
International Journal of Approximate Reasoning 51 (2010) 895–911

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier .com/locate / i jar
Heuristic algorithm for interpretation of multi-valued attributes
in similarity-based fuzzy relational databases

Rafal A. Angryk a,*, Jacek Czerniak b

a Department of Computer Science, Montana State University, Bozeman, MT 59717-3880, USA
b Systems Research Institute, Polish Academy of Sciences, Laboratory of Intelligent Systems, 01-447 Warszawa, Poland

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 15 June 2010

Keywords:
Similarity-based fuzzy relational databases
Multi-valued entries
Taxonomic symbolic attributes
Fuzzy similarity relation
Data mining
0888-613X/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.ijar.2010.05.001

* Corresponding author.
E-mail addresses: angryk@cs.montana.edu (R.A. A
In this work, we are presenting implementation details and extended scalability tests of the
heuristic algorithm, which we had used in the past [1,2] to discover knowledge from multi-
valued data entries stored in similarity-based fuzzy relational databases. The multi-valued
symbolic descriptors, characterizing individual attributes of database records, are com-
monly used in similarity-based fuzzy databases to reflect uncertainty about the recorded
observation. In this paper, we present an algorithm, which we developed to precisely inter-
pret such non-atomic values and to transfer the fuzzy database tuples to the forms accept-
able for many regular (i.e. atomic values based) data mining algorithms.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, we have observed a very active growth of the field of data mining, both in research and real-life applica-
tions. In computer-related literature we can find multiple references to the term ‘‘data avalanche”, widely used by Gray [3] as
a description of the current Internet era. We have multiple web portals registering users’ click-streams, clerks in the stores
asking their customers to fill out surveys on the Web, and multiple types of electronic forms for gathering peoples’ feedback,
starting from medical research and finishing on well-known marketing explorations. The business world quickly discovered
profits coming from the extended large-scale data analysis, and is aggressively trying to take advantage of the capabilities
offered by the data mining.

At the same time, data-related research in fuzzy sets community seems to be split into two parallel tracks. There are peo-
ple intensively working on improving fuzzy database models in the context of fuzzy data modeling and querying techniques,
and a separate group of researchers developing fast fuzzy analysis techniques, entirely focused on processing regular (i.e.
non-fuzzy) relational databases. By publishing this work we want to encourage research on merging these two paths. In
our opinion, to guarantee the successful future of the fuzzy databases field, we need to develop techniques that quickly
transfer fuzzy data into formats that are easy to deploy by the data miners working for large, business-oriented companies.
This may encourage them to incorporate capabilities offered by current fuzzy database models into their own, large rela-
tional database systems. In this work we discuss a heuristic algorithm that allows transfer of fuzzy tuples (containing col-
lections of values in each attribute) from tables in similarity-based fuzzy relational databases into sets of records containing
only atomic values, which are compatible with Codd’s First Normal Form (1NF) definition [4] and can be easily analyzed
using regular data mining techniques [5].

In the pages that follow we first briefly review the capabilities of similarity-bases fuzzy relational database model, and
then characterize the type of fuzzy data, which we will focus on, from data miners’ perspective. We next discuss two
. All rights reserved.

ngryk), jacek.czerniak@ibspan.waw.pl (J. Czerniak).

https://core.ac.uk/display/82740071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijar.2010.05.001
mailto:angryk@cs.montana.edu
mailto:jacek.czerniak@ibspan.waw.pl
http://dx.doi.org/10.1016/j.ijar.2010.05.001
http://www.sciencedirect.com/science/journal/0888613X
http://www.elsevier.com/locate/ijar

896 R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911
alternative approaches to the interpretation of fuzzy records. After this, we present our heuristic algorithm, followed by a
theoretical investigation on its computational cost and extended experimental results on large, artificially created fuzzy data
tables. In closing, we present a brief example of using our technique for imprecise data classification and suggest some direc-
tions for future research.
2. Related works

2.1. Similarity-based fuzzy relational database model

The similarity-based fuzzy model of a relational database, proposed originally by Buckles and Petry [6–8], is an extension
of the ordinary relational database, developed by Codd [4]. The fuzzy model uses a binary fuzzy similarity relation, proposed
by Zadeh in [9], which extends a classical equivalence relation. An interesting discussion of fuzzy relational database prop-
erties was recently presented by Kumar De et al. [10]. For readers deeply interested in the topic, we would also recommend
works published by Parsons [11] and Ma [12,13].

There are two fundamental properties of the similarity-based fuzzy relational database, distinguishing it from a regular
relational database model: (1) acceptance of non-atomic values when characterizing properties (i.e. attributes) of recorded
entities, and (2) use of multi-level equivalence classes, derived from domain-specific fuzzy similarity relations applied in the
place of traditional equivalence relations.

The first property can be explained formally as follows. If we denote a set of acceptable attribute values as Aj, and we let aij

symbolize a jth attribute entry of the ith tuple. Instead of aij 2 Aj (expected in each regular relational database, in agreement
with definition of the Codd’s First Normal Form (1NF) [4]) the more general case of aij # Aj is allowed in the fuzzy database.
That is, any member of the power set of the attribute’s domain values can be used as a valid attribute entry. Buckles and
Petry [6] proposed that in the case when a particular entity’s attribute cannot be clearly characterized by an atomic descrip-
tor, such uncertainty can be reflected by insertion of multiple attribute values, representing fuzzy data entry.

The second feature, characterizing the similarity-based fuzzy databases, is the substitution of the ordinary equivalence
relation with Zadeh’s fuzzy similarity relation [9] of which the equivalence relation is a special case. Each of the attributes
in the fuzzy database has its own domain-specific fuzzy similarity table, which contains the degrees of similarity between all
values occurring for the particular attribute (see Table 1). Disjoint classes of attribute values, considered to be equivalent at a
specific a-level, can be extracted from the similarity table (they are marked by shadings in Table 1). These groups of attribute
values were referred by Zadeh [9] as equivalence classes. The existence of a fuzzy similarity relation for a particular attribute
Aj of a fuzzy database table allows for the extraction of a concept hierarchy (called by Zadeh [9] a partition tree), representing
disjoint equivalence classes on multiple a levels (see Fig. 1). From the propagation of shadings in Table 1, we can observe that
the equivalence classes are clearly separated and have a nested character [2,9].

For the purpose of this work, we will introduce a formal notation that we are going to use when referring to partition
trees. A partition tree, defined for a single attribute in a fuzzy database model, can be interpreted as a set of interconnected
Table 1
Fuzzy similarity table for domain COUNTRY [2].

Colombia AustraliaMexicoCanada Venezuela

SI
M

IL
A

R
IT

Y
D

EG
R

EE

N.Zealand

Australia

Australia

Colombia AustraliaMexicoUSA Venezuela

USA

USA MexicoCanada Colombia N.Zealand

N.Zealand

N.Zealand

VenezuelaUSA MexicoCanada Colombia

Venezuela

Canada

A
B

ST
R

A
C

TI
O

N
 L

EV
EL

h=0

h=1

h=2

h=3 α=0.0

α=0.4

α=0.8

α=1.0

Fig. 1. Partition tree for domain COUNTRY, built on the basis of Table 1. The increase of conceptual abstraction (denoted by h) in the partition tree is
reflected by decreasing degrees of fuzzy similarity a; lack of data abstraction (h = 0) complies with the 1-cut of the similarity relation (a = 1.0).

R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911 897
ordered pairs (i.e. abstraction levels) denoted as G, such that G = {(Ah,ah):0 6 h < H,ah 2 [0.0,1.0]}, where kAhk > kAh+1k (the
granularity increase property is a natural consequence of the self-nested distribution of equivalence classes in the neighbor-
ing levels of the partition tree), and ah > ah+1 (caused by the abstraction increase when we travel from the bottom to the top

of the tree). In our notation, Ah ¼ ah
1; a

h
2; . . . ; ah

kAhk

n o
is the set of equivalence classes defined for hth – abstraction level of the

tree, where ah
m denotes the mth node (i.e. equivalence class) at the hth level of the partition tree. For instance, a set of equiv-

alence classes at 0.8-level in Fig. 1 (denoted as set of A1) consists of three nodes (i.e.kA1k = 3): a1
1 ¼ fCanada;

�

USA;Mexicog; a1
2 ¼ fColombia;Venezuelag; a1

3 ¼ fAustralia;N: Zealandgg. The nested inter-level (between the different levels)
and disjoint intra-level (within the individual levels) character of nodes (i.e. equivalence classes) in the partition trees is as-
sumed in the remaining parts of this work.
2.2. Analysis of multi-valued entries in taxonomic categorical attributes

In recently published book [14], edited by Bock and Diday, we can find a comprehensive collection of the latest works
related to the extraction of statistical information from the non-numeric data. Based on the classification of data types pre-
sented in the book, the data considered in this paper can be classified as taxonomic symbolic variables. These types of entries
are expected to carry no quantitative meaning, but yet the values can be nonlinearly ordered in a form of rooted, hierarchical
tree, called in this branch of the literature [14,15] a taxonomy. Zadeh’s partition tree [9], as presented in the Fig. 1, is a good
example of such taxonomy. Our fuzzy data entry, in this stream of the literature [14,15], is simply called a multi-valued var-
iable. While multi-valued descriptors are frequently used (e.g. in online surveys, medical forms), the problem of their anal-
ysis, however, still remains a challenge [14,15].

