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Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic and exogenous amines and
its inhibitors have therapeutic value for several conditions including affective disorders, stroke, neurode-
generative diseases and aging. The discovery of 2,3,6-trimethyl-1,4-naphthoquinone (TMN) as a nonse-
lective and reversible inhibitor of MAO, has suggested 1,4-naphthoquinone (1,4-NQ) as a potential
scaffold for designing new MAO inhibitors. Combining molecular modeling tools and biochemical assays
we evaluate the kinetic and molecular details of the inhibition of human MAO by 1,4-NQ, comparing it
with TMN and menadione. Menadione (2-methyl-1,4-naphthoquinone) is a multitarget drug that acts
as a precursor of vitamin K and an inducer of mitochondrial permeability transition. Herein we show that
MAO-B was inhibited competitively by 1,4-NQ (Ki = 1.4 lM) whereas MAO-A was inhibited by non-com-
petitive mechanism (Ki = 7.7 lM). Contrasting with TMN and 1,4-NQ, menadione exhibited a 60-fold
selectivity for MAO-B (Ki = 0.4 lM) in comparison with MAO-A (Ki = 26 lM), which makes it as selective
as rasagiline. Fluorescence and molecular modeling data indicated that these inhibitors interact with the
flavin moiety at the active site of the enzyme. Additionally, docking studies suggest the phenyl side
groups of Tyr407 and Tyr444 (for MAO-A) or Tyr398 and Tyr435 (for MAO-B) play an important role
in the interaction of the enzyme with 1,4-NQ scaffold through forces of dispersion as verified for mena-
dione, TMN and 1,4-NQ. Taken together, our findings reveal the molecular details of MAO inhibition by
1,4-NQ scaffold and show for the first time that menadione acts as a competitive and reversible inhibitor
of human MAO.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Monoamine oxidases [amine: oxygen oxidoreductase (deami-
nation) (flavin containing) EC 1.4.3.4.] catalyze the oxidative deam-
ination of biogenic amines, including neurotransmitters and
exogenous amines such as the neurotoxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP).1–3 Two isoforms of MAO have
been identified: MAO-A and MAO-B.4 Abnormal activity of the
MAO-B isoform has been linked to neurological disorders including
Parkinson0s disease (PD) and Alzheimer0s disease (AD),5,6 whereas
the MAO-A isoform appears to be associated with psychiatric con-
ditions including depression and cardiac cellular degeneration.7–9

Additionally, previous studies have reported that the level of
MAO-B in humans increases four- to five-fold during aging and
leads to an increase in catalytic reaction products such as hydrogen
x: +55 21 2562 7265.

Elsevier OA license.
peroxide and a reduction in certain neurotransmitter levels.10 The
MAO-A level was significantly higher in the hearts of aged rats and
has been identified as being involved in cardiac cellular degenera-
tion. These observations make MAO-A an important target in the
development of cardioprotective agents.9 Unfortunately, the utili-
zation of MAO inhibitors might be limited, in some cases, by side
effects such as those associated with the co-administration of cer-
tain foods or drugs, which can result in dangerous hypertensive
and hyperpyretic crises.11 In light of these findings, enormous ef-
forts have been undertaken to identify new pharmacophores that
are associated with MAO inhibition.

It was reported that 2,3,6-trimethyl-1,4-naphthoquinone (TMN),
a component of flue-cured tobacco leaves and smoke, is a competi-
tive inhibitor of MAO-A and MAO-B that exhibits protective proper-
ties against MPTP toxicity in mice.12,13 MAO-B converts MPTP to
MPP+, which causes parkinsonism in various animal models, includ-
ing human and non-human primates.3,14 This finding suggests that
naphthoquinones may be important pharmacophores for acting on
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monoamine oxidase inhibition. Naphthoquinones are widespread in
nature and have been found in higher plants, fungi and actinomy-
cetes.15 The 1,4-naphthoquinone (1,4-NQ) scaffold is often found
in bioactive molecules, such as vitamin K. By using biochemical
and computational approaches we investigate the molecular details
of the inhibition of MAO by 1,4-NQ comparing it with the bioactive
1,4-NQ derivatives: menadione and TMN.
2. Experimental

