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Peroxisomes are a class of structurally and functionally related organelles present in almost all eukaryotic
cells. The importance of peroxisomes for human life is highlighted by severe inherited diseases which are
caused by defects of peroxins, encoded by PEX genes. To date 32 peroxins are known to be involved in
different aspects of peroxisome biogenesis. This review addresses two of these aspects, the translocation of
soluble proteins into the peroxisomal matrix and the biogenesis of the peroxisomal membrane. This article is
part of a Special Issue entitled Protein translocation across or insertion into membranes.
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1. Introduction

Peroxisomes ormicrobodies are structurally and functionally related
organelles of eukaryotic cells. They are mostly spherical, 0.1 to 1 μm in
diameter and surrounded by a single lipid bilayer membrane [1]. The
proteinaceous organellarmatrix is electron-dense and contains noDNA.
The peroxisome-family consists of peroxisomes, glyoxysomes of plants
and fungi, glycosomes of trypanosomes, and Woronin-bodies of
filamentous fungi [2]. With the exception of Woronin-bodies, whose
sole function is to plug septal pores in case of hyphal injury [3],
peroxisomes fulfil a variety of biochemical functions [4]. Foremost of
these is fatty acid ß-oxidation which exclusively takes place in
peroxisomes of fungi and plants. In mammals very long chain fatty
acids are oxidized inperoxisomes. In addition, peroxisomes are involved
in the synthesis of plasmalogens, cholesterol and bile acids [5–8] aswell
as the oxidation of alcohols, catabolism of purines and polyamines,
metabolism of prostaglandins, photorespiration in plants and penicillin
synthesis in fungi [1,9–11]. The importance of peroxisomes for human
life is highlighted by severe inborn diseases (peroxisomal biogenesis
disorders) like the Zellweger-Syndrome, Neonatal Adrenoleucodystro-
phy or Infantile Refsum's disease which are caused by defects of PEX
genes [12]. At present, 32 different PEX genes have been discovered
which are required for the biogenesis and maintenance of functional
peroxisomes [13,14].
2. Import of matrix proteins

Proteins designated for import into the peroxisomal matrix or
insertion into the peroxisomal membrane, follow distinct pathways.
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As peroxisomes neither contain DNA nor transcription/translation
machineries, all peroxisomal proteins are encoded by the nuclear
genome. Without exception, all peroxisomal matrix proteins are
synthesized on free polyribosomes in the cytosol and imported post-
translationally [15]. Thereby the involved import-receptor molecules
pass through a cycle starting from the recognition by import receptors
in the cytosol [16,17]. The receptor–cargo complex is then targeted to
a docking complex at the peroxisomal membrane. Later on, the cargo
is delivered to the peroxisomal matrix via a translocation pore and the
receptor is released from the membrane [18]. Finally, the receptor is
recycled for another round of import or removed by proteasomal
degradation.

2.1. Targeting signals and recognition-factors

The sorting of proteins to peroxisomes depends on signal
sequences, known as peroxisomal targeting signal (PTS) type I and
type II. The PTS1, used by themajority of peroxisomal matrix proteins,
is located at the extreme C-terminus and was initially discovered in
firefly luciferase as the tripeptide SKL [19]. Based on mutagenesis
experiments, amino acid permutations and sequence comparisons
between different species, the PTS1 generally fits the consensus
sequence (S/A/C)-(K/R/H)-(L/M) [20]. For most of the matrix proteins
the presence of a PTS1 is sufficient for their proper targeting to the
peroxisomal matrix. However, in some cases, additional interactions
of the cargo protein with the receptor are required, which are
provided by amino acid residues adjacent to the PTS1. Accordingly,
the PTS1 has been redefined as C-terminal dodecamer [21].

In the cytosol, the PTS1 is recognized by the predominantly soluble
protein Pex5p [22,23]. Pex5p is composed of two domains, a C-
terminal domain that contains six tetratricopeptide repeats (TPRs)
and provides high affinity PTS1-binding sites, and an N-terminal
domain that functions in receptor docking and recycling [24].

