ3

3

)2

−
1
2

((
ψ3

1 − ψ3

3

)2

+
ψ3

2 − ψ6

3

)
.

Since ch (Lie(6)) = (ψ6
1 − ψ3

2 − ψ2
3 + ψ6)/6, we get ch

(
Lie′(6)

)
= (ψ6

1 + ψ3
1ψ3 − 2ψ2

3 )/9.
Suppose |W | = 3 and writeW = 〈x, y, z〉. Expanding gives

ch
(
Lie′(6)(W )

)
= x5y + 2x4y2 + 4x4yz + 2x3y3 + 7x3y2z + 10x2y2z2 + symmetrical terms.

Using the known decomposition matrix for n = 6, [7, p. 414], we get

ch
(
P6(W )

)
= x6 + 2x5y + 3x4y2 + 6x4yz + 4x3y3 + 8x3y2z + 10x2y2z2 + symmetrical terms,

ch
(
P51(W )

)
= x5y + 2x4y2 + 4x4yz + 2x3y3 + 5x3y2z + 6x2y2z2 + symmetrical terms,

ch
(
P42(W )

)
= x4y2 + 2x4yz + 2x3y3 + 4x3y2z + 6x2y2z2 + symmetrical terms,

ch
(
P321(W )

)
= x3y2z + 2x2y2z2 + symmetrical terms.

Therefore Lie′(6) ∼= P51
+ 2P321.

Using the results of Section 3, the polynomial for [L3, L3] tells us that

[L3, L3] ⊗ Q ∼= α411
+ α321

+ α33
+ α2211

in characteristic 0. Examination of the decompositionmatrix now shows that over F2 the only possible projective summand
of [L3, L3] is P321. In fact, since α321 is the only summand in block 2, the rational decomposition already implies that P321 is
indeed a summand of [L3, L3], but for future use we need more specific information, so we appeal instead to the argument
given in [13]. Namely, set

A = [β(zxx), β(yxy)] + [β(zxy), β(yxx)] ∈ [L3(W ), L3(W )]

and let φ = [β3, β3] ◦ T2,4 ∈ k(S6), where Ti,j denotes the transposition (i j). That is, φ acts on V⊗6 by φ(v1v2 · · · v6) =

[β(v1v4v3), β(v2v5v6)]. Let φ̃ be a stable idempotent formed by iterating φ and let P be the projective k(Sn)-module Im φ̃.
Direct computation shows that φ(A) = A, so A belongs to P(W ). In particular, P 6= 0 so P ∼= P321. Thus the maximum
projective submodule of [L3, L3] is P321, and so we get

Lie(6)max ∼= Lie′(6)⊕ P ∼= P51
+ 3P321.

Since, as determined from the decomposition matrix, |P51
| = 48 and |P321

| = 16 this has dimension 96 as claimed
in [13].



2576 P. Selick, J. Wu / Journal of Pure and Applied Algebra 212 (2008) 2570–2580

Notice that the general theory says that since the length of the largest partition of 6 is 3, the projective modules over
k(S6) are determined by restriction to 3-dimensional vector spaces, and we were indeed able to obtain the information we
needed about φ̃ from calculations in 3 variables. An explicit formula for φ̃ would involve 6 variables and looks extremely
complicated.

6. The Steenrod module P431(V )

In this section k = F2.
Since the longest 2-regular partition of 8 is 3, projective k(S8)-modules are determined by their characteristic series in

3 variables. Therefore, as before letW = 〈x, y, z〉. Using the known decomposition matrix for n = 8, we compute

ch
(
P8(W )

)
= x8 + 2x7y + 2x6y2 + 4x6yz + 2x5y3 + 4x5y2z + 2x4y4 + 6x4y3z

+ 8x4y2z2 + 12x3y3z2 + symmetrical terms,

ch
(
P71(W )

)
= x7y + 2x6y2 + 4x6yz + 3x5y3 + 6x5y2z + 4x4y4 + 9x4y3z + 10x4y2z2

+ 12x3y3z2 + symmetrical terms,

ch
(
P62(W )

)
= x6y2 + 2x6yz + 2x5y3 + 4x5y2z + 2x4y4 + 6x4y3z + 8x4y2z2

+ 10x3y3z2 + symmetrical terms,

ch
(
P53(W )

)
= x5y3 + x5y2z + 2x4y4 + 4x4y3z + 8x4y2z2 + 6x3y3z2

+ symmetrical terms,

ch
(
P521(W )

)
= x5y2z + x4y3z + 2x4y2z2 + 2x3y3z2 + symmetrical terms,

ch
(
P431(W )

)
= x4y3z + 2x4y2z2 + 4x3y3z2 + symmetrical terms.