2.1. MAO assay

Microsomes from baculovirus-infected insect cells that express
recombinant human MAO-A and MAO-B were purchased from
Sigma-Aldrich. The activity of MAO-A and MAO-B were evaluated
by a fluorometric assay that measures the amount of resorufin pro-
duced from Amplex Red� (AR) (Invitrogen) in the presence of
hydrogen peroxide (generated by MAO action) and horseradish
peroxidase (HRP).16 These assays were carried out in a 96-well
microplate. The fluorescence intensity was measured by a fluores-
cence microplate reader in a Cary Eclipse Fluorimeter (Varian Inc)
with excitation at 571 nm and emission at 585 nm. The effect of
the inhibitors on the fluorescence emission at 585 nm was previ-
ously evaluated, and a correction was performed when necessary.
The reaction mixture (final volume of 200 lL) contained 5 lg/mL
MAO-A or MAO-B in a 50 mM sodium phosphate buffer of pH
7.4, 1 mM p-tyramine (MAO-A and MAO-B substrate) or 1 mM
benzylamine (MAO-B substrate), 1 U/mL HRP and 200 lM AR. This
mixture were incubated at 37 �C for 45 min in the presence or ab-
sence of the inhibitors. The enzyme plus the inhibitor were incu-
bated at 37 �C for 20 min prior to the addition of the substrate,
HRP and AR. The inhibitors were dissolved in 100% DMSO, and
equivalent concentrations of DMSO alone (1–2%) were used as con-
trols. Clorgyline (MAO-A inhibitor) or pargyline (MAO-B inhibitor)
were used at a concentration of 5 lM and served as a positive con-
trol for inhibition. To verify whether the inhibitors affect the enzy-
matic assay by inhibiting the AR oxidation by HRP or by scavenging
the hydrogen peroxide that was generated, hydrogen peroxide was
preincubated in the presence or absence of the inhibitors, and
1 U/mL HRP, 1 mM substrate and 200 lM AR were added to the
reaction mixture. This mixture was incubated at 37 �C for 45 min,
and the resorufin content was determined by fluorescence, as de-
scribed above. The fluorescence intensity values were converted
to amount of hydrogen peroxide formed by using a calibration
curve. The enzymatic activity was expressed as nanomoles of
hydrogen peroxide produced per milligram of enzyme each minute
at pH 7.4 and 37 �C.

2.2. Kinetic parameters

To evaluate the mechanism of inhibition of MAO-A and MAO-
B, the effect of the inhibitors (1,4-NQ and menadione) on the
Michaelis-Menten constant (Km) and maximum reaction rate
(Vmax) values was obtained by plotting the data according to
the Lineweaver-Burk method. The Ki value for the inhibition of
MAO by menadione or 1,4-NQ was determined from the double
reciprocal plot: 1/rate of formation (1/V) versus 1/substrate con-
centration (50, 75, 100, 150 and 250 lM) in the presence of
varying concentrations of menadione or 1,4-NQ (1, 2, 3, 5 and
8 lM). The Ki value was calculated from the interception of the
curves obtained by plotting 1/V versus the inhibitor concentra-
tion for each substrate concentration.17 Additionally, the Ki value
was estimated by plotting the slope of each Lineweaver-Burk
plot versus the inhibitor concentration.
2.3. Reversibility of the inhibition

To investigate the reversibility of the inhibition, MAO-A or
MAO-B (50 lg/mL) was incubated with 100 lM of the inhibitor
at 37 �C for 20 min and then dialyzed for 3 h at 4 �C against a
50 mM sodium phosphate buffer at pH 7.4 containing 25 mM su-
crose, 0.1 mM EDTA and 5% glycerol. The maximum rate (Vmax)
and the Km, before and after the dialysis, were obtained by plotting
the data according to the Lineweaver-Burk method using a final
concentration for the enzyme and the inhibitors of 5 lg/mL and
5 lM, respectively.
2.4. Spectroscopy

The interaction of the inhibitor with the flavin adenosine
dinucleotide (FAD) cofactor of MAO-B was investigated by
exploiting the fluorescence properties of the flavin group as pre-
viously described.18 MAO-B (5 lg/mL) was incubated in the pres-
ence of 2–100 lM of the inhibitor or an equivalent amount of
DMSO, and the fluorescence spectra was recorded in a Cary
Eclipse Fluorimeter (Varian Inc) with excitation at either
412 nm (emission at 470–540 nm) or 450 nm (emission at
520–560 nm).

