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We consider the dynamics of a single probe brane on various cosmological brane backgrounds. The 
on-shell condition of the static probe brane leads to the supersymmetric intersection rules for static 
BPS configurations, though the cosmological backgrounds do not preserve any supersymmetries. This is 
a remarkable feature associated with the cosmological backgrounds because in the static background the 
on-shell condition of the static brane gives no constraint on the brane configuration. Furthermore, it 
follows that under this condition there is no velocity-independent force for the probe brane even on the 
cosmological backgrounds.
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1. Introduction

String theory contains higher-dimensional p-branes (p > 1) as 
well as strings. The low-energy dynamics of the branes are de-
scribed in supergravity theories. An innumerable number of brane 
solutions have been discovered so far. Most of them are static, but 
it is certain that cosmological brane solutions should also exist. For 
example, colliding brane solutions, which are found by Gibbons, Lu 
and Pope [1], are cosmological solutions (for the related progress, 
see [2–8]). The colliding solutions have some potential applications 
in realistic cosmology [9–12]. It may be related to a cosmic Big 
Bang of the origin of our Universe. Therefore, it is of great signifi-
cance to understand the cosmological backgrounds profoundly.

An interesting issue along this direction is to consider the brane 
dynamics on cosmological brane backgrounds. It is well studied 
on static brane backgrounds [13]. The brane dynamics is an im-
portant subject in string theory and M-theory. For example, the 
matrix-model formulations of M-theory and type IIB string the-
ory are intimately connected with the brane dynamics [14,15]. It 
would be nice to consider cosmological backgrounds in the context 
of the matrix-model formulations. It would shed light on a new 
aspect of the non-perturbative formulation of superstring theories 
and M-theory and one may make a fundamental progress in string 
theory.

In this manuscript, we consider the dynamics of a single probe 
brane on various cosmological brane backgrounds. This is for-
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mally a generalization of the work by Tseytlin [13], where “static” 
source brane backgrounds are considered. The on-shell condition 
of the static probe brane leads to the supersymmetric intersection 
rules for static BPS configurations, although the cosmological back-
grounds do not preserve any supersymmetries. This is a remark-
able feature associated with the cosmological backgrounds because 
in the static background the on-shell condition of the static brane 
gives no constraint on the brane configuration. Furthermore, it fol-
lows that under this condition there is no velocity-independent 
force for the probe brane even on the cosmological backgrounds.

This paper is organized as follows. Section 2 introduces cos-
mological brane backgrounds that we are concerned with here. In 
Section 3, we consider the dynamics of a single probe p-brane 
on the cosmological brane backgrounds. In particular, we argue 
on the condition under which the velocity-independent force van-
ishes. We will also study D-branes on the cosmological brane back-
grounds in type IIB and IIA supergravities. Section 4 is devoted to 
conclusion and discussion.

2. Cosmological brane backgrounds

We first introduce cosmological brane backgrounds used in 
later discussion.

The gravitational theory we are concerned with here includes 
the metric (in the Einstein frame) g̃MN , a scalar field (dilaton) 
φ, and a (p + 1)-form field A(p+1) where the field strength is 
F(p+2) = dA(p+1) . This theory is realized by imposing some ansatz 
in type IIB and IIA supergravities. It is enough to describe charged 
p-branes.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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The action is given by [16]

S = 1

2κ2

∫ [
R̃ ∗ 1D − 1

2
∗ dφ ∧ dφ

− 1

2

eεcφ

(p + 2)! ∗ F(p+2) ∧ F(p+2)

]
, (2.1)

where κ2 is the gravitational constant in D dimensions and ∗
is the Hodge dual operator, R̃ denotes the Ricci scalar with the 
D-dimensional metric g̃MN . Note that g̃MN is related to the metric 
gMN in the string frame via a Weyl rescaling:

gMN = eφ/2 g̃MN . (2.2)

Then the constants c and ε are defined as

c2 ≡ 4 − 2(p + 1)(D − p − 3)

D − 2
, (2.3a)

ε ≡
{+ for electric p-branes,

− for magnetic p-branes.
(2.3b)

From the classical action (2.1), the field equations are obtained as

R̃ MN = 1

2
∂Mφ∂Nφ

+ 1

2

eεcφ

(p + 2)!
[
(p + 2)F M A2···A p+2 F N

A2···A p+2

− p + 1

D − 2
g̃MN F 2

(p+2)

]
, (2.4a)

�φ − 1

2

εc

(p + 2)!eεcφ F 2
(p+2) = 0, (2.4b)

d
[
eεcφ ∗ F(p+2)

] = 0. (2.4c)

Here R̃ MN and � are the Ricci tensor and the Laplacian, respec-
tively, with respect to g̃MN .