In [14], chapter six has been devoted almost entirely to the problem of derivation of basic description statistics (in par-
ticular: medians, modes and histograms) from multi-valued symbolic data. The authors propose the transformation of non-
atomic values to collection of pairs in the format of (a, l), where a stands for a singleton (i.e. atomic) symbolic value, and l
represents a’s observed frequency. This is achieved by extending the classical definition of frequency distribution. For a mul-
ti-valued variable, the new definition states [14,15] that the number reflecting the observed frequency (i.e. count of a’s
appearances in the data set) can be a positive real, instead of a positive integer, as is the case for each single-valued variable.

In [14], the authors mention that other definitions of frequency distributions can be proposed, suggesting taking into ac-
count the natural dependencies between the symbolic values, as reflected by the provided attribute’s taxonomy. Since Za-
deh’s partition trees [9] used in fuzzy databases can be interpreted as attribute taxonomies, we defined [2] the frequency
distribution for a fuzzy data entry, denoted in Section 2.1 by aij (such that aij # A0

j), as the list of all atomic descriptors in
the finite domain of Ah

j , together with the percentage of instances of each of the values in this data point. This lets us spe-
cialize each uncertain (i.e. multi-valued) attribute entry aij into a sequence of pairs ðah

m;lijÞ, where ah
m denotes the atomic

attribute value (i.e. a single equivalence class) at the preferred hth level of partition tree (i.e. h is constant for all pairs),
and lij represents a fraction of the imprecise record the atomic ah

m attribute value represents. To make sure each record
in our fuzzy database has equal weight and all record’s attributes are treated evenly during multi-attribute specialization
process, we want our record’s fractions to maintain the following condition:

P
ah

m2aij
lij ¼ 1:0.
3. Interpretation of imprecise tuples

Since the fuzzy database model permits the reflection of uncertainty about the registered fact via insertion of multiple
attribute descriptors, to let us use regular (i.e. non-fuzzy) data mining techniques to analyze the imprecise data [1,2,16]
we needed to develop a mechanism allowing consistent interpretation of the multi-valued data. In other words, we wanted
to map a collection of non-atomic values stored in a fuzzy tuple into a set of atomic descriptors (i.e. singletons), that are com-
patible with 1NF definition and can be analyzed using regular data mining algorithms (i.e. defuzzify our fuzzy database table).

Having background knowledge available in form of fuzzy similarity relations, we were naturally interested in making sure
that the interpretation of imprecise attribute values is linked to the fuzzy similarity relation defined for this attribute (e.g.
Table 1). The hierarchical distribution of equivalence classes in the partition tree (e.g. Fig. 1) can provide data miners with
useful and important knowledge that needs to be utilized in data mining applications, and should allow for consistent and
accurate interpretation of imprecise data. Different attribute values can be considered as identical or totally dissimilar,
depending on the preferred level of generalization hierarchy. Fuzzy similarity relations give us the ability to analyze the
same data on multiple levels of granularity. Moreover, knowing that the partition tree reflects actual similarities between
data values, analysis of entered values may provide data miners with a hint on the granularity level (i.e. a) the persons,
who were entering values, were able (or willing) to recognize and register.

In the next section, we will discuss two major approaches to the interpretation of fuzzy tuples [2]: (1) lossless approach,
preserving all original entries stored in the fuzzy database table, and (2) lossy approach, which can transfer the original data
entries into one common level of abstraction in our partition tree. In the remaining sections, we will show an intuitive exam-
ple of lossy approach to interpretation of fuzzy records and introduce details of our algorithm. This will be followed by the-
oretical and experimental evaluations of our algorithm.

898 R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911
3.1. Lossless and lossy approaches to fuzzy tuples interpretation

Lossless approach to fuzzy tuples’ interpretations is the most universal, and at the same time the most extreme case, as it
separates every combination of values (i.e. any subset of domain values actually entered for a particular attribute of a reg-
istered entity) and maps it to a unique (and therefore – atomic) descriptor. Since the mapping is one-to-one, we call it loss-
less, as originally entered values can be backtracked if necessary (assuming the one-to-one mapping has been kept record of).
For instance, {Canada} would be interpreted as {Canada}, while entry {Canada, USA} would be interpreted as some type of
unique combination of these two values, i.e. {CanadaUSA}. This process can generate n unique combinations of descriptors
for a single domain, such that: n 6 2kA

0k. We can expect n = kA0k for an attribute that contains only precise data, and
n ¼

PH�1
h¼0 kA

hk for an imprecise attribute with a fuzzy similarity relation that reflects perfectly all dependencies occurring
in real-life data (i.e. every imprecise record is a reflection of one of equivalence classes already specified in the appropriate
partition tree). However, since a database relation is a subset of the cross product of all domains’ values, we may end up with
2kA

0
1k � 2kA

0
2k � � � � � 2 A0

mk k unique descriptors for a fuzzy database table containing m attributes.
Despite some advantages of the lossless interpretations (accuracy of original data representation, preservation of original

data size and character, backtracking of the original entries, etc.), there are many good reasons to avoid this type of data
interpretation in practice. As we showed above, the lossless interpretation may cause exponential growth of new ‘‘atomic”
descriptors, while maintaining the original size of the data table. This can have a significant influence on results generated
by association rules and classification algorithms, as it causes considerable expansion of granularity of our data space in
dimensions which have a highly imprecise character. First, support for some individual association rules may be decreased,
making them less important for decision makers. Second, many of well known classification algorithms are strongly biased
toward attributes with larger number of descriptors, interpreting them as attributes allowing for more pure separation of
classes [17–19]. Finally, this type of interpretation can be also very confusing for a customer, who may have trouble inter-
preting the artificially created one-to-one mapping (e.g. {CanadaUSA} vs. {USA}).

The lossy approach to the interpretation of fuzzy tuples is driven by a need for the transformation of all originally entered
values, representing different degrees of imprecision, to a single, common abstraction level, where atomic interpretations
can be assigned to them. Such a transformation is going to generate the kA‘k of unique descriptors for a single domain, such
that k A0k 6 kA‘k 6 kAH�1k, where ‘ symbolizes the preferred abstraction level and kA‘k denotes the number of unique
descriptors (i.e. equivalence classes) at that level. To quickly explain our concept of lossy interpretation, we will use a trivial
example. If we have two values entered in the column COUNTRY_OF_ORIGIN: {Canada, USA}, we could interpret such a re-
cord as two halves of a record – one having an atomic value {Canada}, and another saying precisely {USA}, each with half of
the vote carried by the original imprecise/fuzzy record (which has a total a value of unity). The transformation of fuzzy data
tables to a certain granularity level may permit the reduction of the size of the original data repository (leading in conse-
quence to faster data processing) and provide a more human-friendly data representation.

The most extreme case of lossy interpretation would be the transformation of a fuzzy database relation into a defuzzified
table, where all entries are atomic and located at the lowest level of the partition tree (‘ = 0). We will call this case a complete
data specialization, as it requires transformation of all imprecise (i.e. multi-valued) entries into the equivalence classes dis-
tinguished at the very bottom of the partition tree (where a = 1.0 and h = 0).

As mentioned at the end of Section 2.2, this may require development of a technique allowing appropriate splitting of a
vote, carried by an individual fuzzy database tuple, into multiple parts, reflecting the number of originally entered non-
atomic descriptors and similarities between them (i.e. our imprecision). One of the major contributions of this paper is
the introduction of one possible heuristic that incorporates a fuzzy similarity relation into the lossy specialization process,
which is going to be discussed in detail shortly.

Obviously, with the lossy interpretation, we are not obligated to always choose only the terms at the lowest level of the
partition tree as our data representation. We can choose any (e.g. customer-preferred) level of data granularity and transfer
the whole data set to the level of their preference. Such an approach would require both (1) a generalization of values, rep-
resenting equivalence classes located at the levels of granularity lower than the preferred level; as well as (2) the special-
ization of data entries reflecting equivalence classes at the levels of abstraction higher than the one desired by our
customer. The last case can be interpreted as a form of partial data specialization (i.e. a specialization of data, which does
not require reaching to a bottom of partition tree, but stops at the preferred a-level). For instance, if we would prefer to ana-
lyze our data based on the CONTINENT-level (represented by 0.8-level in Table 1), three sets of values (originally entered into
COUNTRY_OF_ORIGIN attribute of three separate fuzzy database records), could be transformed to the following forms: (1)
{Canada, USA, Mexico} ? {N. America}, (2) {Canada, USA} ? {N. America}, (3) {Canada, Australia} ? 1/2 as {N. America}, and 1/2
as {Australia}.