The usage of the PTS2 for peroxisomal protein import varies from
species to species. While in mammals only a few proteins are
targeted to peroxisomes via the PTS2-pathway, in plants, approx-
imately one third of peroxisomal proteins harbour a PTS2 [25]. In
the yeast Saccharomyces cerevisiae, only 3-ketoacyl thiolase and the
NAD+-dependent glycerol 3-phosphate dehydrogenase (Gpd1p)
have been identified as PTS2-proteins [26,27]. Remarkably, for
Caenorhabditis elegans the PTS2-pathway does not play any role at
all [28].

The PTS2 was first identified as a conserved sequence which is
located near the N-terminus of rat liver thiolase and which in some
species is comprised within a pre-sequence that is cleaved off after
import into the peroxisomal matrix [29,30]. Sequence comparisons of
the signal sequences of thiolases derived from different species,
watermelon malate dehydrogenase, amine oxidase of Hansenula
polymorpha and Trypanosoma brucei aldolase defined the PTS2 as the
conserved nonapeptide R-(L/V/I/Q)-xx-(L/V/I/H)-(L/S/G/A)-x-(H/Q)-
(L/A) [31]. PTS2-harbouring proteins are recognized by the soluble
protein Pex7p [32]. It consists of six tryptophan-aspartic acid (WD)
repeats, preceded by a distinct N-terminal region. Unlike Pex5p, the
Pex7p-mediated import pathway requires species-specific auxiliary
proteins also known as co-receptors: Pex18p and Pex21p in S. cerevisiae
[33], Pex20p in Yarrowia lipolytica, Pichia pastoris, H. polymorpha, and
Neurospora crassa [34–37] or a longer splice variant of the PTS1-receptor
Pex5p inplant andmammals [38–41]. These co-receptors forma ternary
complexwith the cargo-loaded import receptor in the cytosol anddirect
the complex to the peroxisomal membrane [26,42].

So-called non-PTS proteins do neither contain a PTS1 nor a PTS2.
Examples thereof are acyl-CoAoxidase from S. cerevisiae andY. lipolytica,
the alcohol oxidase from H. polymorpha as well as castor bean isocitrate
lyase [43]. Different mechanisms are known for non-PTS proteins to
reach the peroxisomal matrix [44]. For piggy-back transport, proteins
without a PTS hijack onto the peroxisomal targeting pathways by
binding to PTS-containing proteins. As peroxisomes can accommodate
folded and even oligomeric proteins, these non-PTS proteins can reach
the peroxisomal lumen in complex with PTS-proteins [45]. Other non-
PTS proteins contain internal, not well-defined targeting signals.
Interestingly, these proteins still directly bind to the PTS1-receptor
albeit to regions distinct from the PTS- recognition sites. Thus,
peroxisomal targeting of this kind of non-PTS-proteins depends on
Pex5p but cargo recognition occurs in a PTS1-independent fashion [44].

2.2. The docking-complex and formation of the Importomer

After the receptor–cargo complex has assembled in the cytosol, the
next stage in the cascade of events is the association of this complexwith
the peroxisomal membrane. This step is facilitated by the docking-
complex, which consists of Pex13p and Pex14p and in bakers yeast also
Pex17p [46]. Pex13p is an integral peroxisomal membrane protein
(PMP) that exposes both its N- and C-terminus to the cytosol [47] and
binds Pex5p via its cytosolic C-terminal Src-homology-3 (SH3) domain
[48–50] and Pex7p by its N-terminal domain [51]. Pex14p forms a
complex with Pex13p and also binds both import receptors. Pex14p
also provides the binding platform for Pex17p [52–55]. Although
Pex17p is part of this complex, it is does not significantly contribute
to the structural integrity of the docking complex [18,56] and seems
to be absent from higher eukaryotes. Thus, its functional significance
still awaits clarification. Interestingly, an in silico approach predicted
the existence in filamentous fungi of a chimeric protein consisting of
an N-terminal Pex14p-like domain and a C-terminal Pex17p-like
domain [14].

The docking complex associates with other components, including
the RING-(really interesting new gene)-finger complex (composed of
Pex2p, Pex10p and Pex12p) to form the assembled import-competent
state of the peroxisomal protein import machinery, the importomer.

