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Abstract Nicotianamine is an important metal ligand in plants.
Surprisingly, recent genome sequencing revealed that ascomyce-
tes encode proteins with similarity to plant nicotianamine syn-
thases (NAS). By expression in a Zn2+-hypersensitive fission
yeast mutant we show for a protein from Neurospora crassa that
it indeed possesses NAS activity. Using electrospray-ionization-
quadrupole-time-of-flight mass spectrometry we prove the for-
mation of nicotianamine in N. crassa. Transcript level is strongly
upregulated under Zn deficiency as shown by real-time PCR.
These findings demonstrate that nicotianamine is more wide-
spread in nature than anticipated and provide further evidence
for a function of nicotianamine as a cytosolic chelator of Zn2+

ions.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Transition metals such as Fe, Cu, Zn are Janus-headed com-

ponents of living systems. They are on the one hand essential

as co-factors of a vast number of proteins, but can be deleteri-

ous when present in excess or incorrectly distributed. A highly

regulated and complex homeostatic network maintains transi-

tion metal content within the narrow physiological range be-

tween deficiency and toxicity. Also, it ensures correct

targeting and distribution of transition metals both intra-

and intercellularly [1,2]. Degree of control and the challenge

for metal homeostasis are illustrated by the fact that according

to data for yeast and bacteria there are virtually no free hy-

drated metal ions present inside a cell [3–5].

Low molecular weight transition metal ligands play key roles

in metal homeostasis. Generally, they are important for the

distribution of metal ions by keeping metal ions mobile intra-

cellularly. Furthermore, in multicellular organisms there is

often transfer of metal ions from cell to cell, sometimes over
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wide distances. For instance in plants, metal ions taken up

by root cells need to be translocated to the shoot via the xylem.

Also, there is re-distribution from older plant parts to growing

tissues through the phloem [6]. Precipitation of metal ions or

their interaction with non-target sites along the way has to

be suppressed. In addition, low molecular weight ligands can

assist in the acquisition of essential metal ions. Best known

in plants is the role of phytosiderophore secretion for Fe nutri-

tion in grasses. Compounds such as mugeneic acids are able to

chelate insoluble Fe(III) [2]. The resulting complexes are taken

up by specialized transporters such as yellow stripe1 (YS1)

from maize [7]. A fourth function is the buffering of intracellu-

lar metal ion availability under conditions of metal excess. An

example is the metal-activated synthesis of phytochelatins,

peptides of the general structure (c-Glu-Cys)n-Gly (n = 2–11)

[8,9].

In plants the non-proteinogenic amino acid nicotianamine is

known to act as a metal ligand, presumably for a range of

micronutrients. It was found to normalize the intercostal chlo-

rosis and apparent Fe deficiency symptoms of the tomato mu-

tant chloronerva [6]. Because of these mutant phenotypes

nicotianamine (NA) has mostly been implicated in Fe homeo-

stasis. It is assumed to represent the principal cytosolic Fe che-

lator in plants [2], required for radial transport of Fe in roots

and distribution of Fe in the leaves. A likely second function is

a contribution to transport between cells and translocation of

Fe via the phloem. NA forms stable complexes in vitro also

with Cu(II), Zn(II), Ni(II) and Mn(II) ions [10,11]. There is

evidence accumulating for a role of NA in the homeostasis

of these micronutrients as well. In the chloronerva mutant, root

Cu content is higher than in wildtype plants while shoot con-

tent is lower, suggesting NA-dependent Cu translocation via

the xylem [12]. More recent data obtained for a transgenic to-

bacco line rendered NA deficient through the ectopic expres-

sion of a barley nicotianamine aminotransferase indicated

that NA is important for the transport of Cu and Zn into

young leaves. Content of these metals was significantly reduced

in NAAT tobacco compared to wildtype [13].

Nicotianamine is formed from three molecules of S-adeno-

sylmethionine by the enzyme nicotianamine synthase (NAS).

Genes encoding nicotianamine synthases were isolated in two

ways. NAS proteins were purified from barley [14,15]. The

chloronerva gene from tomato was isolated by map-based

cloning [16]. At the time of cloning, nicotianamine synthases

appeared to be a plant-specific gene family with just a one

distantly related gene in the archeon Methanobacterium

thermoautotrophicum [15]. This was expected from the data

on the ubiquitous occurrence of nicotianamine in the plant
blished by Elsevier B.V. All rights reserved.
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kingdom [17]. We report here on the detection of nicotian-

amine and of functional nicotianamine synthases in filamen-

tous fungi, namely Neurospora crassa.
2. Materials and methods

2.1. Fungal strains and cultivation
N. crassa strain CBS 195.57 was obtained from the Centraalbureau

voor Schimmelcultures (Utrecht, Netherlands) and cultivated on malt
peptone agar. For DNA/RNA extraction and NA analysis, N. crassa
was grown in liquid culture (Vogel’s medium N) [18] at 25 �C under
gentle shaking. Schizosaccharomyces pombe zhf cells were grown as de-
scribed [19].