Despite our focus on higher (i.e. 0.8) abstraction level, the last entry still generated a split of the record’s vote, as the
descriptors Canada and Australia cannot be treated as identical at the CONTINENT-level. It shows that in the case of the last
tuple some information about data imprecision has been maintained, despite of moving our interpretation to more abstract
level.

As data generalization has been extensively investigated in the past ([16,20–23]) and lossless data interpretation is very
ineffective in practice, in this work we focus our attention almost entirely on complete lossy data specialization (i.e. reaching
with our lossy specialization to the 0-abstraction level). We have chosen to do so to simplify our presentation, knowing that
completely defuzzified data can be always generalized to a more abstract level. Due to the disjoint and nested character of

R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911 899
equivalence classes in Zedeh’s partition trees, data-generalization of fuzzy tuples has a typically straightforward character
[22–25]. We can simply replace the originally inserted values with more abstract concepts (i.e. equivalence classes occurring
at the higher level of partition tree), where the original values belong. Then we can treat a record with originally lower-level
descriptors as a member of higher-level equivalence class. If the similarity table accurately reflects real-life dependencies
among the data, the vote of the generalized tuple may never need to be split, as the equivalence classes in the partition hier-
archy have a nested character.

When performing lossy specializations of fuzzy tuples, we have to extend the output relation with the additional attribute
COUNT. The attribute is necessary to preserve a consistent representation of the original data after the lossy transformation,
as this transformation may cause merging identical fractions of originally separate records (e.g. half of the vote with now
atomic value {N. America} can be merged with other records that contain a descriptor belonging to the same equivalence
class, as long as values in all remaining attributes are the same). In such case, an accurate count of votes is essential to guar-
antee proper data mining results. We want to protect every original tuple from being counted more or less than once when
the lossy data interpretations are performed. By making sure that we represent each record of the original fuzzy database
table as a single vote, when having it either split (i.e. fractioned) into multiple equivalence subclasses (what may occur when
we decide to transfer a highly imprecise tuple to match equivalence classes at the lower level of partition tree), or general-
ized (i.e. summarized) to a more abstract equivalence class(es) (when we are going up in the partition tree), we are guaran-
teed that original proportions among the data points remain accurate in our defuzzified output data table.

After performing complete data specialization (i.e. a specialization reaching the bottom of the partition tree) on the large
fuzzy database table, we are capable of reducing the size of the original relation by merging all fractions of tuples that look
identical after the transformation (from possibly 2kA

0k attribute values we are back to kA0k again). The additional attribute
COUNT, representing the propagation of original votes, lets us maintain some information about the distribution of the orig-
inally entered values. Unfortunately, an exact image of uncertainty distribution (i.e. assignment of non-atomic values to spe-
cific tuples) cannot be maintained anymore. That is the reason we called this approach a lossy one.
3.2. Similarity-driven complete lossy specialization of fuzzy tuples – an example

In this section we discuss a complete data specialization, as the most extreme case of lossy interpretation. Our approach is
based on partial vote propagation, where a single vote, corresponding to one fuzzy database tuple, is partitioned before being
assigned to the concepts separated in the lower levels of the partition hierarchy. To quickly explain our main idea, we will
start with a simple example. Let us ask ourselves in what COUNTRY (a = 1.0 level in Fig. 1) should we expect to find a drugs
dealer who, as a not-confirmed report says, was recently seen in {Canada, Colombia, Venezuela}?

During complete data specialization we want the fractions of an imprecise vote to be assigned to separate concepts from A0

set in such way that these fractions reflect each of the originally inserted attribute values, as well as the similarities between
these attribute values. The most trivial solution would be to split the vote equally among all inserted descriptors: {Can-
adaj0.333, Colombiaj0.333, Venezuelaj0.333}. This approach, called Averaging, however does not take into consideration
important real-life dependencies, which are reflected not only in the number of inserted descriptors, but also in their sim-
ilarity (reflected in our partition tree).

We propose here a replacement of the even distribution of a vote with a nonlinear spread, dependent both on the sim-
ilarity of inserted values and on their quantity. Using the partition tree (e.g. Fig. 1), we can distinguish from the set of the
originally inserted values these concepts which are more similar to each other than to the remaining attribute values. We
call them subsets of resemblances (e.g. {Colombia, Venezuela} from the above example). Then we use them as a basis for cal-
culating a more intuitive distribution of a vote’s fractions. An important aspect of our approach is the extraction of the sub-
sets of resemblances at the lowest possible abstraction level of their common occurrence, since the nested character of
equivalence classes in partition trees guarantees that above this level they are going to co-occur regularly. Repetitive extrac-
tion of such subsets could unbalance the original dependencies among inserted values, skewing significantly the results of
our interpretation toward subsets of resemblances occurring at the very low levels of partition trees.

Our algorithm is quite straightforward and we will discuss it in detail in the next section. For now, assume that you are
given (1) a set of attribute values inserted as a description of particular entity (i.e. our imprecise attribute entry, e.g. {Canada,
Colombia, Venezuela}), and (2) a tree-like structure reflecting a partition tree for the particular attribute (e.g. Fig. 2). Using
Table 2
Subsets of resemblances for the analyzed example.

Subsets of resemblances and their similarity levels (rp,a p) COMMENTS

{Canada, Colombia, Venezuela}j0.0 STORED
{Canada, Colombia, Venezuela}j0.4 UPDATED
{Canada}j0.8 STORED
{Canada}j1.0 UPDATED
{Colombia, Venezuela}j0.8 STORED
{Colombia}j1.0 STORED
{Venezuela}j1.0 STORED

900 R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911
these inputs, we want to extract a table, which includes (a) the list of all subsets of resemblances occurring in the given fuzzy
tuple, and (b) the highest degree of similarity (a) of their common occurrence (see Table 2 for an example). Then, we can use
the list to intuitively distribute fractions of the original record (e.g. Fig.3), where by ‘‘intuitive distribution” we understand
making sure that the sum of all vote’s fractions generates unity and that the size of individual fractions reflects distribution
of relevant equivalence classes in our fuzzy similarity relation.

Our algorithm uses preorder recursive traversal for searching a partition tree. The partition tree is searched starting from
its root and, if any subset of the given set of descriptors occurs at the particular node of the partition tree, we store the values
that were recognized as a-similar and the adequate degree of similarity (a). This degree may get its value updated as the
attribute values continue to co-occur in the common equivalence classes, when we continue to traverse appropriate subtree
of the partition tree.

Before doing a formal presentation of our algorithm, we will present an example of such a search for subsets of resem-
blances in a tuple with the earlier mentioned values {Canada, Colombia, Venezuela}. Behavior of our algorithm is depicted in
Fig. 2. Numbers on the links in the tree represent the order in which the particular subsets of resemblances were discovered.
After extracting the subsets of resemblances, we apply a simple summarization of a values as a measure reflecting both the
frequency of occurrence of the particular attribute values in the subsets of similarities, as well as the abstraction level of
these occurrences. Since the country Canada was found only twice in the subsets of resemblances, we assigned it a grade
1.4 (i.e. 1.0 + 0.4). The remaining attribute values were graded as follows: Colombiaj(1.0 + 0.8 + 0.4) = Colombiaj2.2,
Venezuelaj(1.0 + 0.8 + 0.4) = Venezuelaj2.2.

In the next step, we add all generated grades (1.4 + 2.2 + 2.2 = 5.8) to normalize grades finally assigned to each of the
participating attribute values: Canadaj(1.4/5.8) = Canadaj0.24, Colombiaj(2.2/5.8) = Colombiaj0.38, Venezuelaj(2.2/5.8) =
Venezuelaj0.38.

This leads to the new distribution of the vote’s fractions, which more accurately reflects real-life dependencies than a lin-
ear weighting approach. We called this set, which is the final output of our algorithm and consists of pairs denoted by

ah
m;lij

� �
in Section 2.2 (where h = 0, for complete specialization process), a Specialized Tuple and denoted it with the letter

F in Table 3. Normalization of the initial grades guarantees that each of the records is represented as unity, despite being
variously distributed at the desired specialization level. In the case of partial data-specialization, requiring stopping interpre-
tation at a higher abstraction level, the depth-first search (DFS) through our partition tree needs to be simply stopped at the
preferred level of abstraction.