2.5. Molecular modeling: ligand and receptor building

The structure of menadione, 1,4-naphthoquinone and TMN
were built with GaussView19 and optimised with RHF/6-31G
(d,p) using GAUSSIAN 98.20 The final structures were converted to
the mol2 format. The corresponding Gasteiger-Marsili charges21

were calculated using Babel. The structures and charges were
used without further modification as the ligand input files for
AutoDockTools.22 The MAO-B receptor structure was built as a
modification of the structure obtained from the Protein Data
Bank (PDB: 2VRL).23 This structure contains a dimeric form of
the human monoamine oxidase B, with each chain interacting
with FAD and toluene. For docking purposes, only the coordi-
nates of chain A and FAD were considered as the receptor struc-
ture, without toluene or hydration by water. The MAO-A
receptor structure was also built as a modification of the struc-
ture obtained from the Protein Data Bank (PDB: 2Z5Y).24 This
structure includes a monomeric form of MAO-A with FAD and
harmine (HRM, 7-methoxy-1-methyl-9H-beta-carboline). For
docking purposes, only the coordinates of the protein and FAD
were used as the receptor structure.

2.6. Molecular modeling: grid and docking

The grid box was built with a resolution of 0.375 Å and
70 � 60 � 70 points and constituted a large region surrounding
the interaction site close to FAD, inside the enzymes. The dock-
ing was carried out by AutoDock 4.025,26 with a Lamarckian Algo-
rithm (Genetic Algorithm combined with a local search). The
following parameters were chosen: 100 GA runs, population size
of 50, 50,000,000 evaluations, 27,000 number of generations,
maximum number of top individuals of 1, gene mutation rate
of 0.02 and a crossover rate of 0.8. The AutoDock 4.0 default val-
ues were used for the remaining docking parameters, except for
the step size parameters that were chosen to be 0.2 Å (transla-
tion) and 5.0 degrees (quaternion and torsion). The docked con-
formations were clustered according to their geometrical
similarity (rms of 2.0 Å) and docked energy. The interactions be-
tween the ligand and protein residues were analyzed with Auto-
Dock Tools.22
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3. Results and Discussion

3.1. MAO is reversibly inhibited by 1,4-NQ and menadione

The chemical structures of 1,4-NQ, menadione and TMN are
shown in Figure 1. The effect of 1,4-NQ or menadione on MAO
activity was evaluated by an extremely sensitive method that
monitors the amount of hydrogen peroxide that is generated as a
result of MAO-catalyzed reactions. These compounds have been
Figure 1. Chemical structures of 1,4-NQ
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Figure 2. Kinetics of MAO inhibition by 1,4-NQ and menadione. The effect of the inhibi
1/substrate concentration in presence of varying concentrations of 1,4-NQ or menadione
Ki values were calculated by the intersection of the curves obtained by plotting 1/V versu
presented as the mean of three experiments ± SD.
shown not to alter the enzymatic method by either quenching res-
orufin fluorescence or acting as scavengers of the hydrogen perox-
ide that was produced. Therefore, all compounds tested (up to a
concentration of 100 lM) did not affect the formation of resorufin
from AR in presence of hydrogen peroxide (data not shown). The
inhibitory effect of 1,4-NQ and menadione on MAO was evaluated
by the Lineweaver-Burk plot in the presence of varying concentra-
tions of the inhibitor. Figure 2A and B show that MAO-B was
strongly inhibited by 1,4-NQ (Ki = 1.5 lM) and menadione
(A), menadione (B) and TMN (C).
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(Ki = 0.4 lM), respectively, in a concentration-dependent manner
and this occurs by a competitive mechanism. Although MAO-A is
inhibited by both 1,4-NQ and menadione, the Ki values of approx-
imately 7.7 and 26 lM for 1,4-NQ and menadione, respectively,
suggest that this isoform is less susceptible to inhibition than
MAO-B (Fig. 2C and D). In addition, 1,4-NQ does not alter the Km

value of MAO-A, suggesting a noncompetitive mechanism for the
inhibition.

Herein we demonstrate for the first time a link between mena-
dione and MAO-B. The Ki value obtained for MAO-B and menadione
is in the same range of that observed for others competitive inhib-
itors such as safinamide or coumarin analogs, with Ki values be-
tween 0.1 and 0.5 lM,27 or norharman (beta-carboline), a
reversible inhibitor of MAO-B found in tobacco (Ki of �1.2 lM).28

Menadione (vitamin K3) is a synthetic chemical compound that
acts as a precursor of various forms of vitamin K. Additionally,
menadione triggers oxidation of endogenous pyridine nucleotides
and induces mitochondria permeability transition (MPT), this lat-
ter a result of the oxidative stress produced by the semiquinone
radical formed by the interaction of menadione with the respira-
tory chain.29 Since the oxidative catabolism of menadione is not
catalyzed by MAO-B, it has been postulated that MAO-B activity
is not involved in the MPT induced by menadione.30 An important
question that remains obscure is if and how the inhibitory activity
of menadione on MAO-B might affect the MPT induced by
menadione.