Let P be the projective summand of [L3, L3] found in Section 5, and let P ′ be the induced projective k(S8)-module PS8
S6
.

Comparing

ch
(
P ′(W )

)
= ch

(
P321(W )⊗ W ⊗ W

)
= ch

(
(x + y + z)2P321(W )

)
= x5y2z + 3x4y3z + 6x4y2z2 + 10x3y3z2 + symmetrical terms,

to the polynomials for the indecomposable projectives shows that P ′ ∼= P521
+ 2P431.

As before set A = [β(zxx), β(yxy)] + [β(zxy), β(yxx)] ∈ [L3(W ), L3(W )] and let A′
= TxyA, where Txy interchanges

x and y. Symmetric polynomials in {x, y, z} of a given degree are in fact multi-graded according to the exponents of the
various factors. Strictly speaking, this grading is indexed by (Z3/Σ3); we refer to it as grading by tridegrees. According to
the characteristic polynomial, the dimensions of tridegrees 521 and 431 in P(W ) ⊗ W ⊗ W are 1 and 3 respectively. In
tridegree 521 we have Axx and a basis in tridegree 431 consists of Axy, Ayx, and A′xx.

Write P ′
= P1 ⊕ P2 ⊕ P3 where P1 ∼= P521, and P2 ∼= P3 ∼= P431. Since P2(W ) and P3(W ) are zero in tridegree 521, we

know that Axy + Ayx, and Axy + A′xx form a basis for P2 ⊕ P3 in tridegree 431. The element Axy + Ayx lies in at most one of
P2, P3 say Axy + Ayx 6∈ P3.

Define r : P ′
→ P ′ by r(Yuv) = Yuv+Yvu. That is, r = 1⊗β2 = 1−T78. Observe that in tridegree 431 of P ′(W )we have

Ker r = Im r = 〈Axy+Ayx〉. Let φ be the composite P2
g

−→
∼=

P3
r

−→ P ′
projection
−→ P2. Because Axy+Ayx 6∈ P3(W ), in tridegree 431

we have Im(r ◦ g) is not zero so Im(r ◦ g) = 〈Axy + Ayx〉. However the projection of Axy + Ayx to P2(W ) is nonzero, since
Axy + Ayx is not in P1 ⊕ P3, and so it follows that φ(W ) is an isomorphism in tridegree 431. Therefore φ 6= 0, and since P2
is an indecomposable projective, any idempotent obtained by iterating φ is an isomorphism and so φ is an isomorphism. In
particular, r : P3 → r(P3) is an injection and thus an isomorphism. Since r2 = 0, the fact that the restriction of r to P3 is an
injection implies that P3 ∩ r(P3) = 0. Also P1 ∩ r(P3) = 0 since P521 and P431 are in different blocks. Therefore, replacing P2
by the isomorphic module r(P3)we may assume that P2 = r(P3) in the decomposition P ′ ∼= P1 ⊕ P2 ⊕ P3.

In the remainder of this section we will need to consider some modules which are not projective (or at least not
initially known to be projective). Since such modules are not uniquely determined by their characteristic polynomial
in 3 variables we shall sometimes need to consider more variables. Let X = 〈x, y, z, w〉 have dimension 4. Then we
compute

ch
(
P521(X)

)
= x5y2z + x4y3z + 2x4y2z2 + 2x3y3z2 + 4x4y2zw + 4x3y3zw

+ 6x3y2z2w + 8x2y2z2w2
+ symmetrical terms,

ch
(
P431(X)

)
= x4y3z + 2x4y2z2 + 4x3y3z2 + 4x4y2zw + 8x3y3zw + 14x3y2z2w

+ 24x2y2z2w2
+ symmetrical terms.