3.3. Detailed presentation of algorithm for similarity-driven complete lossy specialization

Now, we will discuss details of our data specialization algorithm, which is presented in Table 3. As the input, we assume:
(1) a multi-valued data entry to one attribute of a single fuzzy tuple, which we refer to as an Imprecise Attribute Entry, de-
Colombia AustraliaMexicoCanada Venezuela N.Zealand

Australia

Australia

Colombia AustraliaMexicoUSA Venezuela

USA

USA MexicoCanada Colombia N.Zealand

N.Zealand

N.Zealand

VenezuelaUSA MexicoCanada Colombia

Venezuela

Canada
{Canada, Colombia, Venezuela}|0.0

{Canada, Colombia, Venezuela}|0.4

{Colombia, Venezuela}|0.8 {Canada}|0.8

{Canada}|1.0 {Colombia}|1.0 {Venezuela}|1.0

(1)

(2)

(3)

(4)

(5) (6)

Fig. 2. Subsets of resemblances extracted from the partition tree in Fig. 1. (See Table 2 for results)

Imprecise Record Results of Specialization
COUNTRY COUNTRY COUNT
Canada, Colombia, Venezuela Canada 0.24

Colombia 0.38
Venezuela 0.38

Colombia AustraliaMexicoCanada Venezuela N.Zealand

Any

USA

N.America S.America Oceania

OceaniaAmericas

Canada, Colombia, Venezuela

0.380.380.24

Fig. 3. Similarity-based vote distribution for the analyzed record with uncertainty (on the left), and the results of complete lossy specialization of that
record (on the right).

R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911 901
noted in Table 3 as T, and (2) a Partition Tree, reflecting a fuzzy similarity relation specified for the given attribute, denoted as
G. Our algorithm can be run successively on all attributes of a fuzzy database table that contain an imprecision (i.e. non-
atomic values). To keep things simple, we decided to present our approach in a context of a single attribute.

On the output, we will get a collection of pairs in the format (atomic attribute value, record’s fraction), denoted as a0
k ;lk

� �
in

Table 3 (see Fig. 3 for an example), which reflects the complete lossy specialization of an individual fuzzy record with a single
attribute. We denote the collection as a set F, and call it a Specialized Tuple. Note an important

PkA0

k¼1klk ¼ 1:0 condition spec-
ified at the output section in Table 3; it assures that each fuzzy tuple maintains its original representation of individual data-
base record’s vote at the end of the data specialization process. The normalization of the imprecise record’s fractions has
been implemented in the lines 5–10 of the algorithm presented in Table 3. The normalization is necessary to keep the ori-
ginal proportions of information for data mining algorithms that follow our fuzzy data specialization process. By assigning
each (imprecise or not) database record exactly one vote, we are making sure that the original proportions among multiple
data points in our fuzzy database table are maintained through the whole data mining process.

The temporary structure, called the Subset of Resemblances, which was described in the previous section, is also specified
in the output section of Table 3 and denoted as R.

In lines 1 and 2 in Table 3, we simply clear both output structures (R and F). In line 3 we generate all possible Candidates
for Subsets of Resemblances (each non-empty subset of T, which is a candidate, is denoted in Table 3 by ci), which are derived
from the imprecise attribute entry T provided as the algorithm’s input. It is important to order the candidates from the lon-
gest (kc1k = kTk), to 1-element long structures ðkc2kTk�1k ¼ 1Þ; this will allow us to reduce number of comparisons during the
future depth-first search (DFS) through our partition tree, referred as DFSearchForResemblances in Table 3 (code lines 12–17).
The preorder recursive traversal of the partition tree G is initiated in line 4; in our experiments we implemented
DFSearchForResemblances as a recursive procedure.

In line 12, we check if we reached the bottom of our partition tree, or whether there are no more candidates for subsets of
resemblances to be considered (i.e. our set C is empty). If at least one of these conditions is true, we complete the recursive
DFS call in the given branch of G immediately (and return our search to its parent, which then can move to its next child/
subtree). If this is not the case, we check if the first (i.e. currently largest) of the candidates (still available for the given sub-
tree of G) occurs in the analyzed node ah

m (i.e. in the currently searched equivalence class) of the partition tree G. If this is the
case (i.e. c1 is a subset of the node ah

m), we send the candidate to update our subset of resemblances R (line 13). The update
takes place in lines 18–21 (UpdatePairOfResemblances procedure). If this case does not occur (i.e. no match between a can-
Table 3
Algorithm for similarity-driven complete data specialization of multi-valued symbolic data entries.

INPUT: Imprecise Attribute Entry, denoted as T, such that T # A0, where 2 < kTk 6 kA0k
Partition Tree, a set of ordered pairs denoted as G, such that G = {(Ah,ah):0 6 h < H,ah 2 [0.0,1.0]}

Ah ¼ ah
1; a

h
2; . . . ; ah

kAhk

n o
is the set of similarity classes defined for hth abstraction level, and ah

m denotes the mth node (i.e. similarity class)

in the hth level of G
OUTPUT: Specialized Tuple, a set of pairs denoted as F, such that F ¼ a0

k ;lk

� �
: a0

k 2 T;lk 2 ½0:0;1:0�
� �

, where
PkA0k

k¼1 lk ¼ 1:0

Subset of Resemblances, a set of ordered pairs denoted as R, such that R ¼ rp;ap
� �

: rp # ah
m; ðah

m;apÞ 2 G
� �

, where

ap ¼ MAX ah : ah
m;ah

� �
2 G; rp # ah

m

� �

METHOD:
(1) R = {;};
(2) F = {;};
(3) Using similarity classes from A0, such that a0

k 2 T, generate a set of Candidates for Subsets of Resemblances, denoted as C, of
non-empty subsets of T (ordered from the longest subset to the shortest one): C = {ci:ci # T,1 6 i 6 2kTk � 1,kcikP k ci+1k}

(4) for (each similarity class aH�1
j from the top of G) DFSearchForResemblances (aH�1

j ;CÞ;
(5) for (each of the last kT k elements of C, denoted as ci)
(6) {l = 0.0;
(7) for (each pair (rp,ap) in R) if (ci # rp) l = l + ap;
(8) F = F [{(ci,l)};}
(9) sum ¼

PkFk
k¼1lk;

(10) for (each pair ða0
k ;lkÞ in F) lk ¼

lk
sum;

(11) return;
Procedure DFSearchForResemblances (Node of Partition(Sub-) Tree ah

m , Set of Candidates For Resemblances C)
(12) if (h < 0 _ C == {;}) return;
(13) if ðc1 # ah

mÞ UpdatePairOfResemblances (c1,ah);
(14) else {C = Cn{c1};
(15) DFSearchForResemblances ðah

m;CÞ;}
(16) for (each ah�1

j , s.t. ah�1
j 2 DirectDescendentsOf ðah

mÞÞ DFSearchForResemblances ah�1
j ;C

� �
;

(17) return;
Procedure UpdatePairOfResemblances (Candidate For Resemblances c, Similarity Level a)

(18) for (each pair (rp,ap) in R) if (rp == c) {ap = a;
(19) return;}
(20) R = R [{(c,a)};
(21) return;

902 R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911
didate and a currently traversed node of the partition tree has been found), we continue to line 14, where we remove the
unsuccessful candidate from the list of candidates that are still to be considered for this particular node of our partition tree
and (later) its whole subtree. Then the search (with the temporally reduced number of candidates for subsets of resem-
blances: C = Cn{c1}) continues in line 15. Here is how the local reduction of candidates for subsets of resemblances works.
If the particular candidate for subset of resemblances, denoted by ci, does not appear in the node of the partition tree,
due to the self-nested character of our equivalence classes there is no reason to check if the same candidate appears in
the subtree of that equivalence class – so we remove it from the local list of candidates C that need to be compared when
traversing the related subtree. All subsets of that (removed) candidate are somewhere further in the candidates’ line (note,
that in line 3 we ordered the set C from the longest element, to the shortest), so we do not have to worry about omitting
some candidates as we remove the irrelevant ones from the front of our candidates’ list. The removal takes place in line
14. This is a very important step; since it allows reducing the number of necessary comparisons as we traverse down the
partition tree (we start at the top, by comparing the largest equivalence class against our first, and the longest, candidate,
which has the length of jjTjj, and gradually remove candidates from the set C, until it contains only a few candidates that
have the length of 1, at the end of the traversed branch), and also lets us prune irrelevant branches of the tree G early
(e.g. (1) if we already found matches between all the candidates no other equivalence classes in G need to be checked,
and (2) if we empted our list of candidates when testing a particular node, its whole subtree can be cut off from the further
search), what causes our algorithm to run faster.

After a candidate has been found within the currently searched equivalence class (i.e. test c1 # ah
m in line 13 returned

true), we move toward searching a subtree of this node (line 16), starting our comparisons of candidates from the most re-
cent match (i.e. we do not have to compare the whole, original set C in each node).