2.3. Cargo translocation and release

Peroxisomes import their matrix enzymes in a folded and even
oligomerized manner [45,57,58]. Remarkably, even gold particles with
an average diameter of 9 nm can traverse the peroxisomal membrane,
when decorated with a peroxisomal targeting signal [59]. This fact
distinguishes the peroxisomal translocon from that of mitochondria,
chloroplasts and the endoplasmatic reticulum, which only import
unfolded polypeptides [60]. However, our knowledge of how peroxi-
somes import large protein complexes without disruption of the
metabolic compartmentalization is still scarce. Some models proposed
the presence of an aqueous pore in the peroxisomalmembrane [60–62].
Indeed, large conductance channels have been identified inmembranes
of mammalian peroxisomes [63,64], but either the identity of pore-
forming proteins or its relationship to the protein-translocation
machinery remained unclear. Based on increasing evidence for a
significant contribution of the cycling import receptors, it was proposed
that the translocation pore would be transient in nature and that the
import receptors themselves might play an important role in its
formation [62]. In fact, the PTS1 receptor Pex5p proved to have many
properties expected for a transient-pore-forming protein. A consider-
able portion of the membrane-bound fraction of Pex5p behaves as an
intrinsic membrane protein and forms a stable complex with compo-
nents of the docking complex [65]. Evidence for the nature of the
translocon was also provided by the observation that the peroxisomal
matrix import of the intraperoxisomal Pex8p only requires the PTS
receptors and Pex14p [61].

Recently, the importomer from yeast peroxisomal membranes
was isolated by affinity purification of a tagged version of Pex5p [18].
Pex5p-complexes turned out to be present in three subcomplexes, a
high-molecular mass complexes greater than 800 kDa (complex III),
a complex spanning between 600 and 800 kDa (complex II) and a
Pex5p–cargo complex (complex I) with a size of 300 k. When



Fig. 1. The receptor cycle. According to themodel of the cycling receptor, the peroxisomal
protein import conceptually can be divided in five steps: (I) cargo recognition in the
cytosol and (II) docking of the receptor–cargo complexes to the peroxisomal membrane.
(III) Cargo-translocation into the peroxisomal matrix. (IV) Disassembly of the receptor–
cargo complexand (V) export of the receptor back to the cytosol. PTS1-containingproteins
are recognizedby the soluble import receptor Pex5p in thecytosol. Proteinsharbouring the
PTS2 are recognized by Pex7p and the cofactors Pex18p and Pex21p in S. cerevisiae,
the orthologous Pex20p in other fungi or Pex5L in plants andmammals. After this step, the
receptor–cargo complex targets to and associateswith the peroxisomalmembrane via the
docking complexconsistingof Pex14p, Pex13pandPex17p. The transport of PTS1-proteins
across themembrane is facilitated by formation of a poremainly consisting of Pex14p and
Pex5p. Pex8p connects the RING-complex to the docking complex. The three ubiquitin
ligases Pex2p, Pex10p and Pex12p form the RING-complex and together with ubiquitin-
conjugating enzymes like Pex4pare responsible for receptorubiquitination. In the last step
of the cycle, the receptor Pex5p is exported back to the cytosol by the two AAA-peroxins
Pex1p and Pex6p and is enabled for the next round of import.

Fig. 2. Pex19p-dependent import of PMPs. Class I peroxisomal membrane proteins
(PMPs) harbour a peroxisomal membrane protein targeting signal (mPTS) which is
recognized in the cytosol by the import receptor and/or PMP-specific chaperone
Pex19p, a farnesylated, mostly cytosolic protein with a small portion of the protein
found associated with the peroxisomal membrane. In the next step, the cargo-loaded
Pex19p docks to the peroxisomal membrane via association with its docking factor
Pex3p. Then the PMP is inserted into the membrane in an unknown manner but
presumably with assistance of Pex19p, Pex3p and, in some organisms, Pex16p. The
requirement of ATP for this process is not clear. Finally, Pex19p shuttles back to the
cytosol where it might start a new round of import.
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reconstituted into liposomes, ion channel activity was detected with
complexes II and III, but channel incorporation occurred only at low
frequency, and channels showed a large variety of conductance states
and ion selectivity.