ch
(
P321(X)

)
= x3y2z + 2x2y2z2 + 2x3yzw + 4x2y2zw + symmetrical terms.
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We will consider some natural k(S8) submodules of X⊗8. Besides being k(S8)-submodules they are closed under the action
ofGL(X). In particular, they are closed under ‘‘formal Steenrod operations’’. By Sqvu wewill mean a formal Steenrod operation
which takes u to v and is zero on basis elements of X other than u. The induced action on T (X) is a derivation which satisfies
Sqvu ◦ Sqvu = 0. Commutativity with the operation Sqvu is a way of expressing the information given by commutativity with
the element of GL(X)which takes u to u + v, and other basis elements to themselves. Tuv will denote the element of GL(X)
which switches u and v.

We will need to compute Steenrod operations in P431(X). Our multi-grading by exponents becomes a (Z4/Σ4) grading
which we refer to it as grading by quaddegrees. In quaddegree 5210 of P ′(X)we have r(Axx) = 0. Since the decomposition
matrix tells us that P̂521

⊗ Q ∼= α521
+ α32111, the fact that r is zero in degree 5210 implies that r(P1) is either zero or is a

module whose characteristic polynomial is the same as ch(α32111). In either case, applied to a vector space of dimension 4
we get r (P1(X)) = 0. Therefore, since r (P1(X)) = 0 and r (P2(X)) = r2 (P3(X)) = 0 we have r

(
P ′(x)

)
= r (P3(X)) =

P2(X) ∼= P431(X). Thus we can easily identify the elements of P ′(X)which lie in P2(X), and can use this to compute Steenrod
operations in the abstract module P431(X).

To describe explicit bases for P2(X)we will need the following elements of P(X)which constitute bases in the specified
quaddegrees. Quaddegrees are on the left and the notation ‘‘:=’’ indicates a definition. A and A′ are as before.

3210 A
2310 A′

3120 A′′
:= TyzA

3201 A′′′
:= TzwA

2220 B := Sqz
xA

B′
:= TxyB

3111 C := Sqwy A
C ′

:= TyzC
2211 D := Sqwy A

′

D′
:= TzwD

E := Sqy
xC

F := Sqwz B

Then bases of P2(X) in various quaddegrees are as follows:

4310 A[xy]
4220 A[xz] A′′

[xy]
3320 B[xy] B′

[xy]
A[yz] A′

[xz]
4211 C[xy] C ′

[xy]
A[xw] A′′′

[xz]
3311 A[yw] A′

[xw]

A′′′
[yz] (TwzA′)[xz]

D[xy] D′
[xy]

E[xy] F [xy]
3221 A[zw] A′′

[yw]

B[xw] B′
[xw]

C[yz] C ′
[yz]

D[xz] D′
[xz]

E[xz] F [xz]
(TyzD)[xy] (TyzD′)[xy]
(TyzE)[xy] (TyzF)[xy]

Lemma. Let M̂ be a sub Z2(S8)-lattice of P̂431. (That is, M̂ is a submodule of P̂431 which is free as a Z2-module.) Let X be a 4-
dimensional vector space over k and let M be the reduction of M̂ modulo 2. If M(X) is zero in quaddegrees 3320 and 4211 then
M̂ = 0.

Proof. Since the only partitions occurring in the decomposition of P̂431
⊗ Q are α431, α442, α332, α4211, α3111, and α3221, we

need to show thatM(X) is zero in quaddegrees 4310, 4220, 3320, 4211, 3311, and 3221. Given the hypotheses, to do this it
suffices to show that every nonzero element of P431(X) has a nonzero image under some operation into one of quaddegree
3320 or 4211. The operations in the abstract module P431(X) can be computed from the isomorphic P2(X).