The procedure DFSearchForResemblances is written in such a manner that it (1) avoids (i.e. cuts off) unrelated branches
while traversing the tree (when no candidate ci is matching the current node ah

m, there is no sense to traverse the node’s sub-
tree), and (2) reduces the number of necessary comparisons between the candidates for subsets of resemblances (stored in
local copy of C), and each of the nodes in the partition tree G (by removing from the current copy of C those candidates which
have no chance for finding their matches in the given subtree of G). For example see Fig. 2; if the longest candidate for resem-
blances c1 consists of {Canada, Colombia, Venezuela} (and therefore the whole set of candidates for resemblances must be:
C = {{Canada, Colombia, Venezuela}, {Canada, Colombia}, {Canada, Venezuela}, {Colombia, Venezuela}, {Canada}, {Colombia},
{Venezuela}}), then our traversal would follow the path depicted in Fig. 2, where the order of our DFS traversal is marked
by numbers 1–6. The local copy of C is systematically reduced as our DFSearchForResemblances procedure reaches smaller
equivalence classes when traversing down the partition tree. E.g. the local copy of C is reduced to the last three 1-element
long subsets, i.e. {{Canada}, {Colombia}, {Venezuela}}, after the branch with number 2 is taken (the largest element of the local
set of C that matches local subtree is written on the top of each subtree in Fig. 2). From the example it becomes evident that
the time complexity of the DFSearchForResemblances procedure is highly dependent on the dispersion of values inserted into
our imprecise attribute entry T and their correlation with the equivalence classes in our partition tree G. As shown in Fig. 2,
the unnecessary branches are always omitted by the DFSearchForResemblances procedure.

3.4. Theoretical investigation on time complexity of the algorithm

When trying to solve the problem of fuzzy tuples interpretation, two issues were cause for concern. The first (and the
most important to us) was to develop an algorithm that follows our intuitive expectations and would allow for distribution
of split record to reflect similarities between the entered values. The second was to develop a technique that we could suc-
cessfully apply to interpret even large data sets. In this section we address the issue of time complexity. The evaluation is
conducted in two steps. First, we will discuss time costs involved with interpretation of a single imprecise record (as given
on the input in Table 3), and then we scale up our investigation to the case when a large database of imprecise records needs
to be processed.

Our algorithm is built on a well-known ‘‘depth-first search (DFS) with cutoff” paradigm, and its time complexity is
strongly dependent on the following factors: (1) the level of imprecision occurring in the fuzzy data table (i.e. the number
of non-atomic values in imprecise tuples and the frequency of these imprecise records in the whole database table), and (2)
the structure of the partition tree (often characterized by the height of the tree, and its average branching factor), reflecting
fuzzy similarity relations, and (3) how well the multiple values, entered into the imprecise tuple, fit into the distribution of
equivalence classes in the partition tree (referred in the literature [36,37] as ‘‘the probability parameter that characterizes
the search”). The first factor is usually the largest, but since we want to investigate our approach in detail, we will start with
the costs involved in the processing of a single imprecise record and searching through the partition tree. To do so, we need
to focus on the 2nd and 3rd of the above factors.

It has been reported by researchers from IBM [37] that if H is the height of the tree (this is to be compatible with the
notation presented in Fig. 1), and 2 is its average branching factor (this particular work concentrates on binary trees),
‘‘the average number of nodes visited by the [DFS] algorithm is as low as O(H), and as high as O(2H) depending only on
the value of the probability parameter that characterizes the search”.

Let us investigate the worst of these two search scenarios first. To generalize our calculations we assume that (1) the aver-
age branching factor of the partition tree is b (not just 2), and (2) the total number of abstraction levels in the tree is H. If,
following Zadeh’s drawings of partition trees [9], we let the top of the tree to have only 1 node (i.e. one large equivalence

R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911 903
class that describes all values of Aj), then the next level has b nodes, the level after that has b2 nodes,. . ., and the last level
(where a = 1.0) has bH�1 vertices. Hence, if we happen to have a data record that is so imprecise that it includes in its attri-
bute all of the domain values (i.e.kTk = kA0k), the DFSearchForResemblances procedure would need to search through all the
vertices in the tree, and the total number of vertices is: V ¼

PH�1
h¼0 bh, where h is the counter for the levels of the partition tree.

The right-hand side of the last equation (for b – 1) represents a geometric series, which allows us to transfer the whole equa-
tion to the form: V ¼ bH�1

b�1 , which is asymptotic to the function O(bH). Although the cost may initially look alarming (due to its
exponential growth), we need to realize that the bH number simply represents the total number of nodes in our partition tree
(O(bH) = O (V)), and it is constant for each of the database attributes. The number only characterizes the worst-case search
scenario, when processing of the entire tree is needed, which can be caused only by a database record which contains all pos-
sible values from the original attribute’s domain. It is important to realize that such an extreme case occurs very rarely, as
these types of entries are possible in real-life only if a total lack of knowledge concerning the occurring attribute value (ex-
cept its existence) takes place – which may raise valid questions about the point of analyzing such data. It seems practical to
consider interpreting such highly imprecise entries, in the same way a data analyst would act when encountering a null value
in the relational database table. Especially in the context of approaching a null value reflecting unknown interpretation [26–
29] (as opposite to the null being interpreted as nonexistent value).

The theoretical investigation on the worst-case scenario brings us also to the computational efficiency of using dendro-
grams (see G8 in Fig. 4 for an example) to represent similarities between different attribute values. These hierarchies, by
their tall nature, may lead to the most costly searches when we use DFS-based algorithms. Dendrogram is the tree, whose
height is equal to the number of attribute values (i.e. H = kA0k – no higher partition tree can exist). It represents the most
extreme case of the partition tree, where an intra-level granularity (e.g. kAhk) can differ from the granularity of the neigh-
α=0.0

α=0.5

α=1.0

G1 α =0.0

α =0.33

α =0.66

G2

α =1.0

α=0.25

α=0.5

α=0.75

α=1.0

α=0.0
G3

α =0.03

α =0.06

α =0.94

α =0.97

α =0.0
G8

α =1.0

α =0.4

α =0.6

α =0.8

α =1.0

α =0.2

α= 0.0
G4

α=0.4

α=0.2

α=0.0
G5

α=1.0

α=0.6

α=0.8

=1.0

α =0.4

α =0.2

α =0.0
G6

=1.0

α =0.6

α =0.8

α =1.0

α=0.4

α=0.2

α=0.0
G7

α=1.0

α=0.6

α=0.8

=1.0

. . .

Fig. 4. Different shapes of partition trees used during our tests.

904 R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911
boring levels, only by one (i.e. kAh�1k � 1 = kAhk = kAh+1k + 1). The dendrogram also maintains the largest possible difference
between b and H values (i.e. b� H), and contains the largest possible number of vertices (i.e. equivalence classes):
V ¼

PH�1
h¼0 ðkA

0k � hÞ ¼ ðkA0k þ 1Þ � H
2. We will show some experimental results showing the costs of searching through

dendrograms in the next section.
Obviously, the second scenario (i.e. O (H)) occurs when the candidate for subset of resemblances (i.e. our ci in Table 3) is

repeatedly found only in one descendent of every node along the traversal trail starting from the root and finishing at the
a = 1.0 level. This is related to the concept of ‘‘the probability parameter that characterizes the search” [37], mentioned at
the beginning of this section. Let us think about it a little. If we have a record that contains only one entry (no imprecision!)
and still decide to apply our algorithm on it, our DFSearchForResemblances would cut off all irrelevant subtrees at every level
of our partition tree, generating only single search branch from the top of the tree to its bottom. This branch has the height of
H, and this is where O (H) comes from – after all, this is what makes the usage of trees so effective in large-scale systems.

It may be surprising to learn that similar situation may occur when searching the tree using multiple values. If imprecise
tuples contain multiple attribute values, that were put by domain experts in the same equivalence class through multiple
levels of the partition tree, the DFSearchForResemblances is going to be completed with the same O (H) time complexity.
Of course, the higher the data imprecision (i.e. the number of values entered to the record), the smaller is the probability
of such phenomena occurring (unless of course, the large equivalence class, matching these frequently entered values,
was placed on multiple levels of the partition tree). This part suggests that our experimental evaluation should not only
investigate the scalability of our approach in the context of the size of the fuzzy data table (i.e. the number of records),
but also from the perspective of data imprecision.

On more general level, we can draw a conclusion that the performance of our DFSearchForResemblances procedure is
dependent on how well the expert knowledge about the data domain (reflected by the pre-defined fuzzy similarity relation)
matches the actual behavior of the data (reflected by character of imprecision, i.e. by the number of non-atomic values and
their distribution within the given data entry).

To conclude our theoretical investigation, we want to point out that our lossy specialization algorithm is repeated for each
of the imprecise database records, what brings us back to the first of the three factors mentioned at the beginning of this
section. The repetitive application of our algorithm increases its cost by the number of imprecise database records, which
we will denote by N. This will further increase the total time complexity of our approach by the O (N) factor. In large-scale
database systems it is safe to assume that number of records, (N) is much bigger than the height of the partition tree (H), or
even the number of its vertices (V = bH). For instance, the domain with kA0k = 32 attribute values may have a partition tree
not higher than H = 32 levels (i.e. dendrogram), that contains no more than a total of V ¼ ð32þ 1Þ � 32

2 ¼ 528 nodes; whereas
it can easily generate 232 = 4,294,967,296 unique imprecise entries. If we assume the following proportions: H�bH�N (e.g.
32 levels of dendrogram� 528 vertices in the dendrogram� 50,000 imprecise records, as presented in the next section with
experiments), it is safe to approximate the time complexity of our lossy specialization algorithm with O (N).