Let us suppose the following form of the metric,

ds̃2 = g̃MNdxMdxN

= [
h(x, z)

]a
qμν(X)dxμdxν + [

h(x, z)
]b

uab(Z)dzadzb. (2.5)

Here xM denotes the coordinates on the D-dimensional spacetime, 
X is a (p + 1)-dimensional spacetime with the metric qμν and the 
coordinates xμ , and Z is a (D − p − 1)-dimensional space with the 
metric uab and the coordinates za . The parameters a and b are 
given by

a = − D − p − 3

D − 2
, b = p + 1

D − 2
. (2.6)

Then the parameter c in (2.3a) can be rewritten as

c2 = 4

[
1 − 1

2
ab(D − 2)

]
. (2.7)

The metric ansatz (2.5) is a generalization of static p-branes with 
a dilaton coupling [16]. The cosmological brane solution can be 
obtained only in the particular case with (2.6), while the static 
brane solution does not need to satisfy the conditions in (2.6).

In addition, for φ and F(p+2) , suppose the following forms,

eφ = hεc/2, (2.8a)

F(p+2) = d
(
h−1) ∧ Ω(X), (2.8b)

where Ω(X) is the volume (p + 1)-form,

Ω(X) = √−q dx0 ∧ dx1 ∧ · · · ∧ dxp, q ≡ det qμν. (2.9)
Then the metric in (2.5) should satisfy

Rμν(X) = 0, Rab(Z) = 0, (2.10a)

h(x, z) = h0(x) + h1(z),

DμDνh0 = 0, �Zh1 = 0, (2.10b)

where Dμ is the covariant derivative with qμν and the Laplacian 
�Z is defined on the Z space. Similarly, Rμν(X) and Rab(Z) are the 
Ricci tensors associated with qμν and uab , respectively.

For later argument, we concentrate on a simple case specified 
with

qμν = ημν, uab = δab,

where ημν is the (p − 1)-dimensional Minkowski metric, and δab
is the (D − p − 1)-dimensional Euclidean metric.

Then the general solution of (2.10) is given by [17,18]

h(x, z) =
{

βμxμ + β̄ + ∑
l

Ml
|za−za

l |D−p−3 (for D − p �= 3)

βμxμ + β̄ + ∑
l Ml ln |za − za

l | (for D − p = 3)
,

(2.11)

where βμ , β̄ and Ml are real constants. The distance |za − za
l | is 

defined as∣∣za − za
l

∣∣
=

√(
z1 − z1

l

)2 + (
z2 − z2

l

)2 + · · · + (
zD−p−1 − zD−p−1

l

)2
.

When β0 �= 0, the solution becomes cosmological. For βμ = 0, the 
solution describes static BPS p-branes with charges Ml , which are 
aligned in parallel.

In general, the dilaton does not vanish. There is no dilaton con-
tribution in special cases with c = 0, which contain

p = 2 and p = 5 for D = 11,

p = 3 for D = 10.

In the following, we assume that β0 �= 0 and the other compo-
nents are zero, for simplicity.

3. Probe branes on cosmological brane backgrounds

We study the dynamics of a single probe p-brane on the cos-
mological brane backgrounds. First of all, as a simple case, we 
shall concentrate on a probe p-brane on cosmological p-brane 
backgrounds in D dimensions with a constant dilaton or with-
out a dilaton. It is shown that the on-shell condition of the probe 
brane leads to a constraint for the brane configuration. Then we 
consider a generalization to a probe ps brane on a cosmological 
pr -brane background. Finally, we consider a Dps-brane probe on 
a cosmological Dpr -brane background.