Assuming that the putative Pex5p-dependent pore forms only
transiently and is subject to continuous disassembly or degradation of
core constituents, PEX8 genewas deleted, which prevents association of
the docking complex with the export machinery [56] and causes
stabilization of the translocon. Moreover, PEX18 and PEX21 were
deleted which disabled the PTS2-pathway and avoided disturbances.
Now, the Pex5p-complex exhibited themain conductance of a porewith
3.8 nm in diameter. This pore can transiently expand tomore than 9 nm
when Pex5p is associated with large oligomeric cargo proteins [18], as
suggested by the previously observed import of PTS1-decorated gold
particles [59]. Taken together, Pex5p shuttles between a soluble form in
the cytosol,where it functions as PTS1-receptor in cargo recognition and
an integral membrane-bound form at the peroxisomal membrane,
where it contributes to pore formation and presumably translocation.

At some point of the import cascade, the cargo has to be released
from the import receptor. However, this step is still not well
characterized. It has been suggested that Pex8p is involved in this
process. This assumption is based on the presence of a PTS1 and PTS2
signal within this peroxin [66,67] and the observation that it causes
dissociation of a Pex5p–PTS1–peptide complex by means of in vitro
assays [68]. However, Pex8p has been identified only in yeast and
whether a functional orthologue exists in higher eukaryotes is
unclear. Moreover, mutations of the PTS-sequences do not affect
Pex8p function. Thus, the mechanism of cargo release remains one of
the open questions regarding peroxisomal protein import.

2.4. Receptor release and its degradation or recycling

Once the cargo is released into the peroxisomal lumen, the receptor
has to be liberated from peroxisomal membrane to the cytosol. The
discovery of an ubiquitination machinery and specific dislocases as
central components of an elaborate peroxisomal export machinery
brought forward our understanding of the release step in the receptor
cycle (Fig. 1). In contrast to the import event, which was demonstrated
to be ATP-independent, the dislocation of the receptor requires ATP at
two different stages, the export complex and the ubiquitination
machinery. The export complex contains Pex1p and Pex6p, two
members of the AAA-protein family (ATPases Associated with diverse
cellular Activities family) [69–71]. The AAA-peroxins are partially
cytosolic; a portion is also attached to the peroxisomal membrane.
This peroxisomal localization is facilitated by the integral peroxisomal
membrane protein Pex15p (or Pex26p in mammals) that provides
binding sites for Pex6p which in turn recruits Pex1p to the peroxisomal
membrane [72,73]. The Pex1p/Pex6p interaction depends on the
presence of ATP. Moreover, it was demonstrated that the AAA-complex
provides the ATP-dependent driving force for the export of Pex5p back
to the cytosol [69,70]. Themechanismof this event is still unsolved but it
is known that ubiquitination of the receptormolecule plays a crucial role
[71,74]. In general, ubiquitination is the attachment of the 76 amino acid
ubiquitin (Ub) moiety to a target protein facilitated by a three-step
enzyme-cascade [75]. The Ub is activated in an ATP-consumingmanner
by an ubiquitin activating enzyme (E1) and subsequently transferred to
the ubiquitin conjugating enzyme (E2). In the final step, a protein-
ubiquitin ligase (E3) binds both E2 as well as substrate and thereby
facilitates the conjugation of Ub moiety with substrate protein. Pex5p
was demonstrated to be mono- as well as polyubiquitinated.

Polyubiquitination of Pex5p appears in strains affected in late stages
of the import cascade, especially receptor recycling reflected by defects
in the export machinery (Pex1p, Pex6p, Pex15p) or components
required for mono-ubiquitination (Pex4p, Pex22p). Polyubiquitination
of the PTS1-receptormodification is not a prerequisite for its function in
peroxisomal protein import but might be a crucial step of a quality
control system for the disposal of dysfunctional Pex5p [76–78]. It was
demonstrated that the polyubiquitination of Pex5p primarily depends
on the E2 protein Ubc4p, which upon deletion can be partly replaced by

image of Fig.�2


Fig. 3. Topogenesis of peroxisomal membrane proteins. Two routes are proposed for the
targeting of peroxisomal membrane proteins (PMPs). Class I proteins are directly
imported into existing peroxisomes. Class II proteins are first targeted to ER where
they concentrate in pre-peroxisomal vesicles which then are targeted to existing
peroxisomes or function as an origin for de novo formation of peroxisomes. Currently, it
is controversially discussed whether class I PMPs are also targeted to the ER and
whether class II PMPs are also targeted to existing peroxisomes.
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Ubc5p or Ubc1p [76,77,79]. Two components of the RING-finger
complex, Pex2p and Pex10p, have been implicated to act as E3-ligase
in Pex5p-polyubiquitination [80,81]. As mutation or truncation of
Pex10p only reduces Pex5p-polyubiquitination [80,81], whereas
this receptor modification is completely absent when Pex2p is
affected [80], it is more likely that Pex2p is the crucial ubiquitin ligase
for Pex5p-polyubiquitination. Thus, the specific role of Pex10p still
remains unclear.