As the reader probably observed by now, this theoretical investigation has a multi-dimensional character, where the
dimensions of our analysis are derived from the three factors we listed at the beginning of this section. This discussion shows
well the importance of an experimental average case analysis, which we will present in the next section.

3.5. Time complexity – experimental results

To objectively evaluate the performance of our similarity-driven specialization algorithm, we conducted some experi-
ments using artificially generated data sets, with a large number of highly-imprecise fuzzy database records, and eight dif-
ferent types of partition trees (see Fig. 4). The test data were generated by randomly picking values from the domain
containing 32 symbolic values of equal size, interpreted as distinct equivalence classes at the lowest (i.e. a = 1.0) level of
our all partition trees. We picked 32 values, to be able to easily present shapes and parameters of our partition trees to
the reader. The partition trees in Fig. 4 were ordered based on the number of levels, and their detailed parameters: (1) height
(denoted as H), (2) number of vertices (V), and (3) average branching factor (calculated as b ¼

ffiffiffiffi
VH
p
Þ, are presented in Table 4.

G1 is the smallest partition tree, it has H = 3 levels, and 41 nodes. G4–G7 have all equal height (H = 6), but their branching
factors (b’s) differ. It is important to note that the branching for individual levels in the G4–G7 hierarchies is distributed dif-
ferently. For instance, G5 has a branching factor constant in all of its levels. The number of branches in G4 is low at the top
and increases as we move down the hierarchy. G7 shows an opposite tendency (high branching occurs close to the root, and
decreases as we traverse toward the bottom), which increases the total number of nodes in this tree (VG7 > VG4). The last par-
Table 4
Parameters of Hierarchies from Fig. 4.

Partition
Tree

Number of vertices
(V)

Number of levels
(H)

Avg. branching
(b)

Partition
Tree

Number of vertices
(V)

Number of levels
(H)

Avg. branching
(b)

G1: 41 3 3.45 G2: 57 4 2.75
G3: 59 5 2.26 G4: 50 6 1.92
G5: 63 6 1.99 G6: 73 6 2.04
G7: 97 6 2.14 G8: 528 32 1.22

R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911 905
tition tree, G8, reflects a dendrogram (i.e. the tallest partition tree that we were able to create for domain of kA0 k = 32 val-
ues). Before discussing our experimental results, we want to point reader’s attention to the fact that when ordered by the
total number of vertices, the hierarchies would be placed in the following order: G1, G4, G2, G3, G5, G6, G7, and G8. Due
to the small number of branches at the top of the tree, G4 has fewer nodes than shorter trees (i.e. G2, G3) with higher branch-
ing factors. This information may come useful when analyzing our experimental results, shown in Figs. 5–7.

Non-atomic values in a fuzzy tuple (stored during our specialization process in the Imprecise Attribute Entry, denoted as T
in Table 3) have been considered as 75% imprecise (see Table 5), when the number of unique values in the tuple was at 75% of
the domain size at the lowest abstraction level (i.e. 24 values for a domain containing kA0k = 32 values). To simulate random
distribution of imprecision, we have chosen these 24 values in random order for each tuple of the 75%-imprecise data set
(note that the distribution of non-atomic values in fuzzy tuples, used during our tests, does not follow the distribution of
equivalence classes in any of the used partition trees). Although our simplified measure of data imprecision is clearly imper-
fect (as existence of only atomic values in the data, would still be interpreted as 1/32 = 3.125% of imprecision, which is obvi-
ously in conflict with the interpretation of atomic values as entirely precise), we decided to accept this inaccuracy to simplify
the presentation of our experimental results.

The number of records in each data file used for imprecision-dependent evaluation was 50,000. The large number of
imprecise records, with random distribution of values, was generated to ensure that our results reflect an average case tra-
versal, which we wanted to have when comparing our experiments. The algorithms’ average running times for different de-
grees of imprecision in data sets, for different shapes of partition trees (presented in Fig. 4), are shown in Fig. 5. To conduct
comparable experiments we wanted to preserve the original randomness in our imprecise data sets when running all of our
experiments. Therefore, to generate the 68.75%-imprecise data file we simply eliminated two randomly chosen values from
each of our 75%-imprecise records. The random removal of two values was continued until we had only records containing
atomic values (marked as 3.125% in Fig. 5).
Fig. 5. Total running times to interpret 50,000 of fuzzy records as a function of data imprecision. Results were generated using different types of partition
trees (see Fig. 4), and fuzzy data tables with different imprecision levels (see Table 4 for examples). The charts for G1, G7, and G8 contain linear trend lines,
with the values of functions’ equations and R-squared errors (R2) calculated.

Fig. 6. Algorithm’s scalability for 75% of data imprecision. (a) Total running times, taken by our algorithm for all partition trees presented in Fig. 4. (b) Close-up
for partition trees G1–G7. The charts for G1, G7, and G8 contain linear trend lines, with the values of functions’ equations and R-squared errors (R2) calculated.

906 R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911
Before moving further with our investigation, we want our reader to have a careful look at the results presented in Fig. 5.
As expected for DFS-based implementation, our algorithm performed its worst on the tallest hierarchy (G8), and its best on
the hierarchy with the smallest number of levels (G1). Depth-first traversing of dendrogram-like partition trees (where b�H)
becomes especially time consuming for highly imprecise data sets. This suggests that when given a task of large, highly
Fig. 7. Algorithm’s scalability for 75% of data imprecision – average times, reflecting time needed to interpret a single fuzzy record.

Table 5
Imprecise tuples from data files with different imprecision levels.

Degree of data imprecision
(%)

Example of imprecise attribute entry (T) for domain of 32 symbolic
values

75 a, d, g, j, m, p, s, w, z, b, e, h, k, n, q, t, x, c, f, i, l, o, r, u
68.75 d, g, j, m, p, s, w, z, b, e, h, k, n, q, t, x, c, f, i, l, o, r
62.5 d, g, m, p, s, w, z, b, e, h, k, n, q, t, x, c, f, i, l, r
56.25 d, g, m, p, s, w, b, e, h, k, n, q, t, x, c, f, i, l
50 g, m, p, s, w, b, e, h, k, n, q, t, c, f, i, l
43.75 g, m, p, s, w, b, h, k, n, q, t, c, f, l
37.5 g, m, p, s, b, h, k, n, q, c, f, l
31.25 m, p, s, b, k, n, q, c, f, l
25 m, p, s, b, n, q, c, f
18.75 p, s, n, q, c, f
12.5 p, s, q, c
6.25 s, q
3.125 g

R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911 907
imprecise data set interpretation, we may want to consider flattening the partition trees before applying our heuristic algo-
rithm for the fuzzy tuples’ interpretation. For some good pointers on how to flatten dendrograms, derived from data using
hierarchical agglomerative clustering (HAC) algorithms, to more bushy structures with smaller number of levels (which
resemble more structures defined by human experts), see [30–32].

The results generated using partition tree G4 are also very interesting. This tree generated the second-best performance,
separating itself by a large margin from the other trees with the same number of levels (compare the timing for G4 with the
plots generated using G5–G7). This confirms our theoretical investigation, which concluded that, when having everything
else constant (e.g. the number of records and data imprecision), the partition trees with the smaller number of nodes lead
to better results. Trees that have the same numbers of levels (e.g. G4–G7) are going to contain a bigger number of vertices if
they have a higher branching factor at the top and therefore will take longer (on average) to be searched through. As it can be
observed from the trend lines, presented in the slope-intercept forms in Fig. 5, both the time-intercept (needed to initialize
data structures in the memory), and the slope (reflecting mainly the costs of searching through the trees) grow with the size
of partition trees. The R-squared error is the square of the correlation coefficient, that shows correlation between the exper-
imental results and the trend line. A value of R = 1 indicates an exact linear relationship between the degree of imprecision
and running time. Our values of R, which are very close to 1, indicate a good linear reliability.

Following a request from one of our reviewers, we compared our results against a simple Averaging strategy (mentioned
in Section 3.2), which counts the number of values entered into the tuple and splits its vote between all of the inserted values
evenly. As it can be observed from Fig. 5, both algorithms have a linear time growth, when compared in the context of data
imprecision.