3.1. A probe p-brane on a cosmological p-brane background 
without dilaton

We consider a probe p-brane on a cosmological p-brane back-
ground with the (p + 1)-form A(p+1) in D dimensions. For sim-
plicity, we assume that the dilaton is constant or not contained. 
The analysis includes probe D3-branes in type IIB theory and M-
branes in eleven dimensions. Then there is no distinction between 
the string frame and the Einstein frame. Furthermore, it is sup-
posed that the NS–NS two-form and world-volume gauge field are 
turned off.
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In total, the probe p-brane action is simply given by

S p =
∫

dτdpσL
(
∂τ xM , ∂αxM)

= −T p

∫
dp+1σ

√
−det ḡμν + T p

∫
Ā, (3.1)

where T p is the p-brane tension. Then ḡμν and Ā are the induced 
metric and p-form, respectively,

ḡμν ≡ gMN∂μxM∂νxN ,

Āμ1···μp+1 = AM1···Mp+1∂μ1 xM1 · · · ∂μp+1 xMp+1 . (3.2)

The p-brane world-volume with the coordinates σμ (μ = 0, . . . , p)

is embedded into a D-dimensional target spacetime via the func-
tions xM(τ , σα) (M = 0, . . . , D − 1).

Let us argue a classical probe p-brane solution on a cosmologi-
cal p-brane background with the metric (2.5). We suppose that the 
probe p-brane is parallel to the background p-brane, for simplicity.

We are interested in the following static configuration of the 
solution,

t = τ , xα = σα, xa = const (3.3)

By substituting (3.3) into the equation of motion, we obtain the 
following condition,1

∂t
(
h

ξ
2 − h−1) = 0. (3.4)

Here ξ is defined as

ξ ≡ − (p + 1)(D − p − 3)

D − 2
. (3.5)

For the cosmological backgrounds introduced in Section 2, the con-
straint (3.4) is not satisfied in general, while it is trivially satisfied 
for the static backgrounds. The special case is ξ = −2. The configu-
ration (3.3) becomes a classical solution if and only if ξ = −2. The 
condition ξ = −2 is realized for the following cases:

p = 2 or 5 for D = 11, (3.6a)

p = 3 for D = 10. (3.6b)

Note that the first contribution in (3.4) comes from the Nambu–
Goto part of the action and the second one from the coupling to 
the p-form gauge field. Thus, if the gauge-field contribution is ig-
norable (for example, when the probe p-brane is not parallel to 
the background p-brane), then ξ = 0 is required as the on-shell 
condition.

The next task is to study the potential between the probe 
p-brane and the background p-branes. We assume that ξ = −2
so that the configuration (3.3) becomes a classical solution. In or-
der to evaluate the potential, it is necessary to expand the original 
action (3.1).

First of all, let us expand the Nambu–Goto part. The metric in 
(2.5) is diagonal and the determinant part in (3.1) is expanded as√

−det(ḡμν) =
√

−det gμν

[
1 + 1

2
gρσ gab∂ρxa∂σ xb

+ 1

8

(
gρσ gab∂ρxa∂σ xb)2

− 1

4
gρσ gαβ gab gcd∂ρxa∂αxb∂σ xc∂βxd + · · ·

]

1 Appropriate boundary conditions have to be imposed at the spatial infinity 
of the p-brane world-volume. Free endpoints are taken for all of the directions 
xM (M = 0, . . . , D − 1).
= hξ/2
[

1 + 1

2
hηρσ δab∂ρxa∂σ xb

+ 1

8
h2ηρσ ηαβδabδcd

(
∂ρxa∂σ xb∂αxc∂βxd

− 2∂ρxa∂αxb∂σ xc∂βxd) + · · ·
]
, (3.7)

where “· · ·” denotes higher-order terms in derivatives. Note that 
the condition ξ = −2 indicates that the second-order terms in 
derivatives vanish and the higher-order terms start from the fourth 
order.