2.2. Cloning, expression analysis, functional characterization in

S. pombe
The gene encoding N. crassa hypothetical protein XP_958379

(=NcNAS) was PCR amplified from N. crassa genomic DNA, isolated
using an established protocol [20]. The primers used added NotI sites
for cloning into the S. pombe expression vector pSGP72 (5 0:
CGCGGCGGCCGCATGCCTGCCCTTCTCTCAGTC, 3 0: CGCG-
GCGGCCGCAACCCCTAACCCTAGCAACAAC). Expression in
S. pombe, monitoring of expression by Western analysis, and growth as-
says were carried out as described [21].

Total RNA was extracted using TRIzol (Invitrogen) following the
manufacturer’s protocol. First strand cDNA was synthesized with first
strand cDNA synthesis kit (Fermentas). One microgram of DNaseI-
treated total RNA was used. Quantitative real-time PCR was
performed in an ABI Prism 7000 (Applied Biosystems, Foster City,
USA). Each sample was analyzed in triplicate. Primers used were: fw
AGGAGAAGAAATCAACCGCTTACTG, rev GATCTGCTGGA-
TTACGCTTGGAG. N. crassa elongation factor 2 (Accession No.
AF258620) served as constitutive control. Primers used were: fw
TCGCTACTGACGACAGAGAGAAGG and rev GGATCATCA-
TCTCCAACAAGCAGTC. For the calculation of the threshold cycle
(CT) values the mean value of each triplicate was used. To normalize
target gene expression, the difference between the CT of NcNAS and
the CT of EF-2 was calculated (=DCT value); relative transcript
level ¼ 1000 � 2�DCT .

2.3. Nicotianamine analysis
For NA detection in S. pombe, cell pellets were suspended in 50 lL

water. Samples were vigorously vortexed with 30 mg glass beads (425–
600 lm, Sigma) for 2 min, heated at 80 �C for 2 min, vortexed again
for 2 min. Twenty microliters extract were diluted with 60 lL 0.5 M bo-
ric acid (pH 7.7) and derivatized by addition of 20 lL 9-fluorenylmeth-
ylchloroformate (FMOC) (10 mM, Sigma) in acetone. After 1 min the
reaction was quenched by addition of 20 lL adamantane-1-amine
hydrochloride (20 mM, Sigma) in acetone–water 3:1 (v/v). Two microli-
ters of the derivatized extract were injected and separated using a capil-
lary LC system (Ultimate, Dionex) equipped with a C8-phase (Luna 3l
C8(2) 100 Å, 150 · 0.3 mm, Phenomenex) using the following gradient
at a flow rate of 5 lL min�1: 0–5 min, isocratic 95% A (H2O/0.1%
HCO2H), 5% B (CH3CN/0.1% HCO2H); 5–25 min linear from 5% B
to 95% B. Eluted compounds were detected by an API QSTAR Pulsar
Hybrid QTOF-MS (Applied Biosystems) equipped with an ion spray
source in positive ion mode. Ions were detected within m/z
500–800 applying an accumulation time of 2 s. NA-FMOC (tr =
23.7 min) was quantified using reconstructed ion chromatograms (m/z
526.1–526.3) corresponding to protonated NA-FMOC (calc. for
C27H32N3Oþ8 : 526.2184) and an external calibration curve obtained by
derivatization of a dilution series prepared from an authentic standard.