In the second part of experimental evaluation, we include a scalability assessment of our algorithm. For this task, we have
chosen the most imprecise of our data sets (i.e. 75%, where all records contain 24 descriptors) and kept gradually reducing
size of our fuzzy data table (we started with 30,000 records and finished with 2000 records). As it can be seen from the re-
sults presented in Fig. 6, the algorithm has linear characteristics, which is very important for estimating the time needed to
interpret large data sets with a constant (or at least bounded from the top) degree of imprecision. Once again, we present a
simple Averaging as a benchmark for our approach – our experiments show that both algorithms have O (N) growth, when
N�V�H – which is a typical case for database systems.

Fig. 7 contains average times for individual records. As expected, the most expensive is the search through the dendro-
gram (G8). Significantly high average time for the smallest data set (2000 records) shows well the constant cost related to
loading the dendrogram-like hierarchies to the primary memory. The significance of this overhead gets reduced when the
average times for larger data sets are generated.
4. An example of using lossy specialization for decision tree-based classification

After the evaluation of computational costs of our approach, we would like to show the applicability of fuzzy tuples’ spe-
cialization to the data mining process. In this section we are going to show how fuzzy records can be incorporated into a
classic entropy-based classification process (e.g. ID3 [5], C4.5 [17]). We will present an illustrative example of generating
decision tree from imprecise tuples, which involves multi-attribute data specialization.

Our fuzzy database table is presented in Table 6. Our example is a modified version of a non-fuzzy problem used by Rus-
sell and Norvig to explain induction of decision trees, in their well-known textbook on artificial intelligence [33] (the exam-
ple we are referring to can be found on pp. 653–658).

Let us assume we gathered data from different clients regarding their decision about waiting (or not) for a table at a res-
taurant. Some of the clients did not exactly remember the situations they were reporting on, so we used non-atomic values
to reflect such lack of certainty. Our data table has four attributes, i.e.: Waiting Time, Day of Week, Food Type, Did Wait?. To

Table 6
Fuzzy database relation on consumers’ behaviors in restaurants (25 tuples).

ID Waiting time Day of week Food type Did wait?

1 30–60 Thr Greek No
2 10–30 Fri Italian Yes
3 30–60, Above 60 Thr Burger, Barbeque No
4 30–60 Fri, Sat Greek Yes
5 Above 60 Tue Barbeque, Burger No
6 10–30 Tue Burger, Barbeque Yes
7 30–60 Mon Italian No
8 30–60 Fri, Sun Burger Yes
9 0–10 Fri Italian, Barbeque, Greek Yes
10 30–60 Sun Chinese No
11 30–60 Mon, Tue Barbeque No
12 10–30 Mon Greek No
13 30–60 Fri French, Italian Yes
14 30–60 Fri, Sat Barbeque Yes
15 10–30 Sun Barbeque, Burger Yes
16 30–60 Sun French, Greek, Italian No
17 30–60 Wed, Thr French No
18 10–30 Thr French Yes
19 0–10 Fri, Sat, Sun Barbeque Yes
20 30–60, Above 60 Sun, Mon, Tue Sushi No
21 10–30 Wed Chinese No
22 30–60 Fri Chinese, Sushi No
23 10–30 Sat Sushi, Chinese Yes
24 30–60 Sun Barbeque Yes
25 0–10 Wed Chinese, Sushi Yes

(30,60](10,30](0,10] Above 60 α=1.0

α=0.4

α=0.0

A
B

ST
R

A
C

TI
O

N
LE

VE
L

(30,60](10,30](0,10] Above 60

(30,60](10,30](0,10] Above 60

Fig. 8. Partition tree for the domain Waiting Time.

WED FRITUEMON THU α=1.0

α=0.5

α=0.0

SUNSAT

WED FRITUEMON THU SUNSAT

WED FRITUEMON THU SUNSAT

Fig. 9. Partition tree for the domain Day of Week.

ITALIAN SUSHIGREEKFRENCH CHINESE α=1.0

α=0.6

α=0.0

BURGERBARBEQE

ITALIAN SUSHIGREEKFRENCH CHINESE BURGERBARBEQE

ITALIAN SUSHIGREEKFRENCH CHINESE BURGERBARBEQE

Fig. 10. Partition tree for the domain Food Type.

908 R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911
keep our example short the last (i.e. class label) attribute has a non-fuzzy character that answers the question whether a
particular client decided to wait or not for a table (i.e. there are only two labels in our classification example: Yes and

Table 7
Part of fuzzy relation after complete data specialization.

ID Wait time Day of week Food type Did wait? COUNT

9a 0–10 Fri Italian Yes 0.38
9b 0–10 Fri Barbeque Yes 0.24
9c 0–10 Fri Greek Yes 0.38

..

. ..
. ..

. ..
. ..

. ..
.

19a 0–10 Fri Barbeque Yes 0.333
19b 0–10 Sat Barbeque Yes 0.333
19c 0–10 Sun Barbeque Yes 0.333

R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911 909
No), when the circumstances described in the remaining three attributes were taking place. By looking at the Table 6 we can
notice that 17 out of 25 records contain some degree of imprecision.

As expected when using a fuzzy relational database, the similarity relations have been specified for our attributes. To
make our example more understandable, we present the fuzzy similarity relations using partition trees. Fig. 8 presents
the partition tree for the domain Waiting Time. Fig. 9 presents the partition tree for the attribute Day of Week, and Fig. 10
reflects the fuzzy similarity relation for the Food Type.

As presented in the Section 3.3, we are capable of transferring the original fuzzy database table (Table 6), to a data table
that contains only atomic variables, where the attribute COUNT is added to reflect original proportions between the data
items. We used our Similarity-Driven Complete Data Specialization algorithm (Table 3), to transform our data table to a
1NF data table which contains distribution of records’ fractions based on the pre-defined similarities between the originally
entered attribute values.

Let us look at the imprecise tuple number 9 in Table 6 (our fuzzy database table), i.e. {0–10; Fri; Italian, Barbeque, Greek;
Yes}, the distribution of the COUNT for this tuple, after its complete defuzzification (to atomic descriptors at the a = 1.0 level)
Fig. 11. Decision tree generated from completely specialized data set using ID3-type algorithm.

910 R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911
using our data specialization algorithm, is presented in the three upper rows of Table 7. There is more emphasis on Italian
and Greek entries, since these two values are more similar according to our fuzzy similarity relation reflected in Fig. 10.

Results of the complete data specialization, preformed on the tuple with ID = 19 in Table 6, are distributed over the three
next rows shown in the Table 7. This time the tuple’s vote is distributed evenly, since Fri, Sat, and Sun are considered to be
equally similar on all levels of abstraction in Fig. 9. As we can see from Table 7, complete defuzzification of the original data
set may let us merge certain parts of records, which represent the fractions of originally different fuzzy tuples that contain
identical atomic values after the defuzzification process is completed. In the examples presented in Table 6, the parts of tu-
ples identified as 9b and 19a contain identical descriptors, and can be merged for classification purposes to the form: {0–10;
Fri; Barbeque; Yes; 0.573}. Note that the value in the COUNT attribute has been appropriately updated (i.e. 0.24 +
0.333 = 0.573) to maintain the original proportions of values’ distribution within the data set.

It is worth performing merging of identical defuzzified tuples before running data mining algorithms, as reduced length of
the data table allows a speed up processing time of these (usually expensive) algorithms. It is important to remember that
COUNT of the merged tuples needs to be updated appropriately (this is to make sure that the original proportions between
data entries are maintained through the whole data mining process).

Fig. 11 includes a decision tree generated by the ID3 algorithm on completely (i.e. to a = 1.0 level, for all of the attributes)
specialized data. The tree has a total of 32 nodes, where 28 leaves accurately classify all the data. Numbers in bracket, printed
after the leaves, represent fractions of vote that were assigned to the particular leaf/class.
5. Conclusions

The primary purpose of this work was to develop an algorithm that allows for a background knowledge-based transition
of the imprecise data, which we can store in similarity-based fuzzy relational databases, to a format that can be easily ana-
lyzed by broadly available software for data analysis (e.g. Weka [34], Matlab [35]). By proposing this heuristics we hope to
open a discussion among researchers working in fuzzy database community on the time-efficient algorithms allowing intu-
itive transition of large, imprecise data collections to the formats compatible with the first normal form [4]. We strongly be-
lieve that, by the incorporation of domain-specific background knowledge directly to the imprecise data interpretation,
many useful algorithms can be developed, putting fuzzy databases on the map for the quickly growing data mining
community.

In this paper, we intentionally focused on general considerations and used artificially generated data sets, trying to avoid
making this presentation application specific. This philosophy, however, carries some important limitations – all of our con-
clusions need to be interpreted carefully as they were derived using data samples with randomly distributed imprecision. In
real life, we would expect distribution of non-atomic values in the fuzzy data records to follow closely the layout of equiv-
alence classes in the fuzzy similarity relation, which characterizes the related domain. This may, however, generate even bet-
ter results by improving efficiency of our algorithm’s DFS component.