The determination of Km and Vmax values for MAO, in the pres-
ence or absence of the inhibitors, before and after dialysis, demon-
strate the reversibility of the inhibition of MAO by 1,4-NQ or
menadione (Table 1). In concordance with a competitive mecha-
nism for the inhibition, both 1,4-NQ and menadione produced an
increase in the Km value from 0.15 mM to 0.75–0.85 mM for
MAO-B, whereas the Vmax remained unchanged (65–
78 nmol min�1 m�1). Menadione at a concentration of 5 lM pro-
duced a slight increase in the Km for MAO-A with no alteration in
Vmax value, which is consistent with a competitive mechanism
for the inhibition. In contrast, 1,4-NQ reduced the Vmax for
Table 1
Kinetic properties of MAO-A and MAO-B incubated with 5 lM menadione or 1,4-NQ
before and after dialysis

MAO-A MAO-B

Km (mM) Vmax

(nmol min�1 mg�1)
Km (mM) Vmax

(nmol min�1 mg�1)

Before dialysis
Control 0.24 ± 0.03 132 ± 11 0.15 ± 0.05 72 ± 4
Menadione

(5 lM)
0.35 ± 0.02 130 ± 13 0.75 ± 0.07 73 ± 5

1,4-NQ
(5 lM)

0.24 ± 0.03 101 ± 7 0.85 ± 0.05 71 ± 6

After dialysis
Control 0.24 ± 0.03 128 ± 15 0.25 ± 0.05 64 ± 2
Menadione

(5 lM)
0.23 ± 0.03 126 ± 8 0.30 ± 0.05 62 ± 4

1,4-NQ
(5 lM)

0.25 ± 0.03 129 ± 7 0.40 ± 0.05 61 ± 6

Table 2
Kinetic data of the inhibition of MAO by 1,4-NQ, menadione and TMN

Inhibitory constant Ki (lM)

MAO-A MAO-B

1,4-NQ 7.7 ± 1.2 (noncompetitive) 1.5 ± 0.4 (competitive)
Menadione 26 ± 4 (competitive) 0.4 ± 0.15 (competitive)
TMN12 3 (competitive) 6 (competitive)
MAO-A, with no alteration in Km, providing evidence for a noncom-
petitive inhibition. The enzyme incubated in the presence of the
inhibitors and submitted to dialysis has its activity recovered,
resulting in a decrease in Km values for the competitive inhibitors
and an increase in Vmax for MAO-A and 1,4-NQ after the dialysis
procedure. The slight reduction in Vmax values for the enzymes
after the dialysis procedure, in presence or absence of inhibitors,
might be explained by the low stability of microsomes containing
MAO during the dialysis procedure. For instance, MAO activity is
completely abolished when the dialysis was done in absence of
glycerol, sucrose or EDTA. Taken together, these findings indicate
that the inhibition of MAO-A or MAO-B by 1,4-NQ and menadione
is a reversible process.

Both menadione and 1,4-NQ are redox agents and this property
could affect the results depending on the conditions of the enzy-
matic assay. However, we have compelling evidence that the inhib-
itory activity of these compounds is due to their ability to alter the
enzymatic activity and not an artefact related to the enzymatic as-
say used in our experiment. Firstly, TMN is not a redox agent but is
capable of inhibiting MAO at a concentration similar to that of 1,4-
NQ and menadione (Table 2).12 Secondly, the inhibition is reversed
by either increasing the substrate concentration (e.g., tyramine or
benzylamine do not interfere with the redox properties of 1,4-NQ
or menadione) or dialysis. In addition, in presence of exogenous
hydrogen peroxide, the conversion of AR to resorufin occurs in
presence of up 100 lM of 1,4-NQ or menadione, indicating that
there is no inhibition of HRP, scavenging of the hydrogen peroxide
or any effect related to the oxidation of AR. Finally, if the inhibition
observed was resulted of the redox properties of 1,4-NQ or mena-
dione affecting the enzymatic conditions (FAD, oxygen, hydrogen
peroxide), both MAO isoforms would be inhibited at the same
range.