For NA detection in N. crassa, 300 mg of freshly ground mycelium
were extracted twice with 1000 lL water at 80 �C for 30 min. The com-
bined extracts were evaporated at 20 �C using a SpeedVac. The result-
ing residue was dissolved in 60 lL 0.5 M boric acid (pH 7.7) and
derivatized as described. Two microliters extract were separated using
a modified gradient: 0–40 min linear from 20% B to 70% B. For detec-
tion of NA-FMOC the mass spectrometer was operated in product ion
mode. Collision-induced dissociation (CID) was accomplished by
applying a collision energy of 20 or 35 eV.
2.4. Elemental analysis
Harvested mycelium was washed four times with Millipore water at

4 �C for 10 min under shaking. Samples were lyophilized for 48 h and
DW was recorded. Samples were than digested in 3 ml 65% HNO3/1 ml
30% H2O2. The volume was adjusted to 8 ml with Millipore water. Zn
and Fe content were determined by atomic absorption spectroscopy
using an AAnalyst 800 (Perkin–Elmer, Überlingen, Germany).
3. Results

In recent years the genomes of a few filamentous fungi have

been sequenced. A search of GenBank with the AtNAS2 protein

sequence using the BLASTp and tBLASTn algorithms revealed

that the genomes of the ascomycetes N. crassa and Magnaporthe

grisea contain genes that encode hypothetical proteins with sim-

ilarity to plant nicotianamine synthases: N. crassa hypothetical

protein XP_958379 [22], identity with AtNAS2 22.5%; M. grisea

hypothetical protein XP_365204 [23], identity with AtNAS2

21.9%. In addition, a partial sequence in Podospora anserina

was annotated as a putative nicotianamine synthase (Accession

No. AAO25955). Fig. 1 shows an alignment with both monocot

and dicot NAS proteins highlighting conserved stretches of ami-

no acids. We retrieved all non-plant protein sequences similar to

AtNAS2 with an E value <0.01 from GenBank and constructed

a phylogenetic tree including several NAS sequences from

monocots (barley, rice, maize) and dicots (tomato, A. thaliana)

(Fig. 2). The sequences fall into two main clusters: proteins from

Archaea species that are mostly annotated as putative proteins

or as methyl transferases (including the initially found bacterial

sequence) and nicotianamine synthases. Within the nicotian-

amine synthase cluster the monocot and dicot sequences fall into

distinct groups. A third, and more distantly related group, con-

tains the two fungal sequences. Thus, the question arose whether

filamentous fungi express functional NA synthases. The align-

ment revealed blocks of conserved sequence. However, the

phenylalanine in position 238 in LeNAS, which is mutated in

chloronerva to a serine and apparently essential for activity

[16], is not conserved in the two fungal sequences (Fig. 1).

We had previously shown that expression in the Zn2+ hyper-

sensitive S. pombe mutant zhf [19] is a suitable way of demon-

strating NAS function of proteins. NA formation in these

mutant cells partially rescues the Zn2+ hypersensitivity pheno-

type, most likely due to the formation of stable intracellular

NA–Zn complexes [21]. Thus, we cloned the putative NAS

gene (=NcNAS) – including a predicted intron of 50 bp – from

N. crassa genomic DNA and inserted it into an S. pombe

expression vector. S. pombe zhf cells transformed with NcNAS

were checked for expression of the protein. Immunoblot anal-

ysis using an HA monoclonal antibody recognizing the triple

HA tag added to the C-terminus demonstrated strong expres-

sion, controllable by suppression of the nmt1 promoter with

thiamine (Fig. 3A). Two bands were detected in cells carrying

the NcNAS gene. Following transfer to medium without thia-

mine a strong increase in expression could be observed, peak-

ing at about 6 h. The detected bands corresponded to sizes of

about 41 and 32 kDa. The expected size of NcNAS-HA is

40.5 kDa (37 + 3.5 kDa for the HA tag). A sequence compar-

ison of fragments generated by PCR amplification of NcNAS

from pSGP72-NcNAS vector DNA and from cDNA of

NcNAS-HA-expressing zhf cells demonstrated that the pre-

dicted 50 bp intron was correctly spliced out (not shown).



Fig. 1. Putative NAS sequences from Neurospora crassa and Magnaporthe grisea (NcNAS, MgNAS, respectively) were aligned with representative
NAS sequences from monocots (OsNAS1 and 2 from rice) and dicots (AtNAS1 and 2 from A. thaliana, LeNAS from tomato) using the ClustalW
algorithm. The output was generated with BOXSHADE 3.21 (http://www.ch.embnet.org/software/BOX_form.html). Black shading indicates amino
acid residues that are conserved in the majority of sequences. Substitutions by similar amino acids are shaded in grey. The amino acid altered in the
chloronerva null mutant NAS of tomato is marked with an arrow (phenylalanine 238 is in the mutant changed to a serine).
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NcNAS-HA expressing cells were then grown in the presence