In contrast to polyubiquitination, Pex5p-monoubiquitination
primes the receptor for its export back to the cytosol [71,74,82].
Remarkably, monoubiquitination of the receptor occurs on a cysteine
instead of a lysine-residue [83], which results in the formation of a
thioester instead of a thioether bond and is facilitated by the E2
protein Pex4p (Ubc10p) in yeast or the Pex4p-like UbcH5a/b/c in
humans [74,81,82]. The third RING-finger complex constituent,
Pex12p, acts as ubiquitin ligase responsible for Pex5p monoubiqui-
tination and thus represents a central part of the receptor cycle [80].

Interestingly, ubiquitination was also observed for components of
the PTS2-pathway. The PTS2-co-receptors Pex18p of S. cerevisiae and
Pex20p of P. pastoris are ubiquitinated at the peroxisomal membrane
[46]. At least for Pex20p this modification turned out to be essential
for its recycling from the membrane to the cytosol [37]. Future
experiments have to clarify whether the same ubiquitination-cascade
acting on Pex5p is also responsible for the PTS2-co-receptor
modification.

Once the functional receptor has been exported to the cytosol, the
ubiquitin needs to be removed prior to the initiation of a new receptor
cycle. The cleavage of ubiquitin from a substrate protein is generally
carried out by a specific enzyme class, the ubiquitin hydrolases also
known as deubiquitinating enzymes (DUBs) [84]. Recent in vitro data
obtained from rat indicated that the mono-Ub moiety of Pex5p might
be cleaved off in two different ways. The thioester bond between
Pex5p and mono-Ub could be released in a non-enzymatic manner by
a nucleophilic attack of glutathione or enzyme-catalyzed by an
ubiquitin hydrolase which still needs to be identified [85].

3. Topogenesis of peroxisomal membrane proteins

The import of peroxisomal membrane proteins (PMPs) is distinct
from the import machinery of peroxisomal matrix proteins [48,50]. This
is supported by the fact that most pex-mutants are characterized by an
impaired import of matrix proteins but the import of PMPs is still
functional. In these mutants the PMPs are imported in peroxisomal
remnants, so called ghosts [13,86,87]. Only few mutants were charac-
terized by the complete absence of detectable peroxisomal membrane
ghosts. Functional complementation of these mutants led to the
identification of Pex3p, Pex19p and in some organisms Pex16p which
are involved in the biogenesis of the peroxisomal membrane [88–95]
(Fig. 3).

3.1. Membrane biogenesis factors

Pex16p is an integral membrane protein which is mainly found in
higher eukaryotes and in the yeast Y. lipolytica. It was first identified in
1998 by functional complementation of Zellweger patient cell lines
[93]. The function of this protein is still not clear and seems to differ
between mammals and yeast. Although the proteins from the
different kingdoms show a sequence identity of 24% their topology
is completely different. While the mammalian Pex16p is an integral
membrane protein with the C- as well as the N-terminus facing the
cytosol [96], the yeast Pex16p is amembrane associated protein facing
the peroxisomal lumen [89]. More strikingly, the proteins seem to
perform different functions in peroxisome biogenesis. The mamma-
lian Pex16p is required for the topogenesis of membrane proteins and
functions in the very early stages of peroxisome biogenesis while the
yeast Pex16p is more likely a negative regulator of peroxisomal fission
[89,97].