3.2. Both menadione and 1,4-NQ quench the fluorescence of the
MAO-B flavin

The mechanism of inhibition for menadione or 1,4-NQ on MAO-
B, proposed based on the kinetic assays, was investigated by fluo-
rescence measurements of MAO-B in presence of the inhibitors.
The catalytically active form of MAO-B exists as a homodimer with
one covalently-bound FAD cofactor per monomer, which is respon-
sible for the fluorescent properties of MAO-B. The presence of the
FAD cofactor in MAO-B results in two distinctive chromophores
in the resting state of the enzyme; one chromophore exists at
412 nm due to the presence of oxidized FAD and one at 450 nm re-
lated to the presence of a persistent flavin semiquinone.18 Inhibi-
tors that interact at the active site usually modify the
fluorescence properties of the FAD, thereby providing information
about the mechanism of inhibition. Since limited data has been
published describing the fluorescence properties of the MAO-A iso-
form and this isoform has demonstrated low susceptibility to the
inhibitors, we chose to focus our spectroscopic studies only on
MAO-B isoform. Figure 3A and B show the fluorescence emission
of MAO-B (excitation at either 412 or 450 nm) in the presence of
varying concentrations of 1,4-NQ or menadione, respectively. We
observe that both 1,4-NQ and menadione quench the flavin emis-
sion at 480 nm and at 530 nm. We also observed a nonlinear rela-
tionship between the fluorescence decay and the inhibitor
concentration for both inhibitors (Fig. 3C). For 1,4-NQ, the fluores-
cence emissions at both 480 and 530 nm decay at a similar rate,
whereas this effect is more pronounced at the 480 nm emission
(excitation 412 nm) for menadione. These findings suggest that
the oxidized FAD, rather the flavin semiquinone, is more prone to
interact with menadione than 1,4-NQ. The inhibitor concentration
that reduces the fluorescence signal at 450 nm to 50% of the con-
trol was 10–12 and 20–25 lM for menadione and 1,4-NQ,
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respectively, which is consistent with the inhibitory properties
supported by the kinetic plots. The kinetic parameters of cova-
lently bound MAO-B inhibitors, such as pargyline and selegiline,
have been previously evaluated by the fluorescent properties of
MAO-B without the need for a substrate.18,31 Pargyline reduces
the intensity at 530 nm, but the emission at 480 nm remains un-
changed, suggesting that the oxidized flavin at the active site
was modified by inhibitor binding.18 Unfortunately, this procedure
cannot be applied for reversible inhibitors. Taken together, these
data suggest that both 1,4-NQ and menadione alter the properties
of flavin fluorescence through an interaction with MAO-B residues
in close proximity to the flavin moiety or through direct binding to
flavin, which is consistent with the competitive mechanism ob-
served in the kinetic studies.

3.3. Interaction of menadione or 1,4-NQ with MAO

Molecular docking studies were performed to evaluate the most
probable conformations for the complex MAO-inhibitor. Unless
specified, as in the case of hydrogen bond (HB), the interactions
are classified as close contacts. Autodock uses an Amber-based
force field to evaluate the free energy of binding, based on pairwise
energetic terms and an estimate of the conformational entropy lost
upon binding. The more negative is the binding free energy, the
stronger is the interaction. The Table 3 shows the energy and the
populations of the clusters generated in the docking. In menadi-
one-MAO-B docking, the lowest energy conformation cluster rep-
resents 90% of all conformations obtained, and the lowest
docking free energy was �5.50 kcal/mol. In this docked conforma-
tion, the menadione interacts with flavin moiety of the FAD site
through a HB and displays close contacts with Gln206, Tyr326,
Phe343, Tyr398 and Tyr435 (Fig. 4A). Similarities can be noted
comparing our results with isatin (indol-2,3-dione), an endogenous
MAO-inhibitor. For isatin, the indol ring is positioned between
Tyr435 and Tyr398 residues in the hydrophobic cage with a per-
pendicular conformation to flavin ring of FAD cofactor,32 similarly
to observe for menadione and MAO-B. In the second lowest energy
cluster (10% of the population), menadione interacts with residues
on the enzyme surface and exhibits a lowest docking free energy of
�2.93 kcal/mol.

In docking with MAO-A, menadione interacts with the residues
in the active site in the lowest energy conformation cluster (61% of
the conformers), exhibiting a lowest docking free energy of
�5.40 kcal/mol. In this conformation, menadione binds to the fla-
vin moiety through a HB and makes close contacts with Tyr69,
Gln215, Leu337, Phe352, Tyr407 and Tyr444 (Fig. 4B). In the lowest
energy conformation cluster, the energy of interaction of menadi-
one with MAO-B was similar to that observed for menadione with
MAO-A. However, this cluster represents 90% of the conformations
generated for menadione and MAO-B, it is only 61% for menadione
and MAO-A. This observation suggests competition with other sites
for the interaction of menadione with MAO-A.