Acknowledgments

Rafal Angryk would like to thank the Montana NASA EPSCoR Grant Consortium for sponsoring a part of this research
(Award No. M166-05-Z3184). Some parts of the experimental results were generated using the code developed by Mr.
Shahriar Hossain.

We would like to also express our gratitude to anonymous reviewers, whose questions helped to improve our presenta-
tion. We are deeply thankful for their work.

References

[1] R. Angryk, F. Petry, R. Ladner, Mining generalized knowledge from imperfect data, in: Proceedings of the 10th Internatinal Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU ’04), Perugia, Italy, July 2004, pp. 739–746.

[2] R. Angryk, Similarity-driven defuzzification of fuzzy tuples for entropy-based data classification purposes, in: Proceedings of the 15th IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE ’06), Vancouver, Canada, July 2006, pp. 1490–1498.

[3] J. Gray, Talks at the HP Labs/MSR (July 2004), and at the University of Tokyo (October 2005), URL: <research.microsoft.com/�gray/talks/
Info%20Avalanche%20U%20Tokyo%20.ppt>.

[4] E.F. Codd, A relational model of data for large shared data banks, Commun. ACM 13 (6) (1970) 377–387.
[5] X. Wu, V. Kumar, R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A. Ng, B. Liu, P.S. Yu, Z. Zhou, M. Steinbach, D.J. Hand, D. Steinberg, Top 10

algorithms in data mining, Knowl. Inform. Syst. 14 (1) (2007) 1–37.
[6] B.P. Buckles, F.E. Petry, A fuzzy representation of data for relational databases, Fuzzy Sets Syst. 7 (3) (1982) 213–226.
[7] B.P. Buckles, F.E. Petry, Information-theoretic characterization of fuzzy relational databases, IEEE Trans. Syst. Man Cybern. 13 (1) (1983) 74–77.
[8] F.E. Petry, Fuzzy Databases: Principles and Applications, Kluwer Academic Publishers, Boston, MA, 1996.
[9] L.A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (2) (1970) 177–200.

[10] S. Kumar De, R. Biswas, A.R. Roy, On extended fuzzy relational database model with proximity relations, Fuzzy Sets Syst. 117 (2001) 195–201.
[11] S. Parsons, Current approaches to handling imperfect information in data and knowledge bases, IEEE Trans. Knowl. Data Eng. 8 (3) (1996) 353–372.
[12] Z. Ma, Fuzzy database modeling with XML, in: Series: Advances in Database Systems, vol. 29, XXIV, Springer-Verlag, Berlin, 2005.
[13] Z. Ma, Fuzzy database modeling of imprecise and uncertain engineering information, in: Series: Studies in Fuzziness and Soft Computing, vol. 195, XV,

Springer-Verlag, Berlin, 2006.
[14] P. Bertrand, F. Goupil, Descriptive statistics for symbolic data, in: H.-H. Bock, E. Diday (Eds.), Analysis of Symbolic Data: Exploratory Methods for

Extracting Statistical Information from Complex Data, Springer-Verlag, Berlin, 2000, pp. 103–124.

http://research.microsoft.com/~gray/talks/Info%20Avalanche%20U%20Tokyo%20.ppt
http://research.microsoft.com/~gray/talks/Info%20Avalanche%20U%20Tokyo%20.ppt
http://research.microsoft.com/~gray/talks/Info%20Avalanche%20U%20Tokyo%20.ppt

R.A. Angryk, J. Czerniak / International Journal of Approximate Reasoning 51 (2010) 895–911 911
[15] L. Billard, E. Diday, Symbolic Data Analysis: Conceptual Statistics and Data Mining, Wiley Series in Computational Statistics, Wiley, 2007.
[16] R. Angryk, F. Petry, Mining multi-level associations with fuzzy hierarchies, in: Proceedings of the 14th IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE ’05), Reno, NV, USA, May 2005, pp. 785–790.
[17] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauffman, San Francisco, CA, 1993.
[18] S.L. Crawford, Extension to the CART algorithm, Int. J. Man–Machine Stud. 31 (8) (1989) 197–217.
[19] U.M. Fayyad, K.B. Irani, The attribute selection problem in decision tree generation, in: Proceedings of National Conference on Artificial Intelligence

(AAAI’90), pp. 104–110.
[20] J. Han, Y. Cai, N. Cercone, Knowledge discovery in databases: an attribute-oriented approach, in: Proceedings of 18th International Conference on Very

Large Data Bases (VLDB ’92), Vancouver, Canada, 1992, pp. 547–559.
[21] J. Han, Y. Cai, N. Cercone, Data-driven discovery of quantitative rules in relational databases, IEEE Trans. Knowl. Data Eng. 5 (1) (1993) 29–40.
[22] D.H. Lee, M.H. Kim, Database summarization using fuzzy ISA hierarchies, IEEE Trans. Syst. Man Cybern. Part B 27 (1) (1997) 68–78.
[23] G. Raschia, L. Ughetto, N. Mouaddib, Data summarization using extended concept hierarchies, in: Proceedings of Joint Ninth IFSA World Congress and

20th NAFIPS International Conference, Vancouver, BC, Canada, 2001, pp. 2289–2294.
[24] R. Angryk, F. Petry, Consistent fuzzy concept hierarchies for attribute generalization, in: Proceedings of Second International Conference on

Information and Knowledge Sharing (IKS ‘03), Scottsdale, AZ, USA, November 2003, pp. 158–163.
[25] R. Angryk, F. Petry, Knowledge discovery in fuzzy databases using attribute-oriented induction, in: T.Y. Lin, S. Ohsuga, C.J. Liau, X. Hu (Eds.),

Foundations and Novel Approaches in Data Mining, in: Series: Studies in Computational Intelligence, vol. 9, X, Springer-Verlag, Berlin, 2006, pp. 169–
196.

[26] D. Popat, H. Sharda, D. Taniar, Classification of fuzzy data in database management system, in: Proceedings of Eighth International Conference on
Knowledge-based Intelligent Information and Engineering Systems (KES ’04), Wellington, New Zealand, September 2004, in: Series: Lecture Notes in
Artificial Intelligence (LNAI), vol. 3214, Springer-Verlag, 2004, pp. 691–697.

[27] K. Selcuk Candan, J. Grant, V.S. Subrahmanian, A unified treatment of null values using constraints, Inform. Sci. 98 (1–4) (1997) 99–156.
[28] C. Zaniolo, Database relations with null values, in: Proceedings of ACM Symposium on Principles of Database Systems (PODS ’82), March, Los Angeles,

CA, 1982, pp. 27–33.
[29] S. McClean, B. Scotney, M. Shapcott, Using background knowledge with attribute-oriented data mining, in: Proceedings of IEE Colloquium on

Knowledge Discovery and Data Mining, London, UK, May 1998, pp. 1–4.
[30] S.-L. Chuang, L.-F. Chien, Towards automatic generation of query taxonomy: a hierarchical query clustering approach, in: Proceedings of Second IEEE

International Conference on Data Mining (ICDM-IEEE ’02), Maebashi City, Japan, December 2002, pp. 75–82.
[31] S.-L. Chuang, L.-F. Chien, A practical Web-based approach to generating topic hierarchy for text segments, in: Proceedings of Conference Information

and Knowledge Management (CIKM’04), Washington, DC, November 2004, pp. 127–136.
[32] B. Wall, N. Richter, R. Angryk, Creating concept hierarchies in an information retrieval system, in: Proceedings of Fifth IEEE International Conference

Data Mining (ICDM-IEEE ’05), Workshop on Foundations of Semantic Oriented Data and Web Mining, Houston, TX, USA, November 2005, pp. 99–105.
[33] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, second ed., Prentice Hall, 2002 (the example we are referring to in the paper can be

found on pp. 653–658).
[34] Weka URL: <http://www.cs.waikato.ac.nz/ml/weka/>.
[35] Matlab URL: <http://www.mathworks.com/products/matlab/>.
[36] R.M. Karp, J. Pearl, Searching for an optimal path in a tree with random costs, Artif. Intell. 21 (1983) 99–117.
[37] H.S. Stone, P. Sipala, The average complexity of depth-first search with backtracking and cutoff, IBM J. Res. Develop. 30 (3) (1986) 242–258.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.mathworks.com/products/matlab/

	Heuristic algorithm for interpretation of multi-valued attributes in similarity-based fuzzy relational databases
	Introduction
	Related works
	Similarity-based fuzzy relational database model
	Analysis of multi-valued entries in taxonomic categorical attributes

	Interpretation of imprecise tuples
	Lossless and lossy approaches to fuzzy tuples interpretation
	Similarity-driven complete lossy specialization of fuzzy tuples – an example
	Detailed presentation of algorithm for similarity-driven complete lossy specialization
	Theoretical investigation on time complexity of the algorithm
	Time complexity – experimental results

	An example of using lossy specialization for decision tree-based classification
	Conclusions
	Acknowledgments
	References