of elevated Zn2+ levels. In comparison to cells transformed

with empty vector a strong increase in growth under excess

Zn2+ was observed both on agar plates and in liquid culture

(Fig. 3B and C). In control medium both strains grew equally

well. At 150 lM Zn2+, however, zhf cells carrying the empty

vector showed a reduction in growth rate of about 82.9

(±7.4)% while growth of zhf cells expressing NcNAS-HA

was reduced by only 27.1 (±20.4)% (n = 8). Strong expression

of NcNAS was required as there was no phenotype in cells

growing in the presence of thiamine (data not shown). To con-

firm NA accumulation in NcNAS-expressing zhf cells we ana-

lyzed FMOC-derivatized extracts by CapLC-ESI-QTOF-MS

[24]. NA-FMOC was unequivocally detected as proven by

co-elution with a reference, the exact mass, and CID-MS anal-

ysis. Nine hours after de-repression, about 67 ng/mg d.w. NA

were detected in zhf cells carrying pSGP72-NcNAS, 24 h after

de-repression about 234 ng/mg d.w. No NA-FMOC was

detectable in zhf cells carrying the empty vector. We concluded

that the N. crassa genome encodes a protein with NAS activ-

ity.

Next we searched for nicotianamine synthesis in N. crassa.

Mycelium was extracted using a protocol established for plant

roots. Following concentration and FMOC derivatization a
signal with a mass of 526.221 and a retention time correspond-

ing to NA-FMOC standard was detected. The theoretical mass

of NA-FMOC ([M+H]+) is 526.218. Co-injection showed that

the signal from N. crassa mycelium co-migrated with NA-

FMOC standard (Fig. 4A). Product ion spectra of the m/z

526 from N. crassa and NA-FMOC standard were almost

identical (Fig. 4B and C). Thus, we unequivocally demon-

strated synthesis of nicotianamine in N. crassa. The NA con-

tent in N. crassa under standard conditions was determined

as about 110 ng/g f.w.

Plant NAS gene expression is responsive to changes in

external micronutrient supply [25,26]. Therefore, we checked

whether NcNAS transcript level changes upon exposure to

Zn or Fe deficiency. N. crassa was grown for 7 d in medium

devoid of either Zn2+ or Fe2+. This led to a reduction of to-

tal Zn and Fe content by about 60% and 50%, respectively,

as shown by atomic absorption spectroscopy (Fig. 5A).

Growth was significantly slowed as compared to control cul-

tures. Under Zn deficiency dry weight was reduced by >90%

and in Fe-free medium by about 50% (data not shown).

When we analyzed NcNAS transcript levels by quantitative

real-time PCR we found a dramatic upregulation (about

30-fold) in Zn-deficient mycelium but not in Fe-deficient

mycelium (Fig. 5B).

http://www.ch.embnet.org/software/BOX_form.html


Fig. 2. Protein sequences with similarity to plant NAS proteins
(highest e-score 0.007) were identified through BLASTp and tBLASTn
searches and aligned with selected plant NAS sequences using
ClustalW. All subsequent analyses were carried out with the PHYLIP
3.6 program (Joseph Felsenstein, University of Washington, Seattle,
USA). Aligned sequences were bootstrapped with 1000 replicates and
distances measured using the Jones-Taylor-Thornton model. Following
UPGMA clustering a consensus tree was constructed. Numbers at the
branch points indicate bootstrap fraction. Sequences included in the
analysis were (Accession No. in brackets): HvNAS1 (AF136941_1),
HvNAS2 (Q9ZQV7), HvNAS3 (BAA74581), ZmNAS1 (BAB87846),
OsNAS1 (Q9SXQ7), OsNAS2 (Q9FEG8), OsNAS3 (BAC21363),
LeNAS (=chloronerva) (CAB42052), AtNAS1 (At5g04950), AtNAS2
(At5g56080), AtNAS3 (At1g09240), AtNAS4 (At1g56430), Methano-
sarcina macei hypothetical protein MM3172 (NP_635196), Methano-
sarcina acetivorans C2A hypothetical protein MA2923 (NP_617818),
Methanosarcina barkeri putative NAS MbputNAS (ZP_00543445),
Methanosarcina barkeri putative methyltransferase MbputMeT
(YP_304122), Methanosarcina acetivorans C2A hypothetical protein
MA4017 (NP_618886), Methanothermobacter thermautotrophicus str.
Delta H hypothetical protein MTH675 (NP_275817).
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Fig. 3. Expression of Neurospora crassa NAS (NcNAS) partially
rescues the Zn2+ hypersensitivity of S. pombe zhf mutant cells. (A) A
triple HA tag was added to the C-terminus of NcNAS. Regulatable
expression under control of the thiamine-repressed nmt1 promoter was
monitored by SDS–PAGE, Western analysis and immunostaining
using a monoclonal anti-HA antibody. Shown are the results for cells
carrying either the empty vector pSGP72 or cells carrying pSGP72-
NcNAS and grown in the absence of thiamine for 0–24 h. (B) Growth
of zhf S. pombe cells carrying either the empty vector or expressing
NcNAS-HA was assayed by spotting serial dilutions of cells (OD600 is
shown on the right) on EMM plates with (right) or without (left) added
Zn2+. (C) Growth of zhf S. pombe cells carrying either the empty vector
(white bars) or expressing NcNAS-HA (black bars) in EMM medium
with or without added Zn2+. OD600 was measured after 18–20 h.
Shown are the means of eight independent experiments. Error bars
indicate SD.
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4. Discussion