The energy of interaction between 1,4-NQ and MAO-A or MAO-
B in the docked conformation of lowest energy was �4.90 kcal/mol
and �5.15 kcal/mol, respectively. This docking occurred in the cat-
alytic site of the enzymes. The interaction between MAO-B and
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1,4-NQ is slightly different than the one observed between MAO-B
and menadione; the interaction with Tyr326 is lost when menadi-
one is replaced by 1,4-NQ, and a new interaction with Tyr60 takes
place (Fig. 4C). Similarly to menadione, there is a remarkable
F343

Y435

Q206

Flavin

Y60Y398

1,4-NQ

Y435

Q206

Flavin

Y398

Y326

F343

Menadione

B

DC

A

Figure 4. Probable interacting mode of menadione and 1,4-NQ with MAO. Panels A and B
and MAO-A, respectively, in the lowest energy docking conformation. In the interaction
exception Tyr326, which is replaced by Tyr60 (C). In D, the second lowest energy dock
interacts with interior residues of the enzyme instead of those in the catalytic site. This m
noncompetitive manner.

Table 3
Docking of MAO-A or MAO-B with the inhibitors: 1,4-NQ, menadione and TMN

MAO-B inhibitor Population, % total Energy (kcal/mol)

Menadione 90 �5.50
10 �2.93

1,4-NQ 95 �5.15
5 �2.73

TMN 88 �6.39
12 �3.31

MAO-A inhibitor
Menadione 61 �5.40

34 �5.14
3 �5.06
2 �4.19 to �3.13

1,4-NQ 60 �4.90
35 �4.63
5 �3.90 to �3.50

TMN 65 �6.27
35 �6.00
preference for this cluster (95% of docked conformations) in
MAO-B, which is not observed for MAO-A. For MAO-A, the kinetic
data have demonstrated that 1,4-NQ inhibits the enzyme by a non-
competitive mechanism, suggesting that other sites of interaction
F352

Flavin

Y69
Q215

Y407

Y444

Menadione

L337

F352

I335

I180

F208

Q215

1,4-NQ

show the menadione interacting with particular residues at the active site of MAO-B
between MAO-B and 1,4-NQ, the inhibitor is docked similarly to menadione, with

ed conformation for 1,4-NQ and MAO-A is shown. In this conformation, the ligand
odel is supported by kinetic data that indicate that 1,4-NQ inhibits the enzyme in a

Location

Active site: FAD (HB), Gln206, Tyr326, Phe343, Tyr398, Tyr435
Surface

Active site: FAD (HB), Tyr60, Gln206, Phe343, Tyr398, Tyr435
Surface

Active site: FAD (HB), Tyr60, Leu171, Tyr326, Phe343, Tyr398, Tyr435
Surface

Active site: FAD (HB), Tyr69, Gln215, Leu337, Phe352, Tyr407, Tyr444
Inner: Ile180, Asn181, Ile207, Phe208, Gln215, Ile335, Leu337, Met350, Phe352
Inner: Ile180, Phe208,Gln215, Ile335, Leu337, Met350, Phe352
Surface

Active site: FAD (HB), Tyr69, Gln215, Phe352, Tyr407, Tyr444
Inner: Ile180, Phe208, Gln215, Ile335, Leu337, Phe352
Surface

Active Site: FAD (HB), Tyr69, Gln215, Met350, Phe352, Tyr407,Tyr444
Inner: Ile180, Asn181, Phe208, Gln215, Cys323, Ile335, Leu337, Met350, Phe352
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may be present. In the second lowest energy docked conformation
for 1,4-NQ and MAO-A (4.63 kcal/mol) the ligand interacts with
residues located in the inner portion of the enzyme (Ile180,
Phe208, Gln215, Ile335, Leu337 and Phe352) instead of those in
the catalytic site, which may explain the noncompetitive mecha-
nism observed (Fig. 4D). For MAO-B and 1,4-NQ, sites other than
the active site were very low populated and exhibit a less favorable
energy of interaction (�2.73 kcal/mol).