Using the formulas (computed from the definitions)
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Sqy
xA = A′ Sqy

xA
′′

= B + B′

Sqz
wA

′′′
= A Sqz

wTzwA
′
= A′

Sqz
wD = B′ Sqz

wD
′
= B′

Sqz
wE = B + B′ Sqz

wF = 0

Sqx
yA

′
= A Sqx

yTzwA
′
= A′′′

Sqx
yD = C Sqx

yD
′
= C + C ′

Sqx
yE = 0 Sqx

yF = C ′

Sqy
wC = 0 Sqy

wC
′
= A

Sqy
wD = A′ Sqy

wD
′
= A′

Sqy
wE = 0 Sqy

wF = A′

Sqx
wD = A Sqx

wD
′
= 0

Sqx
wE = 0 Sqx

wF = 0

Sqy
zA = 0 Sqy

zA
′′

= A
Sqy

zB = A′ Sqy
zB

′
= 0

Sqy
zC = A′′′ Sqy

zC
′
= A′′′

Sqy
zD = TzwA′ Sqy

zD
′
= TzwA′

Sqy
zE = TzwA′ Sqy

zF = TzwA′

Sqy
zTyzD = D + D′ Sqy

zTyzD
′
= 0

Sqy
zTyzE = D′

+ E Sqy
zTyzF = D′

+ F

Sqx
zB = 0 Sqx

zB
′
= A

(and the fact that operations landing in degrees not occurring in P321 are zero) we find

4310 Ker Sqz
x = 0

4220 Ker Sqy
x = 0

3311 Ker Sqz
w ∩Ker Sqx

y ∩Ker Sqy
w ∩Ker Sqx

w ◦Txz = 0
3221 Ker Sqy

z ∩ Ker Sqy
w ∩ Ker Sqz

w ∩ Ker Sqx
w ∩

Ker Sqx
z = 0

In each row, the images of the specified operations are (up to symmetry) in quaddegree 3320, 4211, or one of the previous
rows. Therefore every nonzero element of P431(X) has a nonzero image under some (composite) operation into one of
quaddegree 3320 or 4421. �

Corollary. Let f̂ : ˆP431 → N̂ be a map of Z2-modules and let fX : P431(X) → N(X) be the induced map between the
mod 2 reductions. If Im fX has dimension 4 in quaddegrees 3320 and 4421, then Im f̂ is isomorphic to P431.

Proof. Apply the preceding Lemma to Ker f̂ . �

7. Liemax(8)

Once again, k = F2 in this section.
Since Lie′(2) = 0 and Lie′(4) = 0 for dimensional reasons, (their dimensions are less than the size of the corresponding

Sylow 2-subgroups,) the tensor decomposition gives Lie′(8) = Liemax(8). The map x ⊗ y 7→ [x, y] gives an isomorphism
from the projective/injectivemodule L3⊗L5 to the submodule [L3, L5] of Lie(8). Therefore [L3, L5] is a summand of Liemax(8).

Since

ch ([L3, L5]) = ch ([L3 ⊗ L5]) =

(
ψ3

1 − ψ3

3

)(
ψ5

1 − ψ5

5

)
,

expanding gives

ch ([L3(W ), L5(W )]) = x6y2 + 2x6yz + 3x5y3 + 9x5y2z + 4x4y4 + 17x4y3z
+ 26x4y2z2 + 36x3y3z2 + symmetrical terms,

and we conclude that [L3, L5] ∼= P62
+ P53

+ 4P521
+ 3P431.
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Using ch (Lie(8)) = (ψ8
1 − ψ4

2 )/8 we can calculate that in characteristic 0,

(Lie(8)/[L3, L5])⊗ Q ∼= α71
+ α62

+ 2α611
+ 2α53

+ 4α521
+ 2α5111

+ 4α431
+ 2α422

+ 6α4211

+ 2α41111
+ 3α332

+ 2α3311
+ 4α3221

+ 4α32111
+ 2α311111

+ 2α22211
+ α221111

+ α2111111.

Comparing this with the summands of P̂ ⊗ Qp given by the decomposition matrix for each of the various indecomposable
projectives, gives the upper bound

Liemax(8) ∼= [L3, L5] + aP62
+ bP521

+ cP431

where 0 ≤ a ≤ 1, 0 ≤ b ≤ 4, 0 ≤ c ≤ 2, and a + c ≤ 2.
To find b we use:

Lemma. Let X be a Z2(S8)-module such that P̃521
⊗ Q is a summand of X ⊗ Q. Suppose that X restricted to Z2(S7) is projective.

Then P521 is a summand of X ⊗ k.