Pex19p is a farnesylated, mostly cytosolic protein with a small
portion of theprotein foundassociatedwith theperoxisomalmembrane
[91,98]. Pex19p has the ability to interact with most PMPs [99–104].
Structurally, Pex19p consists of an unstructured N-terminal- and a
structured C-terminal domain [105]. The N-terminal domain is respon-
sible for themembrane targeting of Pex19p as itmediates the interaction
with the PMPPex3p. The C-terminal domain harbors the binding sites for
most PMPs [105–108]. The crystal structure of the folded C-terminal part
of the receptor reveals a globular domain that binds PMP-targeting
signal (mPTS) sequences. The structural arrangement of the N-terminal
and C-terminal domains in Pex19p resembles a similar division in the
Pex5p receptor which might allow separation of cargo recognition and
peroxisomal targeting [109]. The farnesylation of Pex19p plays a critical
role for the function of Pex19p. Recently, it was shown that the
farnesylation contributes to the structural integrity of Pex19p and is
important for the ability of Pex19p to interact with its binding partners
[110]. Several functions have been proposed for Pex19p. First, due to its
capability to interact with most of the PMPs and based on its dual
localization at the peroxisomal membrane and in the cytosol, Pex19p is
thought to represent a soluble import receptor for newly synthesized
PMPs [111,112]. Accordingly, Pex19p binds PMPs in the cytosol and
directs them to the peroxisomal membrane by docking to its membrane
anchoredbindingpartner Pex3p (Fig. 2). Second, Pex19p is also supposed
to function as a PMP-specific chaperone. Accordingly, Pex19p possesses
the ability to bind and stabilize PMP by the formation of a soluble
complex and thus preventing aggregation of the PMP [105,113]. Third,
Pex19p might act as an insertion factor during PMP import [99,104] or
function as an assembly/disassembly factor for peroxisomal membrane
complexes at the peroxisomal membrane [114]. Finally, it was shown
that Pex19p is required for the transport of Pex3p from the endoplasmic
reticulum to the peroxisomal membrane [115].

Pex3p is an integral membrane protein at the peroxisomal
membrane with a topology differing throughout species [90,116–118].

image of Fig.�3
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In S. cerevisiae, Pex3p possesses an N-terminal transmembrane region
and a large C-terminal domain facing the cytosolic side of the
peroxisome [92]. Pex3p plays a central role in the import of PMPs
where it serves as a docking factor at the peroxisomal membrane and
functions as binding partner for Pex19p-PMP-complexes during import
of the PMPs [106,107,119]. Recently, anunprecedented role for Pex3p in
peroxisome motility and inheritance was unravelled in S. cerevisiae. In
this context, Pex3p turned out to function as peroxisomal receptors for
class V myosin as well as for the peroxisome retention factor Inp1p
[120,121]. Pex3p also plays an important role for the de novo formation
of peroxisomes as it is thought to represent the starting point for this
peroxisome forming process (see below).

3.2. Import of peroxisomal membrane proteins

The import pathway for peroxisomal membrane proteins is thought
tobecompletely independent fromthe import pathways of peroxisomal
matrix proteins. Peroxisomal membrane proteins can be divided into
two classes: Class I PMPs are imported via a Pex19p-dependent
pathway, Class II PMPs target independent of Pex19p to peroxisomes
[111].

Most of the proteins imported into the peroxisomal membrane are
class I PMPs. The recognition of these PMPs by Pex19p in the cytosol is
the first step of the import pathway. In this context, Pex19p functions
as a soluble import receptor and/or chaperone which binds newly
synthesized PMPs during or directly after their synthesis in the
cytosol. Pex19p-targeted PMPs contain a Pex19p-binding site which is
an integral part of their peroxisomal membrane targeting signal
(mPTS) [122]. The Pex19p-binding site is characterized by the
presence of basic and hydrophobic amino acids. The introduction of
a proline leads to a complete block of Pex19p-binding, thus the
binding site is supposed to acquire an alpha-helical conformation.
Although the binding sites of PMPs from different species throughout
the kingdom show some similarities, a reliable consensus sequence
could not yet be deduced. However, based on the limited information
available an algorithm for the prediction of Pex19p binding sites was
developed, which currently is used successfully [102,122].

In addition to the Pex19p-binding site, the mPTS of type 1 PMPs
contains a transmembrane sequence for their integration into the
peroxisomal membrane [111,122–126]. Interestingly, also some
peripheral membrane proteins, for instance S. cerevisiae Pex17p, are
targeted to peroxisomes via the Pex19p-dependent pathway [127].
These proteins also harbor a Pex19p-binding site. However, since
these proteins lack a transmembrane domain, anchoring to the
peroxisomal membrane requires the association with other peroxi-
somal membrane protein [127]. Thus, their mPTS comprise the
Pex19p binding site and a protein interaction domain. Accordingly,
Class I PMPs are targeted to peroxisomes via the Pex19p-dependent
pathway and their mPTS comprises a Pex19p-binding motif and a
membrane anchor sequence which might be a transmembrane
domain or protein interaction site [127].