The characterization of the energy of interaction between the
enzyme and the inhibitors allows us to provide additional informa-
tion about the most probable configuration for the complex, but in
certain cases it cannot provide reliable data about the inhibitor
selectivity or kinetic parameters. Free energies of binding and Ki

values of human MAO-B docked with several inhibitors have been
previously reported.32 In this study, although the inhibitors are
successfully docked onto the active site of MAO-B some discrepan-
cies can be noted between the calculated and experimental Ki val-
ues. In our experiments, although the Ki for menadione and MAO-B
was 60-fold lower than the Ki for menadione and MAO-A, the ener-
gies of interaction are quite similar for these isoforms. For compet-
itive inhibition, the substrate and its energy of interaction with the
active site of the enzyme will interfere with the affinity between
the enzyme and inhibitor and will in turn affect Ki value. This type
of competitive environment is not predicted in docking studies.
Additionally, Ki values estimated from docking programs do not
consider explicit water molecules during docking, and then solva-
tion and entropic effects were not taken into account. Neverthe-
less, our docking data are consistent with the mechanisms for
inhibition proposed based on the kinetic experiments. In case of
menadione or 1,4-NQ with MAO-B, a interaction between the
inhibitors and the FAD cofactor of enzyme was also verified by
C

M350

Q215

F352

Y407

Y444

Y69 Flavin

A

TMN

TMN

Y407

Y444

Figure 5. Interaction of TMN with MAO in the lowest energy docking conformation. The
1,4-NQ, with exception of a additional interaction with Met350 (A). TMN interacts with th
Tyr398 and Tyr435 in the MAO-B active site (panel B). Dispersion forces with the phenyl s
are suggest being responsible for a more favorable energy of interaction inhibitor-enzym
fluorescence experiments, corroborating to the hypothesis of a
competitive mechanism for the inhibition.

3.4. Docking of TMN and MAO

Epidemiological data have revealed a lower incidence of PD in
tobacco smokers (30–40%) compared to non-smokers.33,34 One
hypothesis suggests that this protection is a result of the re-
duced MAO-B and MAO-A activity in the smoker’s brain.35 In
fact, previous studies have shown that tobacco smoke exposure
leads to a 20% reduction in MAO-B activity in the mouse brain.35

On the other hand, low levels of platelet MAO-B has been asso-
ciated with personality traits linked to substance abuse vulnera-
bility. Therefore, it remains unclear whether people are
predisposed to become smokers as a result of low MAO-B activ-
ity or if the reduction in MAO-B activity is a result of exposure
to tobacco substances. Although potential health hazards associ-
ated with tobacco products preclude any therapeutic approach
linked to smoking, several investigations have attempted to iso-
late MAO inhibitors from tobacco. One of these inhibitors is
TMN. We examined the structural features of MAO inhibition
by TMN by using molecular docking. The energy of interaction
of TMN with MAO-A and MAO-B in the lowest energy docked
conformation was �6.27 and �6.39 kcal/mol, respectively, and
occurs in the catalytic site of the enzymes (Fig. 5A and B, respec-
tively). TMN interacts with the flavin moiety by a HB and by
close contacts with the residues Tyr60, Leu171, Tyr326,
Phe343, Tyr398 and Tyr435 in MAO-B active site. The enzyme
residues involved in the interaction between MAO-A and TMN
are quite similar to those involved in the 1,4-NQ interaction,
with the exception of an additional interaction with Met350.
Y326

Y60

F343

L171

Y398

Y435

Flavin

TMN

Y435

Y398

TMN

D

B

MAO-A residues that interact with TMN are quite similar to those that interact with
e flavin moiety through a HB and close contact with Tyr60, Leu171, Tyr326, Phe343,
ide groups of Tyr407 and Tyr444 for MAO-A (C) or Tyr398 and Tyr435 for MAO-B (D)

e.
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The analysis of the interactions in the lowest energy cluster
configurations suggests that the phenyl side groups of Tyr407
and Tyr444 for MAO-A (Fig. 5C) or Tyr398 and Tyr435 for MAO-B
(Fig. 5D) play an important role in the interaction with 1,4-NQ scaf-
fold of TMN through forces of dispersion. Similar results were ob-
served for 1,4-NQ and menadione. In addition, these residues are
conserved in both MAO-A and MAO-B from different species.36 In
this conformation, the ligand is located between two tyrosine res-
idues, perpendicularly to the re face of flavin moiety, which allows
the phenolic side chains to form an ‘aromatic sandwich’ structure.
Crystallographic data suggests that both inhibitors and substrates
must pass between these two tyrosines to interact with the flavin
group, making this ‘aromatic sandwich’ an important feature for
enzyme functionality.37 For rasagiline, an irreversible inhibitor of
MAO-B, the aromatic moiety of the inhibitor interacts with the side
chains of the residues of Tyr398 and Tyr435 in MAO-B structure
while the residues Tyr60 and Phe343 are involved in the stabiliza-
tion of the complex, similarly to observed with TMN and MAO-B.32