The proven transition metal ligand nicotianamine has so

far been widely considered a metabolite typical for plants.

There is only one mention of possible NA occurrence in a

basidiomycete of the genus Polyporus in a study that assessed

distribution of NA within the plant kingdom [17]. Also, NA

has been discussed mostly in the context of long-distance

transport of Fe (and possibly other micronutrients) in the

phloem and of Cu in the xylem [2,12]. The proof of a func-

tional NAS and NA synthesis in filamentous fungi reported

here (i) shows that nicotianamine might be far more wide-

spread than previously anticipated, and (ii) provides strong

additional evidence for a physiological role of NA as an
intracellular – most likely cytosolic – ligand for transition me-

tal cations, in particular Zn2+.

While phylogenetic analysis placed the recently annotated

NAS-like sequences from fungi in a group with proven plant
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NAS proteins, inspection of sequence alignments suggested

that the fungal proteins would not show NAS activity. The

phenotype of S. pombe zhf cells expressing NcNAS, however,

clearly demonstrated NAS function. NA accumulation was

unequivocally detected by capillary liquid chromatography

coupled to electrospray-ionization-quadrupole-time-of-flight

mass spectrometry (Cap-LC-ESI-QTOF-MS) analysis. Fur-

thermore, NAS expression resulted in a strong increase in

Zn2+ tolerance, showing again that NA forms stable complexes

with Zn(II) in the cytosol of zhf cells. Given the high degree of

conservedness of metal homeostasis in eukaryotes we hypoth-

esize that NA forms stable complexes with Zn(II) also in plant

cells. The main chelation, distribution and sequestration path-

ways for transition metal ions, and thus the suite of potential

binding partners for Zn(II), are likely to be very similar in

yeast and plant cells.

A hallmark of filamentous fungi is cytoplasmic continuity.

The cellular compartments of hyphae are delineated by
incomplete septa that allow passage of cytoplasmic

components [27]. Synthesis of NA in N. crassa – which was

unequivocally demonstrated by Cap-LC-ESI-QTOF-MS –

demonstrates occurrence of NA in organisms other than vas-

cular plants where long-distance transport of micronutrients

is required. This finding is a strong hint for a role of NA

as an intracellular, most likely cytosolic, ligand for transition

metal cations. It is hypothesized to be involved in distribution

of Zn and other micronutrients across the fungal mycelium.

The NA content we determined for N. crassa mycelium culti-

vated in a standard growth medium is much lower than

found in most plant samples analyzed so far. However, we

do not know how NA synthesis is modulated in response

to varying micronutrient supply. Our expression analysis

indicated that NcNAS expression is indeed responsive to

Zn deficiency, a culture condition that we clearly established

as indicated by the effects on total Zn content and growth

rate. This observation provides additional support for a role

of NA in intracellular Zn chelation. NA might protect

against potentially high rates of Zn2+ uptake under condi-

tions of Zn starvation. A similar function is assumed for

the Fe-siderophore ferricrocin which accumulates in N. crassa

grown in Fe-deplete medium [28].

The proof of NA synthesis in filamentous fungi offers inter-

esting perspectives for future studies. First, there is no multi-

gene family as in most plants. Thus, N. crassa could serve as

an additional system to study the physiological function of

NA. The generation of knock-out strains is now a routine

procedure [29] (‘‘Neurospora Genome Project’’, http://www.

http://www.dartmouth.edu/~neurosporagenome/index.html
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dartmouth.edu/~neurosporagenome/index.html). Second, the

fungal proteins might represent valuable material for the elu-

cidation of NAS structure and catalytic mechanism as their

amino acid sequences deviate substantially from those of plant

NAS proteins, yet the proteins show NAS activity.
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