Then the coupling term to the gauge-field in (3.1) is expanded 
as

T p

∫
Ā = T p

∫
dp+1σ

1

(p + 1)!ε
ν0ν1···νp

× Āμ0μ1···μp

∂xμ0

∂σ ν0

∂xμ1

∂σ ν1
· · · ∂xμp

∂σ νp

= T p

∫
dp+1xh−1, (3.8)

where we have used (2.8b).
In total, the original action (3.1) is expanded as

S p = T p

∫
dp+1x

[
−hξ/2

{
1 + 1

2
hηρσ δab∂ρxa∂σ xb

+ 1

8
h2ηρσ ηαβδabδcd

(
∂ρxa∂σ xb∂αxc∂β xd

− 2∂ρxa∂αxb∂σ xc∂β xd) + · · ·
}

+ h−1
]

= T p

∫
dp+1x

[−hξ/2 + h−1] + derivative terms, (3.9)

and the potential is obtained as

V = hξ/2 − h−1.

Thus, for the on-shell condition ξ = −2, the non-derivative correc-
tions are canceled out and the potential starts at the fourth order 
in derivatives. This is the same result as in the static case [13]. This 
indicates that the RR charge is equal to the tension of the probe 
p-brane.

When the probe p-brane is not parallel to the background 
p-branes, the potential (3.1) receives the contribution only from 
the Nambu–Goto part because the coupling to A(p+1) vanishes. 
The on-shell condition leads to the condition ξ = 0 and then the 
velocity-independent force vanishes. The condition ξ = 0 implies 
p = 7 (D7-brane) in D = 10. However, the D7-brane background 
contains a non-trivial dilaton and hence this case is not included 
in the present analysis. A generalization including the dilaton is 
argued in Section 3.3.

3.2. A probe ps-brane on a cosmological pr -brane background

We next consider a probe ps-brane on a cosmological pr -brane 
background with a constant dilaton or without the scalar field.

The classical ps-brane action is given by

S ps = −T ps

∫
dps+1σ

√
−det ḡμν + T ps

∫
Ā

≡
∫

dτdpsσL
(
∂τ xM , ∂αxM)

, (3.10)

where T ps is the ps-brane tension. Here ḡμν and Ā are the in-
duced metric and p-form,
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ḡμν = gMN∂μxM∂νxN ,

Āμ1···μps+1 = AM1···Mps+1∂μ1 xM1 · · · ∂μps+1 xMps+1 . (3.11)

Suppose that the probe ps-brane overlaps with the background 
pr -branes in p̄ spatial directions. Then it is suitable to rewrite the 
cosmological pr -brane background as

ds2 = [
hr(t, z)

]ar
[
ημν(X)dxμdxν + δi j(Y)dyidy j]

+ [
hr(t, z)

]br
[
δmn(W)dvmdvn + δab(Z)dzadzb], (3.12a)

A(pr+1) = h−1
r (t, z)Ω(X) ∧ Ω(Y). (3.12b)

Here ημν is the (p̄ + 1)-dimensional Minkowski metric and δi j(Y)

is the (pr − p̄)-dimensional flat metric. Then δmn(W) and δab(Z)

are the (ps − pr)-dimensional and the (9 − ps)-dimensional flat 
metrics, respectively. The volume forms on the X and Y spaces are 
given by Ω(X) and Ω(Y), respectively. The constants ar and br are 
given by

ar = − D − pr − 3

D − 2
, br = pr + 1

D − 2
. (3.13)

The background pr -branes extend on the X and Y spaces, while the 
probe ps-brane extends on the X and W spaces.

Here we are interested in the following static configuration of 
the probe brane:

σ 0 = x0 = t, σ α = xα (α = 1, . . . , p̄),

σm = vm (m = p̄ + 1, . . . , ps), xa = const (3.14)

Then the equation of motion leads to the following condition,

∂th−χ ′/2
r = 0. (3.15)

Here χ ′ is defined as

χ ′ ≡ p̄ + 1 − (pr + 1)(ps + 1)

D − 2
. (3.16)

For the cosmological backgrounds, this condition is not automat-
ically satisfied in comparison to the static backgrounds. Therefore 
the condition (3.15) is satisfied if and only if χ ′ = 0. That is, the 
on-shell condition leads to the condition χ ′ = 0.