After recognition of the PMPs, the complex of Pex19p and the PMP
is targeted to the peroxisomal membrane where Pex3p functions as a
docking factor for this complex [119,122,128]. This docking step is
promoted by a higher affinity of the Pex19p-PMP-complex to Pex3p
than Pex19p alone [129]. After docking of the complex, the PMP is
integrated into the bilayer by an unknown mechanism. Existing data
show that in analogy to the PTS1- and PTS2-receptors also Pex19p
cycles between the cytosol and the peroxisomal membrane. Pex19p
partially integrates into the peroxisomal membrane and after cargo
release, it is exported back to the cytosol. The energy requirement of
PMP-targeting and insertion is still a matter of debate. Evidence has
been provided that the PMP-integration step is ATP-driven whereas
the export of Pex19p to the cytosol is not [130]. However, the
peroxisomal insertion of some PMPs into the peroxisomal membrane
seems not to require ATP, at least in vitro [129,131]. The proteins
which are responsible for ATP consumption or the factors required for
the Pex19p-export are still unknown.

While most of the peroxisomal membrane proteins are class I
proteins, a minor portion belongs to the group of class II PMPs. These
are targeted to peroxisomes independent of Pex19p. The few known
class II PMPs are Pex3p, Pex16p (for review [132]) as well as Pex22p
[133], the peroxisomal membrane anchor of the E2 Pex4p, which is
required for the import of peroxisomal matrix proteins (see above)
[134]. Class II PMPs are supposed to be targeted to the ER prior to their
transport to the peroxisome. The mPTS of these proteins is located in
their N-terminal regions and consists of a transmembrane region but
lacks a binding site for Pex19p [116,133]. The targeting signal of Pex3p
and Pex22p share high similarities and are functionally interchange-
able [133]. For Pex16p it has been demonstrated that the protein is
imported co-translationally into ER-membranes and then traffics to
existing peroxisomes [97]. The mechanism of how class II PMPs are
imported into the ER is still not clear. Early studies indicated that
Sec61p, the major translocon for ER-membrane proteins is not
required for ER-targeting of class II PMPs [135]. Recent data, however,
suggest 1) that the Sec61p translocon plays an essential role for the
ER-targeting of PMPs and 2) that the Get3p-complex is required for
the ER-targeting of peroxisomal tail-anchored proteins [136].

Currently, it is not known how class II PMPs are transported from
the ER to peroxisomes. An elaborate vesicle-mediated transport from
the ER to peroxisomes has been described [137]. However, the nature
of these vesicles still needs to be disclosed, especially as their
transport is not affected by inhibitors of COPI and COPII that block
vesicle transport in the early secretory pathway [138,139]. Recently,
first evidence for an ER-associated secretory machinery involved in
peroxisome biogenesis has been provided. Essential components of
the secretory pathway (Sec20p, Sec39p, and Dsl1p) have been
identified as also being required for Pex3p-exit from the ER and
thus being involved in the early stages of the de novo synthesis of
peroxisomes [140].