Proof. This follows from the fact that from the known decomposition matrices for S8 and S7 we can work out that the
indecomposable projective k-module P521 remains indecomposable when thought of as a k(S7)-module. (Its restriction
is P52.) �

Since Lie(8) restricted to an S7 module becomes the free module k(S7), the Lemma plus induction gives b = 4.
Next we apply the same method used in Section 5 to find a. By direct computation we check that ([β2, β6] ◦

T2,3,5)([β(yx), β(yxxxxx)]) = [β(yx), β(yxxxxx)]. This implies that Lie(8)/[L3, L5] has a projective summand P such that
P(V ) 6= 0 for a 2-dimensional vector space V . Among the possible summands of Lie(8)/[L3, L5], only P62 has this property,
so a = 1. Therefore c ≤ 1.

To finish the computation, we show that P431 is a summand of Lie(8)/[L3, L5].
Let ad : Lie(k − 1) → Lie(k) be the adjoint map. That is, ad is given on γ by ad([[v1, . . . , vk−1]vk) = [[v1, . . . , vk].

Equivalently, if we let σk = (1 2 3 · · · k) in k(S8) then ad = 1 − σk. Let Ad denote the composition

[L3(V ), L2(V )] ⊗ V
ad

−→[L3(V ), L3(V )] + [L4(V ), L2(V )] � [L3(V ), L3(V )].

Observe that Ad ◦ [β3, β2] = [β3, β3].
Let f be the composite

[L3(V ), L3(V )] ↪→ V⊗6 T24
−→ V⊗6 [β3,β2]

−→ [L3(V ), L2(V )] ⊗ V .

Let φ, A, and P be as in Section 5. Then Ad ◦ f (A) = φ(A) = A and so f (P) is a projective summand of [L3, L2]L1 which is
isomorphic to P ∼= P321. Set P̃ equal to f (P). We write P̃ ′ = P̃L1L1 for the k(S8)-module induced by P̃ , and we write simply f
for the isomorphism P ′ ∼= P̃ ′ induced by f : P ∼= P̃ . Elements of P will be denoted by the letters introduced in Section 6, and
their images under the isomorphism f will be written with a tilde over the same letter. We also write P̃2 for f (P2).

Direct calculation shows that

Ã = [β(zyx), β(yx)]x + [β(zxx), β(yx)]y + [β(yxx), β(yx)]z.

Applying the operations gives formulas for the images of the other elements described in Section 6. Explicitly, we find

C̃ = [β(zwx), β(yx)]x + [β(zyx), β(wx)]x + [β(zxx), β(wx)]y + [β(zxx), β(yx)]w
+ [β(wxx), β(yx)]z + [β(yxx), β(wx)]z

C̃ ′
= [β(zyx), β(wx)]x + [β(wyx), β(zx)]x + [β(zxx), β(wx)]y + [β(wxx), β(zx)]y

+ [β(yxx), β(wx)]z + [β(yxx), β(zx)]w

Ã′′′
= [β(zyx), β(zx)]x + [β(zxx), β(zx)]y + [β(yxx), β(zx)]z

B̃ = [β(zyx), β(zy)]x + [β(zyx), β(zy)]x + [β(zxz), β(yx)]y + [β(zxx), β(zy)]y
+ [β(yxx), β(zy)]z + [β(yxz), β(yx)]z

B̃′ = [β(zyz), β(yx)]x + [β(zyy), β(zx)]x + [β(zxy), β(zx)]y + [β(zxz), β(yx)]y
+ [β(yxz), β(yx)]z + [β(yxy), β(zx)]z.

Let g denote the composite

[L3(V ), L2]V ⊗ V ⊗ V
[L3(V ),L2(V )]⊗β2⊗V

−→ [L3(V ), L2(V )] ⊗ L2(V )⊗ V
ad⊗V
−→

[[L3(V ), L2(V )], L2(V )] ⊗ V
ad

−→[[L4(V ), L2(V )], L2(V )] + [L5, L3]
� [[L4(V ), L2(V )], L2(V )].