Let us evaluate the potential between the probe ps-brane and 
the background pr -branes. Similarly, the total action (3.10) is ex-
panded as

S ps = −T ps

∫
dps+1xhχ ′/2

r

[
1 + 1

2
hrη

ρσ δab∂ρxa∂σ xb

+ 1

8
h2

r η
ρσ ηαβδabδcd

(
∂ρxa∂σ xb∂αxc∂βxd

− 2∂ρxa∂αxb∂σ xc∂βxd) + · · ·
]

= −T ps

∫
dps+1xhχ ′/2

r + derivative terms. (3.17)

“· · ·” denotes higher derivative terms. One can read off the poten-
tial V as

V (t, z) = h−χ ′/2
r . (3.18)

The on-shell condition means that χ ′ = 0 and then the velocity-
independent force vanishes. Note that the derivative corrections 
start from the second-order.

The condition χ ′ = 0 implies that the overlapping dimension p
is described as

p̄ = (pr + 1)(ps + 1) − 1. (3.19)

D − 2
The relation (3.19) is equivalent to the supersymmetric intersecting 
condition for the static branes when the dilaton is constant or not 
contained.

In the eleven-dimensional supergravity, we get the intersections 
involving the M2 and M5-branes [19–21] (see also [18,22] for the 
dynamical brane background)

M2 ∩ M2 = 0, M2 ∩ M5 = 1, M5 ∩ M5 = 3. (3.20)

3.3. A probe Dps-brane on a cosmological Dpr -brane background

We study here a Dps-brane on a cosmological Dpr -brane back-
ground. Note that the dilaton contribution is taken into account 
(except for D3-branes).

The classical Dps-brane action is given by

S ps = −T ps

∫
dps+1σe−φ

√
−det(ḡμν +Fμν) + T ps

∫
C̄(ps+1),

(3.21a)

ḡμν = gMN∂μxM∂νxN , Fμν = B̄μν + 2πα′ Fμν,

B̄μν = B MN∂μxM∂νxN , (3.21b)

C̄μ1···μps+1 = CM1···Mps+1∂μ1 xM1 · · · ∂μps+1 xMps+1 . (3.21c)

Here T ps is the Dps-brane tension and ḡμν is the induced metric. 
Then B̄μν and C̄(ps+1) are the pullback of an NS–NS two-form and 
a (ps + 1)-form. The world-volume gauge field is given by Fμν . We 
work in the string frame hereafter.

Note that the world-volume gauge-field strength Fμν is turned 
off so that the probe brane does not carry the F-string charge, 
unless otherwise noted, because we are interested in the force 
between the probe brane without resolved F-strings and the back-
ground branes.

In the following, we will concentrate on two examples. One 
is the case that a probe Dps-brane is parallel to the background 
Dpr -branes. The other is that a probe Dps-brane overlaps with the 
background Dpr -branes in p̄ directions.

3.3.1. A probe Dps-brane is parallel to the background Dpr -branes
The background metric and fields are given by

ds2 = [
hr(t, z)

]−1/2
ημν(X)dxμdxν

+ [
hr(t, z)

]1/2
δab(Z)dzadzb, (3.22a)

eφ = h(3−pr)/4
r , (3.22b)

C(pr+1) = h−1
r (t, z)Ω(X) ∧ Ω(Y). (3.22c)

Here ημν is the (p̄ + 1)-dimensional Minkowski metric, and δab
is flat (9 − p̄)-dimensional metric. Then Ω(X) denotes the volume 
form on the X space. A single probe Dps-brane and the background 
Dpr -branes extend over the X space.