3.3. The involvement of the ER

For a long time the origin of the peroxisomal membrane was
controversially discussed. Early models proposed that the peroxi-
somal membrane originate from the endoplasmic reticulum which
was deduced from the morphological appearance of peroxisomes
and the ER in electron microscopic pictures showing both organelles
in close proximity [141]. Later it was found that peroxisomal matrix
proteins as well as PMPs are synthesized on free ribosomes in the
cytosol and are posttranslationally imported into preexisting
peroxisomes [142]. This gave rise to the proposal of the growth
and division model with the central assumption that peroxisomes
are autonomous organelles which import proteins and multiply in a
similar way as chloroplasts and mitochondria [15]. This model,
however, was difficult to reconcile with later findings. For example,
the reintroduction of Pex3p in Pex3p-deficient cells, which lack
peroxisomal membrane ghosts, leads to the formation of new
peroxisomes, raising the question of the membrane origin of newly
formed organelles [115,143]. Several lines of evidence indicate that
the ER is involved in this de novo formation of peroxisomes. First
implications were made from data which showed that in the yeast Y.
lipolytica the peroxins Pex2p and Pex16p are N-glycosylated [137].
This glycosylation step is exclusively located at the ER indicating that
in Y. lipolytica these two PMPs route to peroxisomes via the ER.
Biochemical and ultrastructural findings suggested that the nuclear
membrane is the donor membrane for the de novo-formation of
preperoxisomal vesicles [144]. Studies in mouse dendritic cells
showed a localization of Pex13p as well as the ABC-transporter
PMP70 in specialized subdomains from the ER in connection with a
so called peroxisomal reticulum [145]. N-glycosylation of a tagged
Pex3p and cleavage of an introduced ER-targeting signal suggested
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that ER-targeted Pex3p routes via the ER to peroxisomes [146].
Finally, using time-lapsed fluorescence microscopy it was shown
that after reintroduction Pex3p first localizes to the ER, concentrates
in specialized subdomains of this organelle and then buds off in a
Pex19p-dependent manner [115]. Based on these findings the “de
novo biogenesis model” was proposed which not only claims that
many PMPs are targeted to peroxisomes via the ER but also that
peroxisomes represent a new branch of the endomembrane system
[147]. It is now well accepted in the field that de novo synthesis
involves the ER and the discovery of the de novo formation of
peroxisomes upon ER-targeting of Pex3p in cells lacking peroxi-
somal membrane ghost was a major breakthrough in our under-
standing of peroxisome biogenesis. However, a model proposing a
general involvement of the ER in the biogenesis of peroxisomes is
not without doubt as the major question whether Pex3p is also
targeted to ER in the presence of peroxisomes has not yet been
conclusively solved. In fact, evidence has been provided for a direct
targeting of Pex3p and other PMPs to existing peroxisomes. At least
in higher eukaryotes, Pex3p is imported directly into the peroxi-
somal membrane via a Pex19p-Pex16p dependent pathway [148]. It
was also demonstrated that the “growth and division” as well as “de
novo biogenesis” pathways both can exist in one organism. In yeast,
peroxisomes mainly multiply by growth and division and in cells
lacking peroxisomal membranes the ER functions as a donor for
essential membrane constituents for the de novo synthesis of
peroxisomes [149,150].
4. Concluding remarks

The recent identification of a peroxisomal pore complex with
properties suitable for the import of oligomeric proteins has brought
forward our understanding of the peroxisomal protein import mech-
anism. However, a number of aspects still need to be addressed. The
identification of the protein import pore of the PTS2-pathway is amajor
challenge, with Pex18p being a good candidate. Pex5p/Pex14p are core
components of the peroxisomal import pore in the PTS1-pathway,
raising the question about contribution of Pex8p, Pex13p and Pex17p,
which without doubt play an essential role in peroxisomal protein
import. There is still room for many important mechanistic aspects
whichwill keep thefield busy. For example: In light of themanybinding
factors for the import receptors at the membrane, what is the order of
interaction in the import cascade, how is thepore assembled, are gating-
factors required, and most importantly what provides the driving force
for the cargo translocation? With respect to the receptor cycle, the
mechanism of cargo-liberation, the identification components of the
ubiquitination machinery of the PTS2-pathway, the nature of putative
de-ubiquitinating enzymes that prepare the receptors for a new round
of import as well as the mechanism of receptor dislocation from the
peroxisomal membrane, especially the mechanistic function of the
AAA-peroxins Pex1p and Pex6p in this process still await elucidation.

Our knowledge on the topogenesis of peroxisomal membrane
proteins is still scarce. Pex19p is known to interact with a number
of membrane proteins and was thus designated as import receptor
and/or chaperone for this type of proteins. Pex3p acts as membrane
anchor protein for Pex19p. The function of Pex16p in PMP-targeting
is not fully understood and so far it is also not solved how
membrane proteins are inserted into the peroxisomal lipid-bilayer.
A milestone was the recognition of the contribution of the ER and
especially ER-localized Pex3p to the de novo formation of peroxi-
somes. However, the question is still open whether the ER
represents a common route for at least some PMP`s or whether it
displays a rescue system for cells that have lost peroxisomes.
Finally, the mechanisms underlying sorting of Pex3p to the ER and
its observed concentration in distinct foci upon de novo formation
of peroxisomes remain to be elucidated.
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