3.5. Reversibility and selectivity of MAO inhibitors in the
therapy for neurological disorders

MAO inhibitors display a range of activities that may be a result
of several factors beyond the increase of particular neurotransmit-
ter levels. These factors include inhibition of the conversion of
MPTP-like neurotoxins to their toxic metabolites (MAO-B converts
MPTP to its neurotoxic form MPP+), a reduction of reactive oxygen
species generated from hydrogen peroxide (a product of MAO ac-
tion) and anti-apoptotic activity.37,38 In symptomatic therapy for
PD, MAO inhibitors are used to increase neuronal dopamine (DA)
levels. DA is metabolized by intraneuronal MAO-A and by MAO-
A/MAO-B in glial and astrocyte cells.38 Therefore, the selective
inhibition of MAO-A or MAO-B does not change the steady state
striatal DA levels. For instance, studies in rat brains show that
the administration of selegiline or clorgiline does not produce a
DA increase that is as significant as the increase observed for
phenylethylamine, noradrenalin or serotonin.39 The enhancement
of DA release observed when a selective MAO inhibitor is adminis-
trated is likely associated with an increase in endogenous brain
amines or the modulation of dopamine receptors.8 In contrast,
the administration of nonselective inhibitors of MAO-A/B, e.g.
ladostigik, produces a very significant increase of DA levels.40 Fur-
thermore, nonselective inhibitors can increase levels of both DA
and serotonin, which may be important in PD therapy as many pa-
tients also present symptoms of depression.8 Our results suggest
that 1,4-NQ may represent an important scaffold for design nonse-
lective or weakly selective inhibitors acting on both isoforms of
MAO. Menadione exhibited a clear preference for MAO-B with Ki

value being significantly lower for MAO-B than MAO-A, resulting
in a 60-fold selectivity for MAO-B as determined by the ratio
Ki

MAO-A/Ki
MAO-B. The selectivity of menadione for human MAO-B

is in the same range of rasagiline, an irreversible inhibitor of
MAO-B (50-fold and 93-fold selectivity for human and rat MAO-
B, respectively) but greatly lower than for selegiline (250-fold
selectivity for human or rat MAO-B), a potent and irreversible
MAO-B used in the clinic.41

The irreversible inhibition of MAO-A is associated with the
potentialization of sympathetic cardiovascular activity through
the release of noradrenaline.42 This side effect occurs when tyra-
mine, which is effectively metabolized by intestinal MAO-A, enter
to circulation, resulting in noradrenaline release from sympathetic
nerve endings and adrenaline from the adrenal gland. This side ef-
fect is known as the cheese-reaction because tyramine and other
sympathomimetic amines are found in fermented foods and
drinks, for example, cheese and beer. Therefore, hypertensive cri-
ses may be avoided by the use of reversible rather than irreversible
MAO-A inhibitors. MAO-B inhibitors, especially those that are
selective and irreversible, do not promote the cheese-reaction (un-
less administrated at doses high enough to inhibit MAO-A) because
the intestine contains little MAO-B. Conversely, side effects associ-
ated with intestinal MAO-A inhibition might be avoided by using
tissue-specific inhibitors such as the brain-selective ladostigil,
even though the molecular basis of this selectivity remains unclear.
Therefore, the reversibility exhibited by 1,4-naphthoquinones in
MAO inhibition may be an attractive characteristic of these mole-
cules in comparison to irreversible inhibitors by avoiding side ef-
fects associated with the cheese-reaction.

4. Conclusions

Our findings suggest that 1,4-NQ might represent an important
scaffold for the development of MAO inhibitors. Computational
and spectroscopy data suggest that 1,4-NQ as well as menadione
or TMN interact with flavin ring in the catalytic site of MAO-B. Be-
sides the catalytic site, another site of interaction, inside the en-
zyme, can be observed for MAO-A and 1,4-NQ, which is
corroborated by the kinetic experiments that suggest a noncom-
petitive mechanism for 1,4-NQ and MAO-A. Menadione displays
a 60-fold selectivity for MAO-B, similarly to rasagiline but signifi-
cantly lower than selegiline or clorgyline, potent selective MAO
inhibitors. Similar to certain MAO inhibitors, our data suggest that
these 1,4-NQS are located between two tyrosine residues in the en-
zyme, perpendicularly to the re face of flavin moiety in a type of
‘aromatic sandwich’ structure. Taken together, our studies revealed
that 1,4-NQs might behave as both reversible and nonselective
inhibitors, even though the selectivity may be altered by changes
in the substituents on the naphthoquinone ring.
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