For the static configuration,

σ 0 = x0 = t, σ α = xα (α = 1, . . . , p̄), xa = const, (3.23)

the equation of motion for the probe Dps-brane leads to the trivial 
condition,

∂t
(
h−1

r − h−1
r

) = 0, (3.24)

and the resulting potential becomes constant. Thus there is no 
velocity-independent force.
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3.3.2. A probe Dps-brane overlaps with the background Dpr-branes
The other case is that a single probe Dps-brane overlaps with 

the background Dpr -brane in p̄ directions. Then it is convenient to 
rewrite the background as

ds2 = [
hr(t, z)

]−1/2[
ημν(X)dxμdxν + δi j(Y)dyidy j]

+ [
hr(t, z)

]1/2[
δmn(W)dvmdvn + δab(Z)dzadzb], (3.25a)

eφ = h(3−pr)/4
r , (3.25b)

C(pr+1) = h−1
r (t, z)Ω(X) ∧ Ω(Y). (3.25c)

Here ημν is the (p̄ + 1)-dimensional Minkowski metric. The flat 
metrics δi j , δmn and δab are defined in (pr − p̄), (ps − p̄) and 
(9 + p̄ − pr − ps) dimensions. Then Ω(X) and Ω(Y) are the volume 
forms on the X space and the Y space, respectively. The back-
ground Dpr -branes extend on the X and Y spaces, while the probe 
Dps-brane extends on the X and W spaces.

For the static configuration,

σ 0 = x0 = t, σ α = xα (α = 1, . . . , p̄),

σm = vm (m = p̄ + 1, . . . , ps), xa = const, (3.26)

the equation of motion for the probe Dps-brane leads to the con-
dition,

∂t(hr)
(pr+ps−2p̄−4)/4 = 0. (3.27)

This condition is satisfied if and only if

pr + ps − 2p̄ − 4 = 0. (3.28)

Under this condition, the resulting potential V is evaluated as

V (t, z) = h(pr+ps−2p̄−4)/4
r = 1, (3.29)

and hence there is no velocity-independent force. The condition in 
(3.28) is equivalent to a supersymmetric intersection rule for the 
static D-branes [20,23] (see also [17,22] for the cosmological brane 
background),

Dpr ∩ Dpr = 1

2
(pr + ps) − 2. (3.30)

3.4. Comments on other cases

Before closing this section, it is worth noting other cases. Our 
analysis is applicable to cases, a probe F-string and the background 
NS5-branes, etc.

Then the intersection rules [24]2 involving F-string and NS5-
brane are given by

F1 ∩ NS5 = 1, NS5 ∩ NS5 = 3, (3.31a)

F1 ∩ Dp = 0, (3.31b)

Dp ∩ NS5 = p − 1, 1 ≤ p ≤ 6, (3.31c)

where p is overlapping dimension of two branes. There is no so-
lution for the F1–F1 and D0–NS5 intersecting systems because the 
numbers of space dimensions for each pairwise overlap are nega-
tive by the intersection rule.

2 See also [22] for time dependent backgrounds.
4. Conclusion and discussion

We have considered the dynamics of a single probe brane on 
various cosmological brane backgrounds. The on-shell condition of 
the static probe brane leads to the supersymmetric intersection 
rules for static BPS configurations, although the cosmological back-
grounds do not preserve any supersymmetries. This is a remark-
able feature associated with the cosmological backgrounds because 
in the static background the on-shell condition of the static brane 
gives no constraint on the brane configuration. Furthermore, it fol-
lows that under this condition there is no velocity-independent 
force for the probe brane even on the cosmological backgrounds.

The dynamics of branes has continued to give a new insight in 
gravitational theories. Nowadays, it is of great interest to apply the 
brane dynamics to the construction of realistic cosmological mod-
els. Cosmological brane solutions would provide a strong bridge 
between string theory and cosmology. They could lead to realistic 
cosmological scenarios and then the brane dynamics would reveal 
the origin of the Universe.

There remain some open problems such as a resolution of the 
curvature singularity in cosmological brane backgrounds. It is in-
teresting to argue whether the singularity can be resolved at the 
string theory level by considering a probe brane moving on the 
cosmological brane background with the use of the present results. 
It would be an important key to understand the curvature singu-
larity of a particular type, which may be related to the so-called 
enhancon mechanism that resolves a large class of spacetime sin-
gularities in string theory [25,26].

In trying to construct cosmological models in string theory such 
as a brane inflation model [27,28] in the early universe, probe 
branes are assumed in most of the models. Hence the dynamics 
of the probe brane on cosmological brane backgrounds would pro-
vide us a new tool to make the models more realistic. We hope to 
report progress in the near future.
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