Notice that [[L4(V ), L2(V )], L2(V )] ∩ [L5, L3] = 0.
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Calculating in quaddegree 3320 from the definition of g gives

g(B̃[xy]) = [[β(yxxx), β(zy), β(zy)] + [[β(yxxy), β(zx), β(zy)] + [[β(yxyz), β(yx), β(zx)]
+ [[β(yxzz), β(yx), β(yx)] + [[β(zx), β(yx), β(yx), β(zy)]
+ [[β(zy), β(yx), β(yx), β(zx)] + [[β(zy), β(yx), β(yxxy)]

g(B̃′
[xy]) = [[β(yxxy), β(zx), β(zy)] + [[β(yxxz), β(yx), β(zy)] + [[β(yxyy), β(zx), β(zx)]

+ [[β(yxzz), β(yx), β(yx)] + [[β(zx), β(yx), β(yx), β(zy)]
+ [[β(zy), β(yx), β(yx), β(zx)] + [[β(zx), β(yx), β(yxyz)]

g(Ã′
[xz]) = [[β(zxxy), β(yx), β(zy)] + [[β(zxyz), β(yx), β(yx)] + [[β(zxyy), β(yx), β(zx)]

+ [[β(zy), β(yx), β(zxxy)]

g(Ã[yz]) = [[β(yxxz), β(yx), β(zy)] + [[β(yxyz), β(yx), β(zx)] + [[β(yxzz), β(yx), β(yx)]
+ [[β(zxxy), β(yx), β(zy)] + [[β(zxyy), β(yx), β(zx)]
+ [[β(zxyz), β(yx), β(yx)] + [[β(zy), β(yx), β(yx), β(zx)]

which are linearly independent. (Note that the right-hand sides are written in a Hall basis.) Similarly in quaddegree 4211
we find

g(C̃[xy]) = [[β(zxxw), β(yx), β(yx)] + [[β(wxxz), β(yx), β(yx)] + [[β(yxxz), β(yx), β(wx)]
+ [[β(zxxx), β(yx), β(wy)] + [[β(zxxy), β(yx), β(wx)] + [[β(wxxx), β(yx), β(zy)]
+ [[β(wxxy), β(yx), β(zx)] + [[β(yxxx), β(zy), β(wx)] + [[β(yxxy), β(zx), β(wx)]
+ [[β(wx), β(zy), β(yxxx)] + [[β(wx), β(zx), β(yxxy)] + [[β(wx), β(yx), β(yxxz)]

g(C̃ ′
[xy]) = [[β(yxxx), β(zy), β(wx)] + [[β(yxxx), β(zx), β(wy)] + [[β(zxxx), β(yx), β(wy)]

+ [[β(zxxy), β(yx), β(wx)] + [[β(wxxy), β(yx), β(zx)] + [[β(zx), β(yx), β(wxxy)]
+ [[β(wx), β(zx), β(yxxy)] + [[β(zx), β(yx), β(yx), β(wx)]
+ [[β(wx), β(yx), β(yx), β(zx)] + [[β(wx), β(yx), β(zxxy)]

g(Ã[xw]) = [[β(zxxy), β(yx), β(wx)] + [[β(yxxz), β(yx), β(wx)] + [[β(zxxx), β(yx), β(wy)]
+ [[β(zxxw), β(yx), β(yx)] + [[β(yxxx), β(yx), β(wz)] + [[β(yxxw), β(yx), β(zx)]

g(Ã′′′[xz]) = [[β(wxxy), β(yx), β(zx)] + [[β(yxxw), β(yx), β(zx)] + [[β(wxxx), β(yx), β(zy)]
+ [[β(wxxz), β(yx), β(yx)] + [[β(yxxx), β(yx), β(wz)] + [[β(yxxz), β(yx), β(wx)]

which are also linearly independent. Therefore, according to the Corollary of Section 6, the submodule [[L4, L2], L2] of
Lie(8)/[L3, L5] contains a submodule isomorphic to P431, and so c = 1.

Thus we have shown that

Liemax(8) ∼= [L3, L5] + P62
+ 4P521

+ P431 ∼= 2P62
+ P53

+ 8P521
+ 4P431.

From the decomposition matrix, we know that |P62
| = 640, |P53

| = 384, |P521
| = 128, and |P431

| = 384 so its dimension
is 4